xref: /freebsd/sys/dev/ath/ath_hal/ar5212/ar5112.c (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  * $FreeBSD$
20  */
21 #include "opt_ah.h"
22 
23 #include "ah.h"
24 #include "ah_internal.h"
25 
26 #include "ah_eeprom_v3.h"
27 
28 #include "ar5212/ar5212.h"
29 #include "ar5212/ar5212reg.h"
30 #include "ar5212/ar5212phy.h"
31 
32 #define AH_5212_5112
33 #include "ar5212/ar5212.ini"
34 
35 #define	N(a)	(sizeof(a)/sizeof(a[0]))
36 
37 struct ar5112State {
38 	RF_HAL_FUNCS	base;		/* public state, must be first */
39 	uint16_t	pcdacTable[PWR_TABLE_SIZE];
40 
41 	uint32_t	Bank1Data[N(ar5212Bank1_5112)];
42 	uint32_t	Bank2Data[N(ar5212Bank2_5112)];
43 	uint32_t	Bank3Data[N(ar5212Bank3_5112)];
44 	uint32_t	Bank6Data[N(ar5212Bank6_5112)];
45 	uint32_t	Bank7Data[N(ar5212Bank7_5112)];
46 };
47 #define	AR5112(ah)	((struct ar5112State *) AH5212(ah)->ah_rfHal)
48 
49 static	void ar5212GetLowerUpperIndex(uint16_t v,
50 		uint16_t *lp, uint16_t listSize,
51 		uint32_t *vlo, uint32_t *vhi);
52 static HAL_BOOL getFullPwrTable(uint16_t numPcdacs, uint16_t *pcdacs,
53 		int16_t *power, int16_t maxPower, int16_t *retVals);
54 static int16_t getPminAndPcdacTableFromPowerTable(int16_t *pwrTableT4,
55 		uint16_t retVals[]);
56 static int16_t getPminAndPcdacTableFromTwoPowerTables(int16_t *pwrTableLXpdT4,
57 		int16_t *pwrTableHXpdT4, uint16_t retVals[], int16_t *pMid);
58 static int16_t interpolate_signed(uint16_t target,
59 		uint16_t srcLeft, uint16_t srcRight,
60 		int16_t targetLeft, int16_t targetRight);
61 
62 extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
63 		uint32_t numBits, uint32_t firstBit, uint32_t column);
64 
65 static void
66 ar5112WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
67 	int writes)
68 {
69 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5112, modesIndex, writes);
70 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_5112, 1, writes);
71 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5112, freqIndex, writes);
72 }
73 
74 /*
75  * Take the MHz channel value and set the Channel value
76  *
77  * ASSUMES: Writes enabled to analog bus
78  */
79 static HAL_BOOL
80 ar5112SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
81 {
82 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
83 	uint32_t channelSel  = 0;
84 	uint32_t bModeSynth  = 0;
85 	uint32_t aModeRefSel = 0;
86 	uint32_t reg32       = 0;
87 
88 	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
89 
90 	if (freq < 4800) {
91 		uint32_t txctl;
92 
93 		if (((freq - 2192) % 5) == 0) {
94 			channelSel = ((freq - 672) * 2 - 3040)/10;
95 			bModeSynth = 0;
96 		} else if (((freq - 2224) % 5) == 0) {
97 			channelSel = ((freq - 704) * 2 - 3040) / 10;
98 			bModeSynth = 1;
99 		} else {
100 			HALDEBUG(ah, HAL_DEBUG_ANY,
101 			    "%s: invalid channel %u MHz\n",
102 			    __func__, freq);
103 			return AH_FALSE;
104 		}
105 
106 		channelSel = (channelSel << 2) & 0xff;
107 		channelSel = ath_hal_reverseBits(channelSel, 8);
108 
109 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
110 		if (freq == 2484) {
111 			/* Enable channel spreading for channel 14 */
112 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
113 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
114 		} else {
115 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
116 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
117 		}
118 	} else if (((freq % 5) == 2) && (freq <= 5435)) {
119 		freq = freq - 2; /* Align to even 5MHz raster */
120 		channelSel = ath_hal_reverseBits(
121 			(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
122             	aModeRefSel = ath_hal_reverseBits(0, 2);
123 	} else if ((freq % 20) == 0 && freq >= 5120) {
124 		channelSel = ath_hal_reverseBits(
125 			((freq - 4800) / 20 << 2), 8);
126 		aModeRefSel = ath_hal_reverseBits(3, 2);
127 	} else if ((freq % 10) == 0) {
128 		channelSel = ath_hal_reverseBits(
129 			((freq - 4800) / 10 << 1), 8);
130 		aModeRefSel = ath_hal_reverseBits(2, 2);
131 	} else if ((freq % 5) == 0) {
132 		channelSel = ath_hal_reverseBits(
133 			(freq - 4800) / 5, 8);
134 		aModeRefSel = ath_hal_reverseBits(1, 2);
135 	} else {
136 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
137 		    __func__, freq);
138 		return AH_FALSE;
139 	}
140 
141 	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
142 			(1 << 12) | 0x1;
143 	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
144 
145 	reg32 >>= 8;
146 	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
147 
148 	AH_PRIVATE(ah)->ah_curchan = chan;
149 	return AH_TRUE;
150 }
151 
152 /*
153  * Return a reference to the requested RF Bank.
