xref: /freebsd/sys/dev/ath/ath_hal/ar5212/ar5111.c (revision e8d8bef961a50d4dc22501cde4fb9fb0be1b2532)
1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  * $FreeBSD$
20  */
21 #include "opt_ah.h"
22 
23 #include "ah.h"
24 #include "ah_internal.h"
25 
26 #include "ah_eeprom_v3.h"
27 
28 #include "ar5212/ar5212.h"
29 #include "ar5212/ar5212reg.h"
30 #include "ar5212/ar5212phy.h"
31 
32 #define AH_5212_5111
33 #include "ar5212/ar5212.ini"
34 
35 #define	N(a)	(sizeof(a)/sizeof(a[0]))
36 
37 struct ar5111State {
38 	RF_HAL_FUNCS	base;		/* public state, must be first */
39 	uint16_t	pcdacTable[PWR_TABLE_SIZE];
40 
41 	uint32_t	Bank0Data[N(ar5212Bank0_5111)];
42 	uint32_t	Bank1Data[N(ar5212Bank1_5111)];
43 	uint32_t	Bank2Data[N(ar5212Bank2_5111)];
44 	uint32_t	Bank3Data[N(ar5212Bank3_5111)];
45 	uint32_t	Bank6Data[N(ar5212Bank6_5111)];
46 	uint32_t	Bank7Data[N(ar5212Bank7_5111)];
47 };
48 #define	AR5111(ah)	((struct ar5111State *) AH5212(ah)->ah_rfHal)
49 
50 static uint16_t ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
51 		const PCDACS_EEPROM *pSrcStruct);
52 static HAL_BOOL ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
53 		const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
54 static void ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
55 		const PCDACS_EEPROM *pSrcStruct,
56 		uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
57 
58 extern void ar5212GetLowerUpperValues(uint16_t value,
59 		const uint16_t *pList, uint16_t listSize,
60 		uint16_t *pLowerValue, uint16_t *pUpperValue);
61 extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
62 		uint32_t numBits, uint32_t firstBit, uint32_t column);
63 
64 static void
65 ar5111WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
66 	int writes)
67 {
68 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5111, modesIndex, writes);
69 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_5111, 1, writes);
70 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5111, freqIndex, writes);
71 }
72 
73 /*
74  * Take the MHz channel value and set the Channel value
75  *
76  * ASSUMES: Writes enabled to analog bus
77  */
78 static HAL_BOOL
79 ar5111SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
80 {
81 #define CI_2GHZ_INDEX_CORRECTION 19
82 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
83 	uint32_t refClk, reg32, data2111;
84 	int16_t chan5111, chanIEEE;
85 
86 	/*
87 	 * Structure to hold 11b tuning information for 5111/2111
88 	 * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
89 	 */
90 	typedef struct {
91 		uint32_t	refClkSel;	/* reference clock, 1 for 16 MHz */
92 		uint32_t	channelSelect;	/* P[7:4]S[3:0] bits */
93 		uint16_t	channel5111;	/* 11a channel for 5111 */
94 	} CHAN_INFO_2GHZ;
95 
96 	static const CHAN_INFO_2GHZ chan2GHzData[] = {
97 		{ 1, 0x46, 96  },	/* 2312 -19 */
98 		{ 1, 0x46, 97  },	/* 2317 -18 */
99 		{ 1, 0x46, 98  },	/* 2322 -17 */
100 		{ 1, 0x46, 99  },	/* 2327 -16 */
101 		{ 1, 0x46, 100 },	/* 2332 -15 */
102 		{ 1, 0x46, 101 },	/* 2337 -14 */
103 		{ 1, 0x46, 102 },	/* 2342 -13 */
104 		{ 1, 0x46, 103 },	/* 2347 -12 */
