xref: /freebsd/sys/dev/ath/ath_hal/ar5212/ar5212_xmit.c (revision 62cfcf62f627e5093fb37026a6d8c98e4d2ef04c)
1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  * $FreeBSD$
20  */
21 #include "opt_ah.h"
22 
23 #include "ah.h"
24 #include "ah_internal.h"
25 #include "ah_desc.h"
26 
27 #include "ar5212/ar5212.h"
28 #include "ar5212/ar5212reg.h"
29 #include "ar5212/ar5212desc.h"
30 #include "ar5212/ar5212phy.h"
31 #ifdef AH_SUPPORT_5311
32 #include "ar5212/ar5311reg.h"
33 #endif
34 
35 #ifdef AH_NEED_DESC_SWAP
36 static void ar5212SwapTxDesc(struct ath_desc *ds);
37 #endif
38 
39 /*
40  * Update Tx FIFO trigger level.
41  *
42  * Set bIncTrigLevel to TRUE to increase the trigger level.
43  * Set bIncTrigLevel to FALSE to decrease the trigger level.
44  *
45  * Returns TRUE if the trigger level was updated
46  */
47 HAL_BOOL
48 ar5212UpdateTxTrigLevel(struct ath_hal *ah, HAL_BOOL bIncTrigLevel)
49 {
50 	struct ath_hal_5212 *ahp = AH5212(ah);
51 	uint32_t txcfg, curLevel, newLevel;
52 	HAL_INT omask;
53 
54 	if (ahp->ah_txTrigLev >= ahp->ah_maxTxTrigLev)
55 		return AH_FALSE;
56 
57 	/*
58 	 * Disable interrupts while futzing with the fifo level.
59 	 */
60 	omask = ath_hal_setInterrupts(ah, ahp->ah_maskReg &~ HAL_INT_GLOBAL);
61 
62 	txcfg = OS_REG_READ(ah, AR_TXCFG);
63 	curLevel = MS(txcfg, AR_FTRIG);
64 	newLevel = curLevel;
65 	if (bIncTrigLevel) {		/* increase the trigger level */
66 		if (curLevel < ahp->ah_maxTxTrigLev)
67 			newLevel++;
68 	} else if (curLevel > MIN_TX_FIFO_THRESHOLD)
69 		newLevel--;
70 	if (newLevel != curLevel)
71 		/* Update the trigger level */
72 		OS_REG_WRITE(ah, AR_TXCFG,
73 			(txcfg &~ AR_FTRIG) | SM(newLevel, AR_FTRIG));
74 
75 	ahp->ah_txTrigLev = newLevel;
76 
77 	/* re-enable chip interrupts */
78 	ath_hal_setInterrupts(ah, omask);
79 
80 	return (newLevel != curLevel);
81 }
82 
83 /*
84  * Set the properties of the tx queue with the parameters
85  * from qInfo.
86  */
87 HAL_BOOL
88 ar5212SetTxQueueProps(struct ath_hal *ah, int q, const HAL_TXQ_INFO *qInfo)
89 {
90 	struct ath_hal_5212 *ahp = AH5212(ah);
91 	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
92 
93 	if (q >= pCap->halTotalQueues) {
94 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
95 		    __func__, q);
96 		return AH_FALSE;
97 	}
98 	return ath_hal_setTxQProps(ah, &ahp->ah_txq[q], qInfo);
99 }
100 
101 /*
102  * Return the properties for the specified tx queue.
103  */
104 HAL_BOOL
105 ar5212GetTxQueueProps(struct ath_hal *ah, int q, HAL_TXQ_INFO *qInfo)
106 {
107 	struct ath_hal_5212 *ahp = AH5212(ah);
108 	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
109 
110 
111 	if (q >= pCap->halTotalQueues) {
112 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
113 		    __func__, q);
114 		return AH_FALSE;
115 	}
116 	return ath_hal_getTxQProps(ah, qInfo, &ahp->ah_txq[q]);
117 }
118 
119 /*
120  * Allocate and initialize a tx DCU/QCU combination.