154  */
155 static uint32_t *
156 ar5112GetRfBank(struct ath_hal *ah, int bank)
157 {
158 	struct ar5112State *priv = AR5112(ah);
159 
160 	HALASSERT(priv != AH_NULL);
161 	switch (bank) {
162 	case 1: return priv->Bank1Data;
163 	case 2: return priv->Bank2Data;
164 	case 3: return priv->Bank3Data;
165 	case 6: return priv->Bank6Data;
166 	case 7: return priv->Bank7Data;
167 	}
168 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
169 	    __func__, bank);
170 	return AH_NULL;
171 }
172 
173 /*
174  * Reads EEPROM header info from device structure and programs
175  * all rf registers
176  *
177  * REQUIRES: Access to the analog rf device
178  */
179 static HAL_BOOL
180 ar5112SetRfRegs(struct ath_hal *ah,
181 	const struct ieee80211_channel *chan,
182 	uint16_t modesIndex, uint16_t *rfXpdGain)
183 {
184 #define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
185 	int i;								    \
186 	for (i = 0; i < N(ar5212Bank##_ix##_5112); i++)			    \
187 		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5112[i][_col];\
188 } while (0)
189 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
190 	struct ath_hal_5212 *ahp = AH5212(ah);
191 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
192 	uint16_t rfXpdSel, gainI;
193 	uint16_t ob5GHz = 0, db5GHz = 0;
194 	uint16_t ob2GHz = 0, db2GHz = 0;
195 	struct ar5112State *priv = AR5112(ah);
196 	GAIN_VALUES *gv = &ahp->ah_gainValues;
197 	int regWrites = 0;
198 
199 	HALASSERT(priv);
200 
201 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
202 	    __func__, chan->ic_freq, chan->ic_flags, modesIndex);
203 
204 	/* Setup rf parameters */
205 	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
206 	case IEEE80211_CHAN_A:
207 		if (freq > 4000 && freq < 5260) {
208 			ob5GHz = ee->ee_ob1;
209 			db5GHz = ee->ee_db1;
210 		} else if (freq >= 5260 && freq < 5500) {
211 			ob5GHz = ee->ee_ob2;
212 			db5GHz = ee->ee_db2;
213 		} else if (freq >= 5500 && freq < 5725) {
214 			ob5GHz = ee->ee_ob3;
215 			db5GHz = ee->ee_db3;
216 		} else if (freq >= 5725) {
217 			ob5GHz = ee->ee_ob4;
218 			db5GHz = ee->ee_db4;
219 		} else {
220 			/* XXX else */
221 		}
222 		rfXpdSel = ee->ee_xpd[headerInfo11A];
223 		gainI = ee->ee_gainI[headerInfo11A];
224 		break;
225 	case IEEE80211_CHAN_B:
226 		ob2GHz = ee->ee_ob2GHz[0];
227 		db2GHz = ee->ee_db2GHz[0];
228 		rfXpdSel = ee->ee_xpd[headerInfo11B];
229 		gainI = ee->ee_gainI[headerInfo11B];
230 		break;
231 	case IEEE80211_CHAN_G:
232 	case IEEE80211_CHAN_PUREG:	/* NB: really 108G */
233 		ob2GHz = ee->ee_ob2GHz[1];
234 		db2GHz = ee->ee_ob2GHz[1];
235 		rfXpdSel = ee->ee_xpd[headerInfo11G];
236 		gainI = ee->ee_gainI[headerInfo11G];
237 		break;
238 	default:
239 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
240 		    __func__, chan->ic_flags);
241 		return AH_FALSE;
242 	}
243 
244 	/* Setup Bank 1 Write */
245 	RF_BANK_SETUP(priv, 1, 1);
246 
247 	/* Setup Bank 2 Write */
248 	RF_BANK_SETUP(priv, 2, modesIndex);
249 
250 	/* Setup Bank 3 Write */
251 	RF_BANK_SETUP(priv, 3, modesIndex);
252 
253 	/* Setup Bank 6 Write */
254 	RF_BANK_SETUP(priv, 6, modesIndex);
255 
256 	ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdSel,     1, 302, 0);
257 
258 	ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdGain[0], 2, 270, 0);
259 	ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdGain[1], 2, 257, 0);
260 
261 	if (IEEE80211_IS_CHAN_OFDM(chan)) {
262 		ar5212ModifyRfBuffer(priv->Bank6Data,
263 			gv->currStep->paramVal[GP_PWD_138], 1, 168, 3);
