xref: /freebsd/sys/dev/ath/ath_hal/ar5212/ar5212_reset.c (revision d41b89cca5f26bbafb496a93c4a48cdf282833ee)
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 #include "ah_devid.h"
24 
25 #include "ar5212/ar5212.h"
26 #include "ar5212/ar5212reg.h"
27 #include "ar5212/ar5212phy.h"
28 
29 #include "ah_eeprom_v3.h"
30 
31 /* Additional Time delay to wait after activiting the Base band */
32 #define BASE_ACTIVATE_DELAY	100	/* 100 usec */
33 #define PLL_SETTLE_DELAY	300	/* 300 usec */
34 
35 static HAL_BOOL ar5212SetResetReg(struct ath_hal *, uint32_t resetMask);
36 /* NB: public for 5312 use */
37 HAL_BOOL	ar5212IsSpurChannel(struct ath_hal *,
38 		    const struct ieee80211_channel *);
39 HAL_BOOL	ar5212ChannelChange(struct ath_hal *,
40 		    const struct ieee80211_channel *);
41 int16_t		ar5212GetNf(struct ath_hal *, struct ieee80211_channel *);
42 HAL_BOOL	ar5212SetBoardValues(struct ath_hal *,
43 		    const struct ieee80211_channel *);
44 void		ar5212SetDeltaSlope(struct ath_hal *,
45 		    const struct ieee80211_channel *);
46 HAL_BOOL	ar5212SetTransmitPower(struct ath_hal *ah,
47 		   const struct ieee80211_channel *chan, uint16_t *rfXpdGain);
48 static HAL_BOOL ar5212SetRateTable(struct ath_hal *,
49 		   const struct ieee80211_channel *, int16_t tpcScaleReduction,
50 		   int16_t powerLimit,
51 		   HAL_BOOL commit, int16_t *minPower, int16_t *maxPower);
52 static void ar5212CorrectGainDelta(struct ath_hal *, int twiceOfdmCckDelta);
53 static void ar5212GetTargetPowers(struct ath_hal *,
54 		   const struct ieee80211_channel *,
55 		   const TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
56 		   TRGT_POWER_INFO *pNewPower);
57 static uint16_t ar5212GetMaxEdgePower(uint16_t channel,
58 		   const RD_EDGES_POWER  *pRdEdgesPower);
59 void		ar5212SetRateDurationTable(struct ath_hal *,
60 		    const struct ieee80211_channel *);
61 void		ar5212SetIFSTiming(struct ath_hal *,
62 		    const struct ieee80211_channel *);
63 
64 /* NB: public for RF backend use */
65 void		ar5212GetLowerUpperValues(uint16_t value,
66 		   uint16_t *pList, uint16_t listSize,
67 		   uint16_t *pLowerValue, uint16_t *pUpperValue);
68 void		ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
69 		   uint32_t numBits, uint32_t firstBit, uint32_t column);
70 
71 static int
72 write_common(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
73 	HAL_BOOL bChannelChange, int writes)
74 {
75 #define IS_NO_RESET_TIMER_ADDR(x)                      \
76     ( (((x) >= AR_BEACON) && ((x) <= AR_CFP_DUR)) || \
77       (((x) >= AR_SLEEP1) && ((x) <= AR_SLEEP3)))
78 #define	V(r, c)	(ia)->data[((r)*(ia)->cols) + (c)]
79 	int r;
80 
81 	/* Write Common Array Parameters */
82 	for (r = 0; r < ia->rows; r++) {
83 		uint32_t reg = V(r, 0);
84 		/* XXX timer/beacon setup registers? */
85 		/* On channel change, don't reset the PCU registers */
86 		if (!(bChannelChange && IS_NO_RESET_TIMER_ADDR(reg))) {
87 			OS_REG_WRITE(ah, reg, V(r, 1));
88 			DMA_YIELD(writes);
89 		}
90 	}
91 	return writes;
92 #undef IS_NO_RESET_TIMER_ADDR
93 #undef V
94 }
95 
96 #define IS_DISABLE_FAST_ADC_CHAN(x) (((x) == 2462) || ((x) == 2467))
97 
98 /*
99  * XXX NDIS 5.x code had MAX_RESET_WAIT set to 2000 for AP code
100  * and 10 for Client code
101  */
102 #define	MAX_RESET_WAIT			10
103 
104 #define	TX_QUEUEPEND_CHECK		1
105 #define	TX_ENABLE_CHECK			2
106 #define	RX_ENABLE_CHECK			4
107 
108 /*
109  * Places the device in and out of reset and then places sane
110  * values in the registers based on EEPROM config, initialization
111  * vectors (as determined by the mode), and station configuration
112  *
113  * bChannelChange is used to preserve DMA/PCU registers across
114  * a HW Reset during channel change.
115  */
116 HAL_BOOL
117 ar5212Reset(struct ath_hal *ah, HAL_OPMODE opmode,
118 	struct ieee80211_channel *chan,
119 	HAL_BOOL bChannelChange, HAL_STATUS *status)
120 {
121 #define	N(a)	(sizeof (a) / sizeof (a[0]))
122 #define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
123 	struct ath_hal_5212 *ahp = AH5212(ah);
124 	HAL_CHANNEL_INTERNAL *ichan = AH_NULL;
125 	const HAL_EEPROM *ee;
126 	uint32_t softLedCfg, softLedState;
127 	uint32_t saveFrameSeqCount, saveDefAntenna, saveLedState;
128 	uint32_t macStaId1, synthDelay, txFrm2TxDStart;
129 	uint16_t rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
130 	int16_t cckOfdmPwrDelta = 0;
131 	u_int modesIndex, freqIndex;
132 	HAL_STATUS ecode;
133 	int i, regWrites;
134 	uint32_t testReg, powerVal;
135 	int8_t twiceAntennaGain, twiceAntennaReduction;
136 	uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
137 	HAL_BOOL isBmode = AH_FALSE;
138 
139 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
140 	ee = AH_PRIVATE(ah)->ah_eeprom;
141 
142 	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
143 
144 	/* Bring out of sleep mode */
145 	if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
146 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
147 		    __func__);
148 		FAIL(HAL_EIO);
149 	}
150 
151 	/*
152 	 * Map public channel to private.
153 	 */
154 	ichan = ath_hal_checkchannel(ah, chan);
155 	if (ichan == AH_NULL)
156 		FAIL(HAL_EINVAL);
157 	switch (opmode) {
158 	case HAL_M_STA:
159 	case HAL_M_IBSS:
160 	case HAL_M_HOSTAP:
161 	case HAL_M_MONITOR:
162 		break;
163 	default:
164 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
165 		    __func__, opmode);
166 		FAIL(HAL_EINVAL);
167 		break;
168 	}
169 	HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
170 
171 	SAVE_CCK(ah, chan, isBmode);
172 
173 	/* Preserve certain DMA hardware registers on a channel change */
174 	if (bChannelChange) {
175 		/*
176 		 * On Venice, the TSF is almost preserved across a reset;
177 		 * it requires doubling writes to the RESET_TSF
178 		 * bit in the AR_BEACON register; it also has the quirk
179 		 * of the TSF going back in time on the station (station
180 		 * latches onto the last beacon's tsf during a reset 50%
181 		 * of the times); the latter is not a problem for adhoc
182 		 * stations since as long as the TSF is behind, it will
183 		 * get resynchronized on receiving the next beacon; the
184 		 * TSF going backwards in time could be a problem for the
185 		 * sleep operation (supported on infrastructure stations
186 		 * only) - the best and most general fix for this situation
187 		 * is to resynchronize the various sleep/beacon timers on
188 		 * the receipt of the next beacon i.e. when the TSF itself
189 		 * gets resynchronized to the AP's TSF - power save is
190 		 * needed to be temporarily disabled until that time
191 		 *
192 		 * Need to save the sequence number to restore it after
193 		 * the reset!
194 		 */
195 		saveFrameSeqCount = OS_REG_READ(ah, AR_D_SEQNUM);
196 	} else
197 		saveFrameSeqCount = 0;		/* NB: silence compiler */
198 
199 	/* Blank the channel survey statistics */
200 	OS_MEMZERO(&ahp->ah_chansurvey, sizeof(ahp->ah_chansurvey));
201 #if 0
202 	/*
203 	 * XXX disable for now; this appears to sometimes cause OFDM
204 	 * XXX timing error floods when ani is enabled and bg scanning
205 	 * XXX kicks in
206 	 */
207 	/* If the channel change is across the same mode - perform a fast channel change */
208 	if (IS_2413(ah) || IS_5413(ah)) {
209 		/*
210 		 * Fast channel change can only be used when:
211 		 *  -channel change requested - so it's not the initial reset.
212 		 *  -it's not a change to the current channel -
213 		 *	often called when switching modes on a channel
214 		 *  -the modes of the previous and requested channel are the
215 		 *	same
216 		 * XXX opmode shouldn't change either?
217 		 */
218 		if (bChannelChange &&
219 		    (AH_PRIVATE(ah)->ah_curchan != AH_NULL) &&
220 		    (chan->ic_freq != AH_PRIVATE(ah)->ah_curchan->ic_freq) &&
221 		    ((chan->ic_flags & IEEE80211_CHAN_ALLTURBO) ==
222 		     (AH_PRIVATE(ah)->ah_curchan->ic_flags & IEEE80211_CHAN_ALLTURBO))) {
223 			if (ar5212ChannelChange(ah, chan)) {
224 				/* If ChannelChange completed - skip the rest of reset */
225 				/* XXX ani? */
226 				goto done;
227 			}
228 		}
229 	}
230 #endif
231 	/*
232 	 * Preserve the antenna on a channel change
233 	 */
234 	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
235 	if (saveDefAntenna == 0)		/* XXX magic constants */
236 		saveDefAntenna = 1;
237 
238 	/* Save hardware flag before chip reset clears the register */
239 	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
240 		(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
241 
242 	/* Save led state from pci config register */
243 	saveLedState = OS_REG_READ(ah, AR_PCICFG) &
244 		(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
245 		 AR_PCICFG_LEDSLOW);
246 	softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
247 	softLedState = OS_REG_READ(ah, AR_GPIODO);
248 
249 	ar5212RestoreClock(ah, opmode);		/* move to refclk operation */
250 
251 	/*
252 	 * Adjust gain parameters before reset if
253 	 * there's an outstanding gain updated.
254 	 */
255 	(void) ar5212GetRfgain(ah);
256 
257 	if (!ar5212ChipReset(ah, chan)) {
258 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
259 		FAIL(HAL_EIO);
260 	}
261 
262 	/* Setup the indices for the next set of register array writes */
263 	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
264 		freqIndex  = 2;
265 		if (IEEE80211_IS_CHAN_108G(chan))
266 			modesIndex = 5;
267 		else if (IEEE80211_IS_CHAN_G(chan))
268 			modesIndex = 4;
269 		else if (IEEE80211_IS_CHAN_B(chan))
270 			modesIndex = 3;
271 		else {
272 			HALDEBUG(ah, HAL_DEBUG_ANY,
273 			    "%s: invalid channel %u/0x%x\n",
274 			    __func__, chan->ic_freq, chan->ic_flags);
275 			FAIL(HAL_EINVAL);
276 		}
277 	} else {
278 		freqIndex  = 1;
279 		if (IEEE80211_IS_CHAN_TURBO(chan))
280 			modesIndex = 2;
281 		else if (IEEE80211_IS_CHAN_A(chan))
282 			modesIndex = 1;
283 		else {
284 			HALDEBUG(ah, HAL_DEBUG_ANY,
285 			    "%s: invalid channel %u/0x%x\n",
286 			    __func__, chan->ic_freq, chan->ic_flags);
287 			FAIL(HAL_EINVAL);
288 		}
289 	}
290 
291 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
292 
293 	/* Set correct Baseband to analog shift setting to access analog chips. */
294 	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
295 
296 	regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_modes, modesIndex, 0);
297 	regWrites = write_common(ah, &ahp->ah_ini_common, bChannelChange,
298 		regWrites);
299 #ifdef AH_RXCFG_SDMAMW_4BYTES
300 	/*
301 	 * Nala doesn't work with 128 byte bursts on pb42(hydra) (ar71xx),
302 	 * use 4 instead.  Enabling it on all platforms would hurt performance,
303 	 * so we only enable it on the ones that are affected by it.
304 	 */
305 	OS_REG_WRITE(ah, AR_RXCFG, 0);
306 #endif
307 	ahp->ah_rfHal->writeRegs(ah, modesIndex, freqIndex, regWrites);
308 
309 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
310 
311 	if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
312 		ar5212SetIFSTiming(ah, chan);
313 		if (IS_5413(ah)) {
314 			/*
315 			 * Force window_length for 1/2 and 1/4 rate channels,
316 			 * the ini file sets this to zero otherwise.
