xref: /freebsd/sys/dev/ath/ath_hal/ar5212/ar5112.c (revision 2e3507c25e42292b45a5482e116d278f5515d04d)
1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 
24 #include "ah_eeprom_v3.h"
25 
26 #include "ar5212/ar5212.h"
27 #include "ar5212/ar5212reg.h"
28 #include "ar5212/ar5212phy.h"
29 
30 #define AH_5212_5112
31 #include "ar5212/ar5212.ini"
32 
33 #define	N(a)	(sizeof(a)/sizeof(a[0]))
34 
35 struct ar5112State {
36 	RF_HAL_FUNCS	base;		/* public state, must be first */
37 	uint16_t	pcdacTable[PWR_TABLE_SIZE];
38 
39 	uint32_t	Bank1Data[N(ar5212Bank1_5112)];
40 	uint32_t	Bank2Data[N(ar5212Bank2_5112)];
41 	uint32_t	Bank3Data[N(ar5212Bank3_5112)];
42 	uint32_t	Bank6Data[N(ar5212Bank6_5112)];
43 	uint32_t	Bank7Data[N(ar5212Bank7_5112)];
44 };
45 #define	AR5112(ah)	((struct ar5112State *) AH5212(ah)->ah_rfHal)
46 
47 static	void ar5212GetLowerUpperIndex(uint16_t v,
48 		uint16_t *lp, uint16_t listSize,
49 		uint32_t *vlo, uint32_t *vhi);
50 static HAL_BOOL getFullPwrTable(uint16_t numPcdacs, uint16_t *pcdacs,
51 		int16_t *power, int16_t maxPower, int16_t *retVals);
52 static int16_t getPminAndPcdacTableFromPowerTable(int16_t *pwrTableT4,
53 		uint16_t retVals[]);
54 static int16_t getPminAndPcdacTableFromTwoPowerTables(int16_t *pwrTableLXpdT4,
55 		int16_t *pwrTableHXpdT4, uint16_t retVals[], int16_t *pMid);
56 static int16_t interpolate_signed(uint16_t target,
57 		uint16_t srcLeft, uint16_t srcRight,
58 		int16_t targetLeft, int16_t targetRight);
59 
60 extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
61 		uint32_t numBits, uint32_t firstBit, uint32_t column);
62 
63 static void
64 ar5112WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
65 	int writes)
66 {
67 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5112, modesIndex, writes);
68 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_5112, 1, writes);
69 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5112, freqIndex, writes);
70 }
71 
72 /*
73  * Take the MHz channel value and set the Channel value
74  *
75  * ASSUMES: Writes enabled to analog bus
76  */
77 static HAL_BOOL
78 ar5112SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
79 {
80 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
81 	uint32_t channelSel  = 0;
82 	uint32_t bModeSynth  = 0;
83 	uint32_t aModeRefSel = 0;
84 	uint32_t reg32       = 0;
85 
86 	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
87 
88 	if (freq < 4800) {
89 		uint32_t txctl;
90 
91 		if (((freq - 2192) % 5) == 0) {
92 			channelSel = ((freq - 672) * 2 - 3040)/10;
93 			bModeSynth = 0;
94 		} else if (((freq - 2224) % 5) == 0) {
95 			channelSel = ((freq - 704) * 2 - 3040) / 10;
96 			bModeSynth = 1;
97 		} else {
98 			HALDEBUG(ah, HAL_DEBUG_ANY,
99 			    "%s: invalid channel %u MHz\n",
100 			    __func__, freq);
101 			return AH_FALSE;
102 		}
103 
104 		channelSel = (channelSel << 2) & 0xff;
105 		channelSel = ath_hal_reverseBits(channelSel, 8);
106 
107 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
108 		if (freq == 2484) {
109 			/* Enable channel spreading for channel 14 */
110 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
111 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
112 		} else {
113 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
114 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
115 		}
116 	} else if (((freq % 5) == 2) && (freq <= 5435)) {
117 		freq = freq - 2; /* Align to even 5MHz raster */
118 		channelSel = ath_hal_reverseBits(
119 			(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
120             	aModeRefSel = ath_hal_reverseBits(0, 2);
121 	} else if ((freq % 20) == 0 && freq >= 5120) {
122 		channelSel = ath_hal_reverseBits(
123 			((freq - 4800) / 20 << 2), 8);
124 		aModeRefSel = ath_hal_reverseBits(3, 2);
125 	} else if ((freq % 10) == 0) {
126 		channelSel = ath_hal_reverseBits(
127 			((freq - 4800) / 10 << 1), 8);
128 		aModeRefSel = ath_hal_reverseBits(2, 2);
129 	} else if ((freq % 5) == 0) {
130 		channelSel = ath_hal_reverseBits(
131 			(freq - 4800) / 5, 8);
132 		aModeRefSel = ath_hal_reverseBits(1, 2);
133 	} else {
134 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
135 		    __func__, freq);
136 		return AH_FALSE;
137 	}
138 
139 	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
140 			(1 << 12) | 0x1;
141 	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
142 
143 	reg32 >>= 8;
144 	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
145 
146 	AH_PRIVATE(ah)->ah_curchan = chan;
147 	return AH_TRUE;
148 }
149 
150 /*
151  * Return a reference to the requested RF Bank.
