xref: /freebsd/sys/dev/ath/ath_hal/ar5212/ar5212_xmit.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 
24 #include "ar5212/ar5212.h"
25 #include "ar5212/ar5212reg.h"
26 #include "ar5212/ar5212desc.h"
27 #include "ar5212/ar5212phy.h"
28 #ifdef AH_SUPPORT_5311
29 #include "ar5212/ar5311reg.h"
30 #endif
31 
32 #ifdef AH_NEED_DESC_SWAP
33 static void ar5212SwapTxDesc(struct ath_desc *ds);
34 #endif
35 
36 /*
37  * Update Tx FIFO trigger level.
38  *
39  * Set bIncTrigLevel to TRUE to increase the trigger level.
40  * Set bIncTrigLevel to FALSE to decrease the trigger level.
41  *
42  * Returns TRUE if the trigger level was updated
43  */
44 HAL_BOOL
45 ar5212UpdateTxTrigLevel(struct ath_hal *ah, HAL_BOOL bIncTrigLevel)
46 {
47 	struct ath_hal_5212 *ahp = AH5212(ah);
48 	uint32_t txcfg, curLevel, newLevel;
49 	HAL_INT omask;
50 
51 	if (ahp->ah_txTrigLev >= ahp->ah_maxTxTrigLev)
52 		return AH_FALSE;
53 
54 	/*
55 	 * Disable interrupts while futzing with the fifo level.
56 	 */
57 	omask = ath_hal_setInterrupts(ah, ahp->ah_maskReg &~ HAL_INT_GLOBAL);
58 
59 	txcfg = OS_REG_READ(ah, AR_TXCFG);
60 	curLevel = MS(txcfg, AR_FTRIG);
61 	newLevel = curLevel;
62 	if (bIncTrigLevel) {		/* increase the trigger level */
63 		if (curLevel < ahp->ah_maxTxTrigLev)
64 			newLevel++;
65 	} else if (curLevel > MIN_TX_FIFO_THRESHOLD)
66 		newLevel--;
67 	if (newLevel != curLevel)
68 		/* Update the trigger level */
69 		OS_REG_WRITE(ah, AR_TXCFG,
70 			(txcfg &~ AR_FTRIG) | SM(newLevel, AR_FTRIG));
71 
72 	ahp->ah_txTrigLev = newLevel;
73 
74 	/* re-enable chip interrupts */
75 	ath_hal_setInterrupts(ah, omask);
76 
77 	return (newLevel != curLevel);
78 }
79 
80 /*
81  * Set the properties of the tx queue with the parameters
82  * from qInfo.
83  */
84 HAL_BOOL
85 ar5212SetTxQueueProps(struct ath_hal *ah, int q, const HAL_TXQ_INFO *qInfo)
86 {
87 	struct ath_hal_5212 *ahp = AH5212(ah);
88 	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
89 
90 	if (q >= pCap->halTotalQueues) {
91 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
92 		    __func__, q);
93 		return AH_FALSE;
94 	}
95 	return ath_hal_setTxQProps(ah, &ahp->ah_txq[q], qInfo);
96 }
97 
98 /*
99  * Return the properties for the specified tx queue.
100  */
101 HAL_BOOL
102 ar5212GetTxQueueProps(struct ath_hal *ah, int q, HAL_TXQ_INFO *qInfo)
103 {
104 	struct ath_hal_5212 *ahp = AH5212(ah);
105 	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
106 
107 
108 	if (q >= pCap->halTotalQueues) {
109 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
110 		    __func__, q);
111 		return AH_FALSE;
112 	}
113 	return ath_hal_getTxQProps(ah, qInfo, &ahp->ah_txq[q]);
114 }
115 
116 /*
117  * Allocate and initialize a tx DCU/QCU combination.