317 			 */
318 			OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
319 				AR_PHY_FRAME_CTL_WINLEN, 3);
320 		}
321 	}
322 
323 	/* Overwrite INI values for revised chipsets */
324 	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {
325 		/* ADC_CTL */
326 		OS_REG_WRITE(ah, AR_PHY_ADC_CTL,
327 			SM(2, AR_PHY_ADC_CTL_OFF_INBUFGAIN) |
328 			SM(2, AR_PHY_ADC_CTL_ON_INBUFGAIN) |
329 			AR_PHY_ADC_CTL_OFF_PWDDAC |
330 			AR_PHY_ADC_CTL_OFF_PWDADC);
331 
332 		/* TX_PWR_ADJ */
333 		if (ichan->channel == 2484) {
334 			cckOfdmPwrDelta = SCALE_OC_DELTA(
335 			    ee->ee_cckOfdmPwrDelta -
336 			    ee->ee_scaledCh14FilterCckDelta);
337 		} else {
338 			cckOfdmPwrDelta = SCALE_OC_DELTA(
339 			    ee->ee_cckOfdmPwrDelta);
340 		}
341 
342 		if (IEEE80211_IS_CHAN_G(chan)) {
343 		    OS_REG_WRITE(ah, AR_PHY_TXPWRADJ,
344 			SM((ee->ee_cckOfdmPwrDelta*-1),
345 			    AR_PHY_TXPWRADJ_CCK_GAIN_DELTA) |
346 			SM((cckOfdmPwrDelta*-1),
347 			    AR_PHY_TXPWRADJ_CCK_PCDAC_INDEX));
348 		} else {
349 			OS_REG_WRITE(ah, AR_PHY_TXPWRADJ, 0);
350 		}
351 
352 		/* Add barker RSSI thresh enable as disabled */
353 		OS_REG_CLR_BIT(ah, AR_PHY_DAG_CTRLCCK,
354 			AR_PHY_DAG_CTRLCCK_EN_RSSI_THR);
355 		OS_REG_RMW_FIELD(ah, AR_PHY_DAG_CTRLCCK,
356 			AR_PHY_DAG_CTRLCCK_RSSI_THR, 2);
357 
358 		/* Set the mute mask to the correct default */
359 		OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
360 	}
361 
362 	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
363 		/* Clear reg to alllow RX_CLEAR line debug */
364 		OS_REG_WRITE(ah, AR_PHY_BLUETOOTH,  0);
365 	}
366 	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
367 #ifdef notyet
368 		/* Enable burst prefetch for the data queues */
369 		OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
370 		/* Enable double-buffering */
371 		OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
372 #endif
373 	}
374 
375 	/* Set ADC/DAC select values */
376 	OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
377 
378 	if (IS_5413(ah) || IS_2417(ah)) {
379 		uint32_t newReg = 1;
380 		if (IS_DISABLE_FAST_ADC_CHAN(ichan->channel))
381 			newReg = 0;
382 		/* As it's a clock changing register, only write when the value needs to be changed */
383 		if (OS_REG_READ(ah, AR_PHY_FAST_ADC) != newReg)
384 			OS_REG_WRITE(ah, AR_PHY_FAST_ADC, newReg);
385 	}
386 
387 	/* Setup the transmit power values. */
388 	if (!ar5212SetTransmitPower(ah, chan, rfXpdGain)) {
389 		HALDEBUG(ah, HAL_DEBUG_ANY,
390 		    "%s: error init'ing transmit power\n", __func__);
391 		FAIL(HAL_EIO);
392 	}
393 
394 	/* Write the analog registers */
395 	if (!ahp->ah_rfHal->setRfRegs(ah, chan, modesIndex, rfXpdGain)) {
396 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5212SetRfRegs failed\n",
397 		    __func__);
398 		FAIL(HAL_EIO);
399 	}
400 
401 	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
402 	if (IEEE80211_IS_CHAN_OFDM(chan)) {
403 		if (IS_5413(ah) ||
404 		    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)
405 			ar5212SetSpurMitigation(ah, chan);
406 		ar5212SetDeltaSlope(ah, chan);
407 	}
408 
409 	/* Setup board specific options for EEPROM version 3 */
410 	if (!ar5212SetBoardValues(ah, chan)) {
411 		HALDEBUG(ah, HAL_DEBUG_ANY,
412 		    "%s: error setting board options\n", __func__);
413 		FAIL(HAL_EIO);
414 	}
415 
416 	/* Restore certain DMA hardware registers on a channel change */
417 	if (bChannelChange)
418 		OS_REG_WRITE(ah, AR_D_SEQNUM, saveFrameSeqCount);
419 
420 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
421 
422 	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
423 	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
424 		| macStaId1
425 		| AR_STA_ID1_RTS_USE_DEF
426 		| ahp->ah_staId1Defaults
427 	);
428 	ar5212SetOperatingMode(ah, opmode);
429 
430 	/* Set Venice BSSID mask according to current state */
431 	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
432 	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
433 
434 	/* Restore previous led state */
435 	OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | saveLedState);
436 
437 	/* Restore soft Led state to GPIO */
438 	OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
439 	OS_REG_WRITE(ah, AR_GPIODO, softLedState);
440 
441 	/* Restore previous antenna */
442 	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
443 
444 	/* then our BSSID and associate id */
445 	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
446 	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
447 	    (ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S);
448 
449 	/* Restore bmiss rssi & count thresholds */
450 	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
451 
452 	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */
453 
454 	if (!ar5212SetChannel(ah, chan))
455 		FAIL(HAL_EIO);
456 
457 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
458 
459 	ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
460 
461 	ar5212SetRateDurationTable(ah, chan);
462 
463 	/* Set Tx frame start to tx data start delay */
464 	if (IS_RAD5112_ANY(ah) &&
465 	    (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan))) {
466 		txFrm2TxDStart =
467 			IEEE80211_IS_CHAN_HALF(chan) ?
468 					TX_FRAME_D_START_HALF_RATE:
469 					TX_FRAME_D_START_QUARTER_RATE;
470 		OS_REG_RMW_FIELD(ah, AR_PHY_TX_CTL,
471 			AR_PHY_TX_FRAME_TO_TX_DATA_START, txFrm2TxDStart);
472 	}
473 
474 	/*
475 	 * Setup fast diversity.
476 	 * Fast diversity can be enabled or disabled via regadd.txt.
477 	 * Default is enabled.
478 	 * For reference,
479 	 *    Disable: reg        val
480 	 *             0x00009860 0x00009d18 (if 11a / 11g, else no change)
481 	 *             0x00009970 0x192bb514
482 	 *             0x0000a208 0xd03e4648
483 	 *
484 	 *    Enable:  0x00009860 0x00009d10 (if 11a / 11g, else no change)
485 	 *             0x00009970 0x192fb514
486 	 *             0x0000a208 0xd03e6788
487 	 */
488 
489 	/* XXX Setup pre PHY ENABLE EAR additions */
490 	/*
491 	 * Wait for the frequency synth to settle (synth goes on
492 	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
493 	 * Value is in 100ns increments.
494 	 */
495 	synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
496 	if (IEEE80211_IS_CHAN_B(chan)) {
497 		synthDelay = (4 * synthDelay) / 22;
498 	} else {
499 		synthDelay /= 10;
500 	}
501 
502 	/* Activate the PHY (includes baseband activate and synthesizer on) */
503 	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
504 
505 	/*
506 	 * There is an issue if the AP starts the calibration before
507 	 * the base band timeout completes.  This could result in the
508 	 * rx_clear false triggering.  As a workaround we add delay an
509 	 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
510 	 * does not happen.
511 	 */
512 	if (IEEE80211_IS_CHAN_HALF(chan)) {
513 		OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
514 	} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
515 		OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
516 	} else {
517 		OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
518 	}
519 
520 	/*
521 	 * The udelay method is not reliable with notebooks.
522 	 * Need to check to see if the baseband is ready
523 	 */
524 	testReg = OS_REG_READ(ah, AR_PHY_TESTCTRL);
525 	/* Selects the Tx hold */
526 	OS_REG_WRITE(ah, AR_PHY_TESTCTRL, AR_PHY_TESTCTRL_TXHOLD);
527 	i = 0;
528 	while ((i++ < 20) &&
529 	       (OS_REG_READ(ah, 0x9c24) & 0x10)) /* test if baseband not ready */		OS_DELAY(200);
530 	OS_REG_WRITE(ah, AR_PHY_TESTCTRL, testReg);
531 
532 	/* Calibrate the AGC and start a NF calculation */
533 	OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
534 		  OS_REG_READ(ah, AR_PHY_AGC_CONTROL)
535 		| AR_PHY_AGC_CONTROL_CAL
536 		| AR_PHY_AGC_CONTROL_NF);
537 
538 	if (!IEEE80211_IS_CHAN_B(chan) && ahp->ah_bIQCalibration != IQ_CAL_DONE) {
539 		/* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
540 		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
541 			AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
542 			INIT_IQCAL_LOG_COUNT_MAX);
543 		OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
544 			AR_PHY_TIMING_CTRL4_DO_IQCAL);
545 		ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
546 	} else
547 		ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
548 
549 	/* Setup compression registers */
550 	ar5212SetCompRegs(ah);
551 
552 	/* Set 1:1 QCU to DCU mapping for all queues */
553 	for (i = 0; i < AR_NUM_DCU; i++)
554 		OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
555 
556 	ahp->ah_intrTxqs = 0;
557 	for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
558 		ar5212ResetTxQueue(ah, i);
559 
560 	/*
561 	 * Setup interrupt handling.  Note that ar5212ResetTxQueue
562 	 * manipulates the secondary IMR's as queues are enabled
563 	 * and disabled.  This is done with RMW ops to insure the
564 	 * settings we make here are preserved.
565 	 */
566 	ahp->ah_maskReg = AR_IMR_TXOK | AR_IMR_TXERR | AR_IMR_TXURN
567 			| AR_IMR_RXOK | AR_IMR_RXERR | AR_IMR_RXORN
568 			| AR_IMR_HIUERR
569 			;
570 	if (opmode == HAL_M_HOSTAP)
571 		ahp->ah_maskReg |= AR_IMR_MIB;
572 	OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
573 	/* Enable bus errors that are OR'd to set the HIUERR bit */
574 	OS_REG_WRITE(ah, AR_IMR_S2,
575 		OS_REG_READ(ah, AR_IMR_S2)
576 		| AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
577 
578 	if (AH_PRIVATE(ah)->ah_rfkillEnabled)
579 		ar5212EnableRfKill(ah);
580 
581 	if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) {
582 		HALDEBUG(ah, HAL_DEBUG_ANY,
583 		    "%s: offset calibration failed to complete in 1ms;"
584 		    " noisy environment?\n", __func__);
585 	}
586 
587 	/*
588 	 * Set clocks back to 32kHz if they had been using refClk, then
589 	 * use an external 32kHz crystal when sleeping, if one exists.
590 	 */
591 	ar5212SetupClock(ah, opmode);
592 
593 	/*
594 	 * Writing to AR_BEACON will start timers. Hence it should
595 	 * be the last register to be written. Do not reset tsf, do
596 	 * not enable beacons at this point, but preserve other values
597 	 * like beaconInterval.
598 	 */
599 	OS_REG_WRITE(ah, AR_BEACON,
600 		(OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
601 
602 	/* XXX Setup post reset EAR additions */
603 
604 	/* QoS support */
605 	if (AH_PRIVATE(ah)->ah_macVersion > AR_SREV_VERSION_VENICE ||
606 	    (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_VENICE &&
607 	     AH_PRIVATE(ah)->ah_macRev >= AR_SREV_GRIFFIN_LITE)) {
608 		OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa);	/* XXX magic */
609 		OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210);	/* XXX magic */
610 	}
611 
612 	/* Turn on NOACK Support for QoS packets */
613 	OS_REG_WRITE(ah, AR_NOACK,
614 		SM(2, AR_NOACK_2BIT_VALUE) |
615 		SM(5, AR_NOACK_BIT_OFFSET) |
616 		SM(0, AR_NOACK_BYTE_OFFSET));
617 
618 	/* Get Antenna Gain reduction */
619 	if (IEEE80211_IS_CHAN_5GHZ(chan)) {
620 		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
621 	} else {
622 		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
623 	}
624 	twiceAntennaReduction =
625 		ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
626 
627 	/* TPC for self-generated frames */
628 
629 	ackTpcPow = MS(ahp->ah_macTPC, AR_TPC_ACK);
630 	if ((ackTpcPow-ahp->ah_txPowerIndexOffset) > chan->ic_maxpower)
631 		ackTpcPow = chan->ic_maxpower+ahp->ah_txPowerIndexOffset;
632 
633 	if (ackTpcPow > (2*chan->ic_maxregpower - twiceAntennaReduction))
634 		ackTpcPow = (2*chan->ic_maxregpower - twiceAntennaReduction)
635 			+ ahp->ah_txPowerIndexOffset;
636 
637 	ctsTpcPow = MS(ahp->ah_macTPC, AR_TPC_CTS);
638 	if ((ctsTpcPow-ahp->ah_txPowerIndexOffset) > chan->ic_maxpower)
639 		ctsTpcPow = chan->ic_maxpower+ahp->ah_txPowerIndexOffset;
640 
641 	if (ctsTpcPow > (2*chan->ic_maxregpower - twiceAntennaReduction))
642 		ctsTpcPow = (2*chan->ic_maxregpower - twiceAntennaReduction)
643 			+ ahp->ah_txPowerIndexOffset;
644 
645 	chirpTpcPow = MS(ahp->ah_macTPC, AR_TPC_CHIRP);
646 	if ((chirpTpcPow-ahp->ah_txPowerIndexOffset) > chan->ic_maxpower)
647 		chirpTpcPow = chan->ic_maxpower+ahp->ah_txPowerIndexOffset;
648 
649 	if (chirpTpcPow > (2*chan->ic_maxregpower - twiceAntennaReduction))
650 		chirpTpcPow = (2*chan->ic_maxregpower - twiceAntennaReduction)
651 			+ ahp->ah_txPowerIndexOffset;
652 
653 	if (ackTpcPow > 63)
654 		ackTpcPow = 63;
655 	if (ctsTpcPow > 63)
656 		ctsTpcPow = 63;
657 	if (chirpTpcPow > 63)
658 		chirpTpcPow = 63;
659 
660 	powerVal = SM(ackTpcPow, AR_TPC_ACK) |
661 		SM(ctsTpcPow, AR_TPC_CTS) |
662 		SM(chirpTpcPow, AR_TPC_CHIRP);
663 
664 	OS_REG_WRITE(ah, AR_TPC, powerVal);
665 
666 	/* Restore user-specified settings */
667 	if (ahp->ah_miscMode != 0)
668 		OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
669 	if (ahp->ah_sifstime != (u_int) -1)
670 		ar5212SetSifsTime(ah, ahp->ah_sifstime);
671 	if (ahp->ah_slottime != (u_int) -1)
672 		ar5212SetSlotTime(ah, ahp->ah_slottime);
673 	if (ahp->ah_acktimeout != (u_int) -1)
674 		ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
675 	if (ahp->ah_ctstimeout != (u_int) -1)
676 		ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
677 	if (AH_PRIVATE(ah)->ah_diagreg != 0)
678 		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
679 
680 	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
681 #if 0
682 done:
683 #endif
684 	if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
685 		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
686 
687 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
688 
689 	RESTORE_CCK(ah, chan, isBmode);
690 
691 	OS_MARK(ah, AH_MARK_RESET_DONE, 0);
692 
693 	return AH_TRUE;
694 bad:
695 	RESTORE_CCK(ah, chan, isBmode);
696 
697 	OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
698 	if (status != AH_NULL)
699 		*status = ecode;
700 	return AH_FALSE;
701 #undef FAIL
702 #undef N
703 }
704 
705 /*
706  * Call the rf backend to change the channel.
707  */
708 HAL_BOOL
709 ar5212SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
710 {
711 	struct ath_hal_5212 *ahp = AH5212(ah);
712 
713 	/* Change the synth */
714 	if (!ahp->ah_rfHal->setChannel(ah, chan))
715 		return AH_FALSE;
716 	return AH_TRUE;
717 }
718 
719 /*
720  * This channel change evaluates whether the selected hardware can
721  * perform a synthesizer-only channel change (no reset).  If the
722  * TX is not stopped, or the RFBus cannot be granted in the given
723  * time, the function returns false as a reset is necessary
724  */
725 HAL_BOOL
726 ar5212ChannelChange(struct ath_hal *ah, const struct ieee80211_channel *chan)
727 {
728 	uint32_t       ulCount;
729 	uint32_t   data, synthDelay, qnum;
730 	uint16_t   rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
731 	HAL_BOOL    txStopped = AH_TRUE;
732 	HAL_CHANNEL_INTERNAL *ichan;
733 
734 	/*
735 	 * Map public channel to private.