152  */
153 static uint32_t *
154 ar5112GetRfBank(struct ath_hal *ah, int bank)
155 {
156 	struct ar5112State *priv = AR5112(ah);
157 
158 	HALASSERT(priv != AH_NULL);
159 	switch (bank) {
160 	case 1: return priv->Bank1Data;
161 	case 2: return priv->Bank2Data;
162 	case 3: return priv->Bank3Data;
163 	case 6: return priv->Bank6Data;
164 	case 7: return priv->Bank7Data;
165 	}
166 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
167 	    __func__, bank);
168 	return AH_NULL;
169 }
170 
171 /*
172  * Reads EEPROM header info from device structure and programs
173  * all rf registers
174  *
175  * REQUIRES: Access to the analog rf device
176  */
177 static HAL_BOOL
178 ar5112SetRfRegs(struct ath_hal *ah,
179 	const struct ieee80211_channel *chan,
180 	uint16_t modesIndex, uint16_t *rfXpdGain)
181 {
182 #define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
183 	int i;								    \
184 	for (i = 0; i < N(ar5212Bank##_ix##_5112); i++)			    \
185 		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5112[i][_col];\
186 } while (0)
187 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
188 	struct ath_hal_5212 *ahp = AH5212(ah);
189 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
190 	uint16_t rfXpdSel, gainI;
191 	uint16_t ob5GHz = 0, db5GHz = 0;
192 	uint16_t ob2GHz = 0, db2GHz = 0;
193 	struct ar5112State *priv = AR5112(ah);
194 	GAIN_VALUES *gv = &ahp->ah_gainValues;
195 	int regWrites = 0;
196 
197 	HALASSERT(priv);
198 
199 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
200 	    __func__, chan->ic_freq, chan->ic_flags, modesIndex);
201 
202 	/* Setup rf parameters */
203 	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
204 	case IEEE80211_CHAN_A:
205 		if (freq > 4000 && freq < 5260) {
206 			ob5GHz = ee->ee_ob1;
207 			db5GHz = ee->ee_db1;
208 		} else if (freq >= 5260 && freq < 5500) {
209 			ob5GHz = ee->ee_ob2;
210 			db5GHz = ee->ee_db2;
211 		} else if (freq >= 5500 && freq < 5725) {
212 			ob5GHz = ee->ee_ob3;
213 			db5GHz = ee->ee_db3;
214 		} else if (freq >= 5725) {
215 			ob5GHz = ee->ee_ob4;
216 			db5GHz = ee->ee_db4;
217 		} else {
218 			/* XXX else */
219 		}
220 		rfXpdSel = ee->ee_xpd[headerInfo11A];
221 		gainI = ee->ee_gainI[headerInfo11A];
222 		break;
223 	case IEEE80211_CHAN_B:
224 		ob2GHz = ee->ee_ob2GHz[0];
225 		db2GHz = ee->ee_db2GHz[0];
226 		rfXpdSel = ee->ee_xpd[headerInfo11B];
227 		gainI = ee->ee_gainI[headerInfo11B];
228 		break;
229 	case IEEE80211_CHAN_G:
230 	case IEEE80211_CHAN_PUREG:	/* NB: really 108G */
231 		ob2GHz = ee->ee_ob2GHz[1];
232 		db2GHz = ee->ee_ob2GHz[1];
233 		rfXpdSel = ee->ee_xpd[headerInfo11G];
234 		gainI = ee->ee_gainI[headerInfo11G];
235 		break;
236 	default:
237 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
238 		    __func__, chan->ic_flags);
239 		return AH_FALSE;
240 	}
241 
242 	/* Setup Bank 1 Write */
243 	RF_BANK_SETUP(priv, 1, 1);
244 
245 	/* Setup Bank 2 Write */
246 	RF_BANK_SETUP(priv, 2, modesIndex);
247 
248 	/* Setup Bank 3 Write */
249 	RF_BANK_SETUP(priv, 3, modesIndex);
250 
251 	/* Setup Bank 6 Write */
252 	RF_BANK_SETUP(priv, 6, modesIndex);
253 
254 	ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdSel,     1, 302, 0);
255 
256 	ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdGain[0], 2, 270, 0);
257 	ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdGain[1], 2, 257, 0);
258 
259 	if (IEEE80211_IS_CHAN_OFDM(chan)) {
260 		ar5212ModifyRfBuffer(priv->Bank6Data,
261 			gv->currStep->paramVal[GP_PWD_138], 1, 168, 3);
