xref: /freebsd/sys/dev/ath/ath_hal/ar5212/ar5111.c (revision 1fb62fb074788ca4713551be09d6569966a3abee)
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 
24 #include "ah_eeprom_v3.h"
25 
26 #include "ar5212/ar5212.h"
27 #include "ar5212/ar5212reg.h"
28 #include "ar5212/ar5212phy.h"
29 
30 #define AH_5212_5111
31 #include "ar5212/ar5212.ini"
32 
33 #define	N(a)	(sizeof(a)/sizeof(a[0]))
34 
35 struct ar5111State {
36 	RF_HAL_FUNCS	base;		/* public state, must be first */
37 	uint16_t	pcdacTable[PWR_TABLE_SIZE];
38 
39 	uint32_t	Bank0Data[N(ar5212Bank0_5111)];
40 	uint32_t	Bank1Data[N(ar5212Bank1_5111)];
41 	uint32_t	Bank2Data[N(ar5212Bank2_5111)];
42 	uint32_t	Bank3Data[N(ar5212Bank3_5111)];
43 	uint32_t	Bank6Data[N(ar5212Bank6_5111)];
44 	uint32_t	Bank7Data[N(ar5212Bank7_5111)];
45 };
46 #define	AR5111(ah)	((struct ar5111State *) AH5212(ah)->ah_rfHal)
47 
48 static uint16_t ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
49 		const PCDACS_EEPROM *pSrcStruct);
50 static HAL_BOOL ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
51 		const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
52 static void ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
53 		const PCDACS_EEPROM *pSrcStruct,
54 		uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
55 
56 extern void ar5212GetLowerUpperValues(uint16_t value,
57 		const uint16_t *pList, uint16_t listSize,
58 		uint16_t *pLowerValue, uint16_t *pUpperValue);
59 extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
60 		uint32_t numBits, uint32_t firstBit, uint32_t column);
61 
62 static void
63 ar5111WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
64 	int writes)
65 {
66 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5111, modesIndex, writes);
67 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_5111, 1, writes);
68 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5111, freqIndex, writes);
69 }
70 
71 /*
72  * Take the MHz channel value and set the Channel value
73  *
74  * ASSUMES: Writes enabled to analog bus
75  */
76 static HAL_BOOL
77 ar5111SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
78 {
79 #define CI_2GHZ_INDEX_CORRECTION 19
80 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
81 	uint32_t refClk, reg32, data2111;
82 	int16_t chan5111, chanIEEE;
83 
84 	/*
85 	 * Structure to hold 11b tuning information for 5111/2111
86 	 * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
87 	 */
88 	typedef struct {
89 		uint32_t	refClkSel;	/* reference clock, 1 for 16 MHz */
90 		uint32_t	channelSelect;	/* P[7:4]S[3:0] bits */
91 		uint16_t	channel5111;	/* 11a channel for 5111 */
92 	} CHAN_INFO_2GHZ;
93 
94 	static const CHAN_INFO_2GHZ chan2GHzData[] = {
95 		{ 1, 0x46, 96  },	/* 2312 -19 */
96 		{ 1, 0x46, 97  },	/* 2317 -18 */
97 		{ 1, 0x46, 98  },	/* 2322 -17 */
98 		{ 1, 0x46, 99  },	/* 2327 -16 */
99 		{ 1, 0x46, 100 },	/* 2332 -15 */
100 		{ 1, 0x46, 101 },	/* 2337 -14 */
101 		{ 1, 0x46, 102 },	/* 2342 -13 */
102 		{ 1, 0x46, 103 },	/* 2347 -12 */
103 		{ 1, 0x46, 104 },	/* 2352 -11 */
104 		{ 1, 0x46, 105 },	/* 2357 -10 */
