1 /*- 2 * SPDX-License-Identifier: ISC 3 * 4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 5 * Copyright (c) 2002-2008 Atheros Communications, Inc. 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 #include "opt_ah.h" 20 21 #include "ah.h" 22 #include "ah_internal.h" 23 24 #include "ah_eeprom_v3.h" 25 26 #include "ar5212/ar5212.h" 27 #include "ar5212/ar5212reg.h" 28 #include "ar5212/ar5212phy.h" 29 30 #define AH_5212_5413 31 #include "ar5212/ar5212.ini" 32 33 #define N(a) (sizeof(a)/sizeof(a[0])) 34 35 struct ar5413State { 36 RF_HAL_FUNCS base; /* public state, must be first */ 37 uint16_t pcdacTable[PWR_TABLE_SIZE_2413]; 38 39 uint32_t Bank1Data[N(ar5212Bank1_5413)]; 40 uint32_t Bank2Data[N(ar5212Bank2_5413)]; 41 uint32_t Bank3Data[N(ar5212Bank3_5413)]; 42 uint32_t Bank6Data[N(ar5212Bank6_5413)]; 43 uint32_t Bank7Data[N(ar5212Bank7_5413)]; 44 45 /* 46 * Private state for reduced stack usage. 47 */ 48 /* filled out Vpd table for all pdGains (chanL) */ 49 uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL] 50 [MAX_PWR_RANGE_IN_HALF_DB]; 51 /* filled out Vpd table for all pdGains (chanR) */ 52 uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL] 53 [MAX_PWR_RANGE_IN_HALF_DB]; 54 /* filled out Vpd table for all pdGains (interpolated) */ 55 uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL] 56 [MAX_PWR_RANGE_IN_HALF_DB]; 57 }; 58 #define AR5413(ah) ((struct ar5413State *) AH5212(ah)->ah_rfHal) 59 60 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, 61 uint32_t numBits, uint32_t firstBit, uint32_t column); 62 63 static void 64 ar5413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex, 65 int writes) 66 { 67 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5413, modesIndex, writes); 68 HAL_INI_WRITE_ARRAY(ah, ar5212Common_5413, 1, writes); 69 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5413, freqIndex, writes); 70 } 71 72 /* 73 * Take the MHz channel value and set the Channel value 74 * 75 * ASSUMES: Writes enabled to analog bus 76 */ 77 static HAL_BOOL 78 ar5413SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan) 79 { 80 uint16_t freq = ath_hal_gethwchannel(ah, chan); 81 uint32_t channelSel = 0; 82 uint32_t bModeSynth = 0; 83 uint32_t aModeRefSel = 0; 84 uint32_t reg32 = 0; 85 86 OS_MARK(ah, AH_MARK_SETCHANNEL, freq); 87 88 if (freq < 4800) { 89 uint32_t txctl; 90 91 if (((freq - 2192) % 5) == 0) { 92 channelSel = ((freq - 672) * 2 - 3040)/10; 93 bModeSynth = 0; 94 } else if (((freq - 2224) % 5) == 0) { 95 channelSel = ((freq - 704) * 2 - 3040) / 10; 96 bModeSynth = 1; 97 } else { 98 HALDEBUG(ah, HAL_DEBUG_ANY, 99 "%s: invalid channel %u MHz\n", 100 __func__, freq); 101 return AH_FALSE; 102 } 103 104 channelSel = (channelSel << 2) & 0xff; 105 channelSel = ath_hal_reverseBits(channelSel, 8); 106 107 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); 108 if (freq == 2484) { 109 /* Enable channel spreading for channel 14 */ 110 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 111 txctl | AR_PHY_CCK_TX_CTRL_JAPAN); 112 } else { 113 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 114 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); 115 } 116 } else if (((freq % 5) == 2) && (freq <= 5435)) { 117 freq = freq - 2; /* Align to even 5MHz raster */ 118 channelSel = ath_hal_reverseBits( 119 (uint32_t)(((freq - 4800)*10)/25 + 1), 8); 120 aModeRefSel = ath_hal_reverseBits(0, 2); 121 } else if ((freq % 20) == 0 && freq >= 5120) { 122 channelSel = ath_hal_reverseBits( 123 ((freq - 4800) / 20 << 2), 8); 124 aModeRefSel = ath_hal_reverseBits(1, 2); 125 } else if ((freq % 10) == 0) { 126 channelSel = ath_hal_reverseBits( 