105 		{ 1, 0x46, 104 },	/* 2352 -11 */
106 		{ 1, 0x46, 105 },	/* 2357 -10 */
107 		{ 1, 0x46, 106 },	/* 2362  -9 */
108 		{ 1, 0x46, 107 },	/* 2367  -8 */
109 		{ 1, 0x46, 108 },	/* 2372  -7 */
110 		/* index -6 to 0 are pad to make this a nolookup table */
111 		{ 1, 0x46, 116 },	/*       -6 */
112 		{ 1, 0x46, 116 },	/*       -5 */
113 		{ 1, 0x46, 116 },	/*       -4 */
114 		{ 1, 0x46, 116 },	/*       -3 */
115 		{ 1, 0x46, 116 },	/*       -2 */
116 		{ 1, 0x46, 116 },	/*       -1 */
117 		{ 1, 0x46, 116 },	/*        0 */
118 		{ 1, 0x46, 116 },	/* 2412   1 */
119 		{ 1, 0x46, 117 },	/* 2417   2 */
120 		{ 1, 0x46, 118 },	/* 2422   3 */
121 		{ 1, 0x46, 119 },	/* 2427   4 */
122 		{ 1, 0x46, 120 },	/* 2432   5 */
123 		{ 1, 0x46, 121 },	/* 2437   6 */
124 		{ 1, 0x46, 122 },	/* 2442   7 */
125 		{ 1, 0x46, 123 },	/* 2447   8 */
126 		{ 1, 0x46, 124 },	/* 2452   9 */
127 		{ 1, 0x46, 125 },	/* 2457  10 */
128 		{ 1, 0x46, 126 },	/* 2462  11 */
129 		{ 1, 0x46, 127 },	/* 2467  12 */
130 		{ 1, 0x46, 128 },	/* 2472  13 */
131 		{ 1, 0x44, 124 },	/* 2484  14 */
132 		{ 1, 0x46, 136 },	/* 2512  15 */
133 		{ 1, 0x46, 140 },	/* 2532  16 */
134 		{ 1, 0x46, 144 },	/* 2552  17 */
135 		{ 1, 0x46, 148 },	/* 2572  18 */
136 		{ 1, 0x46, 152 },	/* 2592  19 */
137 		{ 1, 0x46, 156 },	/* 2612  20 */
138 		{ 1, 0x46, 160 },	/* 2632  21 */
139 		{ 1, 0x46, 164 },	/* 2652  22 */
140 		{ 1, 0x46, 168 },	/* 2672  23 */
141 		{ 1, 0x46, 172 },	/* 2692  24 */
142 		{ 1, 0x46, 176 },	/* 2712  25 */
143 		{ 1, 0x46, 180 } 	/* 2732  26 */
144 	};
145 
146 	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
147 
148 	chanIEEE = chan->ic_ieee;
149 	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
150 		const CHAN_INFO_2GHZ* ci =
151 			&chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
152 		uint32_t txctl;
153 
154 		data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
155 				<< 5)
156 			 | (ci->refClkSel << 4);
157 		chan5111 = ci->channel5111;
158 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
159 		if (freq == 2484) {
160 			/* Enable channel spreading for channel 14 */
161 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
162 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
163 		} else {
164 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
165 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
166 		}
167 	} else {
168 		chan5111 = chanIEEE;	/* no conversion needed */
169 		data2111 = 0;
170 	}
171 
172 	/* Rest of the code is common for 5 GHz and 2.4 GHz. */
173 	if (chan5111 >= 145 || (chan5111 & 0x1)) {
174 		reg32  = ath_hal_reverseBits(chan5111 - 24, 8) & 0xff;
175 		refClk = 1;
176 	} else {
177 		reg32  = ath_hal_reverseBits(((chan5111 - 24)/2), 8) & 0xff;
178 		refClk = 0;
179 	}
180 
181 	reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
182 	OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
183 	reg32 >>= 8;
184 	OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
185 
186 	AH_PRIVATE(ah)->ah_curchan = chan;
187 	return AH_TRUE;
188 #undef CI_2GHZ_INDEX_CORRECTION
189 }
190 
191 /*
192  * Return a reference to the requested RF Bank.