118  */
119 int
120 ar5212SetupTxQueue(struct ath_hal *ah, HAL_TX_QUEUE type,
121 	const HAL_TXQ_INFO *qInfo)
122 {
123 	struct ath_hal_5212 *ahp = AH5212(ah);
124 	HAL_TX_QUEUE_INFO *qi;
125 	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
126 	int q, defqflags;
127 
128 	/* by default enable OK+ERR+DESC+URN interrupts */
129 	defqflags = HAL_TXQ_TXOKINT_ENABLE
130 		  | HAL_TXQ_TXERRINT_ENABLE
131 		  | HAL_TXQ_TXDESCINT_ENABLE
132 		  | HAL_TXQ_TXURNINT_ENABLE;
133 	/* XXX move queue assignment to driver */
134 	switch (type) {
135 	case HAL_TX_QUEUE_BEACON:
136 		q = pCap->halTotalQueues-1;	/* highest priority */
137 		defqflags |= HAL_TXQ_DBA_GATED
138 		       | HAL_TXQ_CBR_DIS_QEMPTY
139 		       | HAL_TXQ_ARB_LOCKOUT_GLOBAL
140 		       | HAL_TXQ_BACKOFF_DISABLE;
141 		break;
142 	case HAL_TX_QUEUE_CAB:
143 		q = pCap->halTotalQueues-2;	/* next highest priority */
144 		defqflags |= HAL_TXQ_DBA_GATED
145 		       | HAL_TXQ_CBR_DIS_QEMPTY
146 		       | HAL_TXQ_CBR_DIS_BEMPTY
147 		       | HAL_TXQ_ARB_LOCKOUT_GLOBAL
148 		       | HAL_TXQ_BACKOFF_DISABLE;
149 		break;
150 	case HAL_TX_QUEUE_UAPSD:
151 		q = pCap->halTotalQueues-3;	/* nextest highest priority */
152 		if (ahp->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE) {
153 			HALDEBUG(ah, HAL_DEBUG_ANY,
154 			    "%s: no available UAPSD tx queue\n", __func__);
155 			return -1;
156 		}
157 		break;
158 	case HAL_TX_QUEUE_DATA:
159 		for (q = 0; q < pCap->halTotalQueues; q++)
160 			if (ahp->ah_txq[q].tqi_type == HAL_TX_QUEUE_INACTIVE)
161 				break;
162 		if (q == pCap->halTotalQueues) {
163 			HALDEBUG(ah, HAL_DEBUG_ANY,
164 			    "%s: no available tx queue\n", __func__);
165 			return -1;
166 		}
167 		break;
168 	default:
169 		HALDEBUG(ah, HAL_DEBUG_ANY,
170 		    "%s: bad tx queue type %u\n", __func__, type);
171 		return -1;
172 	}
173 
174 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q);
175 
176 	qi = &ahp->ah_txq[q];
177 	if (qi->tqi_type != HAL_TX_QUEUE_INACTIVE) {
178 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: tx queue %u already active\n",
179 		    __func__, q);
180 		return -1;
181 	}
182 	OS_MEMZERO(qi, sizeof(HAL_TX_QUEUE_INFO));
183 	qi->tqi_type = type;
184 	if (qInfo == AH_NULL) {
185 		qi->tqi_qflags = defqflags;
186 		qi->tqi_aifs = INIT_AIFS;
187 		qi->tqi_cwmin = HAL_TXQ_USEDEFAULT;	/* NB: do at reset */
188 		qi->tqi_cwmax = INIT_CWMAX;
189 		qi->tqi_shretry = INIT_SH_RETRY;
190 		qi->tqi_lgretry = INIT_LG_RETRY;
191 		qi->tqi_physCompBuf = 0;
192 	} else {
193 		qi->tqi_physCompBuf = qInfo->tqi_compBuf;
194 		(void) ar5212SetTxQueueProps(ah, q, qInfo);
195 	}
196 	/* NB: must be followed by ar5212ResetTxQueue */
197 	return q;
198 }
199 
200 /*
201  * Update the h/w interrupt registers to reflect a tx q's configuration.
202  */
203 static void
204 setTxQInterrupts(struct ath_hal *ah, HAL_TX_QUEUE_INFO *qi)
205 {
206 	struct ath_hal_5212 *ahp = AH5212(ah);
207 
208 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
209 	    "%s: tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n", __func__,
210 	    ahp->ah_txOkInterruptMask, ahp->ah_txErrInterruptMask,
211 	    ahp->ah_txDescInterruptMask, ahp->ah_txEolInterruptMask,
212 	    ahp->ah_txUrnInterruptMask);
213 
214 	OS_REG_WRITE(ah, AR_IMR_S0,
215 		  SM(ahp->ah_txOkInterruptMask, AR_IMR_S0_QCU_TXOK)
216 		| SM(ahp->ah_txDescInterruptMask, AR_IMR_S0_QCU_TXDESC)
217 	);
218 	OS_REG_WRITE(ah, AR_IMR_S1,
219 		  SM(ahp->ah_txErrInterruptMask, AR_IMR_S1_QCU_TXERR)
220 		| SM(ahp->ah_txEolInterruptMask, AR_IMR_S1_QCU_TXEOL)
221 	);
222 	OS_REG_RMW_FIELD(ah, AR_IMR_S2,
223 		AR_IMR_S2_QCU_TXURN, ahp->ah_txUrnInterruptMask);
224 }
225 
226 /*
227  * Free a tx DCU/QCU combination.
228  */
229 HAL_BOOL
230 ar5212ReleaseTxQueue(struct ath_hal *ah, u_int q)
231 {
232 	struct ath_hal_5212 *ahp = AH5212(ah);
233 	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
234 	HAL_TX_QUEUE_INFO *qi;
235 
236 	if (q >= pCap->halTotalQueues) {
237 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
238 		    __func__, q);
239 		return AH_FALSE;
240 	}
241 	qi = &ahp->ah_txq[q];
242 	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
243 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n",
244 		    __func__, q);
245 		return AH_FALSE;
246 	}
247 
248 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: release queue %u\n", __func__, q);
249 
250 	qi->tqi_type = HAL_TX_QUEUE_INACTIVE;
251 	ahp->ah_txOkInterruptMask &= ~(1 << q);
252 	ahp->ah_txErrInterruptMask &= ~(1 << q);
253 	ahp->ah_txDescInterruptMask &= ~(1 << q);
254 	ahp->ah_txEolInterruptMask &= ~(1 << q);
255 	ahp->ah_txUrnInterruptMask &= ~(1 << q);
256 	setTxQInterrupts(ah, qi);
257 
258 	return AH_TRUE;
259 }
260 
261 /*
262  * Set the retry, aifs, cwmin/max, readyTime regs for specified queue
263  * Assumes:
264  *  phwChannel has been set to point to the current channel
265  */
266 HAL_BOOL
267 ar5212ResetTxQueue(struct ath_hal *ah, u_int q)
268 {
269 	struct ath_hal_5212 *ahp = AH5212(ah);
270 	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
271 	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
272 	HAL_TX_QUEUE_INFO *qi;
273 	uint32_t cwMin, chanCwMin, value, qmisc, dmisc;
274 
275 	if (q >= pCap->halTotalQueues) {
276 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
277 		    __func__, q);
278 		return AH_FALSE;
279 	}
280 	qi = &ahp->ah_txq[q];
281 	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
282 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n",
283 		    __func__, q);
284 		return AH_TRUE;		/* XXX??? */
285 	}
286 
287 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: reset queue %u\n", __func__, q);
288 
289 	if (qi->tqi_cwmin == HAL_TXQ_USEDEFAULT) {
290 		/*
291 		 * Select cwmin according to channel type.