262 		ar5212ModifyRfBuffer(priv->Bank6Data,
263 			gv->currStep->paramVal[GP_PWD_137], 1, 169, 3);
264 		ar5212ModifyRfBuffer(priv->Bank6Data,
265 			gv->currStep->paramVal[GP_PWD_136], 1, 170, 3);
266 		ar5212ModifyRfBuffer(priv->Bank6Data,
267 			gv->currStep->paramVal[GP_PWD_132], 1, 174, 3);
268 		ar5212ModifyRfBuffer(priv->Bank6Data,
269 			gv->currStep->paramVal[GP_PWD_131], 1, 175, 3);
270 		ar5212ModifyRfBuffer(priv->Bank6Data,
271 			gv->currStep->paramVal[GP_PWD_130], 1, 176, 3);
272 	}
273 
274 	/* Only the 5 or 2 GHz OB/DB need to be set for a mode */
275 	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
276 		ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 287, 0);
277 		ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 290, 0);
278 	} else {
279 		ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 279, 0);
280 		ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 282, 0);
281 	}
282 
283 	/* Lower synth voltage for X112 Rev 2.0 only */
284 	if (IS_RADX112_REV2(ah)) {
285 		/* Non-Reversed analyg registers - so values are pre-reversed */
286 		ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 90, 2);
287 		ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 92, 2);
288 		ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 94, 2);
289 		ar5212ModifyRfBuffer(priv->Bank6Data, 2, 1, 254, 2);
290 	}
291 
292     /* Decrease Power Consumption for 5312/5213 and up */
293     if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {
294         ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 281, 1);
295         ar5212ModifyRfBuffer(priv->Bank6Data, 1, 2, 1, 3);
296         ar5212ModifyRfBuffer(priv->Bank6Data, 1, 2, 3, 3);
297         ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 139, 3);
298         ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 140, 3);
299     }
300 
301 	/* Setup Bank 7 Setup */
302 	RF_BANK_SETUP(priv, 7, modesIndex);
303 	if (IEEE80211_IS_CHAN_OFDM(chan))
304 		ar5212ModifyRfBuffer(priv->Bank7Data,
305 			gv->currStep->paramVal[GP_MIXGAIN_OVR], 2, 37, 0);
306 
307 	ar5212ModifyRfBuffer(priv->Bank7Data, gainI, 6, 14, 0);
308 
309 	/* Adjust params for Derby TX power control */
310 	if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
311         	uint32_t	rfDelay, rfPeriod;
312 
313         	rfDelay = 0xf;
314         	rfPeriod = (IEEE80211_IS_CHAN_HALF(chan)) ?  0x8 : 0xf;
315         	ar5212ModifyRfBuffer(priv->Bank7Data, rfDelay, 4, 58, 0);
316         	ar5212ModifyRfBuffer(priv->Bank7Data, rfPeriod, 4, 70, 0);
317 	}
318 
319 #ifdef notyet
320 	/* Analog registers are setup - EAR can modify */
321 	if (ar5212IsEarEngaged(pDev, chan))
322 		uint32_t modifier;
323 		ar5212EarModify(pDev, EAR_LC_RF_WRITE, chan, &modifier);
324 #endif
325 	/* Write Analog registers */
326 	HAL_INI_WRITE_BANK(ah, ar5212Bank1_5112, priv->Bank1Data, regWrites);
327 	HAL_INI_WRITE_BANK(ah, ar5212Bank2_5112, priv->Bank2Data, regWrites);
328 	HAL_INI_WRITE_BANK(ah, ar5212Bank3_5112, priv->Bank3Data, regWrites);
329 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_5112, priv->Bank6Data, regWrites);
330 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_5112, priv->Bank7Data, regWrites);
331 
332 	/* Now that we have reprogrammed rfgain value, clear the flag. */
333 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
334 	return AH_TRUE;
335 #undef	RF_BANK_SETUP
336 }
337 
338 /*
339  * Read the transmit power levels from the structures taken from EEPROM