105 		{ 1, 0x46, 106 },	/* 2362  -9 */
106 		{ 1, 0x46, 107 },	/* 2367  -8 */
107 		{ 1, 0x46, 108 },	/* 2372  -7 */
108 		/* index -6 to 0 are pad to make this a nolookup table */
109 		{ 1, 0x46, 116 },	/*       -6 */
110 		{ 1, 0x46, 116 },	/*       -5 */
111 		{ 1, 0x46, 116 },	/*       -4 */
112 		{ 1, 0x46, 116 },	/*       -3 */
113 		{ 1, 0x46, 116 },	/*       -2 */
114 		{ 1, 0x46, 116 },	/*       -1 */
115 		{ 1, 0x46, 116 },	/*        0 */
116 		{ 1, 0x46, 116 },	/* 2412   1 */
117 		{ 1, 0x46, 117 },	/* 2417   2 */
118 		{ 1, 0x46, 118 },	/* 2422   3 */
119 		{ 1, 0x46, 119 },	/* 2427   4 */
120 		{ 1, 0x46, 120 },	/* 2432   5 */
121 		{ 1, 0x46, 121 },	/* 2437   6 */
122 		{ 1, 0x46, 122 },	/* 2442   7 */
123 		{ 1, 0x46, 123 },	/* 2447   8 */
124 		{ 1, 0x46, 124 },	/* 2452   9 */
125 		{ 1, 0x46, 125 },	/* 2457  10 */
126 		{ 1, 0x46, 126 },	/* 2462  11 */
127 		{ 1, 0x46, 127 },	/* 2467  12 */
128 		{ 1, 0x46, 128 },	/* 2472  13 */
129 		{ 1, 0x44, 124 },	/* 2484  14 */
130 		{ 1, 0x46, 136 },	/* 2512  15 */
131 		{ 1, 0x46, 140 },	/* 2532  16 */
132 		{ 1, 0x46, 144 },	/* 2552  17 */
133 		{ 1, 0x46, 148 },	/* 2572  18 */
134 		{ 1, 0x46, 152 },	/* 2592  19 */
135 		{ 1, 0x46, 156 },	/* 2612  20 */
136 		{ 1, 0x46, 160 },	/* 2632  21 */
137 		{ 1, 0x46, 164 },	/* 2652  22 */
138 		{ 1, 0x46, 168 },	/* 2672  23 */
139 		{ 1, 0x46, 172 },	/* 2692  24 */
140 		{ 1, 0x46, 176 },	/* 2712  25 */
141 		{ 1, 0x46, 180 } 	/* 2732  26 */
142 	};
143 
144 	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
145 
146 	chanIEEE = chan->ic_ieee;
147 	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
148 		const CHAN_INFO_2GHZ* ci =
149 			&chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
150 		uint32_t txctl;
151 
152 		data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
153 				<< 5)
154 			 | (ci->refClkSel << 4);
155 		chan5111 = ci->channel5111;
156 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
157 		if (freq == 2484) {
158 			/* Enable channel spreading for channel 14 */
159 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
160 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
161 		} else {
162 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
163 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
164 		}
165 	} else {
166 		chan5111 = chanIEEE;	/* no conversion needed */
167 		data2111 = 0;
168 	}
169 
170 	/* Rest of the code is common for 5 GHz and 2.4 GHz. */
171 	if (chan5111 >= 145 || (chan5111 & 0x1)) {
172 		reg32  = ath_hal_reverseBits(chan5111 - 24, 8) & 0xff;
173 		refClk = 1;
174 	} else {
175 		reg32  = ath_hal_reverseBits(((chan5111 - 24)/2), 8) & 0xff;
176 		refClk = 0;
177 	}
178 
179 	reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
180 	OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
181 	reg32 >>= 8;
182 	OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
183 
184 	AH_PRIVATE(ah)->ah_curchan = chan;
185 	return AH_TRUE;
186 #undef CI_2GHZ_INDEX_CORRECTION
187 }
188 
189 /*
190  * Return a reference to the requested RF Bank.