292 		 * NB: chan can be NULL during attach
293 		 */
294 		if (chan && IEEE80211_IS_CHAN_B(chan))
295 			chanCwMin = INIT_CWMIN_11B;
296 		else
297 			chanCwMin = INIT_CWMIN;
298 		/* make sure that the CWmin is of the form (2^n - 1) */
299 		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1)
300 			;
301 	} else
302 		cwMin = qi->tqi_cwmin;
303 
304 	/* set cwMin/Max and AIFS values */
305 	OS_REG_WRITE(ah, AR_DLCL_IFS(q),
306 		  SM(cwMin, AR_D_LCL_IFS_CWMIN)
307 		| SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX)
308 		| SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
309 
310 	/* Set retry limit values */
311 	OS_REG_WRITE(ah, AR_DRETRY_LIMIT(q),
312 		   SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH)
313 		 | SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG)
314 		 | SM(qi->tqi_lgretry, AR_D_RETRY_LIMIT_FR_LG)
315 		 | SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH)
316 	);
317 
318 	/* NB: always enable early termination on the QCU */
319 	qmisc = AR_Q_MISC_DCU_EARLY_TERM_REQ
320 	      | SM(AR_Q_MISC_FSP_ASAP, AR_Q_MISC_FSP);
321 
322 	/* NB: always enable DCU to wait for next fragment from QCU */
323 	dmisc = AR_D_MISC_FRAG_WAIT_EN;
324 
325 #ifdef AH_SUPPORT_5311
326 	if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
327 		/* Configure DCU to use the global sequence count */
328 		dmisc |= AR5311_D_MISC_SEQ_NUM_CONTROL;
329 	}
330 #endif
331 	/* multiqueue support */
332 	if (qi->tqi_cbrPeriod) {
333 		OS_REG_WRITE(ah, AR_QCBRCFG(q),
334 			  SM(qi->tqi_cbrPeriod,AR_Q_CBRCFG_CBR_INTERVAL)
335 			| SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_CBR_OVF_THRESH));
336 		qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_CBR;
337 		if (qi->tqi_cbrOverflowLimit)
338 			qmisc |= AR_Q_MISC_CBR_EXP_CNTR_LIMIT;
339 	}
340 	if (qi->tqi_readyTime) {
341 		OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
342 			  SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT)
343 			| AR_Q_RDYTIMECFG_ENA);
344 	}
345 
346 	OS_REG_WRITE(ah, AR_DCHNTIME(q),
347 		  SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR)
348 		| (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
349 
350 	if (qi->tqi_readyTime &&
351 	    (qi->tqi_qflags & HAL_TXQ_RDYTIME_EXP_POLICY_ENABLE))
352 		qmisc |= AR_Q_MISC_RDYTIME_EXP_POLICY;
353 	if (qi->tqi_qflags & HAL_TXQ_DBA_GATED)
354 		qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_DBA_GATED;
355 	if (MS(qmisc, AR_Q_MISC_FSP) != AR_Q_MISC_FSP_ASAP) {
356 		/*
357 		 * These are meangingful only when not scheduled asap.
358 		 */
359 		if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_BEMPTY)
360 			qmisc |= AR_Q_MISC_CBR_INCR_DIS0;
361 		else
362 			qmisc &= ~AR_Q_MISC_CBR_INCR_DIS0;
363 		if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_QEMPTY)
364 			qmisc |= AR_Q_MISC_CBR_INCR_DIS1;
365 		else
366 			qmisc &= ~AR_Q_MISC_CBR_INCR_DIS1;
367 	}
368 
369 	if (qi->tqi_qflags & HAL_TXQ_BACKOFF_DISABLE)
370 		dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS;
371 	if (qi->tqi_qflags & HAL_TXQ_FRAG_BURST_BACKOFF_ENABLE)
372 		dmisc |= AR_D_MISC_FRAG_BKOFF_EN;
373 	if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_GLOBAL)
374 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
375 			    AR_D_MISC_ARB_LOCKOUT_CNTRL);
376 	else if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_INTRA)
377 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_INTRA_FR,
378 			    AR_D_MISC_ARB_LOCKOUT_CNTRL);
379 	if (qi->tqi_qflags & HAL_TXQ_IGNORE_VIRTCOL)
380 		dmisc |= SM(AR_D_MISC_VIR_COL_HANDLING_IGNORE,
381 			    AR_D_MISC_VIR_COL_HANDLING);
382 	if (qi->tqi_qflags & HAL_TXQ_SEQNUM_INC_DIS)
383 		dmisc |= AR_D_MISC_SEQ_NUM_INCR_DIS;
384 
385 	/*
386 	 * Fillin type-dependent bits.  Most of this can be
387 	 * removed by specifying the queue parameters in the
388 	 * driver; it's here for backwards compatibility.