121  */
122 int
123 ar5212SetupTxQueue(struct ath_hal *ah, HAL_TX_QUEUE type,
124 	const HAL_TXQ_INFO *qInfo)
125 {
126 	struct ath_hal_5212 *ahp = AH5212(ah);
127 	HAL_TX_QUEUE_INFO *qi;
128 	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
129 	int q, defqflags;
130 
131 	/* by default enable OK+ERR+DESC+URN interrupts */
132 	defqflags = HAL_TXQ_TXOKINT_ENABLE
133 		  | HAL_TXQ_TXERRINT_ENABLE
134 		  | HAL_TXQ_TXDESCINT_ENABLE
135 		  | HAL_TXQ_TXURNINT_ENABLE;
136 	/* XXX move queue assignment to driver */
137 	switch (type) {
138 	case HAL_TX_QUEUE_BEACON:
139 		q = pCap->halTotalQueues-1;	/* highest priority */
140 		defqflags |= HAL_TXQ_DBA_GATED
141 		       | HAL_TXQ_CBR_DIS_QEMPTY
142 		       | HAL_TXQ_ARB_LOCKOUT_GLOBAL
143 		       | HAL_TXQ_BACKOFF_DISABLE;
144 		break;
145 	case HAL_TX_QUEUE_CAB:
146 		q = pCap->halTotalQueues-2;	/* next highest priority */
147 		defqflags |= HAL_TXQ_DBA_GATED
148 		       | HAL_TXQ_CBR_DIS_QEMPTY
149 		       | HAL_TXQ_CBR_DIS_BEMPTY
150 		       | HAL_TXQ_ARB_LOCKOUT_GLOBAL
151 		       | HAL_TXQ_BACKOFF_DISABLE;
152 		break;
153 	case HAL_TX_QUEUE_UAPSD:
154 		q = pCap->halTotalQueues-3;	/* nextest highest priority */
155 		if (ahp->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE) {
156 			HALDEBUG(ah, HAL_DEBUG_ANY,
157 			    "%s: no available UAPSD tx queue\n", __func__);
158 			return -1;
159 		}
160 		break;
161 	case HAL_TX_QUEUE_DATA:
162 		for (q = 0; q < pCap->halTotalQueues; q++)
163 			if (ahp->ah_txq[q].tqi_type == HAL_TX_QUEUE_INACTIVE)
164 				break;
165 		if (q == pCap->halTotalQueues) {
166 			HALDEBUG(ah, HAL_DEBUG_ANY,
167 			    "%s: no available tx queue\n", __func__);
168 			return -1;
169 		}
170 		break;
171 	default:
172 		HALDEBUG(ah, HAL_DEBUG_ANY,
173 		    "%s: bad tx queue type %u\n", __func__, type);
174 		return -1;
175 	}
176 
177 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q);
178 
179 	qi = &ahp->ah_txq[q];
180 	if (qi->tqi_type != HAL_TX_QUEUE_INACTIVE) {
181 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: tx queue %u already active\n",
182 		    __func__, q);
183 		return -1;
184 	}
185 	OS_MEMZERO(qi, sizeof(HAL_TX_QUEUE_INFO));
186 	qi->tqi_type = type;
187 	if (qInfo == AH_NULL) {
188 		qi->tqi_qflags = defqflags;
189 		qi->tqi_aifs = INIT_AIFS;
190 		qi->tqi_cwmin = HAL_TXQ_USEDEFAULT;	/* NB: do at reset */
191 		qi->tqi_cwmax = INIT_CWMAX;
192 		qi->tqi_shretry = INIT_SH_RETRY;
193 		qi->tqi_lgretry = INIT_LG_RETRY;
194 		qi->tqi_physCompBuf = 0;
195 	} else {
196 		qi->tqi_physCompBuf = qInfo->tqi_compBuf;
197 		(void) ar5212SetTxQueueProps(ah, q, qInfo);
198 	}
199 	/* NB: must be followed by ar5212ResetTxQueue */
200 	return q;
201 }
202 
203 /*
204  * Update the h/w interrupt registers to reflect a tx q's configuration.
205  */
206 static void
207 setTxQInterrupts(struct ath_hal *ah, HAL_TX_QUEUE_INFO *qi)
208 {
209 	struct ath_hal_5212 *ahp = AH5212(ah);
210 
211 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
212 	    "%s: tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n", __func__,
213 	    ahp->ah_txOkInterruptMask, ahp->ah_txErrInterruptMask,
214 	    ahp->ah_txDescInterruptMask, ahp->ah_txEolInterruptMask,
215 	    ahp->ah_txUrnInterruptMask);
216 
217 	OS_REG_WRITE(ah, AR_IMR_S0,
218 		  SM(ahp->ah_txOkInterruptMask, AR_IMR_S0_QCU_TXOK)
219 		| SM(ahp->ah_txDescInterruptMask, AR_IMR_S0_QCU_TXDESC)
220 	);
221 	OS_REG_WRITE(ah, AR_IMR_S1,
222 		  SM(ahp->ah_txErrInterruptMask, AR_IMR_S1_QCU_TXERR)
223 		| SM(ahp->ah_txEolInterruptMask, AR_IMR_S1_QCU_TXEOL)
224 	);
225 	OS_REG_RMW_FIELD(ah, AR_IMR_S2,
226 		AR_IMR_S2_QCU_TXURN, ahp->ah_txUrnInterruptMask);
227 }
228 
229 /*
230  * Free a tx DCU/QCU combination.
231  */
232 HAL_BOOL
233 ar5212ReleaseTxQueue(struct ath_hal *ah, u_int q)
234 {
235 	struct ath_hal_5212 *ahp = AH5212(ah);
236 	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
237 	HAL_TX_QUEUE_INFO *qi;
238 
239 	if (q >= pCap->halTotalQueues) {
240 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
241 		    __func__, q);
242 		return AH_FALSE;
243 	}
244 	qi = &ahp->ah_txq[q];
245 	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
246 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n",
247 		    __func__, q);
248 		return AH_FALSE;
249 	}
250 
251 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: release queue %u\n", __func__, q);
252 
253 	qi->tqi_type = HAL_TX_QUEUE_INACTIVE;
254 	ahp->ah_txOkInterruptMask &= ~(1 << q);
255 	ahp->ah_txErrInterruptMask &= ~(1 << q);
256 	ahp->ah_txDescInterruptMask &= ~(1 << q);
257 	ahp->ah_txEolInterruptMask &= ~(1 << q);
258 	ahp->ah_txUrnInterruptMask &= ~(1 << q);
259 	setTxQInterrupts(ah, qi);
260 
261 	return AH_TRUE;
262 }
263 
264 /*
265  * Set the retry, aifs, cwmin/max, readyTime regs for specified queue
266  * Assumes:
267  *  phwChannel has been set to point to the current channel
268  */
269 #define	TU_TO_USEC(_tu)		((_tu) << 10)
270 HAL_BOOL
271 ar5212ResetTxQueue(struct ath_hal *ah, u_int q)
272 {
273 	struct ath_hal_5212 *ahp = AH5212(ah);
274 	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
275 	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
276 	HAL_TX_QUEUE_INFO *qi;
277 	uint32_t cwMin, chanCwMin, qmisc, dmisc;
278 
279 	if (q >= pCap->halTotalQueues) {
280 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
281 		    __func__, q);
282 		return AH_FALSE;
283 	}
284 	qi = &ahp->ah_txq[q];
285 	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
286 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n",
287 		    __func__, q);
288 		return AH_TRUE;		/* XXX??? */
289 	}
290 
291 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: reset queue %u\n", __func__, q);
292 
293 	if (qi->tqi_cwmin == HAL_TXQ_USEDEFAULT) {
294 		/*
295 		 * Select cwmin according to channel type.