736 	 */
737 	ichan = ath_hal_checkchannel(ah, chan);
738 
739 	/* TX must be stopped or RF Bus grant will not work */
740 	for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
741 		if (ar5212NumTxPending(ah, qnum)) {
742 			txStopped = AH_FALSE;
743 			break;
744 		}
745 	}
746 	if (!txStopped)
747 		return AH_FALSE;
748 
749 	/* Kill last Baseband Rx Frame */
750 	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST); /* Request analog bus grant */
751 	for (ulCount = 0; ulCount < 100; ulCount++) {
752 		if (OS_REG_READ(ah, AR_PHY_RFBUS_GNT))
753 			break;
754 		OS_DELAY(5);
755 	}
756 	if (ulCount >= 100)
757 		return AH_FALSE;
758 
759 	/* Change the synth */
760 	if (!ar5212SetChannel(ah, chan))
761 		return AH_FALSE;
762 
763 	/*
764 	 * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
765 	 * Read the phy active delay register. Value is in 100ns increments.
766 	 */
767 	data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
768 	if (IEEE80211_IS_CHAN_B(chan)) {
769 		synthDelay = (4 * data) / 22;
770 	} else {
771 		synthDelay = data / 10;
772 	}
773 	OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
774 
775 	/* Setup the transmit power values. */
776 	if (!ar5212SetTransmitPower(ah, chan, rfXpdGain)) {
777 		HALDEBUG(ah, HAL_DEBUG_ANY,
778 		    "%s: error init'ing transmit power\n", __func__);
779 		return AH_FALSE;
780 	}
781 
782 	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
783 	if (IEEE80211_IS_CHAN_OFDM(chan)) {
784 		if (IS_5413(ah) ||
785 		    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)
786 			ar5212SetSpurMitigation(ah, chan);
787 		ar5212SetDeltaSlope(ah, chan);
788 	}
789 
790 	/* Release the RFBus Grant */
791 	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
792 
793 	/* Start Noise Floor Cal */
794 	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
795 	return AH_TRUE;
796 }
797 
798 void
799 ar5212SetOperatingMode(struct ath_hal *ah, int opmode)
800 {
801 	uint32_t val;
802 
803 	val = OS_REG_READ(ah, AR_STA_ID1);
804 	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
805 	switch (opmode) {
806 	case HAL_M_HOSTAP:
807 		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
808 					| AR_STA_ID1_KSRCH_MODE);
809 		OS_REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
810 		break;
811 	case HAL_M_IBSS:
812 		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
813 					| AR_STA_ID1_KSRCH_MODE);
814 		OS_REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
815 		break;
816 	case HAL_M_STA:
817 	case HAL_M_MONITOR:
818 		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
819 		break;
820 	}
821 }
822 
823 /*
824  * Places the PHY and Radio chips into reset.  A full reset
825  * must be called to leave this state.  The PCI/MAC/PCU are
826  * not placed into reset as we must receive interrupt to
827  * re-enable the hardware.
828  */
829 HAL_BOOL
830 ar5212PhyDisable(struct ath_hal *ah)
831 {
832 	return ar5212SetResetReg(ah, AR_RC_BB);
833 }
834 
835 /*
836  * Places all of hardware into reset
837  */
838 HAL_BOOL
839 ar5212Disable(struct ath_hal *ah)
840 {
841 	if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
842 		return AH_FALSE;
843 	/*
844 	 * Reset the HW - PCI must be reset after the rest of the
845 	 * device has been reset.
846 	 */
847 	return ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI);
848 }
849 
850 /*
851  * Places the hardware into reset and then pulls it out of reset
852  *
853  * TODO: Only write the PLL if we're changing to or from CCK mode
854  *
855  * WARNING: The order of the PLL and mode registers must be correct.
856  */
857 HAL_BOOL
858 ar5212ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
859 {
860 
861 	OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);
862 
863 	/*
864 	 * Reset the HW - PCI must be reset after the rest of the
865 	 * device has been reset
866 	 */
867 	if (!ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
868 		return AH_FALSE;
869 
870 	/* Bring out of sleep mode (AGAIN) */
871 	if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
872 		return AH_FALSE;
873 
874 	/* Clear warm reset register */
875 	if (!ar5212SetResetReg(ah, 0))
876 		return AH_FALSE;
877 
878 	/*
879 	 * Perform warm reset before the mode/PLL/turbo registers
880 	 * are changed in order to deactivate the radio.  Mode changes
881 	 * with an active radio can result in corrupted shifts to the
882 	 * radio device.
883 	 */
884 
885 	/*
886 	 * Set CCK and Turbo modes correctly.
887 	 */
888 	if (chan != AH_NULL) {		/* NB: can be null during attach */
889 		uint32_t rfMode, phyPLL = 0, curPhyPLL, turbo;
890 
891 		if (IS_5413(ah)) {	/* NB: =>'s 5424 also */
892 			rfMode = AR_PHY_MODE_AR5112;
893 			if (IEEE80211_IS_CHAN_HALF(chan))
894 				rfMode |= AR_PHY_MODE_HALF;
895 			else if (IEEE80211_IS_CHAN_QUARTER(chan))
896 				rfMode |= AR_PHY_MODE_QUARTER;
897 
898 			if (IEEE80211_IS_CHAN_CCK(chan))
899 				phyPLL = AR_PHY_PLL_CTL_44_5112;
900 			else
901 				phyPLL = AR_PHY_PLL_CTL_40_5413;
902 		} else if (IS_RAD5111(ah)) {
903 			rfMode = AR_PHY_MODE_AR5111;
904 			if (IEEE80211_IS_CHAN_CCK(chan))
905 				phyPLL = AR_PHY_PLL_CTL_44;
906 			else
907 				phyPLL = AR_PHY_PLL_CTL_40;
908 			if (IEEE80211_IS_CHAN_HALF(chan))
909 				phyPLL = AR_PHY_PLL_CTL_HALF;
910 			else if (IEEE80211_IS_CHAN_QUARTER(chan))
911 				phyPLL = AR_PHY_PLL_CTL_QUARTER;
912 		} else {		/* 5112, 2413, 2316, 2317 */
913 			rfMode = AR_PHY_MODE_AR5112;
914 			if (IEEE80211_IS_CHAN_CCK(chan))
915 				phyPLL = AR_PHY_PLL_CTL_44_5112;
916 			else
917 				phyPLL = AR_PHY_PLL_CTL_40_5112;
918 			if (IEEE80211_IS_CHAN_HALF(chan))
919 				phyPLL |= AR_PHY_PLL_CTL_HALF;
920 			else if (IEEE80211_IS_CHAN_QUARTER(chan))
921 				phyPLL |= AR_PHY_PLL_CTL_QUARTER;
922 		}
923 		if (IEEE80211_IS_CHAN_G(chan))
924 			rfMode |= AR_PHY_MODE_DYNAMIC;
925 		else if (IEEE80211_IS_CHAN_OFDM(chan))
926 			rfMode |= AR_PHY_MODE_OFDM;
927 		else
928 			rfMode |= AR_PHY_MODE_CCK;
929 		if (IEEE80211_IS_CHAN_5GHZ(chan))
930 			rfMode |= AR_PHY_MODE_RF5GHZ;
931 		else
932 			rfMode |= AR_PHY_MODE_RF2GHZ;
933 		turbo = IEEE80211_IS_CHAN_TURBO(chan) ?
934 			(AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT) : 0;
935 		curPhyPLL = OS_REG_READ(ah, AR_PHY_PLL_CTL);
936 		/*
937 		 * PLL, Mode, and Turbo values must be written in the correct
938 		 * order to ensure:
939 		 * - The PLL cannot be set to 44 unless the CCK or DYNAMIC
940 		 *   mode bit is set
941 		 * - Turbo cannot be set at the same time as CCK or DYNAMIC
942 		 */
943 		if (IEEE80211_IS_CHAN_CCK(chan)) {
944 			OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
945 			OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
946 			if (curPhyPLL != phyPLL) {
947 				OS_REG_WRITE(ah,  AR_PHY_PLL_CTL,  phyPLL);
948 				/* Wait for the PLL to settle */
949 				OS_DELAY(PLL_SETTLE_DELAY);
950 			}
951 		} else {
952 			if (curPhyPLL != phyPLL) {
953 				OS_REG_WRITE(ah,  AR_PHY_PLL_CTL,  phyPLL);
954 				/* Wait for the PLL to settle */
955 				OS_DELAY(PLL_SETTLE_DELAY);
956 			}
957 			OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
958 			OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
959 		}
960 	}
961 	return AH_TRUE;
962 }
963 
964 /*
965  * Recalibrate the lower PHY chips to account for temperature/environment
966  * changes.
967  */
968 HAL_BOOL
969 ar5212PerCalibrationN(struct ath_hal *ah,
970 	struct ieee80211_channel *chan,
971 	u_int chainMask, HAL_BOOL longCal, HAL_BOOL *isCalDone)
972 {
973 #define IQ_CAL_TRIES    10
974 	struct ath_hal_5212 *ahp = AH5212(ah);
975 	HAL_CHANNEL_INTERNAL *ichan;
976 	int32_t qCoff, qCoffDenom;
977 	int32_t iqCorrMeas, iCoff, iCoffDenom;
978 	uint32_t powerMeasQ, powerMeasI;
979 	HAL_BOOL isBmode = AH_FALSE;
980 
981 	OS_MARK(ah, AH_MARK_PERCAL, chan->ic_freq);
982 	*isCalDone = AH_FALSE;
983 	ichan = ath_hal_checkchannel(ah, chan);
984 	if (ichan == AH_NULL) {
985 		HALDEBUG(ah, HAL_DEBUG_ANY,
986 		    "%s: invalid channel %u/0x%x; no mapping\n",
987 		    __func__, chan->ic_freq, chan->ic_flags);
988 		return AH_FALSE;
989 	}
990 	SAVE_CCK(ah, chan, isBmode);
991 
992 	if (ahp->ah_bIQCalibration == IQ_CAL_DONE ||
993 	    ahp->ah_bIQCalibration == IQ_CAL_INACTIVE)
994 		*isCalDone = AH_TRUE;
995 
996 	/* IQ calibration in progress. Check to see if it has finished. */
997 	if (ahp->ah_bIQCalibration == IQ_CAL_RUNNING &&
998 	    !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
999 		int i;
1000 
1001 		/* IQ Calibration has finished. */
1002 		ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
1003 		*isCalDone = AH_TRUE;
1004 
1005 		/* workaround for misgated IQ Cal results */
1006 		i = 0;
1007 		do {
1008 			/* Read calibration results. */
1009 			powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
1010 			powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
1011 			iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
1012 			if (powerMeasI && powerMeasQ)
1013 				break;
1014 			/* Do we really need this??? */
1015 			OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1016 			    AR_PHY_TIMING_CTRL4_DO_IQCAL);
1017 		} while (++i < IQ_CAL_TRIES);
1018 
1019 		HALDEBUG(ah, HAL_DEBUG_PERCAL,
1020 		    "%s: IQ cal finished: %d tries\n", __func__, i);
1021 		HALDEBUG(ah, HAL_DEBUG_PERCAL,
1022 		    "%s: powerMeasI %u powerMeasQ %u iqCorrMeas %d\n",
1023 		    __func__, powerMeasI, powerMeasQ, iqCorrMeas);
1024 
1025 		/*
1026 		 * Prescale these values to remove 64-bit operation
1027 		 * requirement at the loss of a little precision.
1028 		 */
1029 		iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
1030 		qCoffDenom = powerMeasQ / 128;
1031 
1032 		/* Protect against divide-by-0 and loss of sign bits. */
1033 		if (iCoffDenom != 0 && qCoffDenom >= 2) {
1034 			iCoff = (int8_t)(-iqCorrMeas) / iCoffDenom;
1035 			/* IQCORR_Q_I_COFF is a signed 6 bit number */
1036 			if (iCoff < -32) {
1037 				iCoff = -32;
1038 			} else if (iCoff > 31) {
1039 				iCoff = 31;
1040 			}
1041 
1042 			/* IQCORR_Q_Q_COFF is a signed 5 bit number */
1043 			qCoff = (powerMeasI / qCoffDenom) - 128;
1044 			if (qCoff < -16) {
1045 				qCoff = -16;
1046 			} else if (qCoff > 15) {
1047 				qCoff = 15;
1048 			}
1049 
1050 			HALDEBUG(ah, HAL_DEBUG_PERCAL,
1051 			    "%s: iCoff %d qCoff %d\n", __func__, iCoff, qCoff);
1052 
1053 			/* Write values and enable correction */
1054 			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1055 				AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
1056 			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1057 				AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
1058 			OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1059 				AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
1060 
1061 			ahp->ah_bIQCalibration = IQ_CAL_DONE;
1062 			ichan->privFlags |= CHANNEL_IQVALID;
1063 			ichan->iCoff = iCoff;
1064 			ichan->qCoff = qCoff;
1065 		}
1066 	} else if (!IEEE80211_IS_CHAN_B(chan) &&
1067 	    ahp->ah_bIQCalibration == IQ_CAL_DONE &&
1068 	    (ichan->privFlags & CHANNEL_IQVALID) == 0) {
1069 		/*
1070 		 * Start IQ calibration if configured channel has changed.
1071 		 * Use a magic number of 15 based on default value.
1072 		 */
1073 		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1074 			AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
1075 			INIT_IQCAL_LOG_COUNT_MAX);
1076 		OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1077 			AR_PHY_TIMING_CTRL4_DO_IQCAL);
1078 		ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
1079 	}
1080 	/* XXX EAR */
1081 
1082 	if (longCal) {
1083 		/* Check noise floor results */
1084 		ar5212GetNf(ah, chan);
1085 		if (!IEEE80211_IS_CHAN_CWINT(chan)) {
1086 			/* Perform cal for 5Ghz channels and any OFDM on 5112 */
1087 			if (IEEE80211_IS_CHAN_5GHZ(chan) ||
1088 			    (IS_RAD5112(ah) && IEEE80211_IS_CHAN_OFDM(chan)))
1089 				ar5212RequestRfgain(ah);
1090 		}
1091 	}
1092 	RESTORE_CCK(ah, chan, isBmode);
1093 
1094 	return AH_TRUE;
1095 #undef IQ_CAL_TRIES
1096 }
1097 
1098 HAL_BOOL
1099 ar5212PerCalibration(struct ath_hal *ah,  struct ieee80211_channel *chan,
1100 	HAL_BOOL *isIQdone)
1101 {
1102 	return ar5212PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
1103 }
1104 
1105 HAL_BOOL
1106 ar5212ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
1107 {
1108 	HAL_CHANNEL_INTERNAL *ichan;
1109 
1110 	ichan = ath_hal_checkchannel(ah, chan);
1111 	if (ichan == AH_NULL) {
1112 		HALDEBUG(ah, HAL_DEBUG_ANY,
1113 		    "%s: invalid channel %u/0x%x; no mapping\n",
1114 		    __func__, chan->ic_freq, chan->ic_flags);
1115 		return AH_FALSE;
1116 	}
1117 	ichan->privFlags &= ~CHANNEL_IQVALID;
1118 	return AH_TRUE;
1119 }
1120 
1121 /**************************************************************
1122  * ar5212MacStop
1123  *
1124  * Disables all active QCUs and ensure that the mac is in a
1125  * quiessence state.
