xref: /freebsd/sys/dev/ath/ath_hal/ar5212/ar5212_xmit.c (revision 963f5dc7a30624e95d72fb7f87b8892651164e46)
1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  * $FreeBSD$
20  */
21 #include "opt_ah.h"
22 
23 #include "ah.h"
24 #include "ah_internal.h"
25 #include "ah_desc.h"
26 
27 #include "ar5212/ar5212.h"
28 #include "ar5212/ar5212reg.h"
29 #include "ar5212/ar5212desc.h"
30 #include "ar5212/ar5212phy.h"
31 #ifdef AH_SUPPORT_5311
32 #include "ar5212/ar5311reg.h"
33 #endif
34 
35 #ifdef AH_NEED_DESC_SWAP
36 static void ar5212SwapTxDesc(struct ath_desc *ds);
37 #endif
38 
39 /*
40  * Update Tx FIFO trigger level.
41  *
42  * Set bIncTrigLevel to TRUE to increase the trigger level.
43  * Set bIncTrigLevel to FALSE to decrease the trigger level.
44  *
45  * Returns TRUE if the trigger level was updated
46  */
47 HAL_BOOL
48 ar5212UpdateTxTrigLevel(struct ath_hal *ah, HAL_BOOL bIncTrigLevel)
49 {
50 	struct ath_hal_5212 *ahp = AH5212(ah);
51 	uint32_t txcfg, curLevel, newLevel;
52 	HAL_INT omask;
53 
54 	if (ahp->ah_txTrigLev >= ahp->ah_maxTxTrigLev)
55 		return AH_FALSE;
56 
57 	/*
58 	 * Disable interrupts while futzing with the fifo level.
59 	 */
60 	omask = ath_hal_setInterrupts(ah, ahp->ah_maskReg &~ HAL_INT_GLOBAL);
61 
62 	txcfg = OS_REG_READ(ah, AR_TXCFG);
63 	curLevel = MS(txcfg, AR_FTRIG);
64 	newLevel = curLevel;
65 	if (bIncTrigLevel) {		/* increase the trigger level */
66 		if (curLevel < ahp->ah_maxTxTrigLev)
67 			newLevel++;
68 	} else if (curLevel > MIN_TX_FIFO_THRESHOLD)
69 		newLevel--;
70 	if (newLevel != curLevel)
71 		/* Update the trigger level */
72 		OS_REG_WRITE(ah, AR_TXCFG,
73 			(txcfg &~ AR_FTRIG) | SM(newLevel, AR_FTRIG));
74 
75 	ahp->ah_txTrigLev = newLevel;
76 
77 	/* re-enable chip interrupts */
78 	ath_hal_setInterrupts(ah, omask);
79 
80 	return (newLevel != curLevel);
81 }
82 
83 /*
84  * Set the properties of the tx queue with the parameters
85  * from qInfo.
86  */
87 HAL_BOOL
88 ar5212SetTxQueueProps(struct ath_hal *ah, int q, const HAL_TXQ_INFO *qInfo)
89 {
90 	struct ath_hal_5212 *ahp = AH5212(ah);
91 	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
92 
93 	if (q >= pCap->halTotalQueues) {
94 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
95 		    __func__, q);
96 		return AH_FALSE;
97 	}
98 	return ath_hal_setTxQProps(ah, &ahp->ah_txq[q], qInfo);
99 }
100 
101 /*
102  * Return the properties for the specified tx queue.
103  */
104 HAL_BOOL
105 ar5212GetTxQueueProps(struct ath_hal *ah, int q, HAL_TXQ_INFO *qInfo)
106 {
107 	struct ath_hal_5212 *ahp = AH5212(ah);
108 	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
109 
110 	if (q >= pCap->halTotalQueues) {
111 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
112 		    __func__, q);
113 		return AH_FALSE;
114 	}
115 	return ath_hal_getTxQProps(ah, qInfo, &ahp->ah_txq[q]);
116 }
117 
118 /*
119  * Allocate and initialize a tx DCU/QCU combination.