296 		 * NB: chan can be NULL during attach
297 		 */
298 		if (chan && IEEE80211_IS_CHAN_B(chan))
299 			chanCwMin = INIT_CWMIN_11B;
300 		else
301 			chanCwMin = INIT_CWMIN;
302 		/* make sure that the CWmin is of the form (2^n - 1) */
303 		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1)
304 			;
305 	} else
306 		cwMin = qi->tqi_cwmin;
307 
308 	/* set cwMin/Max and AIFS values */
309 	OS_REG_WRITE(ah, AR_DLCL_IFS(q),
310 		  SM(cwMin, AR_D_LCL_IFS_CWMIN)
311 		| SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX)
312 		| SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
313 
314 	/* Set retry limit values */
315 	OS_REG_WRITE(ah, AR_DRETRY_LIMIT(q),
316 		   SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH)
317 		 | SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG)
318 		 | SM(qi->tqi_lgretry, AR_D_RETRY_LIMIT_FR_LG)
319 		 | SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH)
320 	);
321 
322 	/* NB: always enable early termination on the QCU */
323 	qmisc = AR_Q_MISC_DCU_EARLY_TERM_REQ
324 	      | SM(AR_Q_MISC_FSP_ASAP, AR_Q_MISC_FSP);
325 
326 	/* NB: always enable DCU to wait for next fragment from QCU */
327 	dmisc = AR_D_MISC_FRAG_WAIT_EN;
328 
329 #ifdef AH_SUPPORT_5311
330 	if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
331 		/* Configure DCU to use the global sequence count */
332 		dmisc |= AR5311_D_MISC_SEQ_NUM_CONTROL;
333 	}
334 #endif
335 	/* multiqueue support */
336 	if (qi->tqi_cbrPeriod) {
337 		OS_REG_WRITE(ah, AR_QCBRCFG(q),
338 			  SM(qi->tqi_cbrPeriod,AR_Q_CBRCFG_CBR_INTERVAL)
339 			| SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_CBR_OVF_THRESH));
340 		qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_CBR;
341 		if (qi->tqi_cbrOverflowLimit)
342 			qmisc |= AR_Q_MISC_CBR_EXP_CNTR_LIMIT;
343 	}
344 	if (qi->tqi_readyTime) {
345 		OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
346 			  SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT)
347 			| AR_Q_RDYTIMECFG_ENA);
348 	}
349 
350 	OS_REG_WRITE(ah, AR_DCHNTIME(q),
351 		  SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR)
352 		| (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
353 
354 	if (qi->tqi_readyTime &&
355 	    (qi->tqi_qflags & HAL_TXQ_RDYTIME_EXP_POLICY_ENABLE))
356 		qmisc |= AR_Q_MISC_RDYTIME_EXP_POLICY;
357 	if (qi->tqi_qflags & HAL_TXQ_DBA_GATED)
358 		qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_DBA_GATED;
359 	if (MS(qmisc, AR_Q_MISC_FSP) != AR_Q_MISC_FSP_ASAP) {
360 		/*
361 		 * These are meangingful only when not scheduled asap.
362 		 */
363 		if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_BEMPTY)
364 			qmisc |= AR_Q_MISC_CBR_INCR_DIS0;
365 		else
366 			qmisc &= ~AR_Q_MISC_CBR_INCR_DIS0;
367 		if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_QEMPTY)
368 			qmisc |= AR_Q_MISC_CBR_INCR_DIS1;
369 		else
370 			qmisc &= ~AR_Q_MISC_CBR_INCR_DIS1;
371 	}
372 
373 	if (qi->tqi_qflags & HAL_TXQ_BACKOFF_DISABLE)
374 		dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS;
375 	if (qi->tqi_qflags & HAL_TXQ_FRAG_BURST_BACKOFF_ENABLE)
376 		dmisc |= AR_D_MISC_FRAG_BKOFF_EN;
377 	if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_GLOBAL)
378 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
379 			    AR_D_MISC_ARB_LOCKOUT_CNTRL);
380 	else if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_INTRA)
381 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_INTRA_FR,
382 			    AR_D_MISC_ARB_LOCKOUT_CNTRL);
383 	if (qi->tqi_qflags & HAL_TXQ_IGNORE_VIRTCOL)
384 		dmisc |= SM(AR_D_MISC_VIR_COL_HANDLING_IGNORE,
385 			    AR_D_MISC_VIR_COL_HANDLING);
386 	if (qi->tqi_qflags & HAL_TXQ_SEQNUM_INC_DIS)
387 		dmisc |= AR_D_MISC_SEQ_NUM_INCR_DIS;
388 
389 	/*
390 	 * Fillin type-dependent bits.  Most of this can be
391 	 * removed by specifying the queue parameters in the
392 	 * driver; it's here for backwards compatibility.