127 ((freq - 4800) / 10 << 1), 8); 128 aModeRefSel = ath_hal_reverseBits(1, 2); 129 } else if ((freq % 5) == 0) { 130 channelSel = ath_hal_reverseBits( 131 (freq - 4800) / 5, 8); 132 aModeRefSel = ath_hal_reverseBits(1, 2); 133 } else { 134 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n", 135 __func__, freq); 136 return AH_FALSE; 137 } 138 139 reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) | 140 (1 << 12) | 0x1; 141 OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff); 142 143 reg32 >>= 8; 144 OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f); 145 146 AH_PRIVATE(ah)->ah_curchan = chan; 147 return AH_TRUE; 148 } 149 150 /* 151 * Reads EEPROM header info from device structure and programs 152 * all rf registers 153 * 154 * REQUIRES: Access to the analog rf device 155 */ 156 static HAL_BOOL 157 ar5413SetRfRegs(struct ath_hal *ah, 158 const struct ieee80211_channel *chan, 159 uint16_t modesIndex, uint16_t *rfXpdGain) 160 { 161 #define RF_BANK_SETUP(_priv, _ix, _col) do { \ 162 int i; \ 163 for (i = 0; i < N(ar5212Bank##_ix##_5413); i++) \ 164 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5413[i][_col];\ 165 } while (0) 166 struct ath_hal_5212 *ahp = AH5212(ah); 167 uint16_t freq = ath_hal_gethwchannel(ah, chan); 168 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 169 uint16_t ob5GHz = 0, db5GHz = 0; 170 uint16_t ob2GHz = 0, db2GHz = 0; 171 struct ar5413State *priv = AR5413(ah); 172 int regWrites = 0; 173 174 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n", 175 __func__, chan->ic_freq, chan->ic_flags, modesIndex); 176 177 HALASSERT(priv != AH_NULL); 178 179 /* Setup rf parameters */ 180 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) { 181 case IEEE80211_CHAN_A: 182 if (freq > 4000 && freq < 5260) { 183 ob5GHz = ee->ee_ob1; 184 db5GHz = ee->ee_db1; 185 } else if (freq >= 5260 && freq < 5500) { 186 ob5GHz = ee->ee_ob2; 187 db5GHz = ee->ee_db2; 188 } else if (freq >= 5500 && freq < 5725) { 189 ob5GHz = ee->ee_ob3; 190 db5GHz = ee->ee_db3; 191 } else if (freq >= 5725) { 192 ob5GHz = ee->ee_ob4; 193 db5GHz = ee->ee_db4; 194 } else { 195 /* XXX else */ 196 } 197 break; 198 case IEEE80211_CHAN_B: 199 ob2GHz = ee->ee_obFor24; 200 db2GHz = ee->ee_dbFor24; 201 break; 202 case IEEE80211_CHAN_G: 203 case IEEE80211_CHAN_PUREG: /* NB: really 108G */ 204 ob2GHz = ee->ee_obFor24g; 205 db2GHz = ee->ee_dbFor24g; 206 break; 207 default: 208 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n", 209 __func__, chan->ic_flags); 210 return AH_FALSE; 211 } 212 213 /* Bank 1 Write */ 214 RF_BANK_SETUP(priv, 1, 1); 215 216 /* Bank 2 Write */ 217 RF_BANK_SETUP(priv, 2, modesIndex); 218 219 /* Bank 3 Write */ 220 RF_BANK_SETUP(priv, 3, modesIndex); 221 222 /* Bank 6 Write */ 223 RF_BANK_SETUP(priv, 6, modesIndex); 224 225 /* Only the 5 or 2 GHz OB/DB need to be set for a mode */ 226 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 227 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 241, 0); 228 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 238, 0); 229 230 /* TODO - only for Eagle 1.0 2GHz - remove for production */ 231 /* XXX: but without this bit G doesn't work. */ 232 ar5212ModifyRfBuffer(priv->Bank6Data, 1 , 1, 291, 2); 233 234 /* Optimum value for rf_pwd_iclobuf2G for PCIe chips only */ 235 if (AH_PRIVATE(ah)->ah_ispcie) { 236 ar5212ModifyRfBuffer(priv->Bank6Data, ath_hal_reverseBits(6, 3), 237 3, 131, 3); 238 } 239 } else { 240 ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 247, 0); 241 ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 244, 0); 242 } 243 244 /* Bank 7 Setup */ 245 