120  */
121 int
122 ar5212SetupTxQueue(struct ath_hal *ah, HAL_TX_QUEUE type,
123 	const HAL_TXQ_INFO *qInfo)
124 {
125 	struct ath_hal_5212 *ahp = AH5212(ah);
126 	HAL_TX_QUEUE_INFO *qi;
127 	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
128 	int q, defqflags;
129 
130 	/* by default enable OK+ERR+DESC+URN interrupts */
131 	defqflags = HAL_TXQ_TXOKINT_ENABLE
132 		  | HAL_TXQ_TXERRINT_ENABLE
133 		  | HAL_TXQ_TXDESCINT_ENABLE
134 		  | HAL_TXQ_TXURNINT_ENABLE;
135 	/* XXX move queue assignment to driver */
136 	switch (type) {
137 	case HAL_TX_QUEUE_BEACON:
138 		q = pCap->halTotalQueues-1;	/* highest priority */
139 		defqflags |= HAL_TXQ_DBA_GATED
140 		       | HAL_TXQ_CBR_DIS_QEMPTY
141 		       | HAL_TXQ_ARB_LOCKOUT_GLOBAL
142 		       | HAL_TXQ_BACKOFF_DISABLE;
143 		break;
144 	case HAL_TX_QUEUE_CAB:
145 		q = pCap->halTotalQueues-2;	/* next highest priority */
146 		defqflags |= HAL_TXQ_DBA_GATED
147 		       | HAL_TXQ_CBR_DIS_QEMPTY
148 		       | HAL_TXQ_CBR_DIS_BEMPTY
149 		       | HAL_TXQ_ARB_LOCKOUT_GLOBAL
150 		       | HAL_TXQ_BACKOFF_DISABLE;
151 		break;
152 	case HAL_TX_QUEUE_UAPSD:
153 		q = pCap->halTotalQueues-3;	/* nextest highest priority */
154 		if (ahp->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE) {
155 			HALDEBUG(ah, HAL_DEBUG_ANY,
156 			    "%s: no available UAPSD tx queue\n", __func__);
157 			return -1;
158 		}
159 		break;
160 	case HAL_TX_QUEUE_DATA:
161 		for (q = 0; q < pCap->halTotalQueues; q++)
162 			if (ahp->ah_txq[q].tqi_type == HAL_TX_QUEUE_INACTIVE)
163 				break;
164 		if (q == pCap->halTotalQueues) {
165 			HALDEBUG(ah, HAL_DEBUG_ANY,
166 			    "%s: no available tx queue\n", __func__);
167 			return -1;
168 		}
169 		break;
170 	default:
171 		HALDEBUG(ah, HAL_DEBUG_ANY,
172 		    "%s: bad tx queue type %u\n", __func__, type);
173 		return -1;
174 	}
175 
176 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q);
177 
178 	qi = &ahp->ah_txq[q];
179 	if (qi->tqi_type != HAL_TX_QUEUE_INACTIVE) {
180 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: tx queue %u already active\n",
181 		    __func__, q);
182 		return -1;
183 	}
184 	OS_MEMZERO(qi, sizeof(HAL_TX_QUEUE_INFO));
185 	qi->tqi_type = type;
186 	if (qInfo == AH_NULL) {
187 		qi->tqi_qflags = defqflags;
188 		qi->tqi_aifs = INIT_AIFS;
189 		qi->tqi_cwmin = HAL_TXQ_USEDEFAULT;	/* NB: do at reset */
190 		qi->tqi_cwmax = INIT_CWMAX;
191 		qi->tqi_shretry = INIT_SH_RETRY;
192 		qi->tqi_lgretry = INIT_LG_RETRY;
193 		qi->tqi_physCompBuf = 0;
194 	} else {
195 		qi->tqi_physCompBuf = qInfo->tqi_compBuf;
196 		(void) ar5212SetTxQueueProps(ah, q, qInfo);
197 	}
198 	/* NB: must be followed by ar5212ResetTxQueue */
199 	return q;
200 }
201 
202 /*
203  * Update the h/w interrupt registers to reflect a tx q's configuration.
204  */
205 static void
206 setTxQInterrupts(struct ath_hal *ah, HAL_TX_QUEUE_INFO *qi)
207 {
208 	struct ath_hal_5212 *ahp = AH5212(ah);
209 
210 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
211 	    "%s: tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n", __func__,
212 	    ahp->ah_txOkInterruptMask, ahp->ah_txErrInterruptMask,
213 	    ahp->ah_txDescInterruptMask, ahp->ah_txEolInterruptMask,
214 	    ahp->ah_txUrnInterruptMask);
215 
216 	OS_REG_WRITE(ah, AR_IMR_S0,
217 		  SM(ahp->ah_txOkInterruptMask, AR_IMR_S0_QCU_TXOK)
218 		| SM(ahp->ah_txDescInterruptMask, AR_IMR_S0_QCU_TXDESC)
219 	);
220 	OS_REG_WRITE(ah, AR_IMR_S1,
221 		  SM(ahp->ah_txErrInterruptMask, AR_IMR_S1_QCU_TXERR)
222 		| SM(ahp->ah_txEolInterruptMask, AR_IMR_S1_QCU_TXEOL)
223 	);
224 	OS_REG_RMW_FIELD(ah, AR_IMR_S2,
225 		AR_IMR_S2_QCU_TXURN, ahp->ah_txUrnInterruptMask);
226 }
227 
228 /*
229  * Free a tx DCU/QCU combination.
230  */
231 HAL_BOOL
232 ar5212ReleaseTxQueue(struct ath_hal *ah, u_int q)
233 {
234 	struct ath_hal_5212 *ahp = AH5212(ah);
235 	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
236 	HAL_TX_QUEUE_INFO *qi;
237 
238 	if (q >= pCap->halTotalQueues) {
239 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
240 		    __func__, q);
241 		return AH_FALSE;
242 	}
243 	qi = &ahp->ah_txq[q];
244 	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
245 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n",
246 		    __func__, q);
247 		return AH_FALSE;
248 	}
249 
250 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: release queue %u\n", __func__, q);
251 
252 	qi->tqi_type = HAL_TX_QUEUE_INACTIVE;
253 	ahp->ah_txOkInterruptMask &= ~(1 << q);
254 	ahp->ah_txErrInterruptMask &= ~(1 << q);
255 	ahp->ah_txDescInterruptMask &= ~(1 << q);
256 	ahp->ah_txEolInterruptMask &= ~(1 << q);
257 	ahp->ah_txUrnInterruptMask &= ~(1 << q);
258 	setTxQInterrupts(ah, qi);
259 
260 	return AH_TRUE;
261 }
262 
263 /*
264  * Set the retry, aifs, cwmin/max, readyTime regs for specified queue
265  * Assumes:
266  *  phwChannel has been set to point to the current channel
267  */
268 #define	TU_TO_USEC(_tu)		((_tu) << 10)
269 HAL_BOOL
270 ar5212ResetTxQueue(struct ath_hal *ah, u_int q)
271 {
272 	struct ath_hal_5212 *ahp = AH5212(ah);
273 	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
274 	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
275 	HAL_TX_QUEUE_INFO *qi;
276 	uint32_t cwMin, chanCwMin, qmisc, dmisc;
277 
278 	if (q >= pCap->halTotalQueues) {
279 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
280 		    __func__, q);
281 		return AH_FALSE;
282 	}
283 	qi = &ahp->ah_txq[q];
284 	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
285 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n",
286 		    __func__, q);
287 		return AH_TRUE;		/* XXX??? */
288 	}
289 
290 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: reset queue %u\n", __func__, q);
291 
292 	if (qi->tqi_cwmin == HAL_TXQ_USEDEFAULT) {
293 		/*
294 		 * Select cwmin according to channel type.