340  * Interpolate read transmit power values for this channel
341  * Organize the transmit power values into a table for writing into the hardware
342  */
343 static HAL_BOOL
344 ar5112SetPowerTable(struct ath_hal *ah,
345 	int16_t *pPowerMin, int16_t *pPowerMax,
346 	const struct ieee80211_channel *chan,
347 	uint16_t *rfXpdGain)
348 {
349 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
350 	struct ath_hal_5212 *ahp = AH5212(ah);
351 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
352 	uint32_t numXpdGain = IS_RADX112_REV2(ah) ? 2 : 1;
353 	uint32_t    xpdGainMask = 0;
354 	int16_t     powerMid, *pPowerMid = &powerMid;
355 
356 	const EXPN_DATA_PER_CHANNEL_5112 *pRawCh;
357 	const EEPROM_POWER_EXPN_5112     *pPowerExpn = AH_NULL;
358 
359 	uint32_t    ii, jj, kk;
360 	int16_t     minPwr_t4, maxPwr_t4, Pmin, Pmid;
361 
362 	uint32_t    chan_idx_L = 0, chan_idx_R = 0;
363 	uint16_t    chan_L, chan_R;
364 
365 	int16_t     pwr_table0[64];
366 	int16_t     pwr_table1[64];
367 	uint16_t    pcdacs[10];
368 	int16_t     powers[10];
369 	uint16_t    numPcd;
370 	int16_t     powTableLXPD[2][64];
371 	int16_t     powTableHXPD[2][64];
372 	int16_t     tmpPowerTable[64];
373 	uint16_t    xgainList[2];
374 	uint16_t    xpdMask;
375 
376 	switch (chan->ic_flags & IEEE80211_CHAN_ALLTURBOFULL) {
377 	case IEEE80211_CHAN_A:
378 	case IEEE80211_CHAN_ST:
379 		pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11A];
380 		xpdGainMask = ee->ee_xgain[headerInfo11A];
381 		break;
382 	case IEEE80211_CHAN_B:
383 		pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11B];
384 		xpdGainMask = ee->ee_xgain[headerInfo11B];
385 		break;
386 	case IEEE80211_CHAN_G:
387 	case IEEE80211_CHAN_108G:
388 		pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11G];
389 		xpdGainMask = ee->ee_xgain[headerInfo11G];
390 		break;
391 	default:
392 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown channel flags 0x%x\n",
393 		    __func__, chan->ic_flags);
394 		return AH_FALSE;
395 	}
396 
397 	if ((xpdGainMask & pPowerExpn->xpdMask) < 1) {
398 		HALDEBUG(ah, HAL_DEBUG_ANY,
399 		    "%s: desired xpdGainMask 0x%x not supported by "
400 		    "calibrated xpdMask 0x%x\n", __func__,
401 		    xpdGainMask, pPowerExpn->xpdMask);
402 		return AH_FALSE;
403 	}
404 
405 	maxPwr_t4 = (int16_t)(2*(*pPowerMax));	/* pwr_t2 -> pwr_t4 */
406 	minPwr_t4 = (int16_t)(2*(*pPowerMin));	/* pwr_t2 -> pwr_t4 */
407 
408 	xgainList[0] = 0xDEAD;
409 	xgainList[1] = 0xDEAD;
410 
411 	kk = 0;
412 	xpdMask = pPowerExpn->xpdMask;
413 	for (jj = 0; jj < NUM_XPD_PER_CHANNEL; jj++) {
414 		if (((xpdMask >> jj) & 1) > 0) {
415 			if (kk > 1) {
416 				HALDEBUG(ah, HAL_DEBUG_ANY,
417 				    "A maximum of 2 xpdGains supported"
418 				    "in pExpnPower data\n");
419 				return AH_FALSE;
420 			}
421 			xgainList[kk++] = (uint16_t)jj;
422 		}
423 	}
424 
425 	ar5212GetLowerUpperIndex(freq, &pPowerExpn->pChannels[0],
426 		pPowerExpn->numChannels, &chan_idx_L, &chan_idx_R);
427 
428 	kk = 0;
429 	for (ii = chan_idx_L; ii <= chan_idx_R; ii++) {
430 		pRawCh = &(pPowerExpn->pDataPerChannel[ii]);
431 		if (xgainList[1] == 0xDEAD) {
432 			jj = xgainList[0];
433 			numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
434 			OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],
435 				numPcd * sizeof(uint16_t));
436 			OS_MEMCPY(&powers[0], &pRawCh->pDataPerXPD[jj].pwr_t4[0],
437 				numPcd * sizeof(int16_t));
438 			if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],
