1 /*- 2 * SPDX-License-Identifier: ISC 3 * 4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 5 * Copyright (c) 2002-2008 Atheros Communications, Inc. 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 * 19 * $FreeBSD$ 20 */ 21 #include "opt_ah.h" 22 23 #include "ah.h" 24 #include "ah_internal.h" 25 26 #include "ah_eeprom_v3.h" 27 28 #include "ar5212/ar5212.h" 29 #include "ar5212/ar5212reg.h" 30 #include "ar5212/ar5212phy.h" 31 32 #define AH_5212_5112 33 #include "ar5212/ar5212.ini" 34 35 #define N(a) (sizeof(a)/sizeof(a[0])) 36 37 struct ar5112State { 38 RF_HAL_FUNCS base; /* public state, must be first */ 39 uint16_t pcdacTable[PWR_TABLE_SIZE]; 40 41 uint32_t Bank1Data[N(ar5212Bank1_5112)]; 42 uint32_t Bank2Data[N(ar5212Bank2_5112)]; 43 uint32_t Bank3Data[N(ar5212Bank3_5112)]; 44 uint32_t Bank6Data[N(ar5212Bank6_5112)]; 45 uint32_t Bank7Data[N(ar5212Bank7_5112)]; 46 }; 47 #define AR5112(ah) ((struct ar5112State *) AH5212(ah)->ah_rfHal) 48 49 static void ar5212GetLowerUpperIndex(uint16_t v, 50 uint16_t *lp, uint16_t listSize, 51 uint32_t *vlo, uint32_t *vhi); 52 static HAL_BOOL getFullPwrTable(uint16_t numPcdacs, uint16_t *pcdacs, 53 int16_t *power, int16_t maxPower, int16_t *retVals); 54 static int16_t getPminAndPcdacTableFromPowerTable(int16_t *pwrTableT4, 55 uint16_t retVals[]); 56 static int16_t getPminAndPcdacTableFromTwoPowerTables(int16_t *pwrTableLXpdT4, 57 int16_t *pwrTableHXpdT4, uint16_t retVals[], int16_t *pMid); 58 static int16_t interpolate_signed(uint16_t target, 59 uint16_t srcLeft, uint16_t srcRight, 60 int16_t targetLeft, int16_t targetRight); 61 62 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, 63 uint32_t numBits, uint32_t firstBit, uint32_t column); 64 65 static void 66 ar5112WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex, 67 int writes) 68 { 69 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5112, modesIndex, writes); 70 HAL_INI_WRITE_ARRAY(ah, ar5212Common_5112, 1, writes); 71 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5112, freqIndex, writes); 72 } 73 74 /* 75 * Take the MHz channel value and set the Channel value 76 * 77 * ASSUMES: Writes enabled to analog bus 78 */ 79 static HAL_BOOL 80 ar5112SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan) 81 { 82 uint16_t freq = ath_hal_gethwchannel(ah, chan); 83 uint32_t channelSel = 0; 84 uint32_t bModeSynth = 0; 85 uint32_t aModeRefSel = 0; 86 uint32_t reg32 = 0; 87 88 OS_MARK(ah, AH_MARK_SETCHANNEL, freq); 89 90 if (freq < 4800) { 91 uint32_t txctl; 92 93 if (((freq - 2192) % 5) == 0) { 94 channelSel = ((freq - 672) * 2 - 3040)/10; 95 bModeSynth = 0; 96 } else if (((freq - 2224) % 5) == 0) { 97 channelSel = ((freq - 704) * 2 - 3040) / 10; 98 bModeSynth = 1; 99 } else { 100 HALDEBUG(ah, HAL_DEBUG_ANY, 101 "%s: invalid channel %u MHz\n", 102 __func__, freq); 103 return AH_FALSE; 104 } 105 106 channelSel = (channelSel << 2) & 0xff; 107 channelSel = ath_hal_reverseBits(channelSel, 8); 108 109 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); 110 if (freq == 2484) { 111 /* Enable channel spreading for channel 14 */ 112 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 113 txctl | AR_PHY_CCK_TX_CTRL_JAPAN); 114 } else { 115 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 116 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); 117 } 118 } else if (((freq % 5) == 2) && (freq <= 5435)) { 119 freq = freq - 2; /* Align to even 5MHz raster */ 120 channelSel = ath_hal_reverseBits( 121 (uint32_t)(((freq - 4800)*10)/25 + 1), 8); 122 aModeRefSel = ath_hal_reverseBits(0, 2); 123 } else if ((freq % 20) == 0 && freq >= 5120) { 124 channelSel = ath_hal_reverseBits( 125 ((freq - 4800) / 20 << 2), 8); 126 aModeRefSel = ath_hal_reverseBits(3, 2); 127 } else if ((freq % 10) == 0) { 128 channelSel = ath_hal_reverseBits( 129 ((freq - 4800) / 10 << 1), 8); 130 aModeRefSel = ath_hal_reverseBits(2, 2); 131 } else if ((freq % 5) == 0) { 132 channelSel = ath_hal_reverseBits( 133 (freq - 4800) / 5, 8); 134 aModeRefSel = ath_hal_reverseBits(1, 2); 135 } else { 136 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n", 137 __func__, freq); 138 return AH_FALSE; 139 } 140 141 reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) | 142 (1 << 12) | 0x1; 143 OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff); 144 145 reg32 >>= 8; 146 OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f); 147 148 AH_PRIVATE(ah)->ah_curchan = chan; 149 return AH_TRUE; 150 } 151 152 /* 153 * Return a reference to the requested RF Bank. 154 */ 155 static uint32_t * 156 ar5112GetRfBank(struct ath_hal *ah, int bank) 157 { 158 struct ar5112State *priv = AR5112(ah); 159 160 HALASSERT(priv != AH_NULL); 161 switch (bank) { 162 case 1: return priv->Bank1Data; 163 case 2: return priv->Bank2Data; 164 case 3: return priv->Bank3Data; 165 case 6: return priv->Bank6Data; 166 case 7: return priv->Bank7Data; 167 } 168 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n", 169 __func__, bank); 170 return AH_NULL; 171 } 172 173 /* 174 * Reads EEPROM header info from device structure and programs 175 * all rf registers 176 * 177 * REQUIRES: Access to the analog rf device 178 */ 179 static HAL_BOOL 180 ar5112SetRfRegs(struct ath_hal *ah, 181 const struct ieee80211_channel *chan, 182 uint16_t modesIndex, uint16_t *rfXpdGain) 183 { 184 #define RF_BANK_SETUP(_priv, _ix, _col) do { \ 185 int i; \ 186 for (i = 0; i < N(ar5212Bank##_ix##_5112); i++) \ 187 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5112[i][_col];\ 188 } while (0) 189 uint16_t freq = ath_hal_gethwchannel(ah, chan); 190 struct ath_hal_5212 *ahp = AH5212(ah); 191 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 192 uint16_t rfXpdSel, gainI; 193 uint16_t ob5GHz = 0, db5GHz = 0; 194 uint16_t ob2GHz = 0, db2GHz = 0; 195 struct ar5112State *priv = AR5112(ah); 196 GAIN_VALUES *gv = &ahp->ah_gainValues; 197 int regWrites = 0; 198 199 HALASSERT(priv); 200 201 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n", 202 __func__, chan->ic_freq, chan->ic_flags, modesIndex); 203 204 /* Setup rf parameters */ 205 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) { 206 case IEEE80211_CHAN_A: 207 if (freq > 4000 && freq < 5260) { 208 ob5GHz = ee->ee_ob1; 209 db5GHz = ee->ee_db1; 210 } else if (freq >= 5260 && freq < 5500) { 211 ob5GHz = ee->ee_ob2; 212 db5GHz = ee->ee_db2; 213 } else if (freq >= 5500 && freq < 5725) { 214 ob5GHz = ee->ee_ob3; 215 db5GHz = ee->ee_db3; 216 } else if (freq >= 5725) { 217 ob5GHz = ee->ee_ob4; 218 db5GHz = ee->ee_db4; 219 } else { 220 /* XXX else */ 221 } 222 rfXpdSel = ee->ee_xpd[headerInfo11A]; 223 gainI = ee->ee_gainI[headerInfo11A]; 224 break; 225 case IEEE80211_CHAN_B: 226 ob2GHz = ee->ee_ob2GHz[0]; 227 db2GHz = ee->ee_db2GHz[0]; 228 rfXpdSel = ee->ee_xpd[headerInfo11B]; 229 gainI = ee->ee_gainI[headerInfo11B]; 230 break; 231 case IEEE80211_CHAN_G: 232 case IEEE80211_CHAN_PUREG: /* NB: really 108G */ 233 ob2GHz = ee->ee_ob2GHz[1]; 234 