295 		 * NB: chan can be NULL during attach
296 		 */
297 		if (chan && IEEE80211_IS_CHAN_B(chan))
298 			chanCwMin = INIT_CWMIN_11B;
299 		else
300 			chanCwMin = INIT_CWMIN;
301 		/* make sure that the CWmin is of the form (2^n - 1) */
302 		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1)
303 			;
304 	} else
305 		cwMin = qi->tqi_cwmin;
306 
307 	/* set cwMin/Max and AIFS values */
308 	OS_REG_WRITE(ah, AR_DLCL_IFS(q),
309 		  SM(cwMin, AR_D_LCL_IFS_CWMIN)
310 		| SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX)
311 		| SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
312 
313 	/* Set retry limit values */
314 	OS_REG_WRITE(ah, AR_DRETRY_LIMIT(q),
315 		   SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH)
316 		 | SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG)
317 		 | SM(qi->tqi_lgretry, AR_D_RETRY_LIMIT_FR_LG)
318 		 | SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH)
319 	);
320 
321 	/* NB: always enable early termination on the QCU */
322 	qmisc = AR_Q_MISC_DCU_EARLY_TERM_REQ
323 	      | SM(AR_Q_MISC_FSP_ASAP, AR_Q_MISC_FSP);
324 
325 	/* NB: always enable DCU to wait for next fragment from QCU */
326 	dmisc = AR_D_MISC_FRAG_WAIT_EN;
327 
328 #ifdef AH_SUPPORT_5311
329 	if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
330 		/* Configure DCU to use the global sequence count */
331 		dmisc |= AR5311_D_MISC_SEQ_NUM_CONTROL;
332 	}
333 #endif
334 	/* multiqueue support */
335 	if (qi->tqi_cbrPeriod) {
336 		OS_REG_WRITE(ah, AR_QCBRCFG(q),
337 			  SM(qi->tqi_cbrPeriod,AR_Q_CBRCFG_CBR_INTERVAL)
338 			| SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_CBR_OVF_THRESH));
339 		qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_CBR;
340 		if (qi->tqi_cbrOverflowLimit)
341 			qmisc |= AR_Q_MISC_CBR_EXP_CNTR_LIMIT;
342 	}
343 	if (qi->tqi_readyTime) {
344 		OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
345 			  SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT)
346 			| AR_Q_RDYTIMECFG_ENA);
347 	}
348 
349 	OS_REG_WRITE(ah, AR_DCHNTIME(q),
350 		  SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR)
351 		| (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
352 
353 	if (qi->tqi_readyTime &&
354 	    (qi->tqi_qflags & HAL_TXQ_RDYTIME_EXP_POLICY_ENABLE))
355 		qmisc |= AR_Q_MISC_RDYTIME_EXP_POLICY;
356 	if (qi->tqi_qflags & HAL_TXQ_DBA_GATED)
357 		qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_DBA_GATED;
358 	if (MS(qmisc, AR_Q_MISC_FSP) != AR_Q_MISC_FSP_ASAP) {
359 		/*
360 		 * These are meangingful only when not scheduled asap.
361 		 */
362 		if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_BEMPTY)
363 			qmisc |= AR_Q_MISC_CBR_INCR_DIS0;
364 		else
365 			qmisc &= ~AR_Q_MISC_CBR_INCR_DIS0;
366 		if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_QEMPTY)
367 			qmisc |= AR_Q_MISC_CBR_INCR_DIS1;
368 		else
369 			qmisc &= ~AR_Q_MISC_CBR_INCR_DIS1;
370 	}
371 
372 	if (qi->tqi_qflags & HAL_TXQ_BACKOFF_DISABLE)
373 		dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS;
374 	if (qi->tqi_qflags & HAL_TXQ_FRAG_BURST_BACKOFF_ENABLE)
375 		dmisc |= AR_D_MISC_FRAG_BKOFF_EN;
376 	if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_GLOBAL)
377 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
378 			    AR_D_MISC_ARB_LOCKOUT_CNTRL);
379 	else if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_INTRA)
380 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_INTRA_FR,
381 			    AR_D_MISC_ARB_LOCKOUT_CNTRL);
382 	if (qi->tqi_qflags & HAL_TXQ_IGNORE_VIRTCOL)
383 		dmisc |= SM(AR_D_MISC_VIR_COL_HANDLING_IGNORE,
384 			    AR_D_MISC_VIR_COL_HANDLING);
385 	if (qi->tqi_qflags & HAL_TXQ_SEQNUM_INC_DIS)
386 		dmisc |= AR_D_MISC_SEQ_NUM_INCR_DIS;
387 
388 	/*
389 	 * Fillin type-dependent bits.  Most of this can be
390 	 * removed by specifying the queue parameters in the
391 	 * driver; it's here for backwards compatibility.