264 		ar5212ModifyRfBuffer(priv->Bank6Data,
265 			gv->currStep->paramVal[GP_PWD_137], 1, 169, 3);
266 		ar5212ModifyRfBuffer(priv->Bank6Data,
267 			gv->currStep->paramVal[GP_PWD_136], 1, 170, 3);
268 		ar5212ModifyRfBuffer(priv->Bank6Data,
269 			gv->currStep->paramVal[GP_PWD_132], 1, 174, 3);
270 		ar5212ModifyRfBuffer(priv->Bank6Data,
271 			gv->currStep->paramVal[GP_PWD_131], 1, 175, 3);
272 		ar5212ModifyRfBuffer(priv->Bank6Data,
273 			gv->currStep->paramVal[GP_PWD_130], 1, 176, 3);
274 	}
275 
276 	/* Only the 5 or 2 GHz OB/DB need to be set for a mode */
277 	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
278 		ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 287, 0);
279 		ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 290, 0);
280 	} else {
281 		ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 279, 0);
282 		ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 282, 0);
283 	}
284 
285 	/* Lower synth voltage for X112 Rev 2.0 only */
286 	if (IS_RADX112_REV2(ah)) {
287 		/* Non-Reversed analyg registers - so values are pre-reversed */
288 		ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 90, 2);
289 		ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 92, 2);
290 		ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 94, 2);
291 		ar5212ModifyRfBuffer(priv->Bank6Data, 2, 1, 254, 2);
292 	}
293 
294     /* Decrease Power Consumption for 5312/5213 and up */
295     if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {
296         ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 281, 1);
297         ar5212ModifyRfBuffer(priv->Bank6Data, 1, 2, 1, 3);
298         ar5212ModifyRfBuffer(priv->Bank6Data, 1, 2, 3, 3);
299         ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 139, 3);
300         ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 140, 3);
301     }
302 
303 	/* Setup Bank 7 Setup */
304 	RF_BANK_SETUP(priv, 7, modesIndex);
305 	if (IEEE80211_IS_CHAN_OFDM(chan))
306 		ar5212ModifyRfBuffer(priv->Bank7Data,
307 			gv->currStep->paramVal[GP_MIXGAIN_OVR], 2, 37, 0);
308 
309 	ar5212ModifyRfBuffer(priv->Bank7Data, gainI, 6, 14, 0);
310 
311 	/* Adjust params for Derby TX power control */
312 	if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
313         	uint32_t	rfDelay, rfPeriod;
314 
315         	rfDelay = 0xf;
316         	rfPeriod = (IEEE80211_IS_CHAN_HALF(chan)) ?  0x8 : 0xf;
317         	ar5212ModifyRfBuffer(priv->Bank7Data, rfDelay, 4, 58, 0);
318         	ar5212ModifyRfBuffer(priv->Bank7Data, rfPeriod, 4, 70, 0);
319 	}
320 
321 #ifdef notyet
322 	/* Analog registers are setup - EAR can modify */
323 	if (ar5212IsEarEngaged(pDev, chan))
324 		uint32_t modifier;
325 		ar5212EarModify(pDev, EAR_LC_RF_WRITE, chan, &modifier);
326 #endif
327 	/* Write Analog registers */
328 	HAL_INI_WRITE_BANK(ah, ar5212Bank1_5112, priv->Bank1Data, regWrites);
329 	HAL_INI_WRITE_BANK(ah, ar5212Bank2_5112, priv->Bank2Data, regWrites);
330 	HAL_INI_WRITE_BANK(ah, ar5212Bank3_5112, priv->Bank3Data, regWrites);
331 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_5112, priv->Bank6Data, regWrites);
332 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_5112, priv->Bank7Data, regWrites);
333 
334 	/* Now that we have reprogrammed rfgain value, clear the flag. */
335 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
336 	return AH_TRUE;
337 #undef	RF_BANK_SETUP
338 }
339 
340 /*
341  * Read the transmit power levels from the structures taken from EEPROM