389 	 */
390 	switch (qi->tqi_type) {
391 	case HAL_TX_QUEUE_BEACON:		/* beacon frames */
392 		qmisc |= AR_Q_MISC_FSP_DBA_GATED
393 		      |  AR_Q_MISC_BEACON_USE
394 		      |  AR_Q_MISC_CBR_INCR_DIS1;
395 
396 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
397 			    AR_D_MISC_ARB_LOCKOUT_CNTRL)
398 		      |  AR_D_MISC_BEACON_USE
399 		      |  AR_D_MISC_POST_FR_BKOFF_DIS;
400 		break;
401 	case HAL_TX_QUEUE_CAB:			/* CAB  frames */
402 		/*
403 		 * No longer Enable AR_Q_MISC_RDYTIME_EXP_POLICY,
404 		 * There is an issue with the CAB Queue
405 		 * not properly refreshing the Tx descriptor if
406 		 * the TXE clear setting is used.
407 		 */
408 		qmisc |= AR_Q_MISC_FSP_DBA_GATED
409 		      |  AR_Q_MISC_CBR_INCR_DIS1
410 		      |  AR_Q_MISC_CBR_INCR_DIS0;
411 
412 		if (!qi->tqi_readyTime) {
413 			/*
414 			 * NB: don't set default ready time if driver
415 			 * has explicitly specified something.  This is
416 			 * here solely for backwards compatibility.
417 			 */
418 			value = (ahp->ah_beaconInterval
419 				- (ath_hal_sw_beacon_response_time -
420 					ath_hal_dma_beacon_response_time)
421 				- ath_hal_additional_swba_backoff) * 1024;
422 			OS_REG_WRITE(ah, AR_QRDYTIMECFG(q), value | AR_Q_RDYTIMECFG_ENA);
423 		}
424 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
425 			    AR_D_MISC_ARB_LOCKOUT_CNTRL);
426 		break;
427 	default:			/* NB: silence compiler */
428 		break;
429 	}
430 
431 	OS_REG_WRITE(ah, AR_QMISC(q), qmisc);
432 	OS_REG_WRITE(ah, AR_DMISC(q), dmisc);
433 
434 	/* Setup compression scratchpad buffer */
435 	/*
436 	 * XXX: calling this asynchronously to queue operation can
437 	 *      cause unexpected behavior!!!
438 	 */
439 	if (qi->tqi_physCompBuf) {
440 		HALASSERT(qi->tqi_type == HAL_TX_QUEUE_DATA ||
441 			  qi->tqi_type == HAL_TX_QUEUE_UAPSD);
442 		OS_REG_WRITE(ah, AR_Q_CBBS, (80 + 2*q));
443 		OS_REG_WRITE(ah, AR_Q_CBBA, qi->tqi_physCompBuf);
444 		OS_REG_WRITE(ah, AR_Q_CBC,  HAL_COMP_BUF_MAX_SIZE/1024);
445 		OS_REG_WRITE(ah, AR_Q0_MISC + 4*q,
446 			     OS_REG_READ(ah, AR_Q0_MISC + 4*q)
447 			     | AR_Q_MISC_QCU_COMP_EN);
448 	}
449 
450 	/*
451 	 * Always update the secondary interrupt mask registers - this
452 	 * could be a new queue getting enabled in a running system or
453 	 * hw getting re-initialized during a reset!
454 	 *
455 	 * Since we don't differentiate between tx interrupts corresponding
456 	 * to individual queues - secondary tx mask regs are always unmasked;
457 	 * tx interrupts are enabled/disabled for all queues collectively
458 	 * using the primary mask reg
459 	 */
460 	if (qi->tqi_qflags & HAL_TXQ_TXOKINT_ENABLE)
461 		ahp->ah_txOkInterruptMask |= 1 << q;
462 	else
463 		ahp->ah_txOkInterruptMask &= ~(1 << q);
464 	if (qi->tqi_qflags & HAL_TXQ_TXERRINT_ENABLE)
465 		ahp->ah_txErrInterruptMask |= 1 << q;
466 	else
467 		ahp->ah_txErrInterruptMask &= ~(1 << q);
468 	if (qi->tqi_qflags & HAL_TXQ_TXDESCINT_ENABLE)
469 		ahp->ah_txDescInterruptMask |= 1 << q;
470 	else
471 		ahp->ah_txDescInterruptMask &= ~(1 << q);
472 	if (qi->tqi_qflags & HAL_TXQ_TXEOLINT_ENABLE)
473 		ahp->ah_txEolInterruptMask |= 1 << q;
474 	else
475 		ahp->ah_txEolInterruptMask &= ~(1 << q);
476 	if (qi->tqi_qflags & HAL_TXQ_TXURNINT_ENABLE)
477 		ahp->ah_txUrnInterruptMask |= 1 << q;
478 	else
479 		ahp->ah_txUrnInterruptMask &= ~(1 << q);
480 	setTxQInterrupts(ah, qi);
481 
482 	return AH_TRUE;
483 }
484 
485 /*
486  * Get the TXDP for the specified queue
487  */
488 uint32_t
489 ar5212GetTxDP(struct ath_hal *ah, u_int q)
490 {
491 	HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
492 	return OS_REG_READ(ah, AR_QTXDP(q));
493 }
494 
495 /*
496  * Set the TxDP for the specified queue
497  */
498 HAL_BOOL
499 ar5212SetTxDP(struct ath_hal *ah, u_int q, uint32_t txdp)
500 {
501 	HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
502 	HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
503 
504 	/*
505 	 * Make sure that TXE is deasserted before setting the TXDP.  If TXE
506 	 * is still asserted, setting TXDP will have no effect.