392 	 */
393 	switch (qi->tqi_type) {
394 	case HAL_TX_QUEUE_BEACON:		/* beacon frames */
395 		qmisc |= AR_Q_MISC_FSP_DBA_GATED
396 		      |  AR_Q_MISC_BEACON_USE
397 		      |  AR_Q_MISC_CBR_INCR_DIS1;
398 
399 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
400 			    AR_D_MISC_ARB_LOCKOUT_CNTRL)
401 		      |  AR_D_MISC_BEACON_USE
402 		      |  AR_D_MISC_POST_FR_BKOFF_DIS;
403 		break;
404 	case HAL_TX_QUEUE_CAB:			/* CAB  frames */
405 		/*
406 		 * No longer Enable AR_Q_MISC_RDYTIME_EXP_POLICY,
407 		 * There is an issue with the CAB Queue
408 		 * not properly refreshing the Tx descriptor if
409 		 * the TXE clear setting is used.
410 		 */
411 		qmisc |= AR_Q_MISC_FSP_DBA_GATED
412 		      |  AR_Q_MISC_CBR_INCR_DIS1
413 		      |  AR_Q_MISC_CBR_INCR_DIS0;
414 
415 		if (qi->tqi_readyTime) {
416 			HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
417 			    "%s: using tqi_readyTime\n", __func__);
418 			OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
419 			    SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT) |
420 			    AR_Q_RDYTIMECFG_ENA);
421 		} else {
422 			int value;
423 			/*
424 			 * NB: don't set default ready time if driver
425 			 * has explicitly specified something.  This is
426 			 * here solely for backwards compatibility.
427 			 */
428 			/*
429 			 * XXX for now, hard-code a CAB interval of 70%
430 			 * XXX of the total beacon interval.
431 			 */
432 
433 			value = (ahp->ah_beaconInterval * 70 / 100)
434 				- (ah->ah_config.ah_sw_beacon_response_time -
435 				+ ah->ah_config.ah_dma_beacon_response_time)
436 				- ah->ah_config.ah_additional_swba_backoff;
437 			/*
438 			 * XXX Ensure it isn't too low - nothing lower
439 			 * XXX than 10 TU
440 			 */
441 			if (value < 10)
442 				value = 10;
443 			HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
444 			    "%s: defaulting to rdytime = %d uS\n",
445 			    __func__, value);
446 			OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
447 			    SM(TU_TO_USEC(value), AR_Q_RDYTIMECFG_INT) |
448 			    AR_Q_RDYTIMECFG_ENA);
449 		}
450 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
451 			    AR_D_MISC_ARB_LOCKOUT_CNTRL);
452 		break;
453 	default:			/* NB: silence compiler */
454 		break;
455 	}
456 
457 	OS_REG_WRITE(ah, AR_QMISC(q), qmisc);
458 	OS_REG_WRITE(ah, AR_DMISC(q), dmisc);
459 
460 	/* Setup compression scratchpad buffer */
461 	/*
462 	 * XXX: calling this asynchronously to queue operation can
463 	 *      cause unexpected behavior!!!
464 	 */
465 	if (qi->tqi_physCompBuf) {
466 		HALASSERT(qi->tqi_type == HAL_TX_QUEUE_DATA ||
467 			  qi->tqi_type == HAL_TX_QUEUE_UAPSD);
468 		OS_REG_WRITE(ah, AR_Q_CBBS, (80 + 2*q));
469 		OS_REG_WRITE(ah, AR_Q_CBBA, qi->tqi_physCompBuf);
470 		OS_REG_WRITE(ah, AR_Q_CBC,  HAL_COMP_BUF_MAX_SIZE/1024);
471 		OS_REG_WRITE(ah, AR_Q0_MISC + 4*q,
472 			     OS_REG_READ(ah, AR_Q0_MISC + 4*q)
473 			     | AR_Q_MISC_QCU_COMP_EN);
474 	}
475 
476 	/*
477 	 * Always update the secondary interrupt mask registers - this
478 	 * could be a new queue getting enabled in a running system or
479 	 * hw getting re-initialized during a reset!
480 	 *
481 	 * Since we don't differentiate between tx interrupts corresponding
482 	 * to individual queues - secondary tx mask regs are always unmasked;
483 	 * tx interrupts are enabled/disabled for all queues collectively
484 	 * using the primary mask reg
485 	 */
486 	if (qi->tqi_qflags & HAL_TXQ_TXOKINT_ENABLE)
487 		ahp->ah_txOkInterruptMask |= 1 << q;
488 	else
489 		ahp->ah_txOkInterruptMask &= ~(1 << q);
490 	if (qi->tqi_qflags & HAL_TXQ_TXERRINT_ENABLE)
491 		ahp->ah_txErrInterruptMask |= 1 << q;
492 	else
493 		ahp->ah_txErrInterruptMask &= ~(1 << q);
494 	if (qi->tqi_qflags & HAL_TXQ_TXDESCINT_ENABLE)
495 		ahp->ah_txDescInterruptMask |= 1 << q;
496 	else
497 		ahp->ah_txDescInterruptMask &= ~(1 << q);
498 	if (qi->tqi_qflags & HAL_TXQ_TXEOLINT_ENABLE)
499 		ahp->ah_txEolInterruptMask |= 1 << q;
500 	else
501 		ahp->ah_txEolInterruptMask &= ~(1 << q);
502 	if (qi->tqi_qflags & HAL_TXQ_TXURNINT_ENABLE)
503 		ahp->ah_txUrnInterruptMask |= 1 << q;
504 	else
505 		ahp->ah_txUrnInterruptMask &= ~(1 << q);
506 	setTxQInterrupts(ah, qi);
507 
508 	return AH_TRUE;
509 }
510 #undef	TU_TO_USEC
511 
512 /*
513  * Get the TXDP for the specified queue
514  */
515 uint32_t
516 ar5212GetTxDP(struct ath_hal *ah, u_int q)
517 {
518 	HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
519 	return OS_REG_READ(ah, AR_QTXDP(q));
520 }
521 
522 /*
523  * Set the TxDP for the specified queue
524  */
525 HAL_BOOL
526 ar5212SetTxDP(struct ath_hal *ah, u_int q, uint32_t txdp)
527 {
528 	HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
529 	HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
530 
531 	/*
532 	 * Make sure that TXE is deasserted before setting the TXDP.  If TXE
533 	 * is still asserted, setting TXDP will have no effect.