db2GHz = ee->ee_ob2GHz[1]; 235 rfXpdSel = ee->ee_xpd[headerInfo11G]; 236 gainI = ee->ee_gainI[headerInfo11G]; 237 break; 238 default: 239 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n", 240 __func__, chan->ic_flags); 241 return AH_FALSE; 242 } 243 244 /* Setup Bank 1 Write */ 245 RF_BANK_SETUP(priv, 1, 1); 246 247 /* Setup Bank 2 Write */ 248 RF_BANK_SETUP(priv, 2, modesIndex); 249 250 /* Setup Bank 3 Write */ 251 RF_BANK_SETUP(priv, 3, modesIndex); 252 253 /* Setup Bank 6 Write */ 254 RF_BANK_SETUP(priv, 6, modesIndex); 255 256 ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdSel, 1, 302, 0); 257 258 ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdGain[0], 2, 270, 0); 259 ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdGain[1], 2, 257, 0); 260 261 if (IEEE80211_IS_CHAN_OFDM(chan)) { 262 ar5212ModifyRfBuffer(priv->Bank6Data, 263 gv->currStep->paramVal[GP_PWD_138], 1, 168, 3); 264 ar5212ModifyRfBuffer(priv->Bank6Data, 265 gv->currStep->paramVal[GP_PWD_137], 1, 169, 3); 266 ar5212ModifyRfBuffer(priv->Bank6Data, 267 gv->currStep->paramVal[GP_PWD_136], 1, 170, 3); 268 ar5212ModifyRfBuffer(priv->Bank6Data, 269 gv->currStep->paramVal[GP_PWD_132], 1, 174, 3); 270 ar5212ModifyRfBuffer(priv->Bank6Data, 271 gv->currStep->paramVal[GP_PWD_131], 1, 175, 3); 272 ar5212ModifyRfBuffer(priv->Bank6Data, 273 gv->currStep->paramVal[GP_PWD_130], 1, 176, 3); 274 } 275 276 /* Only the 5 or 2 GHz OB/DB need to be set for a mode */ 277 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 278 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 287, 0); 279 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 290, 0); 280 } else { 281 ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 279, 0); 282 ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 282, 0); 283 } 284 285 /* Lower synth voltage for X112 Rev 2.0 only */ 286 if (IS_RADX112_REV2(ah)) { 287 /* Non-Reversed analyg registers - so values are pre-reversed */ 288 ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 90, 2); 289 ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 92, 2); 290 ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 94, 2); 291 ar5212ModifyRfBuffer(priv->Bank6Data, 2, 1, 254, 2); 292 } 293 294 /* Decrease Power Consumption for 5312/5213 and up */ 295 if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) { 296 ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 281, 1); 297 ar5212ModifyRfBuffer(priv->Bank6Data, 1, 2, 1, 3); 298 ar5212ModifyRfBuffer(priv->Bank6Data, 1, 2, 3, 3); 299 ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 139, 3); 300 ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 140, 3); 301 } 302 303 /* Setup Bank 7 Setup */ 304 RF_BANK_SETUP(priv, 7, modesIndex); 305 if (IEEE80211_IS_CHAN_OFDM(chan)) 306 ar5212ModifyRfBuffer(priv->Bank7Data, 307 gv->currStep->paramVal[GP_MIXGAIN_OVR], 2, 37, 0); 308 309 ar5212ModifyRfBuffer(priv->Bank7Data, gainI, 6, 14, 0); 310 311 /* Adjust params for Derby TX power control */ 312 if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) { 313 uint32_t rfDelay, rfPeriod; 314 315 rfDelay = 0xf; 316 rfPeriod = (IEEE80211_IS_CHAN_HALF(chan)) ? 