193  */
194 static uint32_t *
195 ar5111GetRfBank(struct ath_hal *ah, int bank)
196 {
197 	struct ar5111State *priv = AR5111(ah);
198 
199 	HALASSERT(priv != AH_NULL);
200 	switch (bank) {
201 	case 0: return priv->Bank0Data;
202 	case 1: return priv->Bank1Data;
203 	case 2: return priv->Bank2Data;
204 	case 3: return priv->Bank3Data;
205 	case 6: return priv->Bank6Data;
206 	case 7: return priv->Bank7Data;
207 	}
208 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
209 	    __func__, bank);
210 	return AH_NULL;
211 }
212 
213 /*
214  * Reads EEPROM header info from device structure and programs
215  * all rf registers
216  *
217  * REQUIRES: Access to the analog rf device
218  */
219 static HAL_BOOL
220 ar5111SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan,
221 	uint16_t modesIndex, uint16_t *rfXpdGain)
222 {
223 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
224 	struct ath_hal_5212 *ahp = AH5212(ah);
225 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
226 	uint16_t rfXpdGainFixed, rfPloSel, rfPwdXpd, gainI;
227 	uint16_t tempOB, tempDB;
228 	uint32_t ob2GHz, db2GHz, rfReg[N(ar5212Bank6_5111)];
229 	int i, regWrites = 0;
230 
231 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
232 	    __func__, chan->ic_freq, chan->ic_flags, modesIndex);
233 
234 	/* Setup rf parameters */
235 	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
236 	case IEEE80211_CHAN_A:
237 		if (4000 < freq && freq < 5260) {
238 			tempOB = ee->ee_ob1;
239 			tempDB = ee->ee_db1;
240 		} else if (5260 <= freq && freq < 5500) {
241 			tempOB = ee->ee_ob2;
242 			tempDB = ee->ee_db2;
243 		} else if (5500 <= freq && freq < 5725) {
244 			tempOB = ee->ee_ob3;
245 			tempDB = ee->ee_db3;
246 		} else if (freq >= 5725) {
247 			tempOB = ee->ee_ob4;
248 			tempDB = ee->ee_db4;
249 		} else {
250 			/* XXX when does this happen??? */
251 			tempOB = tempDB = 0;
252 		}
253 		ob2GHz = db2GHz = 0;
254 
255 		rfXpdGainFixed = ee->ee_xgain[headerInfo11A];
256 		rfPloSel = ee->ee_xpd[headerInfo11A];
257 		rfPwdXpd = !ee->ee_xpd[headerInfo11A];
258 		gainI = ee->ee_gainI[headerInfo11A];
259 		break;
260 	case IEEE80211_CHAN_B:
261 		tempOB = ee->ee_obFor24;
262 		tempDB = ee->ee_dbFor24;
263 		ob2GHz = ee->ee_ob2GHz[0];
264 		db2GHz = ee->ee_db2GHz[0];
265 
266 		rfXpdGainFixed = ee->ee_xgain[headerInfo11B];
267 		rfPloSel = ee->ee_xpd[headerInfo11B];
268 		rfPwdXpd = !ee->ee_xpd[headerInfo11B];
269 		gainI = ee->ee_gainI[headerInfo11B];
270 		break;
271 	case IEEE80211_CHAN_G:
272 	case IEEE80211_CHAN_PUREG:	/* NB: really 108G */
273 		tempOB = ee->ee_obFor24g;
274 		tempDB = ee->ee_dbFor24g;
275 		ob2GHz = ee->ee_ob2GHz[1];
276 		db2GHz = ee->ee_db2GHz[1];
277 
278 		rfXpdGainFixed = ee->ee_xgain[headerInfo11G];
279 		rfPloSel = ee->ee_xpd[headerInfo11G];
280 		rfPwdXpd = !ee->ee_xpd[headerInfo11G];
281 		gainI = ee->ee_gainI[headerInfo11G];
282 		break;
283 	default:
284 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