191  */
192 static uint32_t *
193 ar5111GetRfBank(struct ath_hal *ah, int bank)
194 {
195 	struct ar5111State *priv = AR5111(ah);
196 
197 	HALASSERT(priv != AH_NULL);
198 	switch (bank) {
199 	case 0: return priv->Bank0Data;
200 	case 1: return priv->Bank1Data;
201 	case 2: return priv->Bank2Data;
202 	case 3: return priv->Bank3Data;
203 	case 6: return priv->Bank6Data;
204 	case 7: return priv->Bank7Data;
205 	}
206 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
207 	    __func__, bank);
208 	return AH_NULL;
209 }
210 
211 /*
212  * Reads EEPROM header info from device structure and programs
213  * all rf registers
214  *
215  * REQUIRES: Access to the analog rf device
216  */
217 static HAL_BOOL
218 ar5111SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan,
219 	uint16_t modesIndex, uint16_t *rfXpdGain)
220 {
221 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
222 	struct ath_hal_5212 *ahp = AH5212(ah);
223 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
224 	uint16_t rfXpdGainFixed, rfPloSel, rfPwdXpd, gainI;
225 	uint16_t tempOB, tempDB;
226 	uint32_t ob2GHz, db2GHz, rfReg[N(ar5212Bank6_5111)];
227 	int i, regWrites = 0;
228 
229 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
230 	    __func__, chan->ic_freq, chan->ic_flags, modesIndex);
231 
232 	/* Setup rf parameters */
233 	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
234 	case IEEE80211_CHAN_A:
235 		if (4000 < freq && freq < 5260) {
236 			tempOB = ee->ee_ob1;
237 			tempDB = ee->ee_db1;
238 		} else if (5260 <= freq && freq < 5500) {
239 			tempOB = ee->ee_ob2;
240 			tempDB = ee->ee_db2;
241 		} else if (5500 <= freq && freq < 5725) {
242 			tempOB = ee->ee_ob3;
243 			tempDB = ee->ee_db3;
244 		} else if (freq >= 5725) {
245 			tempOB = ee->ee_ob4;
246 			tempDB = ee->ee_db4;
247 		} else {
248 			/* XXX when does this happen??? */
249 			tempOB = tempDB = 0;
250 		}
251 		ob2GHz = db2GHz = 0;
252 
253 		rfXpdGainFixed = ee->ee_xgain[headerInfo11A];
254 		rfPloSel = ee->ee_xpd[headerInfo11A];
255 		rfPwdXpd = !ee->ee_xpd[headerInfo11A];
256 		gainI = ee->ee_gainI[headerInfo11A];
257 		break;
258 	case IEEE80211_CHAN_B:
259 		tempOB = ee->ee_obFor24;
260 		tempDB = ee->ee_dbFor24;
261 		ob2GHz = ee->ee_ob2GHz[0];
262 		db2GHz = ee->ee_db2GHz[0];
263 
264 		rfXpdGainFixed = ee->ee_xgain[headerInfo11B];
265 		rfPloSel = ee->ee_xpd[headerInfo11B];
266 		rfPwdXpd = !ee->ee_xpd[headerInfo11B];
267 		gainI = ee->ee_gainI[headerInfo11B];
268 		break;
269 	case IEEE80211_CHAN_G:
270 	case IEEE80211_CHAN_PUREG:	/* NB: really 108G */
271 		tempOB = ee->ee_obFor24g;
272 		tempDB = ee->ee_dbFor24g;
273 		ob2GHz = ee->ee_ob2GHz[1];
274 		db2GHz = ee->ee_db2GHz[1];
275 
276 		rfXpdGainFixed = ee->ee_xgain[headerInfo11G];
277 		rfPloSel = ee->ee_xpd[headerInfo11G];
278 		rfPwdXpd = !ee->ee_xpd[headerInfo11G];
279 		gainI = ee->ee_gainI[headerInfo11G];
280 		break;
281 	default:
282 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