342  * Interpolate read transmit power values for this channel
343  * Organize the transmit power values into a table for writing into the hardware
344  */
345 static HAL_BOOL
346 ar5112SetPowerTable(struct ath_hal *ah,
347 	int16_t *pPowerMin, int16_t *pPowerMax,
348 	const struct ieee80211_channel *chan,
349 	uint16_t *rfXpdGain)
350 {
351 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
352 	struct ath_hal_5212 *ahp = AH5212(ah);
353 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
354 	uint32_t numXpdGain = IS_RADX112_REV2(ah) ? 2 : 1;
355 	uint32_t    xpdGainMask = 0;
356 	int16_t     powerMid, *pPowerMid = &powerMid;
357 
358 	const EXPN_DATA_PER_CHANNEL_5112 *pRawCh;
359 	const EEPROM_POWER_EXPN_5112     *pPowerExpn = AH_NULL;
360 
361 	uint32_t    ii, jj, kk;
362 	int16_t     minPwr_t4, maxPwr_t4, Pmin, Pmid;
363 
364 	uint32_t    chan_idx_L = 0, chan_idx_R = 0;
365 	uint16_t    chan_L, chan_R;
366 
367 	int16_t     pwr_table0[64];
368 	int16_t     pwr_table1[64];
369 	uint16_t    pcdacs[10];
370 	int16_t     powers[10];
371 	uint16_t    numPcd;
372 	int16_t     powTableLXPD[2][64];
373 	int16_t     powTableHXPD[2][64];
374 	int16_t     tmpPowerTable[64];
375 	uint16_t    xgainList[2];
376 	uint16_t    xpdMask;
377 
378 	switch (chan->ic_flags & IEEE80211_CHAN_ALLTURBOFULL) {
379 	case IEEE80211_CHAN_A:
380 	case IEEE80211_CHAN_ST:
381 		pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11A];
382 		xpdGainMask = ee->ee_xgain[headerInfo11A];
383 		break;
384 	case IEEE80211_CHAN_B:
385 		pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11B];
386 		xpdGainMask = ee->ee_xgain[headerInfo11B];
387 		break;
388 	case IEEE80211_CHAN_G:
389 	case IEEE80211_CHAN_108G:
390 		pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11G];
391 		xpdGainMask = ee->ee_xgain[headerInfo11G];
392 		break;
393 	default:
394 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown channel flags 0x%x\n",
395 		    __func__, chan->ic_flags);
396 		return AH_FALSE;
397 	}
398 
399 	if ((xpdGainMask & pPowerExpn->xpdMask) < 1) {
400 		HALDEBUG(ah, HAL_DEBUG_ANY,
401 		    "%s: desired xpdGainMask 0x%x not supported by "
402 		    "calibrated xpdMask 0x%x\n", __func__,
403 		    xpdGainMask, pPowerExpn->xpdMask);
404 		return AH_FALSE;
405 	}
406 
407 	maxPwr_t4 = (int16_t)(2*(*pPowerMax));	/* pwr_t2 -> pwr_t4 */
408 	minPwr_t4 = (int16_t)(2*(*pPowerMin));	/* pwr_t2 -> pwr_t4 */
409 
410 	xgainList[0] = 0xDEAD;
411 	xgainList[1] = 0xDEAD;
412 
413 	kk = 0;
414 	xpdMask = pPowerExpn->xpdMask;
415 	for (jj = 0; jj < NUM_XPD_PER_CHANNEL; jj++) {
416 		if (((xpdMask >> jj) & 1) > 0) {
417 			if (kk > 1) {
418 				HALDEBUG(ah, HAL_DEBUG_ANY,
419 				    "A maximum of 2 xpdGains supported"
420 				    "in pExpnPower data\n");
421 				return AH_FALSE;
422 			}
423 			xgainList[kk++] = (uint16_t)jj;
424 		}
425 	}
426 
427 	ar5212GetLowerUpperIndex(freq, &pPowerExpn->pChannels[0],
428 		pPowerExpn->numChannels, &chan_idx_L, &chan_idx_R);
429 
430 	kk = 0;
431 	for (ii = chan_idx_L; ii <= chan_idx_R; ii++) {
432 		pRawCh = &(pPowerExpn->pDataPerChannel[ii]);
433 		if (xgainList[1] == 0xDEAD) {
434 			jj = xgainList[0];
435 			numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
436 			OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],
437 				numPcd * sizeof(uint16_t));
438 			OS_MEMCPY(&powers[0], &pRawCh->pDataPerXPD[jj].pwr_t4[0],
439 				numPcd * sizeof(int16_t));
440 			if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],