534 	 */
535 	HALASSERT((OS_REG_READ(ah, AR_Q_TXE) & (1 << q)) == 0);
536 
537 	OS_REG_WRITE(ah, AR_QTXDP(q), txdp);
538 
539 	return AH_TRUE;
540 }
541 
542 /*
543  * Set Transmit Enable bits for the specified queue
544  */
545 HAL_BOOL
546 ar5212StartTxDma(struct ath_hal *ah, u_int q)
547 {
548 	HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
549 
550 	HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
551 
552 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q);
553 
554 	/* Check to be sure we're not enabling a q that has its TXD bit set. */
555 	HALASSERT((OS_REG_READ(ah, AR_Q_TXD) & (1 << q)) == 0);
556 
557 	OS_REG_WRITE(ah, AR_Q_TXE, 1 << q);
558 	return AH_TRUE;
559 }
560 
561 /*
562  * Return the number of pending frames or 0 if the specified
563  * queue is stopped.
564  */
565 uint32_t
566 ar5212NumTxPending(struct ath_hal *ah, u_int q)
567 {
568 	uint32_t npend;
569 
570 	HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
571 	HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
572 
573 	npend = OS_REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
574 	if (npend == 0) {
575 		/*
576 		 * Pending frame count (PFC) can momentarily go to zero
577 		 * while TXE remains asserted.  In other words a PFC of
578 		 * zero is not sufficient to say that the queue has stopped.
579 		 */
580 		if (OS_REG_READ(ah, AR_Q_TXE) & (1 << q))
581 			npend = 1;		/* arbitrarily return 1 */
582 	}
583 	return npend;
584 }
585 
586 /*
587  * Stop transmit on the specified queue
588  */
589 HAL_BOOL
590 ar5212StopTxDma(struct ath_hal *ah, u_int q)
591 {
592 	u_int i;
593 	u_int wait;
594 
595 	HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
596 
597 	HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
598 
599 	OS_REG_WRITE(ah, AR_Q_TXD, 1 << q);
600 	for (i = 1000; i != 0; i--) {
601 		if (ar5212NumTxPending(ah, q) == 0)
602 			break;
603 		OS_DELAY(100);        /* XXX get actual value */
604 	}
605 #ifdef AH_DEBUG
606 	if (i == 0) {
607 		HALDEBUG(ah, HAL_DEBUG_ANY,
608 		    "%s: queue %u DMA did not stop in 100 msec\n", __func__, q);
609 		HALDEBUG(ah, HAL_DEBUG_ANY,
610 		    "%s: QSTS 0x%x Q_TXE 0x%x Q_TXD 0x%x Q_CBR 0x%x\n", __func__,
611 		    OS_REG_READ(ah, AR_QSTS(q)), OS_REG_READ(ah, AR_Q_TXE),
612 		    OS_REG_READ(ah, AR_Q_TXD), OS_REG_READ(ah, AR_QCBRCFG(q)));
613 		HALDEBUG(ah, HAL_DEBUG_ANY,
614 		    "%s: Q_MISC 0x%x Q_RDYTIMECFG 0x%x Q_RDYTIMESHDN 0x%x\n",
615 		    __func__, OS_REG_READ(ah, AR_QMISC(q)),
616 		    OS_REG_READ(ah, AR_QRDYTIMECFG(q)),
617 		    OS_REG_READ(ah, AR_Q_RDYTIMESHDN));
618 	}
619 #endif /* AH_DEBUG */
620 
621 	/* 2413+ and up can kill packets at the PCU level */
622 	if (ar5212NumTxPending(ah, q) &&
623 	    (IS_2413(ah) || IS_5413(ah) || IS_2425(ah) || IS_2417(ah))) {
624 		uint32_t tsfLow, j;
625 
626 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
627 		    "%s: Num of pending TX Frames %d on Q %d\n",
628 		    __func__, ar5212NumTxPending(ah, q), q);
629 
630 		/* Kill last PCU Tx Frame */
631 		/* TODO - save off and restore current values of Q1/Q2? */
632 		for (j = 0; j < 2; j++) {
633 			tsfLow = OS_REG_READ(ah, AR_TSF_L32);
634 			OS_REG_WRITE(ah, AR_QUIET2, SM(100, AR_QUIET2_QUIET_PER) |
635 				     SM(10, AR_QUIET2_QUIET_DUR));
636 			OS_REG_WRITE(ah, AR_QUIET1, AR_QUIET1_QUIET_ENABLE |
637 				     SM(tsfLow >> 10, AR_QUIET1_NEXT_QUIET));
638 			if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == (tsfLow >> 10)) {
639 				break;
640 			}
641 			HALDEBUG(ah, HAL_DEBUG_ANY,
642 			    "%s: TSF moved while trying to set quiet time "
643 			    "TSF: 0x%08x\n", __func__, tsfLow);
644 			HALASSERT(j < 1); /* TSF shouldn't count twice or reg access is taking forever */