RF_BANK_SETUP(priv, 7, modesIndex); 246 247 /* Write Analog registers */ 248 HAL_INI_WRITE_BANK(ah, ar5212Bank1_5413, priv->Bank1Data, regWrites); 249 HAL_INI_WRITE_BANK(ah, ar5212Bank2_5413, priv->Bank2Data, regWrites); 250 HAL_INI_WRITE_BANK(ah, ar5212Bank3_5413, priv->Bank3Data, regWrites); 251 HAL_INI_WRITE_BANK(ah, ar5212Bank6_5413, priv->Bank6Data, regWrites); 252 HAL_INI_WRITE_BANK(ah, ar5212Bank7_5413, priv->Bank7Data, regWrites); 253 254 /* Now that we have reprogrammed rfgain value, clear the flag. */ 255 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE; 256 257 return AH_TRUE; 258 #undef RF_BANK_SETUP 259 } 260 261 /* 262 * Return a reference to the requested RF Bank. 263 */ 264 static uint32_t * 265 ar5413GetRfBank(struct ath_hal *ah, int bank) 266 { 267 struct ar5413State *priv = AR5413(ah); 268 269 HALASSERT(priv != AH_NULL); 270 switch (bank) { 271 case 1: return priv->Bank1Data; 272 case 2: return priv->Bank2Data; 273 case 3: return priv->Bank3Data; 274 case 6: return priv->Bank6Data; 275 case 7: return priv->Bank7Data; 276 } 277 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n", 278 __func__, bank); 279 return AH_NULL; 280 } 281 282 /* 283 * Return indices surrounding the value in sorted integer lists. 284 * 285 * NB: the input list is assumed to be sorted in ascending order 286 */ 287 static void 288 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize, 289 uint32_t *vlo, uint32_t *vhi) 290 { 291 int16_t target = v; 292 const uint16_t *ep = lp+listSize; 293 const uint16_t *tp; 294 295 /* 296 * Check first and last elements for out-of-bounds conditions. 297 */ 298 if (target < lp[0]) { 299 *vlo = *vhi = 0; 300 return; 301 } 302 if (target >= ep[-1]) { 303 *vlo = *vhi = listSize - 1; 304 return; 305 } 306 307 /* look for value being near or between 2 values in list */ 308 for (tp = lp; tp < ep; tp++) { 309 /* 310 * If value is close to the current value of the list 311 * then target is not between values, it is one of the values 312 */ 313 if (*tp == target) { 314 *vlo = *vhi = tp - (const uint16_t *) lp; 315 return; 316 } 317 /* 318 * Look for value being between current value and next value 319 * if so return these 2 values 320 */ 321 if (target < tp[1]) { 322 *vlo = tp - (const uint16_t *) lp; 323 *vhi = *vlo + 1; 324 return; 325 } 326 } 327 } 328 329 /* 330 * Fill the Vpdlist for indices Pmax-Pmin 331 */ 332 static HAL_BOOL 333 ar5413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax, 334 const int16_t *pwrList, const uint16_t *VpdList, 335 uint16_t numIntercepts, 336 uint16_t retVpdList[][64]) 337 { 338 uint16_t ii, jj, kk; 339 int16_t currPwr = (int16_t)(2*Pmin); 340 /* since Pmin is pwr*2 and pwrList is 4*pwr */ 341 uint32_t idxL, idxR; 342 343 ii = 0; 344 jj = 0; 345 346 if (numIntercepts < 2) 347 return AH_FALSE; 348 349 while (ii <= (uint16_t)(Pmax - Pmin)) { 350 GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList, 351 numIntercepts, &(idxL), &(idxR)); 352 if (idxR < 1) 353 idxR = 1; /* extrapolate below */ 354 if (idxL == (uint32_t)(numIntercepts - 1)) 355 idxL = numIntercepts - 2; /* extrapolate above */ 356 if (pwrList[idxL] == pwrList[idxR]) 357 kk = VpdList[idxL]; 358 else 359 kk = (uint16_t) 360 (((currPwr - pwrList[idxL])*VpdList[idxR]+ 361 (pwrList[idxR] - currPwr)*VpdList[idxL])/ 362 (pwrList[idxR] - pwrList[idxL])); 363 retVpdList[pdGainIdx][ii] = kk; 364 ii++; 365 currPwr += 2; /* half dB steps */ 366 } 367 368 return AH_TRUE; 369 } 370 371 /* 372 * Returns interpolated or the scaled up interpolated value 373 */ 374 static int16_t 375 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight, 376 int16_t