1126  */
1127 static HAL_BOOL
1128 ar5212MacStop(struct ath_hal *ah)
1129 {
1130 	HAL_BOOL     status;
1131 	uint32_t    count;
1132 	uint32_t    pendFrameCount;
1133 	uint32_t    macStateFlag;
1134 	uint32_t    queue;
1135 
1136 	status = AH_FALSE;
1137 
1138 	/* Disable Rx Operation ***********************************/
1139 	OS_REG_SET_BIT(ah, AR_CR, AR_CR_RXD);
1140 
1141 	/* Disable TX Operation ***********************************/
1142 #ifdef NOT_YET
1143 	ar5212SetTxdpInvalid(ah);
1144 #endif
1145 	OS_REG_SET_BIT(ah, AR_Q_TXD, AR_Q_TXD_M);
1146 
1147 	/* Polling operation for completion of disable ************/
1148 	macStateFlag = TX_ENABLE_CHECK | RX_ENABLE_CHECK;
1149 
1150 	for (count = 0; count < MAX_RESET_WAIT; count++) {
1151 		if (macStateFlag & RX_ENABLE_CHECK) {
1152 			if (!OS_REG_IS_BIT_SET(ah, AR_CR, AR_CR_RXE)) {
1153 				macStateFlag &= ~RX_ENABLE_CHECK;
1154 			}
1155 		}
1156 
1157 		if (macStateFlag & TX_ENABLE_CHECK) {
1158 			if (!OS_REG_IS_BIT_SET(ah, AR_Q_TXE, AR_Q_TXE_M)) {
1159 				macStateFlag &= ~TX_ENABLE_CHECK;
1160 				macStateFlag |= TX_QUEUEPEND_CHECK;
1161 			}
1162 		}
1163 		if (macStateFlag & TX_QUEUEPEND_CHECK) {
1164 			pendFrameCount = 0;
1165 			for (queue = 0; queue < AR_NUM_DCU; queue++) {
1166 				pendFrameCount += OS_REG_READ(ah,
1167 				    AR_Q0_STS + (queue * 4)) &
1168 				    AR_Q_STS_PEND_FR_CNT;
1169 			}
1170 			if (pendFrameCount == 0) {
1171 				macStateFlag &= ~TX_QUEUEPEND_CHECK;
1172 			}
1173 		}
1174 		if (macStateFlag == 0) {
1175 			status = AH_TRUE;
1176 			break;
1177 		}
1178 		OS_DELAY(50);
1179 	}
1180 
1181 	if (status != AH_TRUE) {
1182 		HALDEBUG(ah, HAL_DEBUG_RESET,
1183 		    "%s:Failed to stop the MAC state 0x%x\n",
1184 		    __func__, macStateFlag);
1185 	}
1186 
1187 	return status;
1188 }
1189 
1190 
1191 /*
1192  * Write the given reset bit mask into the reset register
1193  */
1194 static HAL_BOOL
1195 ar5212SetResetReg(struct ath_hal *ah, uint32_t resetMask)
1196 {
1197 	uint32_t mask = resetMask ? resetMask : ~0;
1198 	HAL_BOOL rt;
1199 
1200 	/* Never reset the PCIE core */
1201 	if (AH_PRIVATE(ah)->ah_ispcie) {
1202 		resetMask &= ~AR_RC_PCI;
1203 	}
1204 
1205 	if (resetMask & (AR_RC_MAC | AR_RC_PCI)) {
1206 		/*
1207 		 * To ensure that the driver can reset the
1208 		 * MAC, wake up the chip
1209 		 */
1210 		rt = ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE);
1211 
1212 		if (rt != AH_TRUE) {
1213 			return rt;
1214 		}
1215 
1216 		/*
1217 		 * Disable interrupts
1218 		 */
1219 		OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
1220 		OS_REG_READ(ah, AR_IER);
1221 
1222 		if (ar5212MacStop(ah) != AH_TRUE) {
1223 			/*
1224 			 * Failed to stop the MAC gracefully; let's be more forceful then
1225 			 */
1226 
1227 			/* need some delay before flush any pending MMR writes */
1228 			OS_DELAY(15);
1229 			OS_REG_READ(ah, AR_RXDP);
1230 
1231 			resetMask |= AR_RC_MAC | AR_RC_BB;
1232 			/* _Never_ reset PCI Express core */
1233 			if (! AH_PRIVATE(ah)->ah_ispcie) {
1234 				resetMask |= AR_RC_PCI;
1235 			}
1236 #if 0
1237 			/*
1238 			 * Flush the park address of the PCI controller
1239 			*/
1240 			/* Read PCI slot information less than Hainan revision */
1241 			if (AH_PRIVATE(ah)->ah_bustype == HAL_BUS_TYPE_PCI) {
1242 				if (!IS_5112_REV5_UP(ah)) {
1243 #define PCI_COMMON_CONFIG_STATUS    0x06
1244 					u_int32_t    i;
1245 					u_int16_t    reg16;
1246 
1247 					for (i = 0; i < 32; i++) {
1248 						ath_hal_read_pci_config_space(ah,
1249 						    PCI_COMMON_CONFIG_STATUS,
1250 						    &reg16, sizeof(reg16));
1251 					}
1252 				}
1253 #undef PCI_COMMON_CONFIG_STATUS
1254 			}
1255 #endif
1256 		} else {
1257 			/*
1258 			 * MAC stopped gracefully; no need to warm-reset the PCI bus
1259 			 */
1260 
1261 			resetMask &= ~AR_RC_PCI;
1262 
1263 			/* need some delay before flush any pending MMR writes */
1264 			OS_DELAY(15);
1265 			OS_REG_READ(ah, AR_RXDP);
1266 		}
1267 	}
1268 
1269 	(void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
1270 	OS_REG_WRITE(ah, AR_RC, resetMask);
1271 	OS_DELAY(15);			/* need to wait at least 128 clocks
1272 					   when reseting PCI before read */
1273 	mask &= (AR_RC_MAC | AR_RC_BB);
1274 	resetMask &= (AR_RC_MAC | AR_RC_BB);
1275 	rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
1276         if ((resetMask & AR_RC_MAC) == 0) {
1277 		if (isBigEndian()) {
1278 			/*
1279 			 * Set CFG, little-endian for descriptor accesses.
1280 			 */
1281 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRD;
1282 #ifndef AH_NEED_DESC_SWAP
1283 			mask |= AR_CFG_SWTD;
1284 #endif
1285 			OS_REG_WRITE(ah, AR_CFG, mask);
1286 		} else
1287 			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
1288 		if (ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
1289 			(void) OS_REG_READ(ah, AR_ISR_RAC);
1290 	}
1291 
1292 	/* track PHY power state so we don't try to r/w BB registers */
1293 	AH5212(ah)->ah_phyPowerOn = ((resetMask & AR_RC_BB) == 0);
1294 	return rt;
1295 }
1296 
1297 int16_t
1298 ar5212GetNoiseFloor(struct ath_hal *ah)
1299 {
1300 	int16_t nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
1301 	if (nf & 0x100)
1302 		nf = 0 - ((nf ^ 0x1ff) + 1);
1303 	return nf;
1304 }
1305 
1306 static HAL_BOOL
1307 getNoiseFloorThresh(struct ath_hal *ah, const struct ieee80211_channel *chan,
1308 	int16_t *nft)
1309 {
1310 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1311 
1312 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
1313 
1314 	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1315 	case IEEE80211_CHAN_A:
1316 		*nft = ee->ee_noiseFloorThresh[headerInfo11A];
1317 		break;
1318 	case IEEE80211_CHAN_B:
1319 		*nft = ee->ee_noiseFloorThresh[headerInfo11B];
1320 		break;
1321 	case IEEE80211_CHAN_G:
1322 	case IEEE80211_CHAN_PUREG:	/* NB: really 108G */
1323 		*nft = ee->ee_noiseFloorThresh[headerInfo11G];
1324 		break;
1325 	default:
1326 		HALDEBUG(ah, HAL_DEBUG_ANY,
1327 		    "%s: invalid channel flags %u/0x%x\n",
1328 		    __func__, chan->ic_freq, chan->ic_flags);
1329 		return AH_FALSE;
1330 	}
1331 	return AH_TRUE;
1332 }
1333 
1334 /*
1335  * Setup the noise floor cal history buffer.
1336  */
1337 void
1338 ar5212InitNfCalHistBuffer(struct ath_hal *ah)
1339 {
1340 	struct ath_hal_5212 *ahp = AH5212(ah);
1341 	int i;
1342 
1343 	ahp->ah_nfCalHist.first_run = 1;
1344 	ahp->ah_nfCalHist.currIndex = 0;
1345 	ahp->ah_nfCalHist.privNF = AR5212_CCA_MAX_GOOD_VALUE;
1346 	ahp->ah_nfCalHist.invalidNFcount = AR512_NF_CAL_HIST_MAX;
1347 	for (i = 0; i < AR512_NF_CAL_HIST_MAX; i ++)
1348 		ahp->ah_nfCalHist.nfCalBuffer[i] = AR5212_CCA_MAX_GOOD_VALUE;
1349 }
1350 
1351 /*
1352  * Add a noise floor value to the ring buffer.
1353  */
1354 static __inline void
1355 updateNFHistBuff(struct ar5212NfCalHist *h, int16_t nf)
1356 {
1357  	h->nfCalBuffer[h->currIndex] = nf;
1358      	if (++h->currIndex >= AR512_NF_CAL_HIST_MAX)
1359 		h->currIndex = 0;
1360 }
1361 
1362 /*
1363  * Return the median noise floor value in the ring buffer.
1364  */
1365 int16_t
1366 ar5212GetNfHistMid(const int16_t calData[AR512_NF_CAL_HIST_MAX])
1367 {
1368 	int16_t sort[AR512_NF_CAL_HIST_MAX];
1369 	int i, j;
1370 
1371 	OS_MEMCPY(sort, calData, AR512_NF_CAL_HIST_MAX*sizeof(int16_t));
1372 	for (i = 0; i < AR512_NF_CAL_HIST_MAX-1; i ++) {
1373 		for (j = 1; j < AR512_NF_CAL_HIST_MAX-i; j ++) {
1374 			if (sort[j] > sort[j-1]) {
1375 				int16_t nf = sort[j];
1376 				sort[j] = sort[j-1];
1377 				sort[j-1] = nf;
1378 			}
1379 		}
1380 	}
1381 	return sort[(AR512_NF_CAL_HIST_MAX-1)>>1];
1382 }
1383 
1384 /*
1385  * Read the NF and check it against the noise floor threshhold
1386  */
1387 int16_t
1388 ar5212GetNf(struct ath_hal *ah, struct ieee80211_channel *chan)
1389 {
1390 	struct ath_hal_5212 *ahp = AH5212(ah);
1391 	struct ar5212NfCalHist *h = &ahp->ah_nfCalHist;
1392 	HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
1393 	int16_t nf, nfThresh;
1394  	int32_t val;
1395 
1396 	if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
1397 		HALDEBUG(ah, HAL_DEBUG_ANY,
1398 		    "%s: NF did not complete in calibration window\n", __func__);
1399 		ichan->rawNoiseFloor = h->privNF;	/* most recent value */
1400 		return ichan->rawNoiseFloor;
1401 	}
1402 
1403 	/*
1404 	 * Finished NF cal, check against threshold.
1405 	 */
1406 	nf = ar5212GetNoiseFloor(ah);
1407 	if (getNoiseFloorThresh(ah, chan, &nfThresh)) {
1408 		if (nf > nfThresh) {
1409 			HALDEBUG(ah, HAL_DEBUG_ANY,
1410 			    "%s: noise floor failed detected; detected %u, "
1411 			    "threshold %u\n", __func__, nf, nfThresh);
1412 			/*
1413 			 * NB: Don't discriminate 2.4 vs 5Ghz, if this
1414 			 *     happens it indicates a problem regardless
1415 			 *     of the band.
1416 			 */
1417 			chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
1418 			nf = 0;
1419 		}
1420 	} else
1421 		nf = 0;
1422 
1423 	/*
1424 	 * Pass through histogram and write median value as
1425 	 * calculated from the accrued window.  We require a
1426 	 * full window of in-range values to be seen before we
1427 	 * start using the history.