285 		    __func__, chan->ic_flags);
286 		return AH_FALSE;
287 	}
288 
289 	HALASSERT(1 <= tempOB && tempOB <= 5);
290 	HALASSERT(1 <= tempDB && tempDB <= 5);
291 
292 	/* Bank 0 Write */
293 	for (i = 0; i < N(ar5212Bank0_5111); i++)
294 		rfReg[i] = ar5212Bank0_5111[i][modesIndex];
295 	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
296 		ar5212ModifyRfBuffer(rfReg, ob2GHz, 3, 119, 0);
297 		ar5212ModifyRfBuffer(rfReg, db2GHz, 3, 122, 0);
298 	}
299 	HAL_INI_WRITE_BANK(ah, ar5212Bank0_5111, rfReg, regWrites);
300 
301 	/* Bank 1 Write */
302 	HAL_INI_WRITE_ARRAY(ah, ar5212Bank1_5111, 1, regWrites);
303 
304 	/* Bank 2 Write */
305 	HAL_INI_WRITE_ARRAY(ah, ar5212Bank2_5111, modesIndex, regWrites);
306 
307 	/* Bank 3 Write */
308 	HAL_INI_WRITE_ARRAY(ah, ar5212Bank3_5111, modesIndex, regWrites);
309 
310 	/* Bank 6 Write */
311 	for (i = 0; i < N(ar5212Bank6_5111); i++)
312 		rfReg[i] = ar5212Bank6_5111[i][modesIndex];
313 	if (IEEE80211_IS_CHAN_A(chan)) {	/* NB: CHANNEL_A | CHANNEL_T */
314 		ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd84, 1, 51, 3);
315 		ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd90, 1, 45, 3);
316 	}
317 	ar5212ModifyRfBuffer(rfReg, rfPwdXpd, 1, 95, 0);
318 	ar5212ModifyRfBuffer(rfReg, rfXpdGainFixed, 4, 96, 0);
319 	/* Set 5212 OB & DB */
320 	ar5212ModifyRfBuffer(rfReg, tempOB, 3, 104, 0);
321 	ar5212ModifyRfBuffer(rfReg, tempDB, 3, 107, 0);
322 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_5111, rfReg, regWrites);
323 
324 	/* Bank 7 Write */
325 	for (i = 0; i < N(ar5212Bank7_5111); i++)
326 		rfReg[i] = ar5212Bank7_5111[i][modesIndex];
327 	ar5212ModifyRfBuffer(rfReg, gainI, 6, 29, 0);
328 	ar5212ModifyRfBuffer(rfReg, rfPloSel, 1, 4, 0);
329 
330 	if (IEEE80211_IS_CHAN_QUARTER(chan) || IEEE80211_IS_CHAN_HALF(chan)) {
331         	uint32_t	rfWaitI, rfWaitS, rfMaxTime;
332 
333         	rfWaitS = 0x1f;
334         	rfWaitI = (IEEE80211_IS_CHAN_HALF(chan)) ?  0x10 : 0x1f;
335         	rfMaxTime = 3;
336         	ar5212ModifyRfBuffer(rfReg, rfWaitS, 5, 19, 0);
337         	ar5212ModifyRfBuffer(rfReg, rfWaitI, 5, 24, 0);
338         	ar5212ModifyRfBuffer(rfReg, rfMaxTime, 2, 49, 0);
339 	}
340 
341 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_5111, rfReg, regWrites);
342 
343 	/* Now that we have reprogrammed rfgain value, clear the flag. */
344 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
345 
346 	return AH_TRUE;
347 }
348 
349 /*
350  * Returns interpolated or the scaled up interpolated value
351  */
352 static uint16_t
353 interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
354 	uint16_t targetLeft, uint16_t targetRight)
355 {
356 	uint16_t rv;
357 	int16_t lRatio;
358 
359 	/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
360 	if ((targetLeft * targetRight) == 0)
361 		return 0;
362 
363 	if (srcRight != srcLeft) {
364 		/*
365 		 * Note the ratio always need to be scaled,
366 		 * since it will be a fraction.