targetLeft, int16_t targetRight) 377 { 378 int16_t rv; 379 380 if (srcRight != srcLeft) { 381 rv = ((target - srcLeft)*targetRight + 382 (srcRight - target)*targetLeft) / (srcRight - srcLeft); 383 } else { 384 rv = targetLeft; 385 } 386 return rv; 387 } 388 389 /* 390 * Uses the data points read from EEPROM to reconstruct the pdadc power table 391 * Called by ar5413SetPowerTable() 392 */ 393 static int 394 ar5413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel, 395 const RAW_DATA_STRUCT_2413 *pRawDataset, 396 uint16_t pdGainOverlap_t2, 397 int16_t *pMinCalPower, uint16_t pPdGainBoundaries[], 398 uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 399 { 400 struct ar5413State *priv = AR5413(ah); 401 #define VpdTable_L priv->vpdTable_L 402 #define VpdTable_R priv->vpdTable_R 403 #define VpdTable_I priv->vpdTable_I 404 uint32_t ii, jj, kk; 405 int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */ 406 uint32_t idxL, idxR; 407 uint32_t numPdGainsUsed = 0; 408 /* 409 * If desired to support -ve power levels in future, just 410 * change pwr_I_0 to signed 5-bits. 411 */ 412 int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; 413 /* to accommodate -ve power levels later on. */ 414 int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; 415 /* to accommodate -ve power levels later on */ 416 uint16_t numVpd = 0; 417 uint16_t Vpd_step; 418 int16_t tmpVal ; 419 uint32_t sizeCurrVpdTable, maxIndex, tgtIndex; 420 421 /* Get upper lower index */ 422 GetLowerUpperIndex(channel, pRawDataset->pChannels, 423 pRawDataset->numChannels, &(idxL), &(idxR)); 424 425 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { 426 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; 427 /* work backwards 'cause highest pdGain for lowest power */ 428 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd; 429 if (numVpd > 0) { 430 pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain; 431 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]; 432 if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) { 433 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]; 434 } 435 Pmin_t2[numPdGainsUsed] = (int16_t) 436 (Pmin_t2[numPdGainsUsed] / 2); 437 Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1]; 438 if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]) 439 Pmax_t2[numPdGainsUsed] = 440 pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]; 441 Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2); 442 ar5413FillVpdTable( 443 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 444 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 445 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L 446 ); 447 ar5413FillVpdTable( 448 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 449 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]), 450 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R 451 ); 452 for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) { 453 VpdTable_I[numPdGainsUsed][kk] = 454 interpolate_signed( 455 channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR], 456 (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]); 457 } 458 /* fill VpdTable_I for this pdGain */ 459 numPdGainsUsed++; 460 } 461 /* if this pdGain is used */ 462 } 463 464 *pMinCalPower = Pmin_t2[0]; 465 kk = 0; /* index for the final table */ 466 for (ii = 0; ii < numPdGainsUsed; ii++) { 467 if (ii == (numPdGainsUsed - 1)) 468 pPdGainBoundaries[ii] = Pmax_t2[ii] + 469 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB; 470 else 471 pPdGainBoundaries[ii] = (uint16_t) 472 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 ); 473 if (pPdGainBoundaries[ii] > 