645 		}
646 
647 		OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE);
648 
649 		/* Allow the quiet mechanism to do its work */
650 		OS_DELAY(200);
651 		OS_REG_CLR_BIT(ah, AR_QUIET1, AR_QUIET1_QUIET_ENABLE);
652 
653 		/* Give at least 1 millisec more to wait */
654 		wait = 100;
655 
656 		/* Verify all transmit is dead */
657 		while (ar5212NumTxPending(ah, q)) {
658 			if ((--wait) == 0) {
659 				HALDEBUG(ah, HAL_DEBUG_ANY,
660 				    "%s: Failed to stop Tx DMA in %d msec after killing last frame\n",
661 				    __func__, wait);
662 				break;
663 			}
664 			OS_DELAY(10);
665 		}
666 
667 		OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE);
668 	}
669 
670 	OS_REG_WRITE(ah, AR_Q_TXD, 0);
671 	return (i != 0);
672 }
673 
674 /*
675  * Descriptor Access Functions
676  */
677 
678 #define	VALID_PKT_TYPES \
679 	((1<<HAL_PKT_TYPE_NORMAL)|(1<<HAL_PKT_TYPE_ATIM)|\
680 	 (1<<HAL_PKT_TYPE_PSPOLL)|(1<<HAL_PKT_TYPE_PROBE_RESP)|\
681 	 (1<<HAL_PKT_TYPE_BEACON))
682 #define	isValidPktType(_t)	((1<<(_t)) & VALID_PKT_TYPES)
683 #define	VALID_TX_RATES \
684 	((1<<0x0b)|(1<<0x0f)|(1<<0x0a)|(1<<0x0e)|(1<<0x09)|(1<<0x0d)|\
685 	 (1<<0x08)|(1<<0x0c)|(1<<0x1b)|(1<<0x1a)|(1<<0x1e)|(1<<0x19)|\
686 	 (1<<0x1d)|(1<<0x18)|(1<<0x1c))
687 #define	isValidTxRate(_r)	((1<<(_r)) & VALID_TX_RATES)
688 
689 HAL_BOOL
690 ar5212SetupTxDesc(struct ath_hal *ah, struct ath_desc *ds,
691 	u_int pktLen,
692 	u_int hdrLen,
693 	HAL_PKT_TYPE type,
694 	u_int txPower,
695 	u_int txRate0, u_int txTries0,
696 	u_int keyIx,
697 	u_int antMode,
698 	u_int flags,
699 	u_int rtsctsRate,
700 	u_int rtsctsDuration,
701 	u_int compicvLen,
702 	u_int compivLen,
703 	u_int comp)
704 {
705 #define	RTSCTS	(HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)
706 	struct ar5212_desc *ads = AR5212DESC(ds);
707 	struct ath_hal_5212 *ahp = AH5212(ah);
708 
709 	(void) hdrLen;
710 
711 	HALASSERT(txTries0 != 0);
712 	HALASSERT(isValidPktType(type));
713 	HALASSERT(isValidTxRate(txRate0));
714 	HALASSERT((flags & RTSCTS) != RTSCTS);
715 	/* XXX validate antMode */
716 
717         txPower = (txPower + ahp->ah_txPowerIndexOffset );
718         if(txPower > 63)  txPower=63;
719 
720 	ads->ds_ctl0 = (pktLen & AR_FrameLen)
721 		     | (txPower << AR_XmitPower_S)
722 		     | (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0)
723 		     | (flags & HAL_TXDESC_CLRDMASK ? AR_ClearDestMask : 0)
724 		     | SM(antMode, AR_AntModeXmit)
725 		     | (flags & HAL_TXDESC_INTREQ ? AR_TxInterReq : 0)
726 		     ;
727 	ads->ds_ctl1 = (type << AR_FrmType_S)
728 		     | (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0)
729                      | (comp << AR_CompProc_S)
730                      | (compicvLen << AR_CompICVLen_S)
731                      | (compivLen << AR_CompIVLen_S)
732                      ;
733 	ads->ds_ctl2 = SM(txTries0, AR_XmitDataTries0)
734 		     | (flags & HAL_TXDESC_DURENA ? AR_DurUpdateEna : 0)
735 		     ;
736 	ads->ds_ctl3 = (txRate0 << AR_XmitRate0_S)
737 		     ;
738 	if (keyIx != HAL_TXKEYIX_INVALID) {
739 		/* XXX validate key index */
740 		ads->ds_ctl1 |= SM(keyIx, AR_DestIdx);
741 		ads->ds_ctl0 |= AR_DestIdxValid;
742 	}
743 	if (flags & RTSCTS) {
744 		if (!isValidTxRate(rtsctsRate)) {
745 			HALDEBUG(ah, HAL_DEBUG_ANY,
746 			    "%s: invalid rts/cts rate 0x%x\n",
747 			    __func__, rtsctsRate);
748 			return AH_FALSE;
749 		}
750 		/* XXX validate rtsctsDuration */
751 		ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0)
752 			     | (flags & HAL_TXDESC_RTSENA ? AR_RTSCTSEnable : 0)
753 			     ;
754 		ads->ds_ctl2 |= SM(rtsctsDuration, AR_RTSCTSDuration);