0x8 : 0xf; 317 ar5212ModifyRfBuffer(priv->Bank7Data, rfDelay, 4, 58, 0); 318 ar5212ModifyRfBuffer(priv->Bank7Data, rfPeriod, 4, 70, 0); 319 } 320 321 #ifdef notyet 322 /* Analog registers are setup - EAR can modify */ 323 if (ar5212IsEarEngaged(pDev, chan)) 324 uint32_t modifier; 325 ar5212EarModify(pDev, EAR_LC_RF_WRITE, chan, &modifier); 326 #endif 327 /* Write Analog registers */ 328 HAL_INI_WRITE_BANK(ah, ar5212Bank1_5112, priv->Bank1Data, regWrites); 329 HAL_INI_WRITE_BANK(ah, ar5212Bank2_5112, priv->Bank2Data, regWrites); 330 HAL_INI_WRITE_BANK(ah, ar5212Bank3_5112, priv->Bank3Data, regWrites); 331 HAL_INI_WRITE_BANK(ah, ar5212Bank6_5112, priv->Bank6Data, regWrites); 332 HAL_INI_WRITE_BANK(ah, ar5212Bank7_5112, priv->Bank7Data, regWrites); 333 334 /* Now that we have reprogrammed rfgain value, clear the flag. */ 335 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE; 336 return AH_TRUE; 337 #undef RF_BANK_SETUP 338 } 339 340 /* 341 * Read the transmit power levels from the structures taken from EEPROM 342 * Interpolate read transmit power values for this channel 343 * Organize the transmit power values into a table for writing into the hardware 344 */ 345 static HAL_BOOL 346 ar5112SetPowerTable(struct ath_hal *ah, 347 int16_t *pPowerMin, int16_t *pPowerMax, 348 const struct ieee80211_channel *chan, 349 uint16_t *rfXpdGain) 350 { 351 uint16_t freq = ath_hal_gethwchannel(ah, chan); 352 struct ath_hal_5212 *ahp = AH5212(ah); 353 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 354 uint32_t numXpdGain = IS_RADX112_REV2(ah) ? 2 : 1; 355 uint32_t xpdGainMask = 0; 356 int16_t powerMid, *pPowerMid = &powerMid; 357 358 const EXPN_DATA_PER_CHANNEL_5112 *pRawCh; 359 const EEPROM_POWER_EXPN_5112 *pPowerExpn = AH_NULL; 360 361 uint32_t ii, jj, kk; 362 int16_t minPwr_t4, maxPwr_t4, Pmin, Pmid; 363 364 uint32_t chan_idx_L = 0, chan_idx_R = 0; 365 uint16_t chan_L, chan_R; 366 367 int16_t pwr_table0[64]; 368 int16_t pwr_table1[64]; 369 uint16_t pcdacs[10]; 370 int16_t powers[10]; 371 uint16_t numPcd; 372 int16_t powTableLXPD[2][64]; 373 int16_t powTableHXPD[2][64]; 374 int16_t tmpPowerTable[64]; 375 uint16_t xgainList[2]; 376 uint16_t xpdMask; 377 378 switch (chan->ic_flags & IEEE80211_CHAN_ALLTURBOFULL) { 379 case IEEE80211_CHAN_A: 380 case IEEE80211_CHAN_ST: 381 pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11A]; 382 xpdGainMask = ee->ee_xgain[headerInfo11A]; 383 break; 384 case IEEE80211_CHAN_B: 385 pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11B]; 386 xpdGainMask = ee->ee_xgain[headerInfo11B]; 387 break; 388 case IEEE80211_CHAN_G: 389 case IEEE80211_CHAN_108G: 390 pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11G]; 391 xpdGainMask = ee->ee_xgain[headerInfo11G]; 392 break; 393 default: 394 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown channel flags 0x%x\n", 395 __func__, chan->ic_flags); 396 return AH_FALSE; 397 } 398 399 if ((xpdGainMask & pPowerExpn->xpdMask) < 1) { 400 HALDEBUG(ah, HAL_DEBUG_ANY, 401 "%s: desired xpdGainMask 0x%x not supported by " 402 "calibrated xpdMask 0x%x\n", __func__, 403 xpdGainMask, pPowerExpn->xpdMask); 404 return AH_FALSE; 405 } 406 407 maxPwr_t4 = (int16_t)(2*(*pPowerMax)); /* pwr_t2 -> pwr_t4 */ 408 minPwr_t4 = (int16_t)(2*(*pPowerMin)); /* pwr_t2 -> pwr_t4 */ 409 410 xgainList[0] = 0xDEAD; 411 xgainList[1] = 0xDEAD; 412 413 kk = 0; 414 xpdMask = pPowerExpn->xpdMask; 415 for (jj = 0; jj < NUM_XPD_PER_CHANNEL; jj++) { 416 if (((xpdMask >> jj) & 1) > 0) { 417 if (kk > 1) { 418 HALDEBUG(ah, HAL_DEBUG_ANY, 419 "A maximum of 2 xpdGains supported" 420 "in pExpnPower data\n"); 421 return AH_FALSE; 422 } 423 xgainList[kk++] = (uint16_t)jj; 424 } 425 } 426 427 ar5212GetLowerUpperIndex(freq, &pPowerExpn->pChannels[0], 428 pPowerExpn->numChannels, &chan_idx_L, &chan_idx_R); 