63) { 474 HALDEBUG(ah, HAL_DEBUG_ANY, 475 "%s: clamp pPdGainBoundaries[%d] %d\n", 476 __func__, ii, pPdGainBoundaries[ii]);/*XXX*/ 477 pPdGainBoundaries[ii] = 63; 478 } 479 480 /* Find starting index for this pdGain */ 481 if (ii == 0) 482 ss = 0; /* for the first pdGain, start from index 0 */ 483 else 484 ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 485 pdGainOverlap_t2; 486 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]); 487 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); 488 /* 489 *-ve ss indicates need to extrapolate data below for this pdGain 490 */ 491 while (ss < 0) { 492 tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step); 493 pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal); 494 ss++; 495 } 496 497 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii]; 498 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii]; 499 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; 500 501 while (ss < (int16_t)maxIndex) 502 pPDADCValues[kk++] = VpdTable_I[ii][ss++]; 503 504 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] - 505 VpdTable_I[ii][sizeCurrVpdTable-2]); 506 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); 507 /* 508 * for last gain, pdGainBoundary == Pmax_t2, so will 509 * have to extrapolate 510 */ 511 if (tgtIndex > maxIndex) { /* need to extrapolate above */ 512 while(ss < (int16_t)tgtIndex) { 513 tmpVal = (uint16_t) 514 (VpdTable_I[ii][sizeCurrVpdTable-1] + 515 (ss-maxIndex)*Vpd_step); 516 pPDADCValues[kk++] = (tmpVal > 127) ? 517 127 : tmpVal; 518 ss++; 519 } 520 } /* extrapolated above */ 521 } /* for all pdGainUsed */ 522 523 while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) { 524 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1]; 525 ii++; 526 } 527 while (kk < 128) { 528 pPDADCValues[kk] = pPDADCValues[kk-1]; 529 kk++; 530 } 531 532 return numPdGainsUsed; 533 #undef VpdTable_L 534 #undef VpdTable_R 535 #undef VpdTable_I 536 } 537 538 static HAL_BOOL 539 ar5413SetPowerTable(struct ath_hal *ah, 540 int16_t *minPower, int16_t *maxPower, 541 const struct ieee80211_channel *chan, 542 uint16_t *rfXpdGain) 543 { 544 struct ath_hal_5212 *ahp = AH5212(ah); 545 uint16_t freq = ath_hal_gethwchannel(ah, chan); 546 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 547 const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL; 548 uint16_t pdGainOverlap_t2; 549 int16_t minCalPower5413_t2; 550 uint16_t *pdadcValues = ahp->ah_pcdacTable; 551 uint16_t gainBoundaries[4]; 552 uint32_t reg32, regoffset; 553 int i, numPdGainsUsed; 554 #ifndef AH_USE_INIPDGAIN 555 uint32_t tpcrg1; 556 #endif 557 558 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n", 559 __func__, chan->ic_freq, chan->ic_flags); 560 561 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan)) 562 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; 563 else if (IEEE80211_IS_CHAN_B(chan)) 564 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; 565 else { 566 HALASSERT(IEEE80211_IS_CHAN_5GHZ(chan)); 567 pRawDataset = &ee->ee_rawDataset2413[headerInfo11A]; 568 } 569 570 pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5), 571 AR_PHY_TPCRG5_PD_GAIN_OVERLAP); 572 573 numPdGainsUsed = ar5413getGainBoundariesAndPdadcsForPowers(ah, 574 freq, pRawDataset, pdGainOverlap_t2, 575 &minCalPower5413_t2,gainBoundaries, rfXpdGain, pdadcValues); 576 HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3); 577 578 #ifdef AH_USE_INIPDGAIN 579 /* 580 * Use pd_gains curve from eeprom; Atheros always uses 581 * the default curve from the ini file but some vendors 582 * (e.g. Zcomax) want to override this curve and not 