439 				pRawCh->maxPower_t4, &tmpPowerTable[0])) {
440 				return AH_FALSE;
441 			}
442 			OS_MEMCPY(&powTableLXPD[kk][0], &tmpPowerTable[0],
443 				64*sizeof(int16_t));
444 		} else {
445 			jj = xgainList[0];
446 			numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
447 			OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],
448 				numPcd*sizeof(uint16_t));
449 			OS_MEMCPY(&powers[0],
450 				&pRawCh->pDataPerXPD[jj].pwr_t4[0],
451 				numPcd*sizeof(int16_t));
452 			if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],
453 				pRawCh->maxPower_t4, &tmpPowerTable[0])) {
454 				return AH_FALSE;
455 			}
456 			OS_MEMCPY(&powTableLXPD[kk][0], &tmpPowerTable[0],
457 				64 * sizeof(int16_t));
458 
459 			jj = xgainList[1];
460 			numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
461 			OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],
462 				numPcd * sizeof(uint16_t));
463 			OS_MEMCPY(&powers[0],
464 				&pRawCh->pDataPerXPD[jj].pwr_t4[0],
465 				numPcd * sizeof(int16_t));
466 			if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],
467 				pRawCh->maxPower_t4, &tmpPowerTable[0])) {
468 				return AH_FALSE;
469 			}
470 			OS_MEMCPY(&powTableHXPD[kk][0], &tmpPowerTable[0],
471 				64 * sizeof(int16_t));
472 		}
473 		kk++;
474 	}
475 
476 	chan_L = pPowerExpn->pChannels[chan_idx_L];
477 	chan_R = pPowerExpn->pChannels[chan_idx_R];
478 	kk = chan_idx_R - chan_idx_L;
479 
480 	if (xgainList[1] == 0xDEAD) {
481 		for (jj = 0; jj < 64; jj++) {
482 			pwr_table0[jj] = interpolate_signed(
483 				freq, chan_L, chan_R,
484 				powTableLXPD[0][jj], powTableLXPD[kk][jj]);
485 		}
486 		Pmin = getPminAndPcdacTableFromPowerTable(&pwr_table0[0],
487 				ahp->ah_pcdacTable);
488 		*pPowerMin = (int16_t) (Pmin / 2);
489 		*pPowerMid = (int16_t) (pwr_table0[63] / 2);
490 		*pPowerMax = (int16_t) (pwr_table0[63] / 2);
491 		rfXpdGain[0] = xgainList[0];
492 		rfXpdGain[1] = rfXpdGain[0];
493 	} else {
494 		for (jj = 0; jj < 64; jj++) {
495 			pwr_table0[jj] = interpolate_signed(
496 				freq, chan_L, chan_R,
497 				powTableLXPD[0][jj], powTableLXPD[kk][jj]);
498 			pwr_table1[jj] = interpolate_signed(
499 				freq, chan_L, chan_R,
500 				powTableHXPD[0][jj], powTableHXPD[kk][jj]);
501 		}
502 		if (numXpdGain == 2) {
503 			Pmin = getPminAndPcdacTableFromTwoPowerTables(
504 				&pwr_table0[0], &pwr_table1[0],
505 				ahp->ah_pcdacTable, &Pmid);
506 			*pPowerMin = (int16_t) (Pmin / 2);
507 			*pPowerMid = (int16_t) (Pmid / 2);
508 			*pPowerMax = (int16_t) (pwr_table0[63] / 2);
509 			rfXpdGain[0] = xgainList[0];
510 			rfXpdGain[1] = xgainList[1];
511 		} else if (minPwr_t4 <= pwr_table1[63] &&
512 			   maxPwr_t4 <= pwr_table1[63]) {
513 			Pmin = getPminAndPcdacTableFromPowerTable(
514 				&pwr_table1[0], ahp->ah_pcdacTable);
515 			rfXpdGain[0] = xgainList[1];
516 			rfXpdGain[1] = rfXpdGain[0];
517 			*pPowerMin = (int16_t) (Pmin / 2);
518 			*pPowerMid = (int16_t) (pwr_table1[63] / 2);
519 			*pPowerMax = (int16_t) (pwr_table1[63] / 2);
520 		} else {
521 			Pmin = getPminAndPcdacTableFromPowerTable(
522 				&pwr_table0[0], ahp->ah_pcdacTable);
523 			rfXpdGain[0] = xgainList[0];
524 			rfXpdGain[1] = rfXpdGain[0];
525 			*pPowerMin = (int16_t) (Pmin/2);
526 			*pPowerMid = (int16_t) (pwr_table0[63] / 2);
527 			*pPowerMax = (int16_t) (pwr_table0[63] / 2);
528 		}
529 	}
530 
531 	/*
532 	 * Move 5112 rates to match power tables where the max
533 	 * power table entry corresponds with maxPower.