429 430 kk = 0; 431 for (ii = chan_idx_L; ii <= chan_idx_R; ii++) { 432 pRawCh = &(pPowerExpn->pDataPerChannel[ii]); 433 if (xgainList[1] == 0xDEAD) { 434 jj = xgainList[0]; 435 numPcd = pRawCh->pDataPerXPD[jj].numPcdacs; 436 OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0], 437 numPcd * sizeof(uint16_t)); 438 OS_MEMCPY(&powers[0], &pRawCh->pDataPerXPD[jj].pwr_t4[0], 439 numPcd * sizeof(int16_t)); 440 if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0], 441 pRawCh->maxPower_t4, &tmpPowerTable[0])) { 442 return AH_FALSE; 443 } 444 OS_MEMCPY(&powTableLXPD[kk][0], &tmpPowerTable[0], 445 64*sizeof(int16_t)); 446 } else { 447 jj = xgainList[0]; 448 numPcd = pRawCh->pDataPerXPD[jj].numPcdacs; 449 OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0], 450 numPcd*sizeof(uint16_t)); 451 OS_MEMCPY(&powers[0], 452 &pRawCh->pDataPerXPD[jj].pwr_t4[0], 453 numPcd*sizeof(int16_t)); 454 if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0], 455 pRawCh->maxPower_t4, &tmpPowerTable[0])) { 456 return AH_FALSE; 457 } 458 OS_MEMCPY(&powTableLXPD[kk][0], &tmpPowerTable[0], 459 64 * sizeof(int16_t)); 460 461 jj = xgainList[1]; 462 numPcd = pRawCh->pDataPerXPD[jj].numPcdacs; 463 OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0], 464 numPcd * sizeof(uint16_t)); 465 OS_MEMCPY(&powers[0], 466 &pRawCh->pDataPerXPD[jj].pwr_t4[0], 467 numPcd * sizeof(int16_t)); 468 if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0], 469 pRawCh->maxPower_t4, &tmpPowerTable[0])) { 470 return AH_FALSE; 471 } 472 OS_MEMCPY(&powTableHXPD[kk][0], &tmpPowerTable[0], 473 64 * sizeof(int16_t)); 474 } 475 kk++; 476 } 477 478 chan_L = pPowerExpn->pChannels[chan_idx_L]; 479 chan_R = pPowerExpn->pChannels[chan_idx_R]; 480 kk = chan_idx_R - chan_idx_L; 481 482 if (xgainList[1] == 0xDEAD) { 483 for (jj = 0; jj < 64; jj++) { 484 pwr_table0[jj] = interpolate_signed( 485 freq, chan_L, chan_R, 486 powTableLXPD[0][jj], powTableLXPD[kk][jj]); 487 } 488 Pmin = getPminAndPcdacTableFromPowerTable(&pwr_table0[0], 489 ahp->ah_pcdacTable); 490 *pPowerMin = (int16_t) (Pmin / 2); 491 *pPowerMid = (int16_t) (pwr_table0[63] / 2); 492 *pPowerMax = (int16_t) (pwr_table0[63] / 2); 493 rfXpdGain[0] = xgainList[0]; 494 rfXpdGain[1] = rfXpdGain[0]; 495 } else { 496 for (jj = 0; jj < 64; jj++) { 497 pwr_table0[jj] = interpolate_signed( 498 freq, chan_L, chan_R, 499 powTableLXPD[0][jj], powTableLXPD[kk][jj]); 500 pwr_table1[jj] = interpolate_signed( 501 freq, chan_L, chan_R, 502 powTableHXPD[0][jj], powTableHXPD[kk][jj]); 503 } 504 if (numXpdGain == 2) { 505 Pmin = getPminAndPcdacTableFromTwoPowerTables( 506 &pwr_table0[0], &pwr_table1[0], 507 ahp->ah_pcdacTable, &Pmid); 508 *pPowerMin = (int16_t) (Pmin / 2); 509 *pPowerMid = (int16_t) (Pmid / 2); 510 *pPowerMax = (int16_t) (pwr_table0[63] / 2); 511 rfXpdGain[0] = xgainList[0]; 512 rfXpdGain[1] = xgainList[1]; 513 } else if (minPwr_t4 <= pwr_table1[63] && 514 maxPwr_t4 <= pwr_table1[63]) { 515 Pmin = getPminAndPcdacTableFromPowerTable( 516 &pwr_table1[0], ahp->ah_pcdacTable); 517 rfXpdGain[0] = xgainList[1]; 518 rfXpdGain[1] = rfXpdGain[0]; 519 *pPowerMin = (int16_t) (Pmin / 2); 520 *pPowerMid = (int16_t) (pwr_table1[63] / 2); 521 *pPowerMax = (int16_t) (pwr_table1[63] / 2); 522 } else { 523 Pmin = getPminAndPcdacTableFromPowerTable( 524 &pwr_table0[0], ahp->ah_pcdacTable); 525 rfXpdGain[0] = xgainList[0]; 526 rfXpdGain[1] = rfXpdGain[0]; 527 *pPowerMin = (int16_t) (Pmin/2); 528 *pPowerMid = (int16_t) (pwr_table0[63] / 2); 529 *pPowerMax = (int16_t) (pwr_table0[63] / 2); 530 } 531 } 532 533 /* 534 * Move 5112 rates to match power tables where the max 535 * power table entry corresponds with maxPower. 