507 	 */
508 	HALASSERT((OS_REG_READ(ah, AR_Q_TXE) & (1 << q)) == 0);
509 
510 	OS_REG_WRITE(ah, AR_QTXDP(q), txdp);
511 
512 	return AH_TRUE;
513 }
514 
515 /*
516  * Set Transmit Enable bits for the specified queue
517  */
518 HAL_BOOL
519 ar5212StartTxDma(struct ath_hal *ah, u_int q)
520 {
521 	HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
522 
523 	HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
524 
525 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q);
526 
527 	/* Check to be sure we're not enabling a q that has its TXD bit set. */
528 	HALASSERT((OS_REG_READ(ah, AR_Q_TXD) & (1 << q)) == 0);
529 
530 	OS_REG_WRITE(ah, AR_Q_TXE, 1 << q);
531 	return AH_TRUE;
532 }
533 
534 /*
535  * Return the number of pending frames or 0 if the specified
536  * queue is stopped.
537  */
538 uint32_t
539 ar5212NumTxPending(struct ath_hal *ah, u_int q)
540 {
541 	uint32_t npend;
542 
543 	HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
544 	HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
545 
546 	npend = OS_REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
547 	if (npend == 0) {
548 		/*
549 		 * Pending frame count (PFC) can momentarily go to zero
550 		 * while TXE remains asserted.  In other words a PFC of
551 		 * zero is not sufficient to say that the queue has stopped.
552 		 */
553 		if (OS_REG_READ(ah, AR_Q_TXE) & (1 << q))
554 			npend = 1;		/* arbitrarily return 1 */
555 	}
556 	return npend;
557 }
558 
559 /*
560  * Stop transmit on the specified queue
561  */
562 HAL_BOOL
563 ar5212StopTxDma(struct ath_hal *ah, u_int q)
564 {
565 	u_int i;
566 	u_int wait;
567 
568 	HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
569 
570 	HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
571 
572 	OS_REG_WRITE(ah, AR_Q_TXD, 1 << q);
573 	for (i = 1000; i != 0; i--) {
574 		if (ar5212NumTxPending(ah, q) == 0)
575 			break;
576 		OS_DELAY(100);        /* XXX get actual value */
577 	}
578 #ifdef AH_DEBUG
579 	if (i == 0) {
580 		HALDEBUG(ah, HAL_DEBUG_ANY,
581 		    "%s: queue %u DMA did not stop in 100 msec\n", __func__, q);
582 		HALDEBUG(ah, HAL_DEBUG_ANY,
583 		    "%s: QSTS 0x%x Q_TXE 0x%x Q_TXD 0x%x Q_CBR 0x%x\n", __func__,
584 		    OS_REG_READ(ah, AR_QSTS(q)), OS_REG_READ(ah, AR_Q_TXE),
585 		    OS_REG_READ(ah, AR_Q_TXD), OS_REG_READ(ah, AR_QCBRCFG(q)));
586 		HALDEBUG(ah, HAL_DEBUG_ANY,
587 		    "%s: Q_MISC 0x%x Q_RDYTIMECFG 0x%x Q_RDYTIMESHDN 0x%x\n",
588 		    __func__, OS_REG_READ(ah, AR_QMISC(q)),
589 		    OS_REG_READ(ah, AR_QRDYTIMECFG(q)),
590 		    OS_REG_READ(ah, AR_Q_RDYTIMESHDN));
591 	}
592 #endif /* AH_DEBUG */
593 
594 	/* 2413+ and up can kill packets at the PCU level */
595 	if (ar5212NumTxPending(ah, q) &&
596 	    (IS_2413(ah) || IS_5413(ah) || IS_2425(ah) || IS_2417(ah))) {
597 		uint32_t tsfLow, j;
598 
599 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
600 		    "%s: Num of pending TX Frames %d on Q %d\n",
601 		    __func__, ar5212NumTxPending(ah, q), q);
602 
603 		/* Kill last PCU Tx Frame */
604 		/* TODO - save off and restore current values of Q1/Q2? */
605 		for (j = 0; j < 2; j++) {
606 			tsfLow = OS_REG_READ(ah, AR_TSF_L32);
607 			OS_REG_WRITE(ah, AR_QUIET2, SM(100, AR_QUIET2_QUIET_PER) |
608 				     SM(10, AR_QUIET2_QUIET_DUR));
609 			OS_REG_WRITE(ah, AR_QUIET1, AR_QUIET1_QUIET_ENABLE |
610 				     SM(tsfLow >> 10, AR_QUIET1_NEXT_QUIET));
611 			if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == (tsfLow >> 10)) {
612 				break;
613 			}
614 			HALDEBUG(ah, HAL_DEBUG_ANY,