534 	 */
535 	HALASSERT(*pPowerMax <= PCDAC_STOP);
536 	ahp->ah_txPowerIndexOffset = PCDAC_STOP - *pPowerMax;
537 
538 	return AH_TRUE;
539 }
540 
541 /*
542  * Returns interpolated or the scaled up interpolated value
543  */
544 static int16_t
545 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
546 	int16_t targetLeft, int16_t targetRight)
547 {
548 	int16_t rv;
549 
550 	if (srcRight != srcLeft) {
551 		rv = ((target - srcLeft)*targetRight +
552 		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
553 	} else {
554 		rv = targetLeft;
555 	}
556 	return rv;
557 }
558 
559 /*
560  * Return indices surrounding the value in sorted integer lists.
561  *
562  * NB: the input list is assumed to be sorted in ascending order
563  */
564 static void
565 ar5212GetLowerUpperIndex(uint16_t v, uint16_t *lp, uint16_t listSize,
566                           uint32_t *vlo, uint32_t *vhi)
567 {
568 	uint32_t target = v;
569 	uint16_t *ep = lp+listSize;
570 	uint16_t *tp;
571 
572 	/*
573 	 * Check first and last elements for out-of-bounds conditions.
574 	 */
575 	if (target < lp[0]) {
576 		*vlo = *vhi = 0;
577 		return;
578 	}
579 	if (target >= ep[-1]) {
580 		*vlo = *vhi = listSize - 1;
581 		return;
582 	}
583 
584 	/* look for value being near or between 2 values in list */
585 	for (tp = lp; tp < ep; tp++) {
586 		/*
587 		 * If value is close to the current value of the list
588 		 * then target is not between values, it is one of the values
589 		 */
590 		if (*tp == target) {
591 			*vlo = *vhi = tp - lp;
592 			return;
593 		}
594 		/*
595 		 * Look for value being between current value and next value
596 		 * if so return these 2 values
597 		 */
598 		if (target < tp[1]) {
599 			*vlo = tp - lp;
600 			*vhi = *vlo + 1;
601 			return;
602 		}
603 	}
604 }
605 
606 static HAL_BOOL
607 getFullPwrTable(uint16_t numPcdacs, uint16_t *pcdacs, int16_t *power, int16_t maxPower, int16_t *retVals)
608 {
609 	uint16_t    ii;
610 	uint16_t    idxL = 0;
611 	uint16_t    idxR = 1;
612 
613 	if (numPcdacs < 2) {
614 		HALDEBUG(AH_NULL, HAL_DEBUG_ANY,
615 		     "%s: at least 2 pcdac values needed [%d]\n",
616 		     __func__, numPcdacs);
617 		return AH_FALSE;
618 	}
619 	for (ii = 0; ii < 64; ii++) {
620 		if (ii>pcdacs[idxR] && idxR < numPcdacs-1) {
621 			idxL++;
622 			idxR++;
623 		}
624 		retVals[ii] = interpolate_signed(ii,
625 			pcdacs[idxL], pcdacs[idxR], power[idxL], power[idxR]);
626 		if (retVals[ii] >= maxPower) {
627 			while (ii < 64)
628 				retVals[ii++] = maxPower;
629 		}
630 	}
631 	return AH_TRUE;
632 }
633 
634 /*
635  * Takes a single calibration curve and creates a power table.
636  * Adjusts the new power table so the max power is relative
637  * to the maximum index in the power table.