583 * honoring their settings results in tx power 5dBm low. 584 */ 585 OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 586 (pRawDataset->pDataPerChannel[0].numPdGains - 1)); 587 #else 588 tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1); 589 tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN) 590 | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN); 591 switch (numPdGainsUsed) { 592 case 3: 593 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3; 594 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3); 595 /* fall thru... */ 596 case 2: 597 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2; 598 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2); 599 /* fall thru... */ 600 case 1: 601 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1; 602 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1); 603 break; 604 } 605 #ifdef AH_DEBUG 606 if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1)) 607 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default " 608 "pd_gains (default 0x%x, calculated 0x%x)\n", 609 __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1); 610 #endif 611 OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1); 612 #endif 613 614 /* 615 * Note the pdadc table may not start at 0 dBm power, could be 616 * negative or greater than 0. Need to offset the power 617 * values by the amount of minPower for griffin 618 */ 619 if (minCalPower5413_t2 != 0) 620 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower5413_t2); 621 else 622 ahp->ah_txPowerIndexOffset = 0; 623 624 /* Finally, write the power values into the baseband power table */ 625 regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */ 626 for (i = 0; i < 32; i++) { 627 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) | 628 ((pdadcValues[4*i + 1] & 0xFF) << 8) | 629 ((pdadcValues[4*i + 2] & 0xFF) << 16) | 630 ((pdadcValues[4*i + 3] & 0xFF) << 24) ; 631 OS_REG_WRITE(ah, regoffset, reg32); 632 regoffset += 4; 633 } 634 635 OS_REG_WRITE(ah, AR_PHY_TPCRG5, 636 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 637 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | 638 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | 639 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | 640 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); 641 642 return AH_TRUE; 643 } 644 645 static int16_t 646 ar5413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data) 647 { 648 uint32_t ii,jj; 649 uint16_t Pmin=0,numVpd; 650 651 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { 652 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; 653 /* work backwards 'cause highest pdGain for lowest power */ 654 numVpd = data->pDataPerPDGain[jj].numVpd; 655 if (numVpd > 0) { 656 Pmin = data->pDataPerPDGain[jj].pwr_t4[0]; 657 return(Pmin); 658 } 659 } 660 return(Pmin); 661 } 662 663 static int16_t 664 ar5413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data) 665 { 666 uint32_t ii; 667 uint16_t Pmax=0,numVpd; 668 669 for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { 670 /* work forwards cuase lowest pdGain for highest power */ 671 numVpd = data->pDataPerPDGain[ii].numVpd; 672 if (numVpd > 0) { 673 Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1]; 674 return(Pmax); 675 } 676 } 677 return(Pmax); 678 } 679 680 static HAL_BOOL 681 ar5413GetChannelMaxMinPower(struct ath_hal *ah, 682 const struct ieee80211_channel *chan, 683 int16_t *maxPow, int16_t *minPow) 684 { 685 uint16_t freq = chan->ic_freq; /* NB: never mapped */ 686 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 687 const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL; 