615 			    "%s: TSF moved while trying to set quiet time "
616 			    "TSF: 0x%08x\n", __func__, tsfLow);
617 			HALASSERT(j < 1); /* TSF shouldn't count twice or reg access is taking forever */
618 		}
619 
620 		OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE);
621 
622 		/* Allow the quiet mechanism to do its work */
623 		OS_DELAY(200);
624 		OS_REG_CLR_BIT(ah, AR_QUIET1, AR_QUIET1_QUIET_ENABLE);
625 
626 		/* Give at least 1 millisec more to wait */
627 		wait = 100;
628 
629 		/* Verify all transmit is dead */
630 		while (ar5212NumTxPending(ah, q)) {
631 			if ((--wait) == 0) {
632 				HALDEBUG(ah, HAL_DEBUG_ANY,
633 				    "%s: Failed to stop Tx DMA in %d msec after killing last frame\n",
634 				    __func__, wait);
635 				break;
636 			}
637 			OS_DELAY(10);
638 		}
639 
640 		OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE);
641 	}
642 
643 	OS_REG_WRITE(ah, AR_Q_TXD, 0);
644 	return (i != 0);
645 }
646 
647 /*
648  * Descriptor Access Functions
649  */
650 
651 #define	VALID_PKT_TYPES \
652 	((1<<HAL_PKT_TYPE_NORMAL)|(1<<HAL_PKT_TYPE_ATIM)|\
653 	 (1<<HAL_PKT_TYPE_PSPOLL)|(1<<HAL_PKT_TYPE_PROBE_RESP)|\
654 	 (1<<HAL_PKT_TYPE_BEACON))
655 #define	isValidPktType(_t)	((1<<(_t)) & VALID_PKT_TYPES)
656 #define	VALID_TX_RATES \
657 	((1<<0x0b)|(1<<0x0f)|(1<<0x0a)|(1<<0x0e)|(1<<0x09)|(1<<0x0d)|\
658 	 (1<<0x08)|(1<<0x0c)|(1<<0x1b)|(1<<0x1a)|(1<<0x1e)|(1<<0x19)|\
659 	 (1<<0x1d)|(1<<0x18)|(1<<0x1c))
660 #define	isValidTxRate(_r)	((1<<(_r)) & VALID_TX_RATES)
661 
662 HAL_BOOL
663 ar5212SetupTxDesc(struct ath_hal *ah, struct ath_desc *ds,
664 	u_int pktLen,
665 	u_int hdrLen,
666 	HAL_PKT_TYPE type,
667 	u_int txPower,
668 	u_int txRate0, u_int txTries0,
669 	u_int keyIx,
670 	u_int antMode,
671 	u_int flags,
672 	u_int rtsctsRate,
673 	u_int rtsctsDuration,
674 	u_int compicvLen,
675 	u_int compivLen,
676 	u_int comp)
677 {
678 #define	RTSCTS	(HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)
679 	struct ar5212_desc *ads = AR5212DESC(ds);
680 	struct ath_hal_5212 *ahp = AH5212(ah);
681 
682 	(void) hdrLen;
683 
684 	HALASSERT(txTries0 != 0);
685 	HALASSERT(isValidPktType(type));
686 	HALASSERT(isValidTxRate(txRate0));
687 	HALASSERT((flags & RTSCTS) != RTSCTS);
688 	/* XXX validate antMode */
689 
690         txPower = (txPower + ahp->ah_txPowerIndexOffset );
691         if(txPower > 63)  txPower=63;
692 
693 	ads->ds_ctl0 = (pktLen & AR_FrameLen)
694 		     | (txPower << AR_XmitPower_S)
695 		     | (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0)
696 		     | (flags & HAL_TXDESC_CLRDMASK ? AR_ClearDestMask : 0)
697 		     | SM(antMode, AR_AntModeXmit)
698 		     | (flags & HAL_TXDESC_INTREQ ? AR_TxInterReq : 0)
699 		     ;
700 	ads->ds_ctl1 = (type << AR_FrmType_S)
701 		     | (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0)
702                      | (comp << AR_CompProc_S)
703                      | (compicvLen << AR_CompICVLen_S)
704                      | (compivLen << AR_CompIVLen_S)
705                      ;
706 	ads->ds_ctl2 = SM(txTries0, AR_XmitDataTries0)
707 		     | (flags & HAL_TXDESC_DURENA ? AR_DurUpdateEna : 0)
708 		     ;
709 	ads->ds_ctl3 = (txRate0 << AR_XmitRate0_S)
710 		     ;
711 	if (keyIx != HAL_TXKEYIX_INVALID) {
712 		/* XXX validate key index */
713 		ads->ds_ctl1 |= SM(keyIx, AR_DestIdx);
714 		ads->ds_ctl0 |= AR_DestIdxValid;
715 	}
716 	if (flags & RTSCTS) {
717 		if (!isValidTxRate(rtsctsRate)) {
718 			HALDEBUG(ah, HAL_DEBUG_ANY,
719 			    "%s: invalid rts/cts rate 0x%x\n",
720 			    __func__, rtsctsRate);