1428 	 */
1429 	updateNFHistBuff(h, nf);
1430 	if (h->first_run) {
1431 		if (nf < AR5212_CCA_MIN_BAD_VALUE ||
1432 		    nf > AR5212_CCA_MAX_HIGH_VALUE) {
1433 			nf = AR5212_CCA_MAX_GOOD_VALUE;
1434 			h->invalidNFcount = AR512_NF_CAL_HIST_MAX;
1435 		} else if (--(h->invalidNFcount) == 0) {
1436 			h->first_run = 0;
1437 			h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
1438 		} else {
1439 			nf = AR5212_CCA_MAX_GOOD_VALUE;
1440 		}
1441 	} else {
1442 		h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
1443 	}
1444 
1445 	val = OS_REG_READ(ah, AR_PHY(25));
1446 	val &= 0xFFFFFE00;
1447 	val |= (((uint32_t)nf << 1) & 0x1FF);
1448 	OS_REG_WRITE(ah, AR_PHY(25), val);
1449 	OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
1450 	OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1451 	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1452 
1453 	if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF, 0)) {
1454 #ifdef AH_DEBUG
1455 		ath_hal_printf(ah, "%s: AGC not ready AGC_CONTROL 0x%x\n",
1456 		    __func__, OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
1457 #endif
1458 	}
1459 
1460 	/*
1461 	 * Now load a high maxCCAPower value again so that we're
1462 	 * not capped by the median we just loaded
1463 	 */
1464 	val &= 0xFFFFFE00;
1465 	val |= (((uint32_t)(-50) << 1) & 0x1FF);
1466 	OS_REG_WRITE(ah, AR_PHY(25), val);
1467 	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
1468 	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1469 	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1470 
1471 	return (ichan->rawNoiseFloor = nf);
1472 }
1473 
1474 /*
1475  * Set up compression configuration registers
1476  */
1477 void
1478 ar5212SetCompRegs(struct ath_hal *ah)
1479 {
1480 	struct ath_hal_5212 *ahp = AH5212(ah);
1481 	int i;
1482 
1483         /* Check if h/w supports compression */
1484 	if (!AH_PRIVATE(ah)->ah_caps.halCompressSupport)
1485 		return;
1486 
1487 	OS_REG_WRITE(ah, AR_DCCFG, 1);
1488 
1489 	OS_REG_WRITE(ah, AR_CCFG,
1490 		(AR_COMPRESSION_WINDOW_SIZE >> 8) & AR_CCFG_WIN_M);
1491 
1492 	OS_REG_WRITE(ah, AR_CCFG,
1493 		OS_REG_READ(ah, AR_CCFG) | AR_CCFG_MIB_INT_EN);
1494 	OS_REG_WRITE(ah, AR_CCUCFG,
1495 		AR_CCUCFG_RESET_VAL | AR_CCUCFG_CATCHUP_EN);
1496 
1497 	OS_REG_WRITE(ah, AR_CPCOVF, 0);
1498 
1499 	/* reset decompression mask */
1500 	for (i = 0; i < HAL_DECOMP_MASK_SIZE; i++) {
1501 		OS_REG_WRITE(ah, AR_DCM_A, i);
1502 		OS_REG_WRITE(ah, AR_DCM_D, ahp->ah_decompMask[i]);
1503 	}
1504 }
1505 
1506 HAL_BOOL
1507 ar5212SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
1508 	const struct ieee80211_channel *chan)
1509 {
1510 #define	ANT_SWITCH_TABLE1	AR_PHY(88)
1511 #define	ANT_SWITCH_TABLE2	AR_PHY(89)
1512 	struct ath_hal_5212 *ahp = AH5212(ah);
1513 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1514 	uint32_t antSwitchA, antSwitchB;
1515 	int ix;
1516 
1517 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
1518 	HALASSERT(ahp->ah_phyPowerOn);
1519 
1520 	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1521 	case IEEE80211_CHAN_A:
1522 		ix = 0;
1523 		break;
1524 	case IEEE80211_CHAN_G:
1525 	case IEEE80211_CHAN_PUREG:		/* NB: 108G */
1526 		ix = 2;
1527 		break;
1528 	case IEEE80211_CHAN_B:
1529 		if (IS_2425(ah) || IS_2417(ah)) {
1530 			/* NB: Nala/Swan: 11b is handled using 11g */
1531 			ix = 2;
1532 		} else
1533 			ix = 1;
1534 		break;
1535 	default:
1536 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1537 		    __func__, chan->ic_flags);
1538 		return AH_FALSE;
1539 	}
1540 
1541 	antSwitchA =  ee->ee_antennaControl[1][ix]
1542 		   | (ee->ee_antennaControl[2][ix] << 6)
1543 		   | (ee->ee_antennaControl[3][ix] << 12)
1544 		   | (ee->ee_antennaControl[4][ix] << 18)
1545 		   | (ee->ee_antennaControl[5][ix] << 24)
1546 		   ;
1547 	antSwitchB =  ee->ee_antennaControl[6][ix]
1548 		   | (ee->ee_antennaControl[7][ix] << 6)
1549 		   | (ee->ee_antennaControl[8][ix] << 12)
1550 		   | (ee->ee_antennaControl[9][ix] << 18)
1551 		   | (ee->ee_antennaControl[10][ix] << 24)
1552 		   ;
1553 	/*
1554 	 * For fixed antenna, give the same setting for both switch banks
1555 	 */
1556 	switch (settings) {
1557 	case HAL_ANT_FIXED_A:
1558 		antSwitchB = antSwitchA;
1559 		break;
1560 	case HAL_ANT_FIXED_B:
1561 		antSwitchA = antSwitchB;
1562 		break;
1563 	case HAL_ANT_VARIABLE:
1564 		break;
1565 	default:
1566 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
1567 		    __func__, settings);
1568 		return AH_FALSE;
1569 	}
1570 	if (antSwitchB == antSwitchA) {
1571 		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
1572 		    "%s: Setting fast diversity off.\n", __func__);
1573 		OS_REG_CLR_BIT(ah,AR_PHY_CCK_DETECT,
1574 			       AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
1575 		ahp->ah_diversity = AH_FALSE;
1576 	} else {
1577 		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
1578 		    "%s: Setting fast diversity on.\n", __func__);
1579 		OS_REG_SET_BIT(ah,AR_PHY_CCK_DETECT,
1580 			       AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
1581 		ahp->ah_diversity = AH_TRUE;
1582 	}
1583 	ahp->ah_antControl = settings;
1584 
1585 	OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
1586 	OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
1587 
1588 	return AH_TRUE;
1589 #undef ANT_SWITCH_TABLE2
1590 #undef ANT_SWITCH_TABLE1
1591 }
1592 
1593 HAL_BOOL
1594 ar5212IsSpurChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
1595 {
1596 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1597 	uint32_t clockFreq =
1598 	    ((IS_5413(ah) || IS_RAD5112_ANY(ah) || IS_2417(ah)) ? 40 : 32);
1599 	return ( ((freq % clockFreq) != 0)
1600               && (((freq % clockFreq) < 10)
1601              || (((freq) % clockFreq) > 22)) );
1602 }
1603 
1604 /*
1605  * Read EEPROM header info and program the device for correct operation
1606  * given the channel value.
1607  */
1608 HAL_BOOL
1609 ar5212SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
1610 {
1611 #define NO_FALSE_DETECT_BACKOFF   2
1612 #define CB22_FALSE_DETECT_BACKOFF 6
1613 #define	AR_PHY_BIS(_ah, _reg, _mask, _val) \
1614 	OS_REG_WRITE(_ah, AR_PHY(_reg), \
1615 		(OS_REG_READ(_ah, AR_PHY(_reg)) & _mask) | (_val));
1616 	struct ath_hal_5212 *ahp = AH5212(ah);
1617 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1618 	int arrayMode, falseDectectBackoff;
1619 	int is2GHz = IEEE80211_IS_CHAN_2GHZ(chan);
1620 	HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
1621 	int8_t adcDesiredSize, pgaDesiredSize;
1622 	uint16_t switchSettling, txrxAtten, rxtxMargin;
1623 	int iCoff, qCoff;
1624 
1625 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
1626 
1627 	switch (chan->ic_flags & IEEE80211_CHAN_ALLTURBOFULL) {
1628 	case IEEE80211_CHAN_A:
1629 	case IEEE80211_CHAN_ST:
1630 		arrayMode = headerInfo11A;
1631 		if (!IS_RAD5112_ANY(ah) && !IS_2413(ah) && !IS_5413(ah))
1632 			OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
1633 				AR_PHY_FRAME_CTL_TX_CLIP,
1634 				ahp->ah_gainValues.currStep->paramVal[GP_TXCLIP]);
1635 		break;
1636 	case IEEE80211_CHAN_B:
1637 		arrayMode = headerInfo11B;
1638 		break;
1639 	case IEEE80211_CHAN_G:
1640 	case IEEE80211_CHAN_108G:
1641 		arrayMode = headerInfo11G;
1642 		break;
1643 	default:
1644 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1645 		    __func__, chan->ic_flags);
1646 		return AH_FALSE;
1647 	}
1648 
1649 	/* Set the antenna register(s) correctly for the chip revision */
1650 	AR_PHY_BIS(ah, 68, 0xFFFFFC06,
1651 		(ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
1652 
1653 	ar5212SetAntennaSwitchInternal(ah, ahp->ah_antControl, chan);
1654 
1655 	/* Set the Noise Floor Thresh on ar5211 devices */
1656 	OS_REG_WRITE(ah, AR_PHY(90),
1657 		(ee->ee_noiseFloorThresh[arrayMode] & 0x1FF)
1658 		| (1 << 9));
1659 
1660 	if (ee->ee_version >= AR_EEPROM_VER5_0 && IEEE80211_IS_CHAN_TURBO(chan)) {
1661 		switchSettling = ee->ee_switchSettlingTurbo[is2GHz];
1662 		adcDesiredSize = ee->ee_adcDesiredSizeTurbo[is2GHz];
1663 		pgaDesiredSize = ee->ee_pgaDesiredSizeTurbo[is2GHz];
1664 		txrxAtten = ee->ee_txrxAttenTurbo[is2GHz];
1665 		rxtxMargin = ee->ee_rxtxMarginTurbo[is2GHz];
1666 	} else {
1667 		switchSettling = ee->ee_switchSettling[arrayMode];
1668 		adcDesiredSize = ee->ee_adcDesiredSize[arrayMode];
1669 		pgaDesiredSize = ee->ee_pgaDesiredSize[is2GHz];
1670 		txrxAtten = ee->ee_txrxAtten[is2GHz];
1671 		rxtxMargin = ee->ee_rxtxMargin[is2GHz];
1672 	}
1673 
1674 	OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1675 			 AR_PHY_SETTLING_SWITCH, switchSettling);
1676 	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1677 			 AR_PHY_DESIRED_SZ_ADC, adcDesiredSize);
1678 	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1679 			 AR_PHY_DESIRED_SZ_PGA, pgaDesiredSize);
1680 	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
1681 			 AR_PHY_RXGAIN_TXRX_ATTEN, txrxAtten);
1682 	OS_REG_WRITE(ah, AR_PHY(13),
1683 		(ee->ee_txEndToXPAOff[arrayMode] << 24)
1684 		| (ee->ee_txEndToXPAOff[arrayMode] << 16)
1685 		| (ee->ee_txFrameToXPAOn[arrayMode] << 8)
1686 		| ee->ee_txFrameToXPAOn[arrayMode]);
1687 	AR_PHY_BIS(ah, 10, 0xFFFF00FF,
1688 		ee->ee_txEndToXLNAOn[arrayMode] << 8);
1689 	AR_PHY_BIS(ah, 25, 0xFFF80FFF,
1690 		(ee->ee_thresh62[arrayMode] << 12) & 0x7F000);
1691 
1692 	/*
1693 	 * False detect backoff - suspected 32 MHz spur causes false
1694 	 * detects in OFDM, causing Tx Hangs.  Decrease weak signal
1695 	 * sensitivity for this card.
1696 	 */
1697 	falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
1698 	if (ee->ee_version < AR_EEPROM_VER3_3) {
1699 		/* XXX magic number */
1700 		if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
1701 		    IEEE80211_IS_CHAN_OFDM(chan))
1702 			falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
1703 	} else {
1704 		if (ar5212IsSpurChannel(ah, chan))
1705 			falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
1706 	}
1707 	AR_PHY_BIS(ah, 73, 0xFFFFFF01, (falseDectectBackoff << 1) & 0xFE);
1708 
1709 	if (ichan->privFlags & CHANNEL_IQVALID) {
1710 		iCoff = ichan->iCoff;
1711 		qCoff = ichan->qCoff;
1712 	} else {
1713 		iCoff = ee->ee_iqCalI[is2GHz];
1714 		qCoff = ee->ee_iqCalQ[is2GHz];
1715 	}
1716 
1717 	/* write previous IQ results */
1718 	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1719 		AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
1720 	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1721 		AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
1722 	OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1723 		AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
1724 
1725 	if (ee->ee_version >= AR_EEPROM_VER4_1) {
1726 		if (!IEEE80211_IS_CHAN_108G(chan) || ee->ee_version >= AR_EEPROM_VER5_0)
1727 			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
1728 				AR_PHY_GAIN_2GHZ_RXTX_MARGIN, rxtxMargin);
1729 	}
1730 	if (ee->ee_version >= AR_EEPROM_VER5_1) {
1731 		/* for now always disabled */
1732 		OS_REG_WRITE(ah,  AR_PHY_HEAVY_CLIP_ENABLE,  0);
1733 	}
1734 
1735 	return AH_TRUE;
1736 #undef AR_PHY_BIS
1737 #undef NO_FALSE_DETECT_BACKOFF
1738 #undef CB22_FALSE_DETECT_BACKOFF
1739 }
1740 
1741 /*
1742  * Apply Spur Immunity to Boards that require it.
1743  * Applies only to OFDM RX operation.