638  *
639  * WARNING: rates must be adjusted for this relative power table
640  */
641 static int16_t
642 getPminAndPcdacTableFromPowerTable(int16_t *pwrTableT4, uint16_t retVals[])
643 {
644     int16_t ii, jj, jjMax;
645     int16_t pMin, currPower, pMax;
646 
647     /* If the spread is > 31.5dB, keep the upper 31.5dB range */
648     if ((pwrTableT4[63] - pwrTableT4[0]) > 126) {
649         pMin = pwrTableT4[63] - 126;
650     } else {
651         pMin = pwrTableT4[0];
652     }
653 
654     pMax = pwrTableT4[63];
655     jjMax = 63;
656 
657     /* Search for highest pcdac 0.25dB below maxPower */
658     while ((pwrTableT4[jjMax] > (pMax - 1) ) && (jjMax >= 0)) {
659         jjMax--;
660     }
661 
662     jj = jjMax;
663     currPower = pMax;
664     for (ii = 63; ii >= 0; ii--) {
665         while ((jj < 64) && (jj > 0) && (pwrTableT4[jj] >= currPower)) {
666             jj--;
667         }
668         if (jj == 0) {
669             while (ii >= 0) {
670                 retVals[ii] = retVals[ii + 1];
671                 ii--;
672             }
673             break;
674         }
675         retVals[ii] = jj;
676         currPower -= 2;  // corresponds to a 0.5dB step
677     }
678     return pMin;
679 }
680 
681 /*
682  * Combines the XPD curves from two calibration sets into a single
683  * power table and adjusts the power table so the max power is relative
684  * to the maximum index in the power table
685  *
686  * WARNING: rates must be adjusted for this relative power table
687  */
688 static int16_t
689 getPminAndPcdacTableFromTwoPowerTables(int16_t *pwrTableLXpdT4,
690 	int16_t *pwrTableHXpdT4, uint16_t retVals[], int16_t *pMid)
691 {
692     int16_t     ii, jj, jjMax;
693     int16_t     pMin, pMax, currPower;
694     int16_t     *pwrTableT4;
695     uint16_t    msbFlag = 0x40;  // turns on the 7th bit of the pcdac
696 
697     /* If the spread is > 31.5dB, keep the upper 31.5dB range */
698     if ((pwrTableLXpdT4[63] - pwrTableHXpdT4[0]) > 126) {
699         pMin = pwrTableLXpdT4[63] - 126;
700     } else {
701         pMin = pwrTableHXpdT4[0];
702     }
703 
704     pMax = pwrTableLXpdT4[63];
705     jjMax = 63;
706     /* Search for highest pcdac 0.25dB below maxPower */
707     while ((pwrTableLXpdT4[jjMax] > (pMax - 1) ) && (jjMax >= 0)){
708         jjMax--;
709     }
710 
711     *pMid = pwrTableHXpdT4[63];
712     jj = jjMax;
713     ii = 63;
714     currPower = pMax;
715     pwrTableT4 = &(pwrTableLXpdT4[0]);
716     while (ii >= 0) {
717         if ((currPower <= *pMid) || ( (jj == 0) && (msbFlag == 0x40))){
718             msbFlag = 0x00;
719             pwrTableT4 = &(pwrTableHXpdT4[0]);
720             jj = 63;
721         }
722         while ((jj > 0) && (pwrTableT4[jj] >= currPower)) {
723             jj--;
724         }
725         if ((jj == 0) && (msbFlag == 0x00)) {
726             while (ii >= 0) {
727                 retVals[ii] = retVals[ii+1];
728                 ii--;
729             }
730             break;
731         }
732         retVals[ii] = jj | msbFlag;
733         currPower -= 2;  // corresponds to a 0.5dB step
734         ii--;
735     }
736     return pMin;
737 }
738 
739 static int16_t
740 ar5112GetMinPower(struct ath_hal *ah, const EXPN_DATA_PER_CHANNEL_5112 *data)
741 {
742 	int i, minIndex;
743 	int16_t minGain,minPwr,minPcdac,retVal;
744 
745 	/* Assume NUM_POINTS_XPD0 > 0 */
746 	minGain = data->pDataPerXPD[0].xpd_gain;
747 	for (minIndex=0,i=1; i<NUM_XPD_PER_CHANNEL; i++) {
748 		if (data->pDataPerXPD[i].xpd_gain < minGain) {
749 			minIndex = i;
750 			minGain = data->pDataPerXPD[i].xpd_gain;
751 		}
752 	}
753 	minPwr = data->pDataPerXPD[minIndex].pwr_t4[0];
754 	minPcdac = data->pDataPerXPD[minIndex].pcdac[0];
755 	for (i=1; i<NUM_POINTS_XPD0; i++) {
756 		if (data->pDataPerXPD[minIndex].pwr_t4[i] < minPwr) {
757 			minPwr = data->pDataPerXPD[minIndex].pwr_t4[i];
758 			minPcdac = data->pDataPerXPD[minIndex].pcdac[i];
759 		}
760 	}
761 	retVal = minPwr - (minPcdac*2);
762 	return(retVal);
763 }
764 
765 static HAL_BOOL
766 ar5112GetChannelMaxMinPower(struct ath_hal *ah,
767 	const struct ieee80211_channel *chan,
768 	int16_t *maxPow, int16_t *minPow)