441 				pRawCh->maxPower_t4, &tmpPowerTable[0])) {
442 				return AH_FALSE;
443 			}
444 			OS_MEMCPY(&powTableLXPD[kk][0], &tmpPowerTable[0],
445 				64*sizeof(int16_t));
446 		} else {
447 			jj = xgainList[0];
448 			numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
449 			OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],
450 				numPcd*sizeof(uint16_t));
451 			OS_MEMCPY(&powers[0],
452 				&pRawCh->pDataPerXPD[jj].pwr_t4[0],
453 				numPcd*sizeof(int16_t));
454 			if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],
455 				pRawCh->maxPower_t4, &tmpPowerTable[0])) {
456 				return AH_FALSE;
457 			}
458 			OS_MEMCPY(&powTableLXPD[kk][0], &tmpPowerTable[0],
459 				64 * sizeof(int16_t));
460 
461 			jj = xgainList[1];
462 			numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
463 			OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],
464 				numPcd * sizeof(uint16_t));
465 			OS_MEMCPY(&powers[0],
466 				&pRawCh->pDataPerXPD[jj].pwr_t4[0],
467 				numPcd * sizeof(int16_t));
468 			if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],
469 				pRawCh->maxPower_t4, &tmpPowerTable[0])) {
470 				return AH_FALSE;
471 			}
472 			OS_MEMCPY(&powTableHXPD[kk][0], &tmpPowerTable[0],
473 				64 * sizeof(int16_t));
474 		}
475 		kk++;
476 	}
477 
478 	chan_L = pPowerExpn->pChannels[chan_idx_L];
479 	chan_R = pPowerExpn->pChannels[chan_idx_R];
480 	kk = chan_idx_R - chan_idx_L;
481 
482 	if (xgainList[1] == 0xDEAD) {
483 		for (jj = 0; jj < 64; jj++) {
484 			pwr_table0[jj] = interpolate_signed(
485 				freq, chan_L, chan_R,
486 				powTableLXPD[0][jj], powTableLXPD[kk][jj]);
487 		}
488 		Pmin = getPminAndPcdacTableFromPowerTable(&pwr_table0[0],
489 				ahp->ah_pcdacTable);
490 		*pPowerMin = (int16_t) (Pmin / 2);
491 		*pPowerMid = (int16_t) (pwr_table0[63] / 2);
492 		*pPowerMax = (int16_t) (pwr_table0[63] / 2);
493 		rfXpdGain[0] = xgainList[0];
494 		rfXpdGain[1] = rfXpdGain[0];
495 	} else {
496 		for (jj = 0; jj < 64; jj++) {
497 			pwr_table0[jj] = interpolate_signed(
498 				freq, chan_L, chan_R,
499 				powTableLXPD[0][jj], powTableLXPD[kk][jj]);
500 			pwr_table1[jj] = interpolate_signed(
501 				freq, chan_L, chan_R,
502 				powTableHXPD[0][jj], powTableHXPD[kk][jj]);
503 		}
504 		if (numXpdGain == 2) {
505 			Pmin = getPminAndPcdacTableFromTwoPowerTables(
506 				&pwr_table0[0], &pwr_table1[0],
507 				ahp->ah_pcdacTable, &Pmid);
508 			*pPowerMin = (int16_t) (Pmin / 2);
509 			*pPowerMid = (int16_t) (Pmid / 2);
510 			*pPowerMax = (int16_t) (pwr_table0[63] / 2);
511 			rfXpdGain[0] = xgainList[0];
512 			rfXpdGain[1] = xgainList[1];
513 		} else if (minPwr_t4 <= pwr_table1[63] &&
514 			   maxPwr_t4 <= pwr_table1[63]) {
515 			Pmin = getPminAndPcdacTableFromPowerTable(
516 				&pwr_table1[0], ahp->ah_pcdacTable);
517 			rfXpdGain[0] = xgainList[1];
518 			rfXpdGain[1] = rfXpdGain[0];
519 			*pPowerMin = (int16_t) (Pmin / 2);
520 			*pPowerMid = (int16_t) (pwr_table1[63] / 2);
521 			*pPowerMax = (int16_t) (pwr_table1[63] / 2);
522 		} else {
523 			Pmin = getPminAndPcdacTableFromPowerTable(
524 				&pwr_table0[0], ahp->ah_pcdacTable);
525 			rfXpdGain[0] = xgainList[0];
526 			rfXpdGain[1] = rfXpdGain[0];
527 			*pPowerMin = (int16_t) (Pmin/2);
528 			*pPowerMid = (int16_t) (pwr_table0[63] / 2);
529 			*pPowerMax = (int16_t) (pwr_table0[63] / 2);
530 		}
531 	}
532 
533 	/*
534 	 * Move 5112 rates to match power tables where the max
535 	 * power table entry corresponds with maxPower.