367 		 */
368 		lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
369 		if (lRatio < 0) {
370 		    /* Return as Left target if value would be negative */
371 		    rv = targetLeft;
372 		} else if (lRatio > EEP_SCALE) {
373 		    /* Return as Right target if Ratio is greater than 100% (SCALE) */
374 		    rv = targetRight;
375 		} else {
376 			rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
377 					targetLeft) / EEP_SCALE;
378 		}
379 	} else {
380 		rv = targetLeft;
381 	}
382 	return rv;
383 }
384 
385 /*
386  * Read the transmit power levels from the structures taken from EEPROM
387  * Interpolate read transmit power values for this channel
388  * Organize the transmit power values into a table for writing into the hardware
389  */
390 static HAL_BOOL
391 ar5111SetPowerTable(struct ath_hal *ah,
392 	int16_t *pMinPower, int16_t *pMaxPower,
393 	const struct ieee80211_channel *chan,
394 	uint16_t *rfXpdGain)
395 {
396 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
397 	struct ath_hal_5212 *ahp = AH5212(ah);
398 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
399 	FULL_PCDAC_STRUCT pcdacStruct;
400 	int i, j;
401 
402 	uint16_t     *pPcdacValues;
403 	int16_t      *pScaledUpDbm;
404 	int16_t      minScaledPwr;
405 	int16_t      maxScaledPwr;
406 	int16_t      pwr;
407 	uint16_t     pcdacMin = 0;
408 	uint16_t     pcdacMax = PCDAC_STOP;
409 	uint16_t     pcdacTableIndex;
410 	uint16_t     scaledPcdac;
411 	PCDACS_EEPROM *pSrcStruct;
412 	PCDACS_EEPROM eepromPcdacs;
413 
414 	/* setup the pcdac struct to point to the correct info, based on mode */
415 	switch (chan->ic_flags & IEEE80211_CHAN_ALLTURBOFULL) {
416 	case IEEE80211_CHAN_A:
417 	case IEEE80211_CHAN_ST:
418 		eepromPcdacs.numChannels     = ee->ee_numChannels11a;
419 		eepromPcdacs.pChannelList    = ee->ee_channels11a;
420 		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
421 		break;
422 	case IEEE80211_CHAN_B:
423 		eepromPcdacs.numChannels     = ee->ee_numChannels2_4;
424 		eepromPcdacs.pChannelList    = ee->ee_channels11b;
425 		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
426 		break;
427 	case IEEE80211_CHAN_G:
428 	case IEEE80211_CHAN_108G:
429 		eepromPcdacs.numChannels     = ee->ee_numChannels2_4;
430 		eepromPcdacs.pChannelList    = ee->ee_channels11g;
431 		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
432 		break;
433 	default:
434 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
435 		    __func__, chan->ic_flags);
436 		return AH_FALSE;
437 	}
438 
439 	pSrcStruct = &eepromPcdacs;
440 
441 	OS_MEMZERO(&pcdacStruct, sizeof(pcdacStruct));
442 	pPcdacValues = pcdacStruct.PcdacValues;
443 	pScaledUpDbm = pcdacStruct.PwrValues;
444 
445 	/* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
446 	for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
447 		pPcdacValues[j] = i;
448 
449 	pcdacStruct.numPcdacValues = j;
450 	pcdacStruct.pcdacMin = PCDAC_START;
451 	pcdacStruct.pcdacMax = PCDAC_STOP;
452 
453 	/* Fill out the power values for this channel */
454 	for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
455 		pScaledUpDbm[j] = ar5212GetScaledPower(freq,
456 			pPcdacValues[j], pSrcStruct);
457 
458 	/* Now scale the pcdac values to fit in the 64 entry power table */
459 	minScaledPwr = pScaledUpDbm[0];
460 	maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
461 
462 	/* find minimum and make monotonic */
463 	for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
464 		if (minScaledPwr >= pScaledUpDbm[j]) {
465 			minScaledPwr = pScaledUpDbm[j];
466 			pcdacMin = j;
467 		}
468 		/*
469 		 * Make the full_hsh monotonically increasing otherwise
470 		 * interpolation algorithm will get fooled gotta start
471 		 * working from the top, hence i = 63 - j.
472 		 */
473 		i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
474 		if (i == 0)
475 			break;
476 		if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
477 			/*
478 			 * It could be a glitch, so make the power for
479 			 * this pcdac the same as the power from the
480 			 * next highest pcdac.