283 		    __func__, chan->ic_flags);
284 		return AH_FALSE;
285 	}
286 
287 	HALASSERT(1 <= tempOB && tempOB <= 5);
288 	HALASSERT(1 <= tempDB && tempDB <= 5);
289 
290 	/* Bank 0 Write */
291 	for (i = 0; i < N(ar5212Bank0_5111); i++)
292 		rfReg[i] = ar5212Bank0_5111[i][modesIndex];
293 	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
294 		ar5212ModifyRfBuffer(rfReg, ob2GHz, 3, 119, 0);
295 		ar5212ModifyRfBuffer(rfReg, db2GHz, 3, 122, 0);
296 	}
297 	HAL_INI_WRITE_BANK(ah, ar5212Bank0_5111, rfReg, regWrites);
298 
299 	/* Bank 1 Write */
300 	HAL_INI_WRITE_ARRAY(ah, ar5212Bank1_5111, 1, regWrites);
301 
302 	/* Bank 2 Write */
303 	HAL_INI_WRITE_ARRAY(ah, ar5212Bank2_5111, modesIndex, regWrites);
304 
305 	/* Bank 3 Write */
306 	HAL_INI_WRITE_ARRAY(ah, ar5212Bank3_5111, modesIndex, regWrites);
307 
308 	/* Bank 6 Write */
309 	for (i = 0; i < N(ar5212Bank6_5111); i++)
310 		rfReg[i] = ar5212Bank6_5111[i][modesIndex];
311 	if (IEEE80211_IS_CHAN_A(chan)) {	/* NB: CHANNEL_A | CHANNEL_T */
312 		ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd84, 1, 51, 3);
313 		ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd90, 1, 45, 3);
314 	}
315 	ar5212ModifyRfBuffer(rfReg, rfPwdXpd, 1, 95, 0);
316 	ar5212ModifyRfBuffer(rfReg, rfXpdGainFixed, 4, 96, 0);
317 	/* Set 5212 OB & DB */
318 	ar5212ModifyRfBuffer(rfReg, tempOB, 3, 104, 0);
319 	ar5212ModifyRfBuffer(rfReg, tempDB, 3, 107, 0);
320 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_5111, rfReg, regWrites);
321 
322 	/* Bank 7 Write */
323 	for (i = 0; i < N(ar5212Bank7_5111); i++)
324 		rfReg[i] = ar5212Bank7_5111[i][modesIndex];
325 	ar5212ModifyRfBuffer(rfReg, gainI, 6, 29, 0);
326 	ar5212ModifyRfBuffer(rfReg, rfPloSel, 1, 4, 0);
327 
328 	if (IEEE80211_IS_CHAN_QUARTER(chan) || IEEE80211_IS_CHAN_HALF(chan)) {
329         	uint32_t	rfWaitI, rfWaitS, rfMaxTime;
330 
331         	rfWaitS = 0x1f;
332         	rfWaitI = (IEEE80211_IS_CHAN_HALF(chan)) ?  0x10 : 0x1f;
333         	rfMaxTime = 3;
334         	ar5212ModifyRfBuffer(rfReg, rfWaitS, 5, 19, 0);
335         	ar5212ModifyRfBuffer(rfReg, rfWaitI, 5, 24, 0);
336         	ar5212ModifyRfBuffer(rfReg, rfMaxTime, 2, 49, 0);
337 
338 	}
339 
340 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_5111, rfReg, regWrites);
341 
342 	/* Now that we have reprogrammed rfgain value, clear the flag. */
343 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
344 
345 	return AH_TRUE;
346 }
347 
348 /*
349  * Returns interpolated or the scaled up interpolated value
350  */
351 static uint16_t
352 interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
353 	uint16_t targetLeft, uint16_t targetRight)
354 {
355 	uint16_t rv;
356 	int16_t lRatio;
357 
358 	/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
359 	if ((targetLeft * targetRight) == 0)
360 		return 0;
361 
362 	if (srcRight != srcLeft) {
363 		/*
364 		 * Note the ratio always need to be scaled,
365 		 * since it will be a fraction.