393 	 */
394 	switch (qi->tqi_type) {
395 	case HAL_TX_QUEUE_BEACON:		/* beacon frames */
396 		qmisc |= AR_Q_MISC_FSP_DBA_GATED
397 		      |  AR_Q_MISC_BEACON_USE
398 		      |  AR_Q_MISC_CBR_INCR_DIS1;
399 
400 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
401 			    AR_D_MISC_ARB_LOCKOUT_CNTRL)
402 		      |  AR_D_MISC_BEACON_USE
403 		      |  AR_D_MISC_POST_FR_BKOFF_DIS;
404 		break;
405 	case HAL_TX_QUEUE_CAB:			/* CAB  frames */
406 		/*
407 		 * No longer Enable AR_Q_MISC_RDYTIME_EXP_POLICY,
408 		 * There is an issue with the CAB Queue
409 		 * not properly refreshing the Tx descriptor if
410 		 * the TXE clear setting is used.
411 		 */
412 		qmisc |= AR_Q_MISC_FSP_DBA_GATED
413 		      |  AR_Q_MISC_CBR_INCR_DIS1
414 		      |  AR_Q_MISC_CBR_INCR_DIS0;
415 
416 		if (qi->tqi_readyTime) {
417 			HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
418 			    "%s: using tqi_readyTime\n", __func__);
419 			OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
420 			    SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT) |
421 			    AR_Q_RDYTIMECFG_ENA);
422 		} else {
423 			int value;
424 			/*
425 			 * NB: don't set default ready time if driver
426 			 * has explicitly specified something.  This is
427 			 * here solely for backwards compatibility.
428 			 */
429 			/*
430 			 * XXX for now, hard-code a CAB interval of 70%
431 			 * XXX of the total beacon interval.
432 			 */
433 
434 			value = (ahp->ah_beaconInterval * 70 / 100)
435 				- (ah->ah_config.ah_sw_beacon_response_time -
436 				+ ah->ah_config.ah_dma_beacon_response_time)
437 				- ah->ah_config.ah_additional_swba_backoff;
438 			/*
439 			 * XXX Ensure it isn't too low - nothing lower
440 			 * XXX than 10 TU
441 			 */
442 			if (value < 10)
443 				value = 10;
444 			HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
445 			    "%s: defaulting to rdytime = %d uS\n",
446 			    __func__, value);
447 			OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
448 			    SM(TU_TO_USEC(value), AR_Q_RDYTIMECFG_INT) |
449 			    AR_Q_RDYTIMECFG_ENA);
450 		}
451 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
452 			    AR_D_MISC_ARB_LOCKOUT_CNTRL);
453 		break;
454 	default:			/* NB: silence compiler */
455 		break;
456 	}
457 
458 	OS_REG_WRITE(ah, AR_QMISC(q), qmisc);
459 	OS_REG_WRITE(ah, AR_DMISC(q), dmisc);
460 
461 	/* Setup compression scratchpad buffer */
462 	/*
463 	 * XXX: calling this asynchronously to queue operation can
464 	 *      cause unexpected behavior!!!
465 	 */
466 	if (qi->tqi_physCompBuf) {
467 		HALASSERT(qi->tqi_type == HAL_TX_QUEUE_DATA ||
468 			  qi->tqi_type == HAL_TX_QUEUE_UAPSD);
469 		OS_REG_WRITE(ah, AR_Q_CBBS, (80 + 2*q));
470 		OS_REG_WRITE(ah, AR_Q_CBBA, qi->tqi_physCompBuf);
471 		OS_REG_WRITE(ah, AR_Q_CBC,  HAL_COMP_BUF_MAX_SIZE/1024);
472 		OS_REG_WRITE(ah, AR_Q0_MISC + 4*q,
473 			     OS_REG_READ(ah, AR_Q0_MISC + 4*q)
474 			     | AR_Q_MISC_QCU_COMP_EN);
475 	}
476 
477 	/*
478 	 * Always update the secondary interrupt mask registers - this
479 	 * could be a new queue getting enabled in a running system or
480 	 * hw getting re-initialized during a reset!
481 	 *
482 	 * Since we don't differentiate between tx interrupts corresponding
483 	 * to individual queues - secondary tx mask regs are always unmasked;
484 	 * tx interrupts are enabled/disabled for all queues collectively
485 	 * using the primary mask reg
486 	 */
487 	if (qi->tqi_qflags & HAL_TXQ_TXOKINT_ENABLE)
488 		ahp->ah_txOkInterruptMask |= 1 << q;
489 	else
490 		ahp->ah_txOkInterruptMask &= ~(1 << q);
491 	if (qi->tqi_qflags & HAL_TXQ_TXERRINT_ENABLE)
492 		ahp->ah_txErrInterruptMask |= 1 << q;
493 	else
494 		ahp->ah_txErrInterruptMask &= ~(1 << q);
495 	if (qi->tqi_qflags & HAL_TXQ_TXDESCINT_ENABLE)
496 		ahp->ah_txDescInterruptMask |= 1 << q;
497 	else
498 		ahp->ah_txDescInterruptMask &= ~(1 << q);
499 	if (qi->tqi_qflags & HAL_TXQ_TXEOLINT_ENABLE)
500 		ahp->ah_txEolInterruptMask |= 1 << q;
501 	else
502 		ahp->ah_txEolInterruptMask &= ~(1 << q);
503 	if (qi->tqi_qflags & HAL_TXQ_TXURNINT_ENABLE)
504 		ahp->ah_txUrnInterruptMask |= 1 << q;
505 	else
506 		ahp->ah_txUrnInterruptMask &= ~(1 << q);
507 	setTxQInterrupts(ah, qi);
508 
509 	return AH_TRUE;
510 }
511 #undef	TU_TO_USEC
512 
513 /*
514  * Get the TXDP for the specified queue
515  */
516 uint32_t
517 ar5212GetTxDP(struct ath_hal *ah, u_int q)
518 {
519 	HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
520 	return OS_REG_READ(ah, AR_QTXDP(q));
521 }
522 
523 /*
524  * Set the TxDP for the specified queue
525  */
526 HAL_BOOL
527 ar5212SetTxDP(struct ath_hal *ah, u_int q, uint32_t txdp)
528 {
529 	HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
530 	HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
531 
532 	/*
533 	 * Make sure that TXE is deasserted before setting the TXDP.  If TXE
534 	 * is still asserted, setting TXDP will have no effect.