755 		ads->ds_ctl3 |= (rtsctsRate << AR_RTSCTSRate_S);
756 	}
757 	return AH_TRUE;
758 #undef RTSCTS
759 }
760 
761 HAL_BOOL
762 ar5212SetupXTxDesc(struct ath_hal *ah, struct ath_desc *ds,
763 	u_int txRate1, u_int txTries1,
764 	u_int txRate2, u_int txTries2,
765 	u_int txRate3, u_int txTries3)
766 {
767 	struct ar5212_desc *ads = AR5212DESC(ds);
768 
769 	if (txTries1) {
770 		HALASSERT(isValidTxRate(txRate1));
771 		ads->ds_ctl2 |= SM(txTries1, AR_XmitDataTries1)
772 			     |  AR_DurUpdateEna
773 			     ;
774 		ads->ds_ctl3 |= (txRate1 << AR_XmitRate1_S);
775 	}
776 	if (txTries2) {
777 		HALASSERT(isValidTxRate(txRate2));
778 		ads->ds_ctl2 |= SM(txTries2, AR_XmitDataTries2)
779 			     |  AR_DurUpdateEna
780 			     ;
781 		ads->ds_ctl3 |= (txRate2 << AR_XmitRate2_S);
782 	}
783 	if (txTries3) {
784 		HALASSERT(isValidTxRate(txRate3));
785 		ads->ds_ctl2 |= SM(txTries3, AR_XmitDataTries3)
786 			     |  AR_DurUpdateEna
787 			     ;
788 		ads->ds_ctl3 |= (txRate3 << AR_XmitRate3_S);
789 	}
790 	return AH_TRUE;
791 }
792 
793 void
794 ar5212IntrReqTxDesc(struct ath_hal *ah, struct ath_desc *ds)
795 {
796 	struct ar5212_desc *ads = AR5212DESC(ds);
797 
798 #ifdef AH_NEED_DESC_SWAP
799 	ads->ds_ctl0 |= __bswap32(AR_TxInterReq);
800 #else
801 	ads->ds_ctl0 |= AR_TxInterReq;
802 #endif
803 }
804 
805 HAL_BOOL
806 ar5212FillTxDesc(struct ath_hal *ah, struct ath_desc *ds,
807 	HAL_DMA_ADDR *bufAddrList, uint32_t *segLenList, u_int qcuId,
808 	u_int descId, HAL_BOOL firstSeg, HAL_BOOL lastSeg,
809 	const struct ath_desc *ds0)
810 {
811 	struct ar5212_desc *ads = AR5212DESC(ds);
812 	uint32_t segLen = segLenList[0];
813 
814 	HALASSERT((segLen &~ AR_BufLen) == 0);
815 
816 	ds->ds_data = bufAddrList[0];
817 
818 	if (firstSeg) {
819 		/*
820 		 * First descriptor, don't clobber xmit control data
821 		 * setup by ar5212SetupTxDesc.
822 		 */
823 		ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_More);
824 	} else if (lastSeg) {		/* !firstSeg && lastSeg */
825 		/*
826 		 * Last descriptor in a multi-descriptor frame,
827 		 * copy the multi-rate transmit parameters from
828 		 * the first frame for processing on completion.
829 		 */
830 		ads->ds_ctl1 = segLen;
831 #ifdef AH_NEED_DESC_SWAP
832 		ads->ds_ctl0 = __bswap32(AR5212DESC_CONST(ds0)->ds_ctl0)
833 		    & AR_TxInterReq;
834 		ads->ds_ctl2 = __bswap32(AR5212DESC_CONST(ds0)->ds_ctl2);
835 		ads->ds_ctl3 = __bswap32(AR5212DESC_CONST(ds0)->ds_ctl3);
836 #else
837 		ads->ds_ctl0 = AR5212DESC_CONST(ds0)->ds_ctl0 & AR_TxInterReq;
838 		ads->ds_ctl2 = AR5212DESC_CONST(ds0)->ds_ctl2;
839 		ads->ds_ctl3 = AR5212DESC_CONST(ds0)->ds_ctl3;
840 #endif
841 	} else {			/* !firstSeg && !lastSeg */
842 		/*
843 		 * Intermediate descriptor in a multi-descriptor frame.
844 		 */
845 #ifdef AH_NEED_DESC_SWAP
846 		ads->ds_ctl0 = __bswap32(AR5212DESC_CONST(ds0)->ds_ctl0)
847 		    & AR_TxInterReq;
848 #else
849 		ads->ds_ctl0 = AR5212DESC_CONST(ds0)->ds_ctl0 & AR_TxInterReq;
850 #endif
851 		ads->ds_ctl1 = segLen | AR_More;
852 		ads->ds_ctl2 = 0;
853 		ads->ds_ctl3 = 0;
854 	}
855 	ads->ds_txstatus0 = ads->ds_txstatus1 = 0;
856 	return AH_TRUE;
857 }
858 
859 #ifdef AH_NEED_DESC_SWAP
860 /* Swap transmit descriptor */
861 static __inline void
862 ar5212SwapTxDesc(struct ath_desc *ds)
863 {
864 	ds->ds_data = __bswap32(ds->ds_data);
865         ds->ds_ctl0 = __bswap32(ds->ds_ctl0);
866         ds->ds_ctl1 = __bswap32(ds->ds_ctl1);
867         ds->ds_hw[0] = __bswap32(ds->ds_hw[0]);
868         ds->ds_hw[1] = __bswap32(ds->ds_hw[1]);
869         ds->ds_hw[2] = __bswap32(ds->ds_hw[2]);
870         ds->ds_hw[3] = __bswap32(ds->ds_hw[3]);
871 }
872 #endif
873 
874 /*
875  * Processing of HW TX descriptor.