1744  */
1745 
1746 void
1747 ar5212SetSpurMitigation(struct ath_hal *ah,
1748 	const struct ieee80211_channel *chan)
1749 {
1750 	uint32_t pilotMask[2] = {0, 0}, binMagMask[4] = {0, 0, 0 , 0};
1751 	uint16_t i, finalSpur, curChanAsSpur, binWidth = 0, spurDetectWidth, spurChan;
1752 	int32_t spurDeltaPhase = 0, spurFreqSd = 0, spurOffset, binOffsetNumT16, curBinOffset;
1753 	int16_t numBinOffsets;
1754 	static const uint16_t magMapFor4[4] = {1, 2, 2, 1};
1755 	static const uint16_t magMapFor3[3] = {1, 2, 1};
1756 	const uint16_t *pMagMap;
1757 	HAL_BOOL is2GHz = IEEE80211_IS_CHAN_2GHZ(chan);
1758 	HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
1759 	uint32_t val;
1760 
1761 #define CHAN_TO_SPUR(_f, _freq)   ( ((_freq) - ((_f) ? 2300 : 4900)) * 10 )
1762 	if (IS_2417(ah)) {
1763 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: no spur mitigation\n",
1764 		    __func__);
1765 		return;
1766 	}
1767 
1768 	curChanAsSpur = CHAN_TO_SPUR(is2GHz, ichan->channel);
1769 
1770 	if (ichan->mainSpur) {
1771 		/* Pull out the saved spur value */
1772 		finalSpur = ichan->mainSpur;
1773 	} else {
1774 		/*
1775 		 * Check if spur immunity should be performed for this channel
1776 		 * Should only be performed once per channel and then saved
1777 		 */
1778 		finalSpur = AR_NO_SPUR;
1779 		spurDetectWidth = HAL_SPUR_CHAN_WIDTH;
1780 		if (IEEE80211_IS_CHAN_TURBO(chan))
1781 			spurDetectWidth *= 2;
1782 
1783 		/* Decide if any spur affects the current channel */
1784 		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1785 			spurChan = ath_hal_getSpurChan(ah, i, is2GHz);
1786 			if (spurChan == AR_NO_SPUR) {
1787 				break;
1788 			}
1789 			if ((curChanAsSpur - spurDetectWidth <= (spurChan & HAL_SPUR_VAL_MASK)) &&
1790 			    (curChanAsSpur + spurDetectWidth >= (spurChan & HAL_SPUR_VAL_MASK))) {
1791 				finalSpur = spurChan & HAL_SPUR_VAL_MASK;
1792 				break;
1793 			}
1794 		}
1795 		/* Save detected spur (or no spur) for this channel */
1796 		ichan->mainSpur = finalSpur;
1797 	}
1798 
1799 	/* Write spur immunity data */
1800 	if (finalSpur == AR_NO_SPUR) {
1801 		/* Disable Spur Immunity Regs if they appear set */
1802 		if (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER) {
1803 			/* Clear Spur Delta Phase, Spur Freq, and enable bits */
1804 			OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0);
1805 			val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
1806 			val &= ~(AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1807 				 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1808 				 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1809 			OS_REG_WRITE(ah, AR_PHY_MASK_CTL, val);
1810 			OS_REG_WRITE(ah, AR_PHY_TIMING11, 0);
1811 
1812 			/* Clear pilot masks */
1813 			OS_REG_WRITE(ah, AR_PHY_TIMING7, 0);
1814 			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, 0);
1815 			OS_REG_WRITE(ah, AR_PHY_TIMING9, 0);
1816 			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, 0);
1817 
1818 			/* Clear magnitude masks */
1819 			OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, 0);
1820 			OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, 0);
1821 			OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, 0);
1822 			OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, 0);
1823 			OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, 0);
1824 			OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, 0);
1825 			OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, 0);
1826 			OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, 0);
1827 		}
1828 	} else {
1829 		spurOffset = finalSpur - curChanAsSpur;
1830 		/*
1831 		 * Spur calculations:
1832 		 * spurDeltaPhase is (spurOffsetIn100KHz / chipFrequencyIn100KHz) << 21
1833 		 * spurFreqSd is (spurOffsetIn100KHz / sampleFrequencyIn100KHz) << 11
1834 		 */
1835 		if (IEEE80211_IS_CHAN_TURBO(chan)) {
1836 			/* Chip Frequency & sampleFrequency are 80 MHz */
1837 			spurDeltaPhase = (spurOffset << 16) / 25;
1838 			spurFreqSd = spurDeltaPhase >> 10;
1839 			binWidth = HAL_BIN_WIDTH_TURBO_100HZ;
1840 		} else if (IEEE80211_IS_CHAN_G(chan)) {
1841 			/* Chip Frequency is 44MHz, sampleFrequency is 40 MHz */
1842 			spurFreqSd = (spurOffset << 8) / 55;
1843 			spurDeltaPhase = (spurOffset << 17) / 25;
1844 			binWidth = HAL_BIN_WIDTH_BASE_100HZ;
1845 		} else {
1846 			HALASSERT(!IEEE80211_IS_CHAN_B(chan));
1847 			/* Chip Frequency & sampleFrequency are 40 MHz */
1848 			spurDeltaPhase = (spurOffset << 17) / 25;
1849 			spurFreqSd = spurDeltaPhase >> 10;
1850 			binWidth = HAL_BIN_WIDTH_BASE_100HZ;
1851 		}
1852 
1853 		/* Compute Pilot Mask */
1854 		binOffsetNumT16 = ((spurOffset * 1000) << 4) / binWidth;
1855 		/* The spur is on a bin if it's remainder at times 16 is 0 */
1856 		if (binOffsetNumT16 & 0xF) {
1857 			numBinOffsets = 4;
1858 			pMagMap = magMapFor4;
1859 		} else {
1860 			numBinOffsets = 3;
1861 			pMagMap = magMapFor3;
1862 		}
1863 		for (i = 0; i < numBinOffsets; i++) {
1864 			if ((binOffsetNumT16 >> 4) > HAL_MAX_BINS_ALLOWED) {
1865 				HALDEBUG(ah, HAL_DEBUG_ANY,
1866 				    "Too man bins in spur mitigation\n");
1867 				return;
1868 			}
1869 
1870 			/* Get Pilot Mask values */
1871 			curBinOffset = (binOffsetNumT16 >> 4) + i + 25;
1872 			if ((curBinOffset >= 0) && (curBinOffset <= 32)) {
1873 				if (curBinOffset <= 25)
1874 					pilotMask[0] |= 1 << curBinOffset;
1875 				else if (curBinOffset >= 27)
1876 					pilotMask[0] |= 1 << (curBinOffset - 1);
1877 			} else if ((curBinOffset >= 33) && (curBinOffset <= 52))
1878 				pilotMask[1] |= 1 << (curBinOffset - 33);
1879 
1880 			/* Get viterbi values */
1881 			if ((curBinOffset >= -1) && (curBinOffset <= 14))
1882 				binMagMask[0] |= pMagMap[i] << (curBinOffset + 1) * 2;
1883 			else if ((curBinOffset >= 15) && (curBinOffset <= 30))
1884 				binMagMask[1] |= pMagMap[i] << (curBinOffset - 15) * 2;
1885 			else if ((curBinOffset >= 31) && (curBinOffset <= 46))
1886 				binMagMask[2] |= pMagMap[i] << (curBinOffset -31) * 2;
1887 			else if((curBinOffset >= 47) && (curBinOffset <= 53))
1888 				binMagMask[3] |= pMagMap[i] << (curBinOffset -47) * 2;
1889 		}
1890 
1891 		/* Write Spur Delta Phase, Spur Freq, and enable bits */
1892 		OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0xFF);
1893 		val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
1894 		val |= (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1895 			AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1896 			AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1897 		OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, val);
1898 		OS_REG_WRITE(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1899 			     SM(spurFreqSd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1900 			     SM(spurDeltaPhase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1901 
1902 		/* Write pilot masks */
1903 		OS_REG_WRITE(ah, AR_PHY_TIMING7, pilotMask[0]);
1904 		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, pilotMask[1]);
1905 		OS_REG_WRITE(ah, AR_PHY_TIMING9, pilotMask[0]);
1906 		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, pilotMask[1]);
1907 
1908 		/* Write magnitude masks */
1909 		OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, binMagMask[0]);
1910 		OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, binMagMask[1]);
1911 		OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, binMagMask[2]);
1912 		OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, binMagMask[3]);
1913 		OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, binMagMask[0]);
1914 		OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, binMagMask[1]);
1915 		OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, binMagMask[2]);
1916 		OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, binMagMask[3]);
1917 	}
1918 #undef CHAN_TO_SPUR
1919 }
1920 
1921 
1922 /*
1923  * Delta slope coefficient computation.
1924  * Required for OFDM operation.
1925  */
1926 void
1927 ar5212SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan)
1928 {
1929 #define COEF_SCALE_S 24
1930 #define INIT_CLOCKMHZSCALED	0x64000000
1931 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1932 	unsigned long coef_scaled, coef_exp, coef_man, ds_coef_exp, ds_coef_man;
1933 	unsigned long clockMhzScaled = INIT_CLOCKMHZSCALED;
1934 
1935 	if (IEEE80211_IS_CHAN_TURBO(chan))
1936 		clockMhzScaled *= 2;
1937 	/* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
1938 	/* scale for selected channel bandwidth */
1939 	if (IEEE80211_IS_CHAN_HALF(chan)) {
1940 		clockMhzScaled = clockMhzScaled >> 1;
1941 	} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
1942 		clockMhzScaled = clockMhzScaled >> 2;
1943 	}
1944 
1945 	/*
1946 	 * ALGO -> coef = 1e8/fcarrier*fclock/40;
1947 	 * scaled coef to provide precision for this floating calculation
1948 	 */
1949 	coef_scaled = clockMhzScaled / freq;
1950 
1951 	/*
1952 	 * ALGO -> coef_exp = 14-floor(log2(coef));
1953 	 * floor(log2(x)) is the highest set bit position
1954 	 */
1955 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1956 		if ((coef_scaled >> coef_exp) & 0x1)
1957 			break;
1958 	/* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
1959 	HALASSERT(coef_exp);
1960 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1961 
1962 	/*
1963 	 * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
1964 	 * The coefficient is already shifted up for scaling
1965 	 */
1966 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1967 	ds_coef_man = coef_man >> (COEF_SCALE_S - coef_exp);
1968 	ds_coef_exp = coef_exp - 16;
1969 
1970 	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1971 		AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1972 	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1973 		AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1974 #undef INIT_CLOCKMHZSCALED
1975 #undef COEF_SCALE_S
1976 }
1977 
1978 /*
1979  * Set a limit on the overall output power.  Used for dynamic
1980  * transmit power control and the like.
1981  *
1982  * NB: limit is in units of 0.5 dbM.
1983  */
1984 HAL_BOOL
1985 ar5212SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
1986 {
1987 	/* XXX blech, construct local writable copy */
1988 	struct ieee80211_channel dummy = *AH_PRIVATE(ah)->ah_curchan;
1989 	uint16_t dummyXpdGains[2];
1990 	HAL_BOOL isBmode;
1991 
1992 	SAVE_CCK(ah, &dummy, isBmode);
1993 	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
1994 	return ar5212SetTransmitPower(ah, &dummy, dummyXpdGains);
1995 }
1996 
1997 /*
1998  * Set the transmit power in the baseband for the given
1999  * operating channel and mode.
2000  */
2001 HAL_BOOL
2002 ar5212SetTransmitPower(struct ath_hal *ah,
2003 	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
2004 {
2005 #define	POW_OFDM(_r, _s)	(((0 & 1)<< ((_s)+6)) | (((_r) & 0x3f) << (_s)))
2006 #define	POW_CCK(_r, _s)		(((_r) & 0x3f) << (_s))
2007 #define	N(a)			(sizeof (a) / sizeof (a[0]))
2008 	static const uint16_t tpcScaleReductionTable[5] =
2009 		{ 0, 3, 6, 9, MAX_RATE_POWER };
2010 	struct ath_hal_5212 *ahp = AH5212(ah);
2011 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
2012 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2013 	int16_t minPower, maxPower, tpcInDb, powerLimit;
2014 	int i;
2015 
2016 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
2017 
2018 	OS_MEMZERO(ahp->ah_pcdacTable, ahp->ah_pcdacTableSize);
2019 	OS_MEMZERO(ahp->ah_ratesArray, sizeof(ahp->ah_ratesArray));
2020 
2021 	powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
2022 	if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
2023 		tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
2024 	else
2025 		tpcInDb = 0;
2026 	if (!ar5212SetRateTable(ah, chan, tpcInDb, powerLimit,
2027 				AH_TRUE, &minPower, &maxPower)) {
2028 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set rate table\n",
2029 		    __func__);
2030 		return AH_FALSE;
2031 	}
2032 	if (!ahp->ah_rfHal->setPowerTable(ah,
2033 		&minPower, &maxPower, chan, rfXpdGain)) {
2034 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
2035 		    __func__);
2036 		return AH_FALSE;
2037 	}
2038 
2039 	/*
2040 	 * Adjust XR power/rate up by 2 dB to account for greater peak
2041 	 * to avg ratio - except in newer avg power designs
2042 	 */
2043 	if (!IS_2413(ah) && !IS_5413(ah))
2044 		ahp->ah_ratesArray[15] += 4;
2045 	/*
2046 	 * txPowerIndexOffset is set by the SetPowerTable() call -
2047 	 *  adjust the rate table
2048 	 */
2049 	for (i = 0; i < N(ahp->ah_ratesArray); i++) {
2050 		ahp->ah_ratesArray[i] += ahp->ah_txPowerIndexOffset;
2051 		if (ahp->ah_ratesArray[i] > 63)
2052 			ahp->ah_ratesArray[i] = 63;
2053 	}
2054 
2055 	if (ee->ee_eepMap < 2) {
2056 		/*
2057 		 * Correct gain deltas for 5212 G operation -
2058 		 * Removed with revised chipset
2059 		 */
2060 		if (AH_PRIVATE(ah)->ah_phyRev < AR_PHY_CHIP_ID_REV_2 &&
2061 		    IEEE80211_IS_CHAN_G(chan)) {
2062 			uint16_t cckOfdmPwrDelta;
2063 
2064 			if (freq == 2484)
2065 				cckOfdmPwrDelta = SCALE_OC_DELTA(
2066 					ee->ee_cckOfdmPwrDelta -
2067 					ee->ee_scaledCh14FilterCckDelta);
2068 			else
2069 				cckOfdmPwrDelta = SCALE_OC_DELTA(
2070 					ee->ee_cckOfdmPwrDelta);
2071 			ar5212CorrectGainDelta(ah, cckOfdmPwrDelta);
2072 		}
2073 		/*
2074 		 * Finally, write the power values into the
2075 		 * baseband power table
2076 		 */
2077 		for (i = 0; i < (PWR_TABLE_SIZE/2); i++) {
2078 			OS_REG_WRITE(ah, AR_PHY_PCDAC_TX_POWER(i),
2079 				 ((((ahp->ah_pcdacTable[2*i + 1] << 8) | 0xff) & 0xffff) << 16)
2080 				| (((ahp->ah_pcdacTable[2*i]     << 8) | 0xff) & 0xffff)
2081 			);
2082 		}
2083 	}
2084 
2085 	/* Write the OFDM power per rate set */
2086 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
2087 		POW_OFDM(ahp->ah_ratesArray[3], 24)
2088 	      | POW_OFDM(ahp->ah_ratesArray[2], 16)
2089 	      | POW_OFDM(ahp->ah_ratesArray[1],  8)
2090 	      | POW_OFDM(ahp->ah_ratesArray[0],  0)
2091 	);
2092 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
2093 		POW_OFDM(ahp->ah_ratesArray[7], 24)
2094 	      | POW_OFDM(ahp->ah_ratesArray[6], 16)
2095 	      | POW_OFDM(ahp->ah_ratesArray[5],  8)
2096 	      | POW_OFDM(ahp->ah_ratesArray[4],  0)
2097 	);
2098 
2099 	/* Write the CCK power per rate set */
2100 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
2101 		POW_CCK(ahp->ah_ratesArray[10], 24)
2102 	      | POW_CCK(ahp->ah_ratesArray[9],  16)
2103 	      | POW_CCK(ahp->ah_ratesArray[15],  8)	/* XR target power */
2104 	      | POW_CCK(ahp->ah_ratesArray[8],   0)
2105 	);
2106 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
2107 		POW_CCK(ahp->ah_ratesArray[14], 24)
2108 	      | POW_CCK(ahp->ah_ratesArray[13], 16)
2109 	      | POW_CCK(ahp->ah_ratesArray[12],  8)
2110 	      | POW_CCK(ahp->ah_ratesArray[11],  0)
2111 	);
2112 
2113 	/*
2114 	 * Set max power to 30 dBm and, optionally,
2115 	 * enable TPC in tx descriptors.