536 	 */
537 	HALASSERT(*pPowerMax <= PCDAC_STOP);
538 	ahp->ah_txPowerIndexOffset = PCDAC_STOP - *pPowerMax;
539 
540 	return AH_TRUE;
541 }
542 
543 /*
544  * Returns interpolated or the scaled up interpolated value
545  */
546 static int16_t
547 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
548 	int16_t targetLeft, int16_t targetRight)
549 {
550 	int16_t rv;
551 
552 	if (srcRight != srcLeft) {
553 		rv = ((target - srcLeft)*targetRight +
554 		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
555 	} else {
556 		rv = targetLeft;
557 	}
558 	return rv;
559 }
560 
561 /*
562  * Return indices surrounding the value in sorted integer lists.
563  *
564  * NB: the input list is assumed to be sorted in ascending order
565  */
566 static void
567 ar5212GetLowerUpperIndex(uint16_t v, uint16_t *lp, uint16_t listSize,
568                           uint32_t *vlo, uint32_t *vhi)
569 {
570 	uint32_t target = v;
571 	uint16_t *ep = lp+listSize;
572 	uint16_t *tp;
573 
574 	/*
575 	 * Check first and last elements for out-of-bounds conditions.
576 	 */
577 	if (target < lp[0]) {
578 		*vlo = *vhi = 0;
579 		return;
580 	}
581 	if (target >= ep[-1]) {
582 		*vlo = *vhi = listSize - 1;
583 		return;
584 	}
585 
586 	/* look for value being near or between 2 values in list */
587 	for (tp = lp; tp < ep; tp++) {
588 		/*
589 		 * If value is close to the current value of the list
590 		 * then target is not between values, it is one of the values
591 		 */
592 		if (*tp == target) {
593 			*vlo = *vhi = tp - lp;
594 			return;
595 		}
596 		/*
597 		 * Look for value being between current value and next value
598 		 * if so return these 2 values
599 		 */
600 		if (target < tp[1]) {
601 			*vlo = tp - lp;
602 			*vhi = *vlo + 1;
603 			return;
604 		}
605 	}
606 }
607 
608 static HAL_BOOL
609 getFullPwrTable(uint16_t numPcdacs, uint16_t *pcdacs, int16_t *power, int16_t maxPower, int16_t *retVals)
610 {
611 	uint16_t    ii;
612 	uint16_t    idxL = 0;
613 	uint16_t    idxR = 1;
614 
615 	if (numPcdacs < 2) {
616 		HALDEBUG(AH_NULL, HAL_DEBUG_ANY,
617 		     "%s: at least 2 pcdac values needed [%d]\n",
618 		     __func__, numPcdacs);
619 		return AH_FALSE;
620 	}
621 	for (ii = 0; ii < 64; ii++) {
622 		if (ii>pcdacs[idxR] && idxR < numPcdacs-1) {
623 			idxL++;
624 			idxR++;
625 		}
626 		retVals[ii] = interpolate_signed(ii,
627 			pcdacs[idxL], pcdacs[idxR], power[idxL], power[idxR]);
628 		if (retVals[ii] >= maxPower) {
629 			while (ii < 64)
630 				retVals[ii++] = maxPower;
631 		}
632 	}
633 	return AH_TRUE;
634 }
635 
636 /*
637  * Takes a single calibration curve and creates a power table.
638  * Adjusts the new power table so the max power is relative
639  * to the maximum index in the power table.