688 const RAW_DATA_PER_CHANNEL_2413 *data=AH_NULL; 689 uint16_t numChannels; 690 int totalD,totalF, totalMin,last, i; 691 692 *maxPow = 0; 693 694 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan)) 695 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; 696 else if (IEEE80211_IS_CHAN_B(chan)) 697 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; 698 else { 699 HALASSERT(IEEE80211_IS_CHAN_5GHZ(chan)); 700 pRawDataset = &ee->ee_rawDataset2413[headerInfo11A]; 701 } 702 703 numChannels = pRawDataset->numChannels; 704 data = pRawDataset->pDataPerChannel; 705 706 /* Make sure the channel is in the range of the TP values 707 * (freq piers) 708 */ 709 if (numChannels < 1) 710 return(AH_FALSE); 711 712 if ((freq < data[0].channelValue) || 713 (freq > data[numChannels-1].channelValue)) { 714 if (freq < data[0].channelValue) { 715 *maxPow = ar5413GetMaxPower(ah, &data[0]); 716 *minPow = ar5413GetMinPower(ah, &data[0]); 717 return(AH_TRUE); 718 } else { 719 *maxPow = ar5413GetMaxPower(ah, &data[numChannels - 1]); 720 *minPow = ar5413GetMinPower(ah, &data[numChannels - 1]); 721 return(AH_TRUE); 722 } 723 } 724 725 /* Linearly interpolate the power value now */ 726 for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue); 727 last = i++); 728 totalD = data[i].channelValue - data[last].channelValue; 729 if (totalD > 0) { 730 totalF = ar5413GetMaxPower(ah, &data[i]) - ar5413GetMaxPower(ah, &data[last]); 731 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + 732 ar5413GetMaxPower(ah, &data[last])*totalD)/totalD); 733 totalMin = ar5413GetMinPower(ah, &data[i]) - ar5413GetMinPower(ah, &data[last]); 734 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) + 735 ar5413GetMinPower(ah, &data[last])*totalD)/totalD); 736 return(AH_TRUE); 737 } else { 738 if (freq == data[i].channelValue) { 739 *maxPow = ar5413GetMaxPower(ah, &data[i]); 740 *minPow = ar5413GetMinPower(ah, &data[i]); 741 return(AH_TRUE); 742 } else 743 return(AH_FALSE); 744 } 745 } 746 747 /* 748 * Free memory for analog bank scratch buffers 749 */ 750 static void 751 ar5413RfDetach(struct ath_hal *ah) 752 { 753 struct ath_hal_5212 *ahp = AH5212(ah); 754 755 HALASSERT(ahp->ah_rfHal != AH_NULL); 756 ath_hal_free(ahp->ah_rfHal); 757 ahp->ah_rfHal = AH_NULL; 758 } 759 760 /* 761 * Allocate memory for analog bank scratch buffers 762 * Scratch Buffer will be reinitialized every reset so no need to zero now 763 */ 764 static HAL_BOOL 765 ar5413RfAttach(struct ath_hal *ah, HAL_STATUS *status) 766 { 767 struct ath_hal_5212 *ahp = AH5212(ah); 768 struct ar5413State *priv; 769 770 HALASSERT(ah->ah_magic == AR5212_MAGIC); 771 772 HALASSERT(ahp->ah_rfHal == AH_NULL); 773 priv = ath_hal_malloc(sizeof(struct ar5413State)); 774 if (priv == AH_NULL) { 775 HALDEBUG(ah, HAL_DEBUG_ANY, 776 "%s: cannot allocate private state\n", __func__); 777 *status = HAL_ENOMEM; /* XXX */ 778 return AH_FALSE; 779 } 780 priv->base.rfDetach = ar5413RfDetach; 781 priv->base.writeRegs = ar5413WriteRegs; 782 priv->base.getRfBank = ar5413GetRfBank; 783 priv->base.setChannel = ar5413SetChannel; 784 priv->base.setRfRegs = ar5413SetRfRegs; 785 priv->base.setPowerTable = ar5413SetPowerTable; 786 priv->base.getChannelMaxMinPower = ar5413GetChannelMaxMinPower; 787 priv->base.getNfAdjust = ar5212GetNfAdjust; 788 789 ahp->ah_pcdacTable = priv->pcdacTable; 790 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable); 791 ahp->ah_rfHal = &priv->base; 792 793 return AH_TRUE; 794 } 795 796 static HAL_BOOL 797 ar5413Probe(struct ath_hal *ah) 798 { 799 return IS_5413(ah); 800 } 801 AH_RF(RF5413, ar5413Probe, ar5413RfAttach); 802