536 */ 537 HALASSERT(*pPowerMax <= PCDAC_STOP); 538 ahp->ah_txPowerIndexOffset = PCDAC_STOP - *pPowerMax; 539 540 return AH_TRUE; 541 } 542 543 /* 544 * Returns interpolated or the scaled up interpolated value 545 */ 546 static int16_t 547 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight, 548 int16_t targetLeft, int16_t targetRight) 549 { 550 int16_t rv; 551 552 if (srcRight != srcLeft) { 553 rv = ((target - srcLeft)*targetRight + 554 (srcRight - target)*targetLeft) / (srcRight - srcLeft); 555 } else { 556 rv = targetLeft; 557 } 558 return rv; 559 } 560 561 /* 562 * Return indices surrounding the value in sorted integer lists. 563 * 564 * NB: the input list is assumed to be sorted in ascending order 565 */ 566 static void 567 ar5212GetLowerUpperIndex(uint16_t v, uint16_t *lp, uint16_t listSize, 568 uint32_t *vlo, uint32_t *vhi) 569 { 570 uint32_t target = v; 571 uint16_t *ep = lp+listSize; 572 uint16_t *tp; 573 574 /* 575 * Check first and last elements for out-of-bounds conditions. 576 */ 577 if (target < lp[0]) { 578 *vlo = *vhi = 0; 579 return; 580 } 581 if (target >= ep[-1]) { 582 *vlo = *vhi = listSize - 1; 583 return; 584 } 585 586 /* look for value being near or between 2 values in list */ 587 for (tp = lp; tp < ep; tp++) { 588 /* 589 * If value is close to the current value of the list 590 * then target is not between values, it is one of the values 591 */ 592 if (*tp == target) { 593 *vlo = *vhi = tp - lp; 594 return; 595 } 596 /* 597 * Look for value being between current value and next value 598 * if so return these 2 values 599 */ 600 if (target < tp[1]) { 601 *vlo = tp - lp; 602 *vhi = *vlo + 1; 603 return; 604 } 605 } 606 } 607 608 static HAL_BOOL 609 getFullPwrTable(uint16_t numPcdacs, uint16_t *pcdacs, int16_t *power, int16_t maxPower, int16_t *retVals) 610 { 611 uint16_t ii; 612 uint16_t idxL = 0; 613 uint16_t idxR = 1; 614 615 if (numPcdacs < 2) { 616 HALDEBUG(AH_NULL, HAL_DEBUG_ANY, 617 "%s: at least 2 pcdac values needed [%d]\n", 618 __func__, numPcdacs); 619 return AH_FALSE; 620 } 621 for (ii = 0; ii < 64; ii++) { 622 if (ii>pcdacs[idxR] && idxR < numPcdacs-1) { 623 idxL++; 624 idxR++; 625 } 626 retVals[ii] = interpolate_signed(ii, 627 pcdacs[idxL], pcdacs[idxR], power[idxL], power[idxR]); 628 if (retVals[ii] >= maxPower) { 629 while (ii < 64) 630 retVals[ii++] = maxPower; 631 } 632 } 633 return AH_TRUE; 634 } 635 636 /* 637 * Takes a single calibration curve and creates a power table. 638 * Adjusts the new power table so the max power is relative 639 * to the maximum index in the power table. 640 * 641 * WARNING: rates must be adjusted for this relative power table 642 */ 643 static int16_t 644 getPminAndPcdacTableFromPowerTable(int16_t *pwrTableT4, uint16_t retVals[]) 645 { 646 int16_t ii, jj, jjMax; 647 int16_t pMin, currPower, pMax; 648 649 /* If the spread is > 31.5dB, keep the upper 31.5dB range */ 650 if ((pwrTableT4[63] - pwrTableT4[0]) > 126) { 651 pMin = pwrTableT4[63] - 126; 652 } else { 653 pMin = pwrTableT4[0]; 654 } 655 656 pMax = pwrTableT4[63]; 657 jjMax = 63; 658 659 /* Search for highest pcdac 0.25dB below maxPower */ 660 while ((pwrTableT4[jjMax] > (pMax - 1) ) && (jjMax >= 0)) { 661 jjMax--; 662 } 663 664 jj = jjMax; 665 currPower = pMax; 666 