535 	 */
536 	HALASSERT((OS_REG_READ(ah, AR_Q_TXE) & (1 << q)) == 0);
537 
538 	OS_REG_WRITE(ah, AR_QTXDP(q), txdp);
539 
540 	return AH_TRUE;
541 }
542 
543 /*
544  * Set Transmit Enable bits for the specified queue
545  */
546 HAL_BOOL
547 ar5212StartTxDma(struct ath_hal *ah, u_int q)
548 {
549 	HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
550 
551 	HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
552 
553 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q);
554 
555 	/* Check to be sure we're not enabling a q that has its TXD bit set. */
556 	HALASSERT((OS_REG_READ(ah, AR_Q_TXD) & (1 << q)) == 0);
557 
558 	OS_REG_WRITE(ah, AR_Q_TXE, 1 << q);
559 	return AH_TRUE;
560 }
561 
562 /*
563  * Return the number of pending frames or 0 if the specified
564  * queue is stopped.
565  */
566 uint32_t
567 ar5212NumTxPending(struct ath_hal *ah, u_int q)
568 {
569 	uint32_t npend;
570 
571 	HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
572 	HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
573 
574 	npend = OS_REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
575 	if (npend == 0) {
576 		/*
577 		 * Pending frame count (PFC) can momentarily go to zero
578 		 * while TXE remains asserted.  In other words a PFC of
579 		 * zero is not sufficient to say that the queue has stopped.
580 		 */
581 		if (OS_REG_READ(ah, AR_Q_TXE) & (1 << q))
582 			npend = 1;		/* arbitrarily return 1 */
583 	}
584 	return npend;
585 }
586 
587 /*
588  * Stop transmit on the specified queue
589  */
590 HAL_BOOL
591 ar5212StopTxDma(struct ath_hal *ah, u_int q)
592 {
593 	u_int i;
594 	u_int wait;
595 
596 	HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
597 
598 	HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
599 
600 	OS_REG_WRITE(ah, AR_Q_TXD, 1 << q);
601 	for (i = 1000; i != 0; i--) {
602 		if (ar5212NumTxPending(ah, q) == 0)
603 			break;
604 		OS_DELAY(100);        /* XXX get actual value */
605 	}
606 #ifdef AH_DEBUG
607 	if (i == 0) {
608 		HALDEBUG(ah, HAL_DEBUG_ANY,
609 		    "%s: queue %u DMA did not stop in 100 msec\n", __func__, q);
610 		HALDEBUG(ah, HAL_DEBUG_ANY,
611 		    "%s: QSTS 0x%x Q_TXE 0x%x Q_TXD 0x%x Q_CBR 0x%x\n", __func__,
612 		    OS_REG_READ(ah, AR_QSTS(q)), OS_REG_READ(ah, AR_Q_TXE),
613 		    OS_REG_READ(ah, AR_Q_TXD), OS_REG_READ(ah, AR_QCBRCFG(q)));
614 		HALDEBUG(ah, HAL_DEBUG_ANY,
615 		    "%s: Q_MISC 0x%x Q_RDYTIMECFG 0x%x Q_RDYTIMESHDN 0x%x\n",
616 		    __func__, OS_REG_READ(ah, AR_QMISC(q)),
617 		    OS_REG_READ(ah, AR_QRDYTIMECFG(q)),
618 		    OS_REG_READ(ah, AR_Q_RDYTIMESHDN));
619 	}
620 #endif /* AH_DEBUG */
621 
622 	/* 2413+ and up can kill packets at the PCU level */
623 	if (ar5212NumTxPending(ah, q) &&
624 	    (IS_2413(ah) || IS_5413(ah) || IS_2425(ah) || IS_2417(ah))) {
625 		uint32_t tsfLow, j;
626 
627 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
628 		    "%s: Num of pending TX Frames %d on Q %d\n",
629 		    __func__, ar5212NumTxPending(ah, q), q);
630 
631 		/* Kill last PCU Tx Frame */
632 		/* TODO - save off and restore current values of Q1/Q2? */
633 		for (j = 0; j < 2; j++) {
634 			tsfLow = OS_REG_READ(ah, AR_TSF_L32);
635 			OS_REG_WRITE(ah, AR_QUIET2, SM(100, AR_QUIET2_QUIET_PER) |
636 				     SM(10, AR_QUIET2_QUIET_DUR));
637 			OS_REG_WRITE(ah, AR_QUIET1, AR_QUIET1_QUIET_ENABLE |
638 				     SM(tsfLow >> 10, AR_QUIET1_NEXT_QUIET));
639 			if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == (tsfLow >> 10)) {
640 				break;
641 			}
642 			HALDEBUG(ah, HAL_DEBUG_ANY,
643 			    "%s: TSF moved while trying to set quiet time "
644 			    "TSF: 0x%08x\n", __func__, tsfLow);
645 			HALASSERT(j < 1); /* TSF shouldn't count twice or reg access is taking forever */