640  *
641  * WARNING: rates must be adjusted for this relative power table
642  */
643 static int16_t
644 getPminAndPcdacTableFromPowerTable(int16_t *pwrTableT4, uint16_t retVals[])
645 {
646     int16_t ii, jj, jjMax;
647     int16_t pMin, currPower, pMax;
648 
649     /* If the spread is > 31.5dB, keep the upper 31.5dB range */
650     if ((pwrTableT4[63] - pwrTableT4[0]) > 126) {
651         pMin = pwrTableT4[63] - 126;
652     } else {
653         pMin = pwrTableT4[0];
654     }
655 
656     pMax = pwrTableT4[63];
657     jjMax = 63;
658 
659     /* Search for highest pcdac 0.25dB below maxPower */
660     while ((pwrTableT4[jjMax] > (pMax - 1) ) && (jjMax >= 0)) {
661         jjMax--;
662     }
663 
664     jj = jjMax;
665     currPower = pMax;
666     for (ii = 63; ii >= 0; ii--) {
667         while ((jj < 64) && (jj > 0) && (pwrTableT4[jj] >= currPower)) {
668             jj--;
669         }
670         if (jj == 0) {
671             while (ii >= 0) {
672                 retVals[ii] = retVals[ii + 1];
673                 ii--;
674             }
675             break;
676         }
677         retVals[ii] = jj;
678         currPower -= 2;  // corresponds to a 0.5dB step
679     }
680     return pMin;
681 }
682 
683 /*
684  * Combines the XPD curves from two calibration sets into a single
685  * power table and adjusts the power table so the max power is relative
686  * to the maximum index in the power table
687  *
688  * WARNING: rates must be adjusted for this relative power table
689  */
690 static int16_t
691 getPminAndPcdacTableFromTwoPowerTables(int16_t *pwrTableLXpdT4,
692 	int16_t *pwrTableHXpdT4, uint16_t retVals[], int16_t *pMid)
693 {
694     int16_t     ii, jj, jjMax;
695     int16_t     pMin, pMax, currPower;
696     int16_t     *pwrTableT4;
697     uint16_t    msbFlag = 0x40;  // turns on the 7th bit of the pcdac
698 
699     /* If the spread is > 31.5dB, keep the upper 31.5dB range */
700     if ((pwrTableLXpdT4[63] - pwrTableHXpdT4[0]) > 126) {
701         pMin = pwrTableLXpdT4[63] - 126;
702     } else {
703         pMin = pwrTableHXpdT4[0];
704     }
705 
706     pMax = pwrTableLXpdT4[63];
707     jjMax = 63;
708     /* Search for highest pcdac 0.25dB below maxPower */
709     while ((pwrTableLXpdT4[jjMax] > (pMax - 1) ) && (jjMax >= 0)){
710         jjMax--;
711     }
712 
713     *pMid = pwrTableHXpdT4[63];
714     jj = jjMax;
715     ii = 63;
716     currPower = pMax;
717     pwrTableT4 = &(pwrTableLXpdT4[0]);
718     while (ii >= 0) {
719         if ((currPower <= *pMid) || ( (jj == 0) && (msbFlag == 0x40))){
720             msbFlag = 0x00;
721             pwrTableT4 = &(pwrTableHXpdT4[0]);
722             jj = 63;
723         }
724         while ((jj > 0) && (pwrTableT4[jj] >= currPower)) {
725             jj--;
726         }
727         if ((jj == 0) && (msbFlag == 0x00)) {
728             while (ii >= 0) {
729                 retVals[ii] = retVals[ii+1];
730                 ii--;
731             }
732             break;
733         }
734         retVals[ii] = jj | msbFlag;
735         currPower -= 2;  // corresponds to a 0.5dB step
736         ii--;
737     }
738     return pMin;
739 }
740 
741 static int16_t
742 ar5112GetMinPower(struct ath_hal *ah, const EXPN_DATA_PER_CHANNEL_5112 *data)
743 {
744 	int i, minIndex;
745 	int16_t minGain,minPwr,minPcdac,retVal;
746 
747 	/* Assume NUM_POINTS_XPD0 > 0 */
748 	minGain = data->pDataPerXPD[0].xpd_gain;
749 	for (minIndex=0,i=1; i<NUM_XPD_PER_CHANNEL; i++) {
750 		if (data->pDataPerXPD[i].xpd_gain < minGain) {
751 			minIndex = i;
752 			minGain = data->pDataPerXPD[i].xpd_gain;
753 		}
754 	}
755 	minPwr = data->pDataPerXPD[minIndex].pwr_t4[0];
756 	minPcdac = data->pDataPerXPD[minIndex].pcdac[0];
757 	for (i=1; i<NUM_POINTS_XPD0; i++) {
758 		if (data->pDataPerXPD[minIndex].pwr_t4[i] < minPwr) {
759 			minPwr = data->pDataPerXPD[minIndex].pwr_t4[i];
760 			minPcdac = data->pDataPerXPD[minIndex].pcdac[i];
761 		}
762 	}
763 	retVal = minPwr - (minPcdac*2);
764 	return(retVal);
765 }
766 
767 static HAL_BOOL
768 ar5112GetChannelMaxMinPower(struct ath_hal *ah,
769 	const struct ieee80211_channel *chan,
770 	int16_t *maxPow, int16_t *minPow)