769 {
770 	uint16_t freq = chan->ic_freq;		/* NB: never mapped */
771 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
772 	int numChannels=0,i,last;
773 	int totalD, totalF,totalMin;
774 	const EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL;
775 	const EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL;
776 
777 	*maxPow = 0;
778 	if (IEEE80211_IS_CHAN_A(chan)) {
779 		powerArray = ee->ee_modePowerArray5112;
780 		data = powerArray[headerInfo11A].pDataPerChannel;
781 		numChannels = powerArray[headerInfo11A].numChannels;
782 	} else if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan)) {
783 		/* XXX - is this correct? Should we also use the same power for turbo G? */
784 		powerArray = ee->ee_modePowerArray5112;
785 		data = powerArray[headerInfo11G].pDataPerChannel;
786 		numChannels = powerArray[headerInfo11G].numChannels;
787 	} else if (IEEE80211_IS_CHAN_B(chan)) {
788 		powerArray = ee->ee_modePowerArray5112;
789 		data = powerArray[headerInfo11B].pDataPerChannel;
790 		numChannels = powerArray[headerInfo11B].numChannels;
791 	} else {
792 		return (AH_TRUE);
793 	}
794 	/* Make sure the channel is in the range of the TP values
795 	 *  (freq piers)
796 	 */
797 	if (numChannels < 1)
798 		return(AH_FALSE);
799 
800 	if ((freq < data[0].channelValue) ||
801 	    (freq > data[numChannels-1].channelValue)) {
802 		if (freq < data[0].channelValue) {
803 			*maxPow = data[0].maxPower_t4;
804 			*minPow = ar5112GetMinPower(ah, &data[0]);
805 			return(AH_TRUE);
806 		} else {
807 			*maxPow = data[numChannels - 1].maxPower_t4;
808 			*minPow = ar5112GetMinPower(ah, &data[numChannels - 1]);
809 			return(AH_TRUE);
810 		}
811 	}
812 
813 	/* Linearly interpolate the power value now */
814 	for (last=0,i=0;
815 	     (i<numChannels) && (freq > data[i].channelValue);
816 	     last=i++);
817 	totalD = data[i].channelValue - data[last].channelValue;
818 	if (totalD > 0) {
819 		totalF = data[i].maxPower_t4 - data[last].maxPower_t4;
820 		*maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD);
821 
822 		totalMin = ar5112GetMinPower(ah,&data[i]) - ar5112GetMinPower(ah, &data[last]);
823 		*minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) + ar5112GetMinPower(ah, &data[last])*totalD)/totalD);
824 		return (AH_TRUE);
825 	} else {
826 		if (freq == data[i].channelValue) {
827 			*maxPow = data[i].maxPower_t4;
828 			*minPow = ar5112GetMinPower(ah, &data[i]);
829 			return(AH_TRUE);
830 		} else
831 			return(AH_FALSE);
832 	}
833 }
834 
835 /*
836  * Free memory for analog bank scratch buffers
837  */
838 static void
839 ar5112RfDetach(struct ath_hal *ah)
840 {
841 	struct ath_hal_5212 *ahp = AH5212(ah);
842 
843 	HALASSERT(ahp->ah_rfHal != AH_NULL);
844 	ath_hal_free(ahp->ah_rfHal);
845 	ahp->ah_rfHal = AH_NULL;
846 }
847 
848 /*
849  * Allocate memory for analog bank scratch buffers
850  * Scratch Buffer will be reinitialized every reset so no need to zero now
851  */
852 static HAL_BOOL
853 ar5112RfAttach(struct ath_hal *ah, HAL_STATUS *status)
854 {
855 	struct ath_hal_5212 *ahp = AH5212(ah);
856 	struct ar5112State *priv;
857 
858 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
859 
860 	HALASSERT(ahp->ah_rfHal == AH_NULL);
861 	priv = ath_hal_malloc(sizeof(struct ar5112State));
862 	if (priv == AH_NULL) {
863 		HALDEBUG(ah, HAL_DEBUG_ANY,
864 		    "%s: cannot allocate private state\n", __func__);
865 		*status = HAL_ENOMEM;		/* XXX */
866 		return AH_FALSE;
867 	}
868 	priv->base.rfDetach		= ar5112RfDetach;
869 	priv->base.writeRegs		= ar5112WriteRegs;
870 	priv->base.getRfBank		= ar5112GetRfBank;
871 	priv->base.setChannel		= ar5112SetChannel;
872 	priv->base.setRfRegs		= ar5112SetRfRegs;
873 	priv->base.setPowerTable	= ar5112SetPowerTable;
874 	priv->base.getChannelMaxMinPower = ar5112GetChannelMaxMinPower;
875 	priv->base.getNfAdjust		= ar5212GetNfAdjust;
876 
877 	ahp->ah_pcdacTable = priv->pcdacTable;
878 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
879 	ahp->ah_rfHal = &priv->base;
880 
881 	return AH_TRUE;
882 }
883 
884 static HAL_BOOL
885 ar5112Probe(struct ath_hal *ah)
886 {
887 	return IS_RAD5112(ah);
888 }
889 AH_RF(RF5112, ar5112Probe, ar5112RfAttach);
890