646 		}
647 
648 		OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE);
649 
650 		/* Allow the quiet mechanism to do its work */
651 		OS_DELAY(200);
652 		OS_REG_CLR_BIT(ah, AR_QUIET1, AR_QUIET1_QUIET_ENABLE);
653 
654 		/* Give at least 1 millisec more to wait */
655 		wait = 100;
656 
657 		/* Verify all transmit is dead */
658 		while (ar5212NumTxPending(ah, q)) {
659 			if ((--wait) == 0) {
660 				HALDEBUG(ah, HAL_DEBUG_ANY,
661 				    "%s: Failed to stop Tx DMA in %d msec after killing last frame\n",
662 				    __func__, wait);
663 				break;
664 			}
665 			OS_DELAY(10);
666 		}
667 
668 		OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE);
669 	}
670 
671 	OS_REG_WRITE(ah, AR_Q_TXD, 0);
672 	return (i != 0);
673 }
674 
675 /*
676  * Descriptor Access Functions
677  */
678 
679 #define	VALID_PKT_TYPES \
680 	((1<<HAL_PKT_TYPE_NORMAL)|(1<<HAL_PKT_TYPE_ATIM)|\
681 	 (1<<HAL_PKT_TYPE_PSPOLL)|(1<<HAL_PKT_TYPE_PROBE_RESP)|\
682 	 (1<<HAL_PKT_TYPE_BEACON))
683 #define	isValidPktType(_t)	((1<<(_t)) & VALID_PKT_TYPES)
684 #define	VALID_TX_RATES \
685 	((1<<0x0b)|(1<<0x0f)|(1<<0x0a)|(1<<0x0e)|(1<<0x09)|(1<<0x0d)|\
686 	 (1<<0x08)|(1<<0x0c)|(1<<0x1b)|(1<<0x1a)|(1<<0x1e)|(1<<0x19)|\
687 	 (1<<0x1d)|(1<<0x18)|(1<<0x1c))
688 #define	isValidTxRate(_r)	((1<<(_r)) & VALID_TX_RATES)
689 
690 HAL_BOOL
691 ar5212SetupTxDesc(struct ath_hal *ah, struct ath_desc *ds,
692 	u_int pktLen,
693 	u_int hdrLen,
694 	HAL_PKT_TYPE type,
695 	u_int txPower,
696 	u_int txRate0, u_int txTries0,
697 	u_int keyIx,
698 	u_int antMode,
699 	u_int flags,
700 	u_int rtsctsRate,
701 	u_int rtsctsDuration,
702 	u_int compicvLen,
703 	u_int compivLen,
704 	u_int comp)
705 {
706 #define	RTSCTS	(HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)
707 	struct ar5212_desc *ads = AR5212DESC(ds);
708 	struct ath_hal_5212 *ahp = AH5212(ah);
709 
710 	(void) hdrLen;
711 
712 	HALASSERT(txTries0 != 0);
713 	HALASSERT(isValidPktType(type));
714 	HALASSERT(isValidTxRate(txRate0));
715 	HALASSERT((flags & RTSCTS) != RTSCTS);
716 	/* XXX validate antMode */
717 
718         txPower = (txPower + ahp->ah_txPowerIndexOffset );
719         if(txPower > 63)  txPower=63;
720 
721 	ads->ds_ctl0 = (pktLen & AR_FrameLen)
722 		     | (txPower << AR_XmitPower_S)
723 		     | (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0)
724 		     | (flags & HAL_TXDESC_CLRDMASK ? AR_ClearDestMask : 0)
725 		     | SM(antMode, AR_AntModeXmit)
726 		     | (flags & HAL_TXDESC_INTREQ ? AR_TxInterReq : 0)
727 		     ;
728 	ads->ds_ctl1 = (type << AR_FrmType_S)
729 		     | (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0)
730                      | (comp << AR_CompProc_S)
731                      | (compicvLen << AR_CompICVLen_S)
732                      | (compivLen << AR_CompIVLen_S)
733                      ;
734 	ads->ds_ctl2 = SM(txTries0, AR_XmitDataTries0)
735 		     | (flags & HAL_TXDESC_DURENA ? AR_DurUpdateEna : 0)
736 		     ;
737 	ads->ds_ctl3 = (txRate0 << AR_XmitRate0_S)
738 		     ;
739 	if (keyIx != HAL_TXKEYIX_INVALID) {
740 		/* XXX validate key index */
741 		ads->ds_ctl1 |= SM(keyIx, AR_DestIdx);
742 		ads->ds_ctl0 |= AR_DestIdxValid;
743 	}
744 	if (flags & RTSCTS) {
745 		if (!isValidTxRate(rtsctsRate)) {
746 			HALDEBUG(ah, HAL_DEBUG_ANY,
747 			    "%s: invalid rts/cts rate 0x%x\n",
748 			    __func__, rtsctsRate);
749 			return AH_FALSE;
750 		}
751 		/* XXX validate rtsctsDuration */
752 		ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0)
753 			     | (flags & HAL_TXDESC_RTSENA ? AR_RTSCTSEnable : 0)
754 			     ;
755 		ads->ds_ctl2 |= SM(rtsctsDuration, AR_RTSCTSDuration);