771 {
772 	uint16_t freq = chan->ic_freq;		/* NB: never mapped */
773 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
774 	int numChannels=0,i,last;
775 	int totalD, totalF,totalMin;
776 	const EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL;
777 	const EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL;
778 
779 	*maxPow = 0;
780 	if (IEEE80211_IS_CHAN_A(chan)) {
781 		powerArray = ee->ee_modePowerArray5112;
782 		data = powerArray[headerInfo11A].pDataPerChannel;
783 		numChannels = powerArray[headerInfo11A].numChannels;
784 	} else if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan)) {
785 		/* XXX - is this correct? Should we also use the same power for turbo G? */
786 		powerArray = ee->ee_modePowerArray5112;
787 		data = powerArray[headerInfo11G].pDataPerChannel;
788 		numChannels = powerArray[headerInfo11G].numChannels;
789 	} else if (IEEE80211_IS_CHAN_B(chan)) {
790 		powerArray = ee->ee_modePowerArray5112;
791 		data = powerArray[headerInfo11B].pDataPerChannel;
792 		numChannels = powerArray[headerInfo11B].numChannels;
793 	} else {
794 		return (AH_TRUE);
795 	}
796 	/* Make sure the channel is in the range of the TP values
797 	 *  (freq piers)
798 	 */
799 	if (numChannels < 1)
800 		return(AH_FALSE);
801 
802 	if ((freq < data[0].channelValue) ||
803 	    (freq > data[numChannels-1].channelValue)) {
804 		if (freq < data[0].channelValue) {
805 			*maxPow = data[0].maxPower_t4;
806 			*minPow = ar5112GetMinPower(ah, &data[0]);
807 			return(AH_TRUE);
808 		} else {
809 			*maxPow = data[numChannels - 1].maxPower_t4;
810 			*minPow = ar5112GetMinPower(ah, &data[numChannels - 1]);
811 			return(AH_TRUE);
812 		}
813 	}
814 
815 	/* Linearly interpolate the power value now */
816 	for (last=0,i=0;
817 	     (i<numChannels) && (freq > data[i].channelValue);
818 	     last=i++);
819 	totalD = data[i].channelValue - data[last].channelValue;
820 	if (totalD > 0) {
821 		totalF = data[i].maxPower_t4 - data[last].maxPower_t4;
822 		*maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD);
823 
824 		totalMin = ar5112GetMinPower(ah,&data[i]) - ar5112GetMinPower(ah, &data[last]);
825 		*minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) + ar5112GetMinPower(ah, &data[last])*totalD)/totalD);
826 		return (AH_TRUE);
827 	} else {
828 		if (freq == data[i].channelValue) {
829 			*maxPow = data[i].maxPower_t4;
830 			*minPow = ar5112GetMinPower(ah, &data[i]);
831 			return(AH_TRUE);
832 		} else
833 			return(AH_FALSE);
834 	}
835 }
836 
837 /*
838  * Free memory for analog bank scratch buffers
839  */
840 static void
841 ar5112RfDetach(struct ath_hal *ah)
842 {
843 	struct ath_hal_5212 *ahp = AH5212(ah);
844 
845 	HALASSERT(ahp->ah_rfHal != AH_NULL);
846 	ath_hal_free(ahp->ah_rfHal);
847 	ahp->ah_rfHal = AH_NULL;
848 }
849 
850 /*
851  * Allocate memory for analog bank scratch buffers
852  * Scratch Buffer will be reinitialized every reset so no need to zero now
853  */
854 static HAL_BOOL
855 ar5112RfAttach(struct ath_hal *ah, HAL_STATUS *status)
856 {
857 	struct ath_hal_5212 *ahp = AH5212(ah);
858 	struct ar5112State *priv;
859 
860 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
861 
862 	HALASSERT(ahp->ah_rfHal == AH_NULL);
863 	priv = ath_hal_malloc(sizeof(struct ar5112State));
864 	if (priv == AH_NULL) {
865 		HALDEBUG(ah, HAL_DEBUG_ANY,
866 		    "%s: cannot allocate private state\n", __func__);
867 		*status = HAL_ENOMEM;		/* XXX */
868 		return AH_FALSE;
869 	}
870 	priv->base.rfDetach		= ar5112RfDetach;
871 	priv->base.writeRegs		= ar5112WriteRegs;
872 	priv->base.getRfBank		= ar5112GetRfBank;
873 	priv->base.setChannel		= ar5112SetChannel;
874 	priv->base.setRfRegs		= ar5112SetRfRegs;
875 	priv->base.setPowerTable	= ar5112SetPowerTable;
876 	priv->base.getChannelMaxMinPower = ar5112GetChannelMaxMinPower;
877 	priv->base.getNfAdjust		= ar5212GetNfAdjust;
878 
879 	ahp->ah_pcdacTable = priv->pcdacTable;
880 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
881 	ahp->ah_rfHal = &priv->base;
882 
883 	return AH_TRUE;
884 }
885 
886 static HAL_BOOL
887 ar5112Probe(struct ath_hal *ah)
888 {
889 	return IS_RAD5112(ah);
890 }
891 AH_RF(RF5112, ar5112Probe, ar5112RfAttach);
892