for (ii = 63; ii >= 0; ii--) { 667 while ((jj < 64) && (jj > 0) && (pwrTableT4[jj] >= currPower)) { 668 jj--; 669 } 670 if (jj == 0) { 671 while (ii >= 0) { 672 retVals[ii] = retVals[ii + 1]; 673 ii--; 674 } 675 break; 676 } 677 retVals[ii] = jj; 678 currPower -= 2; // corresponds to a 0.5dB step 679 } 680 return pMin; 681 } 682 683 /* 684 * Combines the XPD curves from two calibration sets into a single 685 * power table and adjusts the power table so the max power is relative 686 * to the maximum index in the power table 687 * 688 * WARNING: rates must be adjusted for this relative power table 689 */ 690 static int16_t 691 getPminAndPcdacTableFromTwoPowerTables(int16_t *pwrTableLXpdT4, 692 int16_t *pwrTableHXpdT4, uint16_t retVals[], int16_t *pMid) 693 { 694 int16_t ii, jj, jjMax; 695 int16_t pMin, pMax, currPower; 696 int16_t *pwrTableT4; 697 uint16_t msbFlag = 0x40; // turns on the 7th bit of the pcdac 698 699 /* If the spread is > 31.5dB, keep the upper 31.5dB range */ 700 if ((pwrTableLXpdT4[63] - pwrTableHXpdT4[0]) > 126) { 701 pMin = pwrTableLXpdT4[63] - 126; 702 } else { 703 pMin = pwrTableHXpdT4[0]; 704 } 705 706 pMax = pwrTableLXpdT4[63]; 707 jjMax = 63; 708 /* Search for highest pcdac 0.25dB below maxPower */ 709 while ((pwrTableLXpdT4[jjMax] > (pMax - 1) ) && (jjMax >= 0)){ 710 jjMax--; 711 } 712 713 *pMid = pwrTableHXpdT4[63]; 714 jj = jjMax; 715 ii = 63; 716 currPower = pMax; 717 pwrTableT4 = &(pwrTableLXpdT4[0]); 718 while (ii >= 0) { 719 if ((currPower <= *pMid) || ( (jj == 0) && (msbFlag == 0x40))){ 720 msbFlag = 0x00; 721 pwrTableT4 = &(pwrTableHXpdT4[0]); 722 jj = 63; 723 } 724 while ((jj > 0) && (pwrTableT4[jj] >= currPower)) { 725 jj--; 726 } 727 if ((jj == 0) && (msbFlag == 0x00)) { 728 while (ii >= 0) { 729 retVals[ii] = retVals[ii+1]; 730 ii--; 731 } 732 break; 733 } 734 retVals[ii] = jj | msbFlag; 735 currPower -= 2; // corresponds to a 0.5dB step 736 ii--; 737 } 738 return pMin; 739 } 740 741 static int16_t 742 ar5112GetMinPower(struct ath_hal *ah, const EXPN_DATA_PER_CHANNEL_5112 *data) 743 { 744 int i, minIndex; 745 int16_t minGain,minPwr,minPcdac,retVal; 746 747 /* Assume NUM_POINTS_XPD0 > 0 */ 748 minGain = data->pDataPerXPD[0].xpd_gain; 749 for (minIndex=0,i=1; i<NUM_XPD_PER_CHANNEL; i++) { 750 if (data->pDataPerXPD[i].xpd_gain < minGain) { 751 minIndex = i; 752 minGain = data->pDataPerXPD[i].xpd_gain; 753 } 754 } 755 minPwr = data->pDataPerXPD[minIndex].pwr_t4[0]; 756 minPcdac = data->pDataPerXPD[minIndex].pcdac[0]; 757 for (i=1; i<NUM_POINTS_XPD0; i++) { 758 if (data->pDataPerXPD[minIndex].pwr_t4[i] < minPwr) { 759 minPwr = data->pDataPerXPD[minIndex].pwr_t4[i]; 760 minPcdac = data->pDataPerXPD[minIndex].pcdac[i]; 761 } 762 } 763 retVal = minPwr - (minPcdac*2); 764 return(retVal); 765 } 766 767 static HAL_BOOL 768 ar5112GetChannelMaxMinPower(struct ath_hal *ah, 769 const struct ieee80211_channel *chan, 770 int16_t *maxPow, int16_t *minPow) 771 { 772 uint16_t freq = chan->ic_freq; /* NB: never mapped */ 773 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 774 int numChannels=0,i,last; 775 int totalD, totalF,totalMin; 776 const EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL; 777 const EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL; 778 779 *maxPow = 0; 780 if (IEEE80211_IS_CHAN_A(chan)) { 781 powerArray = ee->ee_modePowerArray5112; 782 data = powerArray[headerInfo11A].pDataPerChannel; 783 numChannels = powerArray[headerInfo11A].numChannels; 784 } else