756 		ads->ds_ctl3 |= (rtsctsRate << AR_RTSCTSRate_S);
757 	}
758 	return AH_TRUE;
759 #undef RTSCTS
760 }
761 
762 HAL_BOOL
763 ar5212SetupXTxDesc(struct ath_hal *ah, struct ath_desc *ds,
764 	u_int txRate1, u_int txTries1,
765 	u_int txRate2, u_int txTries2,
766 	u_int txRate3, u_int txTries3)
767 {
768 	struct ar5212_desc *ads = AR5212DESC(ds);
769 
770 	if (txTries1) {
771 		HALASSERT(isValidTxRate(txRate1));
772 		ads->ds_ctl2 |= SM(txTries1, AR_XmitDataTries1)
773 			     |  AR_DurUpdateEna
774 			     ;
775 		ads->ds_ctl3 |= (txRate1 << AR_XmitRate1_S);
776 	}
777 	if (txTries2) {
778 		HALASSERT(isValidTxRate(txRate2));
779 		ads->ds_ctl2 |= SM(txTries2, AR_XmitDataTries2)
780 			     |  AR_DurUpdateEna
781 			     ;
782 		ads->ds_ctl3 |= (txRate2 << AR_XmitRate2_S);
783 	}
784 	if (txTries3) {
785 		HALASSERT(isValidTxRate(txRate3));
786 		ads->ds_ctl2 |= SM(txTries3, AR_XmitDataTries3)
787 			     |  AR_DurUpdateEna
788 			     ;
789 		ads->ds_ctl3 |= (txRate3 << AR_XmitRate3_S);
790 	}
791 	return AH_TRUE;
792 }
793 
794 void
795 ar5212IntrReqTxDesc(struct ath_hal *ah, struct ath_desc *ds)
796 {
797 	struct ar5212_desc *ads = AR5212DESC(ds);
798 
799 #ifdef AH_NEED_DESC_SWAP
800 	ads->ds_ctl0 |= __bswap32(AR_TxInterReq);
801 #else
802 	ads->ds_ctl0 |= AR_TxInterReq;
803 #endif
804 }
805 
806 HAL_BOOL
807 ar5212FillTxDesc(struct ath_hal *ah, struct ath_desc *ds,
808 	HAL_DMA_ADDR *bufAddrList, uint32_t *segLenList, u_int qcuId,
809 	u_int descId, HAL_BOOL firstSeg, HAL_BOOL lastSeg,
810 	const struct ath_desc *ds0)
811 {
812 	struct ar5212_desc *ads = AR5212DESC(ds);
813 	uint32_t segLen = segLenList[0];
814 
815 	HALASSERT((segLen &~ AR_BufLen) == 0);
816 
817 	ds->ds_data = bufAddrList[0];
818 
819 	if (firstSeg) {
820 		/*
821 		 * First descriptor, don't clobber xmit control data
822 		 * setup by ar5212SetupTxDesc.
823 		 */
824 		ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_More);
825 	} else if (lastSeg) {		/* !firstSeg && lastSeg */
826 		/*
827 		 * Last descriptor in a multi-descriptor frame,
828 		 * copy the multi-rate transmit parameters from
829 		 * the first frame for processing on completion.
830 		 */
831 		ads->ds_ctl1 = segLen;
832 #ifdef AH_NEED_DESC_SWAP
833 		ads->ds_ctl0 = __bswap32(AR5212DESC_CONST(ds0)->ds_ctl0)
834 		    & AR_TxInterReq;
835 		ads->ds_ctl2 = __bswap32(AR5212DESC_CONST(ds0)->ds_ctl2);
836 		ads->ds_ctl3 = __bswap32(AR5212DESC_CONST(ds0)->ds_ctl3);
837 #else
838 		ads->ds_ctl0 = AR5212DESC_CONST(ds0)->ds_ctl0 & AR_TxInterReq;
839 		ads->ds_ctl2 = AR5212DESC_CONST(ds0)->ds_ctl2;
840 		ads->ds_ctl3 = AR5212DESC_CONST(ds0)->ds_ctl3;
841 #endif
842 	} else {			/* !firstSeg && !lastSeg */
843 		/*
844 		 * Intermediate descriptor in a multi-descriptor frame.
845 		 */
846 #ifdef AH_NEED_DESC_SWAP
847 		ads->ds_ctl0 = __bswap32(AR5212DESC_CONST(ds0)->ds_ctl0)
848 		    & AR_TxInterReq;
849 #else
850 		ads->ds_ctl0 = AR5212DESC_CONST(ds0)->ds_ctl0 & AR_TxInterReq;
851 #endif
852 		ads->ds_ctl1 = segLen | AR_More;
853 		ads->ds_ctl2 = 0;
854 		ads->ds_ctl3 = 0;
855 	}
856 	ads->ds_txstatus0 = ads->ds_txstatus1 = 0;
857 	return AH_TRUE;
858 }
859 
860 #ifdef AH_NEED_DESC_SWAP
861 /* Swap transmit descriptor */
862 static __inline void
863 ar5212SwapTxDesc(struct ath_desc *ds)
864 {
865 	ds->ds_data = __bswap32(ds->ds_data);
866         ds->ds_ctl0 = __bswap32(ds->ds_ctl0);
867         ds->ds_ctl1 = __bswap32(ds->ds_ctl1);
868         ds->ds_hw[0] = __bswap32(ds->ds_hw[0]);
869         ds->ds_hw[1] = __bswap32(ds->ds_hw[1]);
870         ds->ds_hw[2] = __bswap32(ds->ds_hw[2]);
871         ds->ds_hw[3] = __bswap32(ds->ds_hw[3]);
872 }
873 #endif
874 
875 /*
876  * Processing of HW TX descriptor.