366 		 */
367 		lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
368 		if (lRatio < 0) {
369 		    /* Return as Left target if value would be negative */
370 		    rv = targetLeft;
371 		} else if (lRatio > EEP_SCALE) {
372 		    /* Return as Right target if Ratio is greater than 100% (SCALE) */
373 		    rv = targetRight;
374 		} else {
375 			rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
376 					targetLeft) / EEP_SCALE;
377 		}
378 	} else {
379 		rv = targetLeft;
380 	}
381 	return rv;
382 }
383 
384 /*
385  * Read the transmit power levels from the structures taken from EEPROM
386  * Interpolate read transmit power values for this channel
387  * Organize the transmit power values into a table for writing into the hardware
388  */
389 static HAL_BOOL
390 ar5111SetPowerTable(struct ath_hal *ah,
391 	int16_t *pMinPower, int16_t *pMaxPower,
392 	const struct ieee80211_channel *chan,
393 	uint16_t *rfXpdGain)
394 {
395 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
396 	struct ath_hal_5212 *ahp = AH5212(ah);
397 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
398 	FULL_PCDAC_STRUCT pcdacStruct;
399 	int i, j;
400 
401 	uint16_t     *pPcdacValues;
402 	int16_t      *pScaledUpDbm;
403 	int16_t      minScaledPwr;
404 	int16_t      maxScaledPwr;
405 	int16_t      pwr;
406 	uint16_t     pcdacMin = 0;
407 	uint16_t     pcdacMax = PCDAC_STOP;
408 	uint16_t     pcdacTableIndex;
409 	uint16_t     scaledPcdac;
410 	PCDACS_EEPROM *pSrcStruct;
411 	PCDACS_EEPROM eepromPcdacs;
412 
413 	/* setup the pcdac struct to point to the correct info, based on mode */
414 	switch (chan->ic_flags & IEEE80211_CHAN_ALLTURBOFULL) {
415 	case IEEE80211_CHAN_A:
416 	case IEEE80211_CHAN_ST:
417 		eepromPcdacs.numChannels     = ee->ee_numChannels11a;
418 		eepromPcdacs.pChannelList    = ee->ee_channels11a;
419 		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
420 		break;
421 	case IEEE80211_CHAN_B:
422 		eepromPcdacs.numChannels     = ee->ee_numChannels2_4;
423 		eepromPcdacs.pChannelList    = ee->ee_channels11b;
424 		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
425 		break;
426 	case IEEE80211_CHAN_G:
427 	case IEEE80211_CHAN_108G:
428 		eepromPcdacs.numChannels     = ee->ee_numChannels2_4;
429 		eepromPcdacs.pChannelList    = ee->ee_channels11g;
430 		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
431 		break;
432 	default:
433 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
434 		    __func__, chan->ic_flags);
435 		return AH_FALSE;
436 	}
437 
438 	pSrcStruct = &eepromPcdacs;
439 
440 	OS_MEMZERO(&pcdacStruct, sizeof(pcdacStruct));
441 	pPcdacValues = pcdacStruct.PcdacValues;
442 	pScaledUpDbm = pcdacStruct.PwrValues;
443 
444 	/* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
445 	for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
446 		pPcdacValues[j] = i;
447 
448 	pcdacStruct.numPcdacValues = j;
449 	pcdacStruct.pcdacMin = PCDAC_START;
450 	pcdacStruct.pcdacMax = PCDAC_STOP;
451 
452 	/* Fill out the power values for this channel */
453 	for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
454 		pScaledUpDbm[j] = ar5212GetScaledPower(freq,
455 			pPcdacValues[j], pSrcStruct);
456 
457 	/* Now scale the pcdac values to fit in the 64 entry power table */
458 	minScaledPwr = pScaledUpDbm[0];
459 	maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
460 
461 	/* find minimum and make monotonic */
462 	for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
463 		if (minScaledPwr >= pScaledUpDbm[j]) {
464 			minScaledPwr = pScaledUpDbm[j];
465 			pcdacMin = j;
466 		}
467 		/*
468 		 * Make the full_hsh monotonically increasing otherwise
469 		 * interpolation algorithm will get fooled gotta start
470 		 * working from the top, hence i = 63 - j.
471 		 */
472 		i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
473 		if (i == 0)
474 			break;
475 		if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
476 			/*
477 			 * It could be a glitch, so make the power for
478 			 * this pcdac the same as the power from the
479 			 * next highest pcdac.