if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan)) { 785 /* XXX - is this correct? Should we also use the same power for turbo G? */ 786 powerArray = ee->ee_modePowerArray5112; 787 data = powerArray[headerInfo11G].pDataPerChannel; 788 numChannels = powerArray[headerInfo11G].numChannels; 789 } else if (IEEE80211_IS_CHAN_B(chan)) { 790 powerArray = ee->ee_modePowerArray5112; 791 data = powerArray[headerInfo11B].pDataPerChannel; 792 numChannels = powerArray[headerInfo11B].numChannels; 793 } else { 794 return (AH_TRUE); 795 } 796 /* Make sure the channel is in the range of the TP values 797 * (freq piers) 798 */ 799 if (numChannels < 1) 800 return(AH_FALSE); 801 802 if ((freq < data[0].channelValue) || 803 (freq > data[numChannels-1].channelValue)) { 804 if (freq < data[0].channelValue) { 805 *maxPow = data[0].maxPower_t4; 806 *minPow = ar5112GetMinPower(ah, &data[0]); 807 return(AH_TRUE); 808 } else { 809 *maxPow = data[numChannels - 1].maxPower_t4; 810 *minPow = ar5112GetMinPower(ah, &data[numChannels - 1]); 811 return(AH_TRUE); 812 } 813 } 814 815 /* Linearly interpolate the power value now */ 816 for (last=0,i=0; 817 (i<numChannels) && (freq > data[i].channelValue); 818 last=i++); 819 totalD = data[i].channelValue - data[last].channelValue; 820 if (totalD > 0) { 821 totalF = data[i].maxPower_t4 - data[last].maxPower_t4; 822 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD); 823 824 totalMin = ar5112GetMinPower(ah,&data[i]) - ar5112GetMinPower(ah, &data[last]); 825 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) + ar5112GetMinPower(ah, &data[last])*totalD)/totalD); 826 return (AH_TRUE); 827 } else { 828 if (freq == data[i].channelValue) { 829 *maxPow = data[i].maxPower_t4; 830 *minPow = ar5112GetMinPower(ah, &data[i]); 831 return(AH_TRUE); 832 } else 833 return(AH_FALSE); 834 } 835 } 836 837 /* 838 * Free memory for analog bank scratch buffers 839 */ 840 static void 841 ar5112RfDetach(struct ath_hal *ah) 842 { 843 struct ath_hal_5212 *ahp = AH5212(ah); 844 845 HALASSERT(ahp->ah_rfHal != AH_NULL); 846 ath_hal_free(ahp->ah_rfHal); 847 ahp->ah_rfHal = AH_NULL; 848 } 849 850 /* 851 * Allocate memory for analog bank scratch buffers 852 * Scratch Buffer will be reinitialized every reset so no need to zero now 853 */ 854 static HAL_BOOL 855 ar5112RfAttach(struct ath_hal *ah, HAL_STATUS *status) 856 { 857 struct ath_hal_5212 *ahp = AH5212(ah); 858 struct ar5112State *priv; 859 860 HALASSERT(ah->ah_magic == AR5212_MAGIC); 861 862 HALASSERT(ahp->ah_rfHal == AH_NULL); 863 priv = ath_hal_malloc(sizeof(struct ar5112State)); 864 if (priv == AH_NULL) { 865 HALDEBUG(ah, HAL_DEBUG_ANY, 866 "%s: cannot allocate private state\n", __func__); 867 *status = HAL_ENOMEM; /* XXX */ 868 return AH_FALSE; 869 } 870 priv->base.rfDetach = ar5112RfDetach; 871 priv->base.writeRegs = ar5112WriteRegs; 872 priv->base.getRfBank = ar5112GetRfBank; 873 priv->base.setChannel = ar5112SetChannel; 874 priv->base.setRfRegs = ar5112SetRfRegs; 875 priv->base.setPowerTable = ar5112SetPowerTable; 876 priv->base.getChannelMaxMinPower = ar5112GetChannelMaxMinPower; 877 priv->base.getNfAdjust = ar5212GetNfAdjust; 878 879 ahp->ah_pcdacTable = priv->pcdacTable; 880 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable); 881 ahp->ah_rfHal = &priv->base; 882 883 return AH_TRUE; 884 } 885 886 static HAL_BOOL 887 ar5112Probe(struct ath_hal *ah) 888 { 889 return IS_RAD5112(ah); 890 } 891 AH_RF(RF5112, ar5112Probe, ar5112RfAttach); 892