877  */
878 HAL_STATUS
879 ar5212ProcTxDesc(struct ath_hal *ah,
880 	struct ath_desc *ds, struct ath_tx_status *ts)
881 {
882 	struct ar5212_desc *ads = AR5212DESC(ds);
883 
884 #ifdef AH_NEED_DESC_SWAP
885 	if ((ads->ds_txstatus1 & __bswap32(AR_Done)) == 0)
886                 return HAL_EINPROGRESS;
887 
888 	ar5212SwapTxDesc(ds);
889 #else
890 	if ((ads->ds_txstatus1 & AR_Done) == 0)
891 		return HAL_EINPROGRESS;
892 #endif
893 
894 	/* Update software copies of the HW status */
895 	ts->ts_seqnum = MS(ads->ds_txstatus1, AR_SeqNum);
896 	ts->ts_tstamp = MS(ads->ds_txstatus0, AR_SendTimestamp);
897 	ts->ts_status = 0;
898 	if ((ads->ds_txstatus0 & AR_FrmXmitOK) == 0) {
899 		if (ads->ds_txstatus0 & AR_ExcessiveRetries)
900 			ts->ts_status |= HAL_TXERR_XRETRY;
901 		if (ads->ds_txstatus0 & AR_Filtered)
902 			ts->ts_status |= HAL_TXERR_FILT;
903 		if (ads->ds_txstatus0 & AR_FIFOUnderrun)
904 			ts->ts_status |= HAL_TXERR_FIFO;
905 	}
906 	/*
907 	 * Extract the transmit rate used and mark the rate as
908 	 * ``alternate'' if it wasn't the series 0 rate.
909 	 */
910 	ts->ts_finaltsi = MS(ads->ds_txstatus1, AR_FinalTSIndex);
911 	switch (ts->ts_finaltsi) {
912 	case 0:
913 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate0);
914 		break;
915 	case 1:
916 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate1);
917 		break;
918 	case 2:
919 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate2);
920 		break;
921 	case 3:
922 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate3);
923 		break;
924 	}
925 	ts->ts_rssi = MS(ads->ds_txstatus1, AR_AckSigStrength);
926 	ts->ts_shortretry = MS(ads->ds_txstatus0, AR_RTSFailCnt);
927 	ts->ts_longretry = MS(ads->ds_txstatus0, AR_DataFailCnt);
928 	/*
929 	 * The retry count has the number of un-acked tries for the
930 	 * final series used.  When doing multi-rate retry we must
931 	 * fixup the retry count by adding in the try counts for
932 	 * each series that was fully-processed.  Beware that this
933 	 * takes values from the try counts in the final descriptor.
934 	 * These are not required by the hardware.  We assume they
935 	 * are placed there by the driver as otherwise we have no
936 	 * access and the driver can't do the calculation because it
937 	 * doesn't know the descriptor format.
938 	 */
939 	switch (ts->ts_finaltsi) {
940 	case 3: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries2);
941 	case 2: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries1);
942 	case 1: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries0);
943 	}
944 	ts->ts_virtcol = MS(ads->ds_txstatus0, AR_VirtCollCnt);
945 	ts->ts_antenna = (ads->ds_txstatus1 & AR_XmitAtenna ? 2 : 1);
946 
947 	return HAL_OK;
948 }
949 
950 /*
951  * Determine which tx queues need interrupt servicing.
952  */
953 void
954 ar5212GetTxIntrQueue(struct ath_hal *ah, uint32_t *txqs)
955 {
956 	struct ath_hal_5212 *ahp = AH5212(ah);
957 	*txqs &= ahp->ah_intrTxqs;
958 	ahp->ah_intrTxqs &= ~(*txqs);
959 }
960 
961 /*
962  * Retrieve the rate table from the given TX completion descriptor
963  */
964 HAL_BOOL
965 ar5212GetTxCompletionRates(struct ath_hal *ah, const struct ath_desc *ds0, int *rates, int *tries)
966 {
967 	const struct ar5212_desc *ads = AR5212DESC_CONST(ds0);
968 
969 	rates[0] = MS(ads->ds_ctl3, AR_XmitRate0);
970 	rates[1] = MS(ads->ds_ctl3, AR_XmitRate1);
971 	rates[2] = MS(ads->ds_ctl3, AR_XmitRate2);
972 	rates[3] = MS(ads->ds_ctl3, AR_XmitRate3);
973 
974 	tries[0] = MS(ads->ds_ctl2, AR_XmitDataTries0);
975 	tries[1] = MS(ads->ds_ctl2, AR_XmitDataTries1);
976 	tries[2] = MS(ads->ds_ctl2, AR_XmitDataTries2);
977 	tries[3] = MS(ads->ds_ctl2, AR_XmitDataTries3);
978 
979 	return AH_TRUE;
980 }
981 
982 void
983 ar5212SetTxDescLink(struct ath_hal *ah, void *ds, uint32_t link)
984 {
985 	struct ar5212_desc *ads = AR5212DESC(ds);
986 
987 	ads->ds_link = link;
988 }
989 
990 void
991 ar5212GetTxDescLink(struct ath_hal *ah, void *ds, uint32_t *link)
992 {
993 	struct ar5212_desc *ads = AR5212DESC(ds);
994 
995 	*link = ads->ds_link;
996 }
997 
998 void
999 ar5212GetTxDescLinkPtr(struct ath_hal *ah, void *ds, uint32_t **linkptr)
1000 {
1001 	struct ar5212_desc *ads = AR5212DESC(ds);
1002 
1003 	*linkptr = &ads->ds_link;
1004 }
1005