876  */
877 HAL_STATUS
878 ar5212ProcTxDesc(struct ath_hal *ah,
879 	struct ath_desc *ds, struct ath_tx_status *ts)
880 {
881 	struct ar5212_desc *ads = AR5212DESC(ds);
882 
883 #ifdef AH_NEED_DESC_SWAP
884 	if ((ads->ds_txstatus1 & __bswap32(AR_Done)) == 0)
885                 return HAL_EINPROGRESS;
886 
887 	ar5212SwapTxDesc(ds);
888 #else
889 	if ((ads->ds_txstatus1 & AR_Done) == 0)
890 		return HAL_EINPROGRESS;
891 #endif
892 
893 	/* Update software copies of the HW status */
894 	ts->ts_seqnum = MS(ads->ds_txstatus1, AR_SeqNum);
895 	ts->ts_tstamp = MS(ads->ds_txstatus0, AR_SendTimestamp);
896 	ts->ts_status = 0;
897 	if ((ads->ds_txstatus0 & AR_FrmXmitOK) == 0) {
898 		if (ads->ds_txstatus0 & AR_ExcessiveRetries)
899 			ts->ts_status |= HAL_TXERR_XRETRY;
900 		if (ads->ds_txstatus0 & AR_Filtered)
901 			ts->ts_status |= HAL_TXERR_FILT;
902 		if (ads->ds_txstatus0 & AR_FIFOUnderrun)
903 			ts->ts_status |= HAL_TXERR_FIFO;
904 	}
905 	/*
906 	 * Extract the transmit rate used and mark the rate as
907 	 * ``alternate'' if it wasn't the series 0 rate.
908 	 */
909 	ts->ts_finaltsi = MS(ads->ds_txstatus1, AR_FinalTSIndex);
910 	switch (ts->ts_finaltsi) {
911 	case 0:
912 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate0);
913 		break;
914 	case 1:
915 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate1);
916 		break;
917 	case 2:
918 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate2);
919 		break;
920 	case 3:
921 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate3);
922 		break;
923 	}
924 	ts->ts_rssi = MS(ads->ds_txstatus1, AR_AckSigStrength);
925 	ts->ts_shortretry = MS(ads->ds_txstatus0, AR_RTSFailCnt);
926 	ts->ts_longretry = MS(ads->ds_txstatus0, AR_DataFailCnt);
927 	/*
928 	 * The retry count has the number of un-acked tries for the
929 	 * final series used.  When doing multi-rate retry we must
930 	 * fixup the retry count by adding in the try counts for
931 	 * each series that was fully-processed.  Beware that this
932 	 * takes values from the try counts in the final descriptor.
933 	 * These are not required by the hardware.  We assume they
934 	 * are placed there by the driver as otherwise we have no
935 	 * access and the driver can't do the calculation because it
936 	 * doesn't know the descriptor format.
937 	 */
938 	switch (ts->ts_finaltsi) {
939 	case 3: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries2);
940 	case 2: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries1);
941 	case 1: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries0);
942 	}
943 	ts->ts_virtcol = MS(ads->ds_txstatus0, AR_VirtCollCnt);
944 	ts->ts_antenna = (ads->ds_txstatus1 & AR_XmitAtenna ? 2 : 1);
945 
946 	return HAL_OK;
947 }
948 
949 /*
950  * Determine which tx queues need interrupt servicing.
951  */
952 void
953 ar5212GetTxIntrQueue(struct ath_hal *ah, uint32_t *txqs)
954 {
955 	struct ath_hal_5212 *ahp = AH5212(ah);
956 	*txqs &= ahp->ah_intrTxqs;
957 	ahp->ah_intrTxqs &= ~(*txqs);
958 }
959 
960 /*
961  * Retrieve the rate table from the given TX completion descriptor
962  */
963 HAL_BOOL
964 ar5212GetTxCompletionRates(struct ath_hal *ah, const struct ath_desc *ds0, int *rates, int *tries)
965 {
966 	const struct ar5212_desc *ads = AR5212DESC_CONST(ds0);
967 
968 	rates[0] = MS(ads->ds_ctl3, AR_XmitRate0);
969 	rates[1] = MS(ads->ds_ctl3, AR_XmitRate1);
970 	rates[2] = MS(ads->ds_ctl3, AR_XmitRate2);
971 	rates[3] = MS(ads->ds_ctl3, AR_XmitRate3);
972 
973 	tries[0] = MS(ads->ds_ctl2, AR_XmitDataTries0);
974 	tries[1] = MS(ads->ds_ctl2, AR_XmitDataTries1);
975 	tries[2] = MS(ads->ds_ctl2, AR_XmitDataTries2);
976 	tries[3] = MS(ads->ds_ctl2, AR_XmitDataTries3);
977 
978 	return AH_TRUE;
979 }
980 
981 void
982 ar5212SetTxDescLink(struct ath_hal *ah, void *ds, uint32_t link)
983 {
984 	struct ar5212_desc *ads = AR5212DESC(ds);
985 
986 	ads->ds_link = link;
987 }
988 
989 void
990 ar5212GetTxDescLink(struct ath_hal *ah, void *ds, uint32_t *link)
991 {
992 	struct ar5212_desc *ads = AR5212DESC(ds);
993 
994 	*link = ads->ds_link;
995 }
996 
997 void
998 ar5212GetTxDescLinkPtr(struct ath_hal *ah, void *ds, uint32_t **linkptr)
999 {
1000 	struct ar5212_desc *ads = AR5212DESC(ds);
1001 
1002 	*linkptr = &ads->ds_link;
1003 }
1004