2116 	 */
2117 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER |
2118 		(ahp->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0));
2119 
2120 	return AH_TRUE;
2121 #undef N
2122 #undef POW_CCK
2123 #undef POW_OFDM
2124 }
2125 
2126 /*
2127  * Sets the transmit power in the baseband for the given
2128  * operating channel and mode.
2129  */
2130 static HAL_BOOL
2131 ar5212SetRateTable(struct ath_hal *ah, const struct ieee80211_channel *chan,
2132 	int16_t tpcScaleReduction, int16_t powerLimit, HAL_BOOL commit,
2133 	int16_t *pMinPower, int16_t *pMaxPower)
2134 {
2135 	struct ath_hal_5212 *ahp = AH5212(ah);
2136 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
2137 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2138 	uint16_t *rpow = ahp->ah_ratesArray;
2139 	uint16_t twiceMaxEdgePower = MAX_RATE_POWER;
2140 	uint16_t twiceMaxEdgePowerCck = MAX_RATE_POWER;
2141 	uint16_t twiceMaxRDPower = MAX_RATE_POWER;
2142 	int i;
2143 	uint8_t cfgCtl;
2144 	int8_t twiceAntennaGain, twiceAntennaReduction;
2145 	const RD_EDGES_POWER *rep;
2146 	TRGT_POWER_INFO targetPowerOfdm, targetPowerCck;
2147 	int16_t scaledPower, maxAvailPower = 0;
2148 	int16_t r13, r9, r7, r0;
2149 
2150 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
2151 
2152 	twiceMaxRDPower = chan->ic_maxregpower * 2;
2153 	*pMaxPower = -MAX_RATE_POWER;
2154 	*pMinPower = MAX_RATE_POWER;
2155 
2156 	/* Get conformance test limit maximum for this channel */
2157 	cfgCtl = ath_hal_getctl(ah, chan);
2158 	for (i = 0; i < ee->ee_numCtls; i++) {
2159 		uint16_t twiceMinEdgePower;
2160 
2161 		if (ee->ee_ctl[i] == 0)
2162 			continue;
2163 		if (ee->ee_ctl[i] == cfgCtl ||
2164 		    cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
2165 			rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
2166 			twiceMinEdgePower = ar5212GetMaxEdgePower(freq, rep);
2167 			if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
2168 				/* Find the minimum of all CTL edge powers that apply to this channel */
2169 				twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
2170 			} else {
2171 				twiceMaxEdgePower = twiceMinEdgePower;
2172 				break;
2173 			}
2174 		}
2175 	}
2176 
2177 	if (IEEE80211_IS_CHAN_G(chan)) {
2178 		/* Check for a CCK CTL for 11G CCK powers */
2179 		cfgCtl = (cfgCtl & ~CTL_MODE_M) | CTL_11B;
2180 		for (i = 0; i < ee->ee_numCtls; i++) {
2181 			uint16_t twiceMinEdgePowerCck;
2182 
2183 			if (ee->ee_ctl[i] == 0)
2184 				continue;
2185 			if (ee->ee_ctl[i] == cfgCtl ||
2186 			    cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
2187 				rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
2188 				twiceMinEdgePowerCck = ar5212GetMaxEdgePower(freq, rep);
2189 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
2190 					/* Find the minimum of all CTL edge powers that apply to this channel */
2191 					twiceMaxEdgePowerCck = AH_MIN(twiceMaxEdgePowerCck, twiceMinEdgePowerCck);
2192 				} else {
2193 					twiceMaxEdgePowerCck = twiceMinEdgePowerCck;
2194 					break;
2195 				}
2196 			}
2197 		}
2198 	} else {
2199 		/* Set the 11B cck edge power to the one found before */
2200 		twiceMaxEdgePowerCck = twiceMaxEdgePower;
2201 	}
2202 
2203 	/* Get Antenna Gain reduction */
2204 	if (IEEE80211_IS_CHAN_5GHZ(chan)) {
2205 		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
2206 	} else {
2207 		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
2208 	}
2209 	twiceAntennaReduction =
2210 		ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
2211 
2212 	if (IEEE80211_IS_CHAN_OFDM(chan)) {
2213 		/* Get final OFDM target powers */
2214 		if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2215 			ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11g,
2216 				ee->ee_numTargetPwr_11g, &targetPowerOfdm);
2217 		} else {
2218 			ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11a,
2219 				ee->ee_numTargetPwr_11a, &targetPowerOfdm);
2220 		}
2221 
2222 		/* Get Maximum OFDM power */
2223 		/* Minimum of target and edge powers */
2224 		scaledPower = AH_MIN(twiceMaxEdgePower,
2225 				twiceMaxRDPower - twiceAntennaReduction);
2226 
2227 		/*
2228 		 * If turbo is set, reduce power to keep power
2229 		 * consumption under 2 Watts.  Note that we always do
2230 		 * this unless specially configured.  Then we limit
2231 		 * power only for non-AP operation.
2232 		 */
2233 		if (IEEE80211_IS_CHAN_TURBO(chan)
2234 #ifdef AH_ENABLE_AP_SUPPORT
2235 		    && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
2236 #endif
2237 		) {
2238 			/*
2239 			 * If turbo is set, reduce power to keep power
2240 			 * consumption under 2 Watts
2241 			 */
2242 			if (ee->ee_version >= AR_EEPROM_VER3_1)
2243 				scaledPower = AH_MIN(scaledPower,
2244 					ee->ee_turbo2WMaxPower5);
2245 			/*
2246 			 * EEPROM version 4.0 added an additional
2247 			 * constraint on 2.4GHz channels.
2248 			 */
2249 			if (ee->ee_version >= AR_EEPROM_VER4_0 &&
2250 			    IEEE80211_IS_CHAN_2GHZ(chan))
2251 				scaledPower = AH_MIN(scaledPower,
2252 					ee->ee_turbo2WMaxPower2);
2253 		}
2254 
2255 		maxAvailPower = AH_MIN(scaledPower,
2256 					targetPowerOfdm.twicePwr6_24);
2257 
2258 		/* Reduce power by max regulatory domain allowed restrictions */
2259 		scaledPower = maxAvailPower - (tpcScaleReduction * 2);
2260 		scaledPower = (scaledPower < 0) ? 0 : scaledPower;
2261 		scaledPower = AH_MIN(scaledPower, powerLimit);
2262 
2263 		if (commit) {
2264 			/* Set OFDM rates 9, 12, 18, 24 */
2265 			r0 = rpow[0] = rpow[1] = rpow[2] = rpow[3] = rpow[4] = scaledPower;
2266 
2267 			/* Set OFDM rates 36, 48, 54, XR */
2268 			rpow[5] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr36);
2269 			rpow[6] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr48);
2270 			r7 = rpow[7] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr54);
2271 
2272 			if (ee->ee_version >= AR_EEPROM_VER4_0) {
2273 				/* Setup XR target power from EEPROM */
2274 				rpow[15] = AH_MIN(scaledPower, IEEE80211_IS_CHAN_2GHZ(chan) ?
2275 						  ee->ee_xrTargetPower2 : ee->ee_xrTargetPower5);
2276 			} else {
2277 				/* XR uses 6mb power */
2278 				rpow[15] = rpow[0];
2279 			}
2280 			ahp->ah_ofdmTxPower = *pMaxPower;
2281 
2282 		} else {
2283 			r0 = scaledPower;
2284 			r7 = AH_MIN(r0, targetPowerOfdm.twicePwr54);
2285 		}
2286 		*pMinPower = r7;
2287 		*pMaxPower = r0;
2288 
2289 		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2290 		    "%s: MaxRD: %d TurboMax: %d MaxCTL: %d "
2291 		    "TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
2292 		    __func__, twiceMaxRDPower, ee->ee_turbo2WMaxPower5,
2293 		    twiceMaxEdgePower, tpcScaleReduction * 2,
2294 		    chan->ic_freq, chan->ic_flags,
2295 		    maxAvailPower, targetPowerOfdm.twicePwr6_24, *pMaxPower);
2296 	}
2297 
2298 	if (IEEE80211_IS_CHAN_CCK(chan)) {
2299 		/* Get final CCK target powers */
2300 		ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11b,
2301 			ee->ee_numTargetPwr_11b, &targetPowerCck);
2302 
2303 		/* Reduce power by max regulatory domain allowed restrictions */
2304 		scaledPower = AH_MIN(twiceMaxEdgePowerCck,
2305 			twiceMaxRDPower - twiceAntennaReduction);
2306 		if (maxAvailPower < AH_MIN(scaledPower, targetPowerCck.twicePwr6_24))
2307 			maxAvailPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
2308 
2309 		/* Reduce power by user selection */
2310 		scaledPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24) - (tpcScaleReduction * 2);
2311 		scaledPower = (scaledPower < 0) ? 0 : scaledPower;
2312 		scaledPower = AH_MIN(scaledPower, powerLimit);
2313 
2314 		if (commit) {
2315 			/* Set CCK rates 2L, 2S, 5.5L, 5.5S, 11L, 11S */
2316 			rpow[8]  = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
2317 			r9 = rpow[9]  = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
2318 			rpow[10] = rpow[9];
2319 			rpow[11] = AH_MIN(scaledPower, targetPowerCck.twicePwr48);
2320 			rpow[12] = rpow[11];
2321 			r13 = rpow[13] = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
2322 			rpow[14] = rpow[13];
2323 		} else {
2324 			r9 = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
2325 			r13 = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
2326 		}
2327 
2328 		/* Set min/max power based off OFDM values or initialization */
2329 		if (r13 < *pMinPower)
2330 			*pMinPower = r13;
2331 		if (r9 > *pMaxPower)
2332 			*pMaxPower = r9;
2333 
2334 		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2335 		    "%s: cck: MaxRD: %d MaxCTL: %d "
2336 		    "TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
2337 		    __func__, twiceMaxRDPower, twiceMaxEdgePowerCck,
2338 		    tpcScaleReduction * 2, chan->ic_freq, chan->ic_flags,
2339 		    maxAvailPower, targetPowerCck.twicePwr6_24, *pMaxPower);
2340 	}
2341 	if (commit) {
2342 		ahp->ah_tx6PowerInHalfDbm = *pMaxPower;
2343 		AH_PRIVATE(ah)->ah_maxPowerLevel = ahp->ah_tx6PowerInHalfDbm;
2344 	}
2345 	return AH_TRUE;
2346 }
2347 
2348 HAL_BOOL
2349 ar5212GetChipPowerLimits(struct ath_hal *ah, struct ieee80211_channel *chan)
2350 {
2351 	struct ath_hal_5212 *ahp = AH5212(ah);
2352 #if 0
2353 	static const uint16_t tpcScaleReductionTable[5] =
2354 		{ 0, 3, 6, 9, MAX_RATE_POWER };
2355 	int16_t tpcInDb, powerLimit;
2356 #endif
2357 	int16_t minPower, maxPower;
2358 
2359 	/*
2360 	 * Get Pier table max and min powers.
2361 	 */
2362 	if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
2363 		/* NB: rf code returns 1/4 dBm units, convert */
2364 		chan->ic_maxpower = maxPower / 2;
2365 		chan->ic_minpower = minPower / 2;
2366 	} else {
2367 		HALDEBUG(ah, HAL_DEBUG_ANY,
2368 		    "%s: no min/max power for %u/0x%x\n",
2369 		    __func__, chan->ic_freq, chan->ic_flags);
2370 		chan->ic_maxpower = MAX_RATE_POWER;
2371 		chan->ic_minpower = 0;
2372 	}
2373 #if 0
2374 	/*
2375 	 * Now adjust to reflect any global scale and/or CTL's.
2376 	 * (XXX is that correct?)
2377 	 */
2378 	powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
2379 	if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
2380 		tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
2381 	else
2382 		tpcInDb = 0;
2383 	if (!ar5212SetRateTable(ah, chan, tpcInDb, powerLimit,
2384 				AH_FALSE, &minPower, &maxPower)) {
2385 		HALDEBUG(ah, HAL_DEBUG_ANY,
2386 		    "%s: unable to find max/min power\n",__func__);
2387 		return AH_FALSE;
2388 	}
2389 	if (maxPower < chan->ic_maxpower)
2390 		chan->ic_maxpower = maxPower;
2391 	if (minPower < chan->ic_minpower)
2392 		chan->ic_minpower = minPower;
2393 	HALDEBUG(ah, HAL_DEBUG_RESET,
2394 	    "Chan %d: MaxPow = %d MinPow = %d\n",
2395 	    chan->ic_freq, chan->ic_maxpower, chans->ic_minpower);
2396 #endif
2397 	return AH_TRUE;
2398 }
2399 
2400 /*
2401  * Correct for the gain-delta between ofdm and cck mode target
2402  * powers. Write the results to the rate table and the power table.
2403  *
2404  *   Conventions :
2405  *   1. rpow[ii] is the integer value of 2*(desired power
2406  *    for the rate ii in dBm) to provide 0.5dB resolution. rate
2407  *    mapping is as following :
2408  *     [0..7]  --> ofdm 6, 9, .. 48, 54
2409  *     [8..14] --> cck 1L, 2L, 2S, .. 11L, 11S
2410  *     [15]    --> XR (all rates get the same power)
2411  *   2. powv[ii]  is the pcdac corresponding to ii/2 dBm.
2412  */
2413 static void
2414 ar5212CorrectGainDelta(struct ath_hal *ah, int twiceOfdmCckDelta)
2415 {
2416 #define	N(_a)	(sizeof(_a) / sizeof(_a[0]))
2417 	struct ath_hal_5212 *ahp = AH5212(ah);
2418 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2419 	int16_t ratesIndex[N(ahp->ah_ratesArray)];
2420 	uint16_t ii, jj, iter;
2421 	int32_t cckIndex;
2422 	int16_t gainDeltaAdjust;
2423 
2424 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
2425 
2426 	gainDeltaAdjust = ee->ee_cckOfdmGainDelta;
2427 
2428 	/* make a local copy of desired powers as initial indices */
2429 	OS_MEMCPY(ratesIndex, ahp->ah_ratesArray, sizeof(ratesIndex));
2430 
2431 	/* fix only the CCK indices */
2432 	for (ii = 8; ii < 15; ii++) {
2433 		/* apply a gain_delta correction of -15 for CCK */
2434 		ratesIndex[ii] -= gainDeltaAdjust;
2435 
2436 		/* Now check for contention with all ofdm target powers */
2437 		jj = 0;
2438 		iter = 0;
2439 		/* indicates not all ofdm rates checked forcontention yet */
2440 		while (jj < 16) {
2441 			if (ratesIndex[ii] < 0)
2442 				ratesIndex[ii] = 0;
2443 			if (jj == 8) {		/* skip CCK rates */
2444 				jj = 15;
2445 				continue;
2446 			}
2447 			if (ratesIndex[ii] == ahp->ah_ratesArray[jj]) {
2448 				if (ahp->ah_ratesArray[jj] == 0)
2449 					ratesIndex[ii]++;
2450 				else if (iter > 50) {
2451 					/*
2452 					 * To avoid pathological case of of
2453 					 * dm target powers 0 and 0.5dBm
2454 					 */
2455 					ratesIndex[ii]++;
2456 				} else
2457 					ratesIndex[ii]--;
2458 				/* check with all rates again */
2459 				jj = 0;
2460 				iter++;
2461 			} else
2462 				jj++;
2463 		}
2464 		if (ratesIndex[ii] >= PWR_TABLE_SIZE)
2465 			ratesIndex[ii] = PWR_TABLE_SIZE -1;
2466 		cckIndex = ahp->ah_ratesArray[ii] - twiceOfdmCckDelta;
2467 		if (cckIndex < 0)
2468 			cckIndex = 0;
2469 
2470 		/*
2471 		 * Validate that the indexes for the powv are not
2472 		 * out of bounds.