721 			return AH_FALSE;
722 		}
723 		/* XXX validate rtsctsDuration */
724 		ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0)
725 			     | (flags & HAL_TXDESC_RTSENA ? AR_RTSCTSEnable : 0)
726 			     ;
727 		ads->ds_ctl2 |= SM(rtsctsDuration, AR_RTSCTSDuration);
728 		ads->ds_ctl3 |= (rtsctsRate << AR_RTSCTSRate_S);
729 	}
730 	return AH_TRUE;
731 #undef RTSCTS
732 }
733 
734 HAL_BOOL
735 ar5212SetupXTxDesc(struct ath_hal *ah, struct ath_desc *ds,
736 	u_int txRate1, u_int txTries1,
737 	u_int txRate2, u_int txTries2,
738 	u_int txRate3, u_int txTries3)
739 {
740 	struct ar5212_desc *ads = AR5212DESC(ds);
741 
742 	if (txTries1) {
743 		HALASSERT(isValidTxRate(txRate1));
744 		ads->ds_ctl2 |= SM(txTries1, AR_XmitDataTries1)
745 			     |  AR_DurUpdateEna
746 			     ;
747 		ads->ds_ctl3 |= (txRate1 << AR_XmitRate1_S);
748 	}
749 	if (txTries2) {
750 		HALASSERT(isValidTxRate(txRate2));
751 		ads->ds_ctl2 |= SM(txTries2, AR_XmitDataTries2)
752 			     |  AR_DurUpdateEna
753 			     ;
754 		ads->ds_ctl3 |= (txRate2 << AR_XmitRate2_S);
755 	}
756 	if (txTries3) {
757 		HALASSERT(isValidTxRate(txRate3));
758 		ads->ds_ctl2 |= SM(txTries3, AR_XmitDataTries3)
759 			     |  AR_DurUpdateEna
760 			     ;
761 		ads->ds_ctl3 |= (txRate3 << AR_XmitRate3_S);
762 	}
763 	return AH_TRUE;
764 }
765 
766 void
767 ar5212IntrReqTxDesc(struct ath_hal *ah, struct ath_desc *ds)
768 {
769 	struct ar5212_desc *ads = AR5212DESC(ds);
770 
771 #ifdef AH_NEED_DESC_SWAP
772 	ads->ds_ctl0 |= __bswap32(AR_TxInterReq);
773 #else
774 	ads->ds_ctl0 |= AR_TxInterReq;
775 #endif
776 }
777 
778 HAL_BOOL
779 ar5212FillTxDesc(struct ath_hal *ah, struct ath_desc *ds,
780 	u_int segLen, HAL_BOOL firstSeg, HAL_BOOL lastSeg,
781 	const struct ath_desc *ds0)
782 {
783 	struct ar5212_desc *ads = AR5212DESC(ds);
784 
785 	HALASSERT((segLen &~ AR_BufLen) == 0);
786 
787 	if (firstSeg) {
788 		/*
789 		 * First descriptor, don't clobber xmit control data
790 		 * setup by ar5212SetupTxDesc.
791 		 */
792 		ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_More);
793 	} else if (lastSeg) {		/* !firstSeg && lastSeg */
794 		/*
795 		 * Last descriptor in a multi-descriptor frame,
796 		 * copy the multi-rate transmit parameters from
797 		 * the first frame for processing on completion.
798 		 */
799 		ads->ds_ctl0 = 0;
800 		ads->ds_ctl1 = segLen;
801 #ifdef AH_NEED_DESC_SWAP
802 		ads->ds_ctl2 = __bswap32(AR5212DESC_CONST(ds0)->ds_ctl2);
803 		ads->ds_ctl3 = __bswap32(AR5212DESC_CONST(ds0)->ds_ctl3);
804 #else
805 		ads->ds_ctl2 = AR5212DESC_CONST(ds0)->ds_ctl2;
806 		ads->ds_ctl3 = AR5212DESC_CONST(ds0)->ds_ctl3;
807 #endif
808 	} else {			/* !firstSeg && !lastSeg */
809 		/*
810 		 * Intermediate descriptor in a multi-descriptor frame.
811 		 */
812 		ads->ds_ctl0 = 0;
813 		ads->ds_ctl1 = segLen | AR_More;
814 		ads->ds_ctl2 = 0;
815 		ads->ds_ctl3 = 0;
816 	}
817 	ads->ds_txstatus0 = ads->ds_txstatus1 = 0;
818 	return AH_TRUE;
819 }
820 
821 #ifdef AH_NEED_DESC_SWAP
822 /* Swap transmit descriptor */
823 static __inline void
824 ar5212SwapTxDesc(struct ath_desc *ds)
825 {
826 	ds->ds_data = __bswap32(ds->ds_data);
827         ds->ds_ctl0 = __bswap32(ds->ds_ctl0);
828         ds->ds_ctl1 = __bswap32(ds->ds_ctl1);
829         ds->ds_hw[0] = __bswap32(ds->ds_hw[0]);
830         ds->ds_hw[1] = __bswap32(ds->ds_hw[1]);
831         ds->ds_hw[2] = __bswap32(ds->ds_hw[2]);
832         ds->ds_hw[3] = __bswap32(ds->ds_hw[3]);
833 }
834 #endif
835 
836 /*
837  * Processing of HW TX descriptor.