481 			 */
482 			pScaledUpDbm[i - 1] = pScaledUpDbm[i];
483 		}
484 	}
485 
486 	for (j = 0; j < pcdacStruct.numPcdacValues; j++)
487 		if (maxScaledPwr < pScaledUpDbm[j]) {
488 			maxScaledPwr = pScaledUpDbm[j];
489 			pcdacMax = j;
490 		}
491 
492 	/* Find the first power level with a pcdac */
493 	pwr = (uint16_t)(PWR_STEP *
494 		((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN);
495 
496 	/* Write all the first pcdac entries based off the pcdacMin */
497 	pcdacTableIndex = 0;
498 	for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++) {
499 		HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
500 		ahp->ah_pcdacTable[pcdacTableIndex++] = pcdacMin;
501 	}
502 
503 	i = 0;
504 	while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
505 	    pcdacTableIndex < PWR_TABLE_SIZE) {
506 		pwr += PWR_STEP;
507 		/* stop if dbM > max_power_possible */
508 		while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
509 		       (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
510 			i++;
511 		/* scale by 2 and add 1 to enable round up or down as needed */
512 		scaledPcdac = (uint16_t)(interpolate(pwr,
513 			pScaledUpDbm[i], pScaledUpDbm[i + 1],
514 			(uint16_t)(pPcdacValues[i] * 2),
515 			(uint16_t)(pPcdacValues[i + 1] * 2)) + 1);
516 
517 		HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
518 		ahp->ah_pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
519 		if (ahp->ah_pcdacTable[pcdacTableIndex] > pcdacMax)
520 			ahp->ah_pcdacTable[pcdacTableIndex] = pcdacMax;
521 		pcdacTableIndex++;
522 	}
523 
524 	/* Write all the last pcdac entries based off the last valid pcdac */
525 	while (pcdacTableIndex < PWR_TABLE_SIZE) {
526 		ahp->ah_pcdacTable[pcdacTableIndex] =
527 			ahp->ah_pcdacTable[pcdacTableIndex - 1];
528 		pcdacTableIndex++;
529 	}
530 
531 	/* No power table adjustment for 5111 */
532 	ahp->ah_txPowerIndexOffset = 0;
533 
534 	return AH_TRUE;
535 }
536 
537 /*
538  * Get or interpolate the pcdac value from the calibrated data.
539  */
540 static uint16_t
541 ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
542 	const PCDACS_EEPROM *pSrcStruct)
543 {
544 	uint16_t powerValue;
545 	uint16_t lFreq, rFreq;		/* left and right frequency values */
546 	uint16_t llPcdac, ulPcdac;	/* lower and upper left pcdac values */
547 	uint16_t lrPcdac, urPcdac;	/* lower and upper right pcdac values */
548 	uint16_t lPwr, uPwr;		/* lower and upper temp pwr values */
549 	uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
550 
551 	if (ar5212FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue)) {
552 		/* value was copied from srcStruct */
553 		return powerValue;
554 	}
555 
556 	ar5212GetLowerUpperValues(channel,
557 		pSrcStruct->pChannelList, pSrcStruct->numChannels,
558 		&lFreq, &rFreq);
559 	ar5212GetLowerUpperPcdacs(pcdacValue,
560 		lFreq, pSrcStruct, &llPcdac, &ulPcdac);
561 	ar5212GetLowerUpperPcdacs(pcdacValue,
562 		rFreq, pSrcStruct, &lrPcdac, &urPcdac);
563 
564 	/* get the power index for the pcdac value */
565 	ar5212FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
566 	ar5212FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
567 	lScaledPwr = interpolate(pcdacValue, llPcdac, ulPcdac, lPwr, uPwr);
568 
569 	ar5212FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
570 	ar5212FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
571 	rScaledPwr = interpolate(pcdacValue, lrPcdac, urPcdac, lPwr, uPwr);
572 
573 	return interpolate(channel, lFreq, rFreq, lScaledPwr, rScaledPwr);
574 }
575 
576 /*
577  * Find the value from the calibrated source data struct
578  */
579 static HAL_BOOL
580 ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
581 	const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
582 {
583 	const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
584 	int i;
585 
586 	for (i = 0; i < pSrcStruct->numChannels; i++ ) {
587 		if (pChannelData->channelValue == channel) {
588 			const uint16_t* pPcdac = pChannelData->PcdacValues;
589 			int j;
590 
591 			for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
592 				if (*pPcdac == pcdacValue) {
593 					*powerValue = pChannelData->PwrValues[j];
594 					return AH_TRUE;
595 				}
596 				pPcdac++;
597 			}
598 		}
599 		pChannelData++;
600 	}
601 	return AH_FALSE;
602 }
603 
604 /*
605  * Get the upper and lower pcdac given the channel and the pcdac
606  * used in the search
607  */
608 static void
609 ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
610 	const PCDACS_EEPROM *pSrcStruct,
611 	uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
612 {
613 	const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
614 	int i;
615 
616 	/* Find the channel information */
617 	for (i = 0; i < pSrcStruct->numChannels; i++) {
618 		if (pChannelData->channelValue == channel)
619 			break;
620 		pChannelData++;
621 	}
622 	ar5212GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
623 		      pChannelData->numPcdacValues,
624 		      pLowerPcdac, pUpperPcdac);
625 }
626 
627 static HAL_BOOL
628 ar5111GetChannelMaxMinPower(struct ath_hal *ah,
629 	const struct ieee80211_channel *chan,
630 	int16_t *maxPow, int16_t *minPow)
631 {
632 	/* XXX - Get 5111 power limits! */
633 	/* NB: caller will cope */
634 	return AH_FALSE;
635 }
636 
637 /*
638  * Adjust NF based on statistical values for 5GHz frequencies.