2473 		 */
2474 		HALASSERT(cckIndex < PWR_TABLE_SIZE);
2475 		HALASSERT(ratesIndex[ii] < PWR_TABLE_SIZE);
2476 		ahp->ah_pcdacTable[ratesIndex[ii]] =
2477 			ahp->ah_pcdacTable[cckIndex];
2478 	}
2479 	/* Override rate per power table with new values */
2480 	for (ii = 8; ii < 15; ii++)
2481 		ahp->ah_ratesArray[ii] = ratesIndex[ii];
2482 #undef N
2483 }
2484 
2485 /*
2486  * Find the maximum conformance test limit for the given channel and CTL info
2487  */
2488 static uint16_t
2489 ar5212GetMaxEdgePower(uint16_t channel, const RD_EDGES_POWER *pRdEdgesPower)
2490 {
2491 	/* temp array for holding edge channels */
2492 	uint16_t tempChannelList[NUM_EDGES];
2493 	uint16_t clo, chi, twiceMaxEdgePower;
2494 	int i, numEdges;
2495 
2496 	/* Get the edge power */
2497 	for (i = 0; i < NUM_EDGES; i++) {
2498 		if (pRdEdgesPower[i].rdEdge == 0)
2499 			break;
2500 		tempChannelList[i] = pRdEdgesPower[i].rdEdge;
2501 	}
2502 	numEdges = i;
2503 
2504 	ar5212GetLowerUpperValues(channel, tempChannelList,
2505 		numEdges, &clo, &chi);
2506 	/* Get the index for the lower channel */
2507 	for (i = 0; i < numEdges && clo != tempChannelList[i]; i++)
2508 		;
2509 	/* Is lower channel ever outside the rdEdge? */
2510 	HALASSERT(i != numEdges);
2511 
2512 	if ((clo == chi && clo == channel) || (pRdEdgesPower[i].flag)) {
2513 		/*
2514 		 * If there's an exact channel match or an inband flag set
2515 		 * on the lower channel use the given rdEdgePower
2516 		 */
2517 		twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
2518 		HALASSERT(twiceMaxEdgePower > 0);
2519 	} else
2520 		twiceMaxEdgePower = MAX_RATE_POWER;
2521 	return twiceMaxEdgePower;
2522 }
2523 
2524 /*
2525  * Returns interpolated or the scaled up interpolated value
2526  */
2527 static uint16_t
2528 interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
2529 	uint16_t targetLeft, uint16_t targetRight)
2530 {
2531 	uint16_t rv;
2532 	int16_t lRatio;
2533 
2534 	/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
2535 	if ((targetLeft * targetRight) == 0)
2536 		return 0;
2537 
2538 	if (srcRight != srcLeft) {
2539 		/*
2540 		 * Note the ratio always need to be scaled,
2541 		 * since it will be a fraction.
2542 		 */
2543 		lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
2544 		if (lRatio < 0) {
2545 		    /* Return as Left target if value would be negative */
2546 		    rv = targetLeft;
2547 		} else if (lRatio > EEP_SCALE) {
2548 		    /* Return as Right target if Ratio is greater than 100% (SCALE) */
2549 		    rv = targetRight;
2550 		} else {
2551 			rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
2552 					targetLeft) / EEP_SCALE;
2553 		}
2554 	} else {
2555 		rv = targetLeft;
2556 	}
2557 	return rv;
2558 }
2559 
2560 /*
2561  * Return the four rates of target power for the given target power table
2562  * channel, and number of channels
2563  */
2564 static void
2565 ar5212GetTargetPowers(struct ath_hal *ah, const struct ieee80211_channel *chan,
2566 	const TRGT_POWER_INFO *powInfo,
2567 	uint16_t numChannels, TRGT_POWER_INFO *pNewPower)
2568 {
2569 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
2570 	/* temp array for holding target power channels */
2571 	uint16_t tempChannelList[NUM_TEST_FREQUENCIES];
2572 	uint16_t clo, chi, ixlo, ixhi;
2573 	int i;
2574 
2575 	/* Copy the target powers into the temp channel list */
2576 	for (i = 0; i < numChannels; i++)
2577 		tempChannelList[i] = powInfo[i].testChannel;
2578 
2579 	ar5212GetLowerUpperValues(freq, tempChannelList,
2580 		numChannels, &clo, &chi);
2581 
2582 	/* Get the indices for the channel */
2583 	ixlo = ixhi = 0;
2584 	for (i = 0; i < numChannels; i++) {
2585 		if (clo == tempChannelList[i]) {
2586 			ixlo = i;
2587 		}
2588 		if (chi == tempChannelList[i]) {
2589 			ixhi = i;
2590 			break;
2591 		}
2592 	}
2593 
2594 	/*
2595 	 * Get the lower and upper channels, target powers,
2596 	 * and interpolate between them.
2597 	 */
2598 	pNewPower->twicePwr6_24 = interpolate(freq, clo, chi,
2599 		powInfo[ixlo].twicePwr6_24, powInfo[ixhi].twicePwr6_24);
2600 	pNewPower->twicePwr36 = interpolate(freq, clo, chi,
2601 		powInfo[ixlo].twicePwr36, powInfo[ixhi].twicePwr36);
2602 	pNewPower->twicePwr48 = interpolate(freq, clo, chi,
2603 		powInfo[ixlo].twicePwr48, powInfo[ixhi].twicePwr48);
2604 	pNewPower->twicePwr54 = interpolate(freq, clo, chi,
2605 		powInfo[ixlo].twicePwr54, powInfo[ixhi].twicePwr54);
2606 }
2607 
2608 static uint32_t
2609 udiff(uint32_t u, uint32_t v)
2610 {
2611 	return (u >= v ? u - v : v - u);
2612 }
2613 
2614 /*
2615  * Search a list for a specified value v that is within
2616  * EEP_DELTA of the search values.  Return the closest
2617  * values in the list above and below the desired value.
2618  * EEP_DELTA is a factional value; everything is scaled
2619  * so only integer arithmetic is used.
2620  *
2621  * NB: the input list is assumed to be sorted in ascending order
2622  */
2623 void
2624 ar5212GetLowerUpperValues(uint16_t v, uint16_t *lp, uint16_t listSize,
2625                           uint16_t *vlo, uint16_t *vhi)
2626 {
2627 	uint32_t target = v * EEP_SCALE;
2628 	uint16_t *ep = lp+listSize;
2629 
2630 	/*
2631 	 * Check first and last elements for out-of-bounds conditions.
2632 	 */
2633 	if (target < (uint32_t)(lp[0] * EEP_SCALE - EEP_DELTA)) {
2634 		*vlo = *vhi = lp[0];
2635 		return;
2636 	}
2637 	if (target > (uint32_t)(ep[-1] * EEP_SCALE + EEP_DELTA)) {
2638 		*vlo = *vhi = ep[-1];
2639 		return;
2640 	}
2641 
2642 	/* look for value being near or between 2 values in list */
2643 	for (; lp < ep; lp++) {
2644 		/*
2645 		 * If value is close to the current value of the list
2646 		 * then target is not between values, it is one of the values
2647 		 */
2648 		if (udiff(lp[0] * EEP_SCALE, target) < EEP_DELTA) {
2649 			*vlo = *vhi = lp[0];
2650 			return;
2651 		}
2652 		/*
2653 		 * Look for value being between current value and next value
2654 		 * if so return these 2 values
2655 		 */
2656 		if (target < (uint32_t)(lp[1] * EEP_SCALE - EEP_DELTA)) {
2657 			*vlo = lp[0];
2658 			*vhi = lp[1];
2659 			return;
2660 		}
2661 	}
2662 	HALASSERT(AH_FALSE);		/* should not reach here */
2663 }
2664 
2665 /*
2666  * Perform analog "swizzling" of parameters into their location
2667  *
2668  * NB: used by RF backends
2669  */
2670 void
2671 ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, uint32_t numBits,
2672                      uint32_t firstBit, uint32_t column)
2673 {
2674 #define	MAX_ANALOG_START	319		/* XXX */
2675 	uint32_t tmp32, mask, arrayEntry, lastBit;
2676 	int32_t bitPosition, bitsLeft;
2677 
2678 	HALASSERT(column <= 3);
2679 	HALASSERT(numBits <= 32);
2680 	HALASSERT(firstBit + numBits <= MAX_ANALOG_START);
2681 
2682 	tmp32 = ath_hal_reverseBits(reg32, numBits);
2683 	arrayEntry = (firstBit - 1) / 8;
2684 	bitPosition = (firstBit - 1) % 8;
2685 	bitsLeft = numBits;
2686 	while (bitsLeft > 0) {
2687 		lastBit = (bitPosition + bitsLeft > 8) ?
2688 			8 : bitPosition + bitsLeft;
2689 		mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
2690 			(column * 8);
2691 		rfBuf[arrayEntry] &= ~mask;
2692 		rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
2693 			(column * 8)) & mask;
2694 		bitsLeft -= 8 - bitPosition;
2695 		tmp32 = tmp32 >> (8 - bitPosition);
2696 		bitPosition = 0;
2697 		arrayEntry++;
2698 	}
2699 #undef MAX_ANALOG_START
2700 }
2701 
2702 /*
2703  * Sets the rate to duration values in MAC - used for multi-
2704  * rate retry.
2705  * The rate duration table needs to cover all valid rate codes;
2706  * the 11g table covers all ofdm rates, while the 11b table
2707  * covers all cck rates => all valid rates get covered between
2708  * these two mode's ratetables!
2709  * But if we're turbo, the ofdm phy is replaced by the turbo phy
2710  * and cck is not valid with turbo => all rates get covered
2711  * by the turbo ratetable only
2712  */
2713 void
2714 ar5212SetRateDurationTable(struct ath_hal *ah,
2715 	const struct ieee80211_channel *chan)
2716 {
2717 	const HAL_RATE_TABLE *rt;
2718 	int i;
2719 
2720 	/* NB: band doesn't matter for 1/2 and 1/4 rate */
2721 	if (IEEE80211_IS_CHAN_HALF(chan)) {
2722 		rt = ar5212GetRateTable(ah, HAL_MODE_11A_HALF_RATE);
2723 	} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
2724 		rt = ar5212GetRateTable(ah, HAL_MODE_11A_QUARTER_RATE);
2725 	} else {
2726 		rt = ar5212GetRateTable(ah,
2727 			IEEE80211_IS_CHAN_TURBO(chan) ? HAL_MODE_TURBO : HAL_MODE_11G);
2728 	}
2729 
2730 	for (i = 0; i < rt->rateCount; ++i)
2731 		OS_REG_WRITE(ah,
2732 			AR_RATE_DURATION(rt->info[i].rateCode),
2733 			ath_hal_computetxtime(ah, rt,
2734 				WLAN_CTRL_FRAME_SIZE,
2735 				rt->info[i].controlRate, AH_FALSE));
2736 	if (!IEEE80211_IS_CHAN_TURBO(chan)) {
2737 		/* 11g Table is used to cover the CCK rates. */
2738 		rt = ar5212GetRateTable(ah, HAL_MODE_11G);
2739 		for (i = 0; i < rt->rateCount; ++i) {
2740 			uint32_t reg = AR_RATE_DURATION(rt->info[i].rateCode);
2741 
2742 			if (rt->info[i].phy != IEEE80211_T_CCK)
2743 				continue;
2744 
2745 			OS_REG_WRITE(ah, reg,
2746 				ath_hal_computetxtime(ah, rt,
2747 					WLAN_CTRL_FRAME_SIZE,
2748 					rt->info[i].controlRate, AH_FALSE));
2749 			/* cck rates have short preamble option also */
2750 			if (rt->info[i].shortPreamble) {
2751 				reg += rt->info[i].shortPreamble << 2;
2752 				OS_REG_WRITE(ah, reg,
2753 					ath_hal_computetxtime(ah, rt,
2754 						WLAN_CTRL_FRAME_SIZE,
2755 						rt->info[i].controlRate,
2756 						AH_TRUE));
2757 			}
2758 		}
2759 	}
2760 }
2761 
2762 /* Adjust various register settings based on half/quarter rate clock setting.
2763  * This includes: +USEC, TX/RX latency,
2764  *                + IFS params: slot, eifs, misc etc.
2765  */
2766 void
2767 ar5212SetIFSTiming(struct ath_hal *ah, const struct ieee80211_channel *chan)
2768 {
2769 	uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec;
2770 
2771 	HALASSERT(IEEE80211_IS_CHAN_HALF(chan) ||
2772 		  IEEE80211_IS_CHAN_QUARTER(chan));
2773 
2774 	refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32;
2775 	if (IEEE80211_IS_CHAN_HALF(chan)) {
2776 		slot = IFS_SLOT_HALF_RATE;
2777 		rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
2778 		txLat = TX_HALF_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
2779 		usec = HALF_RATE_USEC;
2780 		eifs = IFS_EIFS_HALF_RATE;
2781 		init_usec = INIT_USEC >> 1;
2782 	} else { /* quarter rate */
2783 		slot = IFS_SLOT_QUARTER_RATE;
2784 		rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
2785 		txLat = TX_QUARTER_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
2786 		usec = QUARTER_RATE_USEC;
2787 		eifs = IFS_EIFS_QUARTER_RATE;
2788 		init_usec = INIT_USEC >> 2;
2789 	}
2790 
2791 	OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat));
2792 	OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
2793 	OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
2794 	OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC,
2795 				AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec);
2796 }
2797