838  */
839 HAL_STATUS
840 ar5212ProcTxDesc(struct ath_hal *ah,
841 	struct ath_desc *ds, struct ath_tx_status *ts)
842 {
843 	struct ar5212_desc *ads = AR5212DESC(ds);
844 
845 #ifdef AH_NEED_DESC_SWAP
846 	if ((ads->ds_txstatus1 & __bswap32(AR_Done)) == 0)
847                 return HAL_EINPROGRESS;
848 
849 	ar5212SwapTxDesc(ds);
850 #else
851 	if ((ads->ds_txstatus1 & AR_Done) == 0)
852 		return HAL_EINPROGRESS;
853 #endif
854 
855 	/* Update software copies of the HW status */
856 	ts->ts_seqnum = MS(ads->ds_txstatus1, AR_SeqNum);
857 	ts->ts_tstamp = MS(ads->ds_txstatus0, AR_SendTimestamp);
858 	ts->ts_status = 0;
859 	if ((ads->ds_txstatus0 & AR_FrmXmitOK) == 0) {
860 		if (ads->ds_txstatus0 & AR_ExcessiveRetries)
861 			ts->ts_status |= HAL_TXERR_XRETRY;
862 		if (ads->ds_txstatus0 & AR_Filtered)
863 			ts->ts_status |= HAL_TXERR_FILT;
864 		if (ads->ds_txstatus0 & AR_FIFOUnderrun)
865 			ts->ts_status |= HAL_TXERR_FIFO;
866 	}
867 	/*
868 	 * Extract the transmit rate used and mark the rate as
869 	 * ``alternate'' if it wasn't the series 0 rate.
870 	 */
871 	ts->ts_finaltsi = MS(ads->ds_txstatus1, AR_FinalTSIndex);
872 	switch (ts->ts_finaltsi) {
873 	case 0:
874 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate0);
875 		break;
876 	case 1:
877 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate1);
878 		break;
879 	case 2:
880 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate2);
881 		break;
882 	case 3:
883 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate3);
884 		break;
885 	}
886 	ts->ts_rssi = MS(ads->ds_txstatus1, AR_AckSigStrength);
887 	ts->ts_shortretry = MS(ads->ds_txstatus0, AR_RTSFailCnt);
888 	ts->ts_longretry = MS(ads->ds_txstatus0, AR_DataFailCnt);
889 	/*
890 	 * The retry count has the number of un-acked tries for the
891 	 * final series used.  When doing multi-rate retry we must
892 	 * fixup the retry count by adding in the try counts for
893 	 * each series that was fully-processed.  Beware that this
894 	 * takes values from the try counts in the final descriptor.
895 	 * These are not required by the hardware.  We assume they
896 	 * are placed there by the driver as otherwise we have no
897 	 * access and the driver can't do the calculation because it
898 	 * doesn't know the descriptor format.
899 	 */
900 	switch (ts->ts_finaltsi) {
901 	case 3: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries2);
902 	case 2: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries1);
903 	case 1: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries0);
904 	}
905 	ts->ts_virtcol = MS(ads->ds_txstatus0, AR_VirtCollCnt);
906 	ts->ts_antenna = (ads->ds_txstatus1 & AR_XmitAtenna ? 2 : 1);
907 
908 	return HAL_OK;
909 }
910 
911 /*
912  * Determine which tx queues need interrupt servicing.
913  */
914 void
915 ar5212GetTxIntrQueue(struct ath_hal *ah, uint32_t *txqs)
916 {
917 	struct ath_hal_5212 *ahp = AH5212(ah);
918 	*txqs &= ahp->ah_intrTxqs;
919 	ahp->ah_intrTxqs &= ~(*txqs);
920 }
921 
922 /*
923  * Retrieve the rate table from the given TX completion descriptor
924  */
925 HAL_BOOL
926 ar5212GetTxCompletionRates(struct ath_hal *ah, const struct ath_desc *ds0, int *rates, int *tries)
927 {
928 	const struct ar5212_desc *ads = AR5212DESC_CONST(ds0);
929 
930 	rates[0] = MS(ads->ds_ctl3, AR_XmitRate0);
931 	rates[1] = MS(ads->ds_ctl3, AR_XmitRate1);
932 	rates[2] = MS(ads->ds_ctl3, AR_XmitRate2);
933 	rates[3] = MS(ads->ds_ctl3, AR_XmitRate3);
934 
935 	tries[0] = MS(ads->ds_ctl2, AR_XmitDataTries0);
936 	tries[1] = MS(ads->ds_ctl2, AR_XmitDataTries1);
937 	tries[2] = MS(ads->ds_ctl2, AR_XmitDataTries2);
938 	tries[3] = MS(ads->ds_ctl2, AR_XmitDataTries3);
939 
940 	return AH_TRUE;
941 }
942