639  */
640 static int16_t
641 ar5111GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
642 {
643 	static const struct {
644 		uint16_t freqLow;
645 		int16_t	  adjust;
646 	} adjust5111[] = {
647 		{ 5790,	6 },	/* NB: ordered high -> low */
648 		{ 5730, 4 },
649 		{ 5690, 3 },
650 		{ 5660, 2 },
651 		{ 5610, 1 },
652 		{ 5530, 0 },
653 		{ 5450, 0 },
654 		{ 5379, 1 },
655 		{ 5209, 3 },
656 		{ 3000, 5 },
657 		{    0, 0 },
658 	};
659 	int i;
660 
661 	for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
662 		;
663 	return adjust5111[i].adjust;
664 }
665 
666 /*
667  * Free memory for analog bank scratch buffers
668  */
669 static void
670 ar5111RfDetach(struct ath_hal *ah)
671 {
672 	struct ath_hal_5212 *ahp = AH5212(ah);
673 
674 	HALASSERT(ahp->ah_rfHal != AH_NULL);
675 	ath_hal_free(ahp->ah_rfHal);
676 	ahp->ah_rfHal = AH_NULL;
677 }
678 
679 /*
680  * Allocate memory for analog bank scratch buffers
681  * Scratch Buffer will be reinitialized every reset so no need to zero now
682  */
683 static HAL_BOOL
684 ar5111RfAttach(struct ath_hal *ah, HAL_STATUS *status)
685 {
686 	struct ath_hal_5212 *ahp = AH5212(ah);
687 	struct ar5111State *priv;
688 
689 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
690 
691 	HALASSERT(ahp->ah_rfHal == AH_NULL);
692 	priv = ath_hal_malloc(sizeof(struct ar5111State));
693 	if (priv == AH_NULL) {
694 		HALDEBUG(ah, HAL_DEBUG_ANY,
695 		    "%s: cannot allocate private state\n", __func__);
696 		*status = HAL_ENOMEM;		/* XXX */
697 		return AH_FALSE;
698 	}
699 	priv->base.rfDetach		= ar5111RfDetach;
700 	priv->base.writeRegs		= ar5111WriteRegs;
701 	priv->base.getRfBank		= ar5111GetRfBank;
702 	priv->base.setChannel		= ar5111SetChannel;
703 	priv->base.setRfRegs		= ar5111SetRfRegs;
704 	priv->base.setPowerTable	= ar5111SetPowerTable;
705 	priv->base.getChannelMaxMinPower = ar5111GetChannelMaxMinPower;
706 	priv->base.getNfAdjust		= ar5111GetNfAdjust;
707 
708 	ahp->ah_pcdacTable = priv->pcdacTable;
709 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
710 	ahp->ah_rfHal = &priv->base;
711 
712 	return AH_TRUE;
713 }
714 
715 static HAL_BOOL
716 ar5111Probe(struct ath_hal *ah)
717 {
718 	return IS_RAD5111(ah);
719 }
720 AH_RF(RF5111, ar5111Probe, ar5111RfAttach);
721