480 			 */
481 			pScaledUpDbm[i - 1] = pScaledUpDbm[i];
482 		}
483 	}
484 
485 	for (j = 0; j < pcdacStruct.numPcdacValues; j++)
486 		if (maxScaledPwr < pScaledUpDbm[j]) {
487 			maxScaledPwr = pScaledUpDbm[j];
488 			pcdacMax = j;
489 		}
490 
491 	/* Find the first power level with a pcdac */
492 	pwr = (uint16_t)(PWR_STEP *
493 		((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN);
494 
495 	/* Write all the first pcdac entries based off the pcdacMin */
496 	pcdacTableIndex = 0;
497 	for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++) {
498 		HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
499 		ahp->ah_pcdacTable[pcdacTableIndex++] = pcdacMin;
500 	}
501 
502 	i = 0;
503 	while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
504 	    pcdacTableIndex < PWR_TABLE_SIZE) {
505 		pwr += PWR_STEP;
506 		/* stop if dbM > max_power_possible */
507 		while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
508 		       (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
509 			i++;
510 		/* scale by 2 and add 1 to enable round up or down as needed */
511 		scaledPcdac = (uint16_t)(interpolate(pwr,
512 			pScaledUpDbm[i], pScaledUpDbm[i + 1],
513 			(uint16_t)(pPcdacValues[i] * 2),
514 			(uint16_t)(pPcdacValues[i + 1] * 2)) + 1);
515 
516 		HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
517 		ahp->ah_pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
518 		if (ahp->ah_pcdacTable[pcdacTableIndex] > pcdacMax)
519 			ahp->ah_pcdacTable[pcdacTableIndex] = pcdacMax;
520 		pcdacTableIndex++;
521 	}
522 
523 	/* Write all the last pcdac entries based off the last valid pcdac */
524 	while (pcdacTableIndex < PWR_TABLE_SIZE) {
525 		ahp->ah_pcdacTable[pcdacTableIndex] =
526 			ahp->ah_pcdacTable[pcdacTableIndex - 1];
527 		pcdacTableIndex++;
528 	}
529 
530 	/* No power table adjustment for 5111 */
531 	ahp->ah_txPowerIndexOffset = 0;
532 
533 	return AH_TRUE;
534 }
535 
536 /*
537  * Get or interpolate the pcdac value from the calibrated data.
538  */
539 static uint16_t
540 ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
541 	const PCDACS_EEPROM *pSrcStruct)
542 {
543 	uint16_t powerValue;
544 	uint16_t lFreq, rFreq;		/* left and right frequency values */
545 	uint16_t llPcdac, ulPcdac;	/* lower and upper left pcdac values */
546 	uint16_t lrPcdac, urPcdac;	/* lower and upper right pcdac values */
547 	uint16_t lPwr, uPwr;		/* lower and upper temp pwr values */
548 	uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
549 
550 	if (ar5212FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue)) {
551 		/* value was copied from srcStruct */
552 		return powerValue;
553 	}
554 
555 	ar5212GetLowerUpperValues(channel,
556 		pSrcStruct->pChannelList, pSrcStruct->numChannels,
557 		&lFreq, &rFreq);
558 	ar5212GetLowerUpperPcdacs(pcdacValue,
559 		lFreq, pSrcStruct, &llPcdac, &ulPcdac);
560 	ar5212GetLowerUpperPcdacs(pcdacValue,
561 		rFreq, pSrcStruct, &lrPcdac, &urPcdac);
562 
563 	/* get the power index for the pcdac value */
564 	ar5212FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
565 	ar5212FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
566 	lScaledPwr = interpolate(pcdacValue, llPcdac, ulPcdac, lPwr, uPwr);
567 
568 	ar5212FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
569 	ar5212FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
570 	rScaledPwr = interpolate(pcdacValue, lrPcdac, urPcdac, lPwr, uPwr);
571 
572 	return interpolate(channel, lFreq, rFreq, lScaledPwr, rScaledPwr);
573 }
574 
575 /*
576  * Find the value from the calibrated source data struct
577  */
578 static HAL_BOOL
579 ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
580 	const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
581 {
582 	const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
583 	int i;
584 
585 	for (i = 0; i < pSrcStruct->numChannels; i++ ) {
586 		if (pChannelData->channelValue == channel) {
587 			const uint16_t* pPcdac = pChannelData->PcdacValues;
588 			int j;
589 
590 			for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
591 				if (*pPcdac == pcdacValue) {
592 					*powerValue = pChannelData->PwrValues[j];
593 					return AH_TRUE;
594 				}
595 				pPcdac++;
596 			}
597 		}
598 		pChannelData++;
599 	}
600 	return AH_FALSE;
601 }
602 
603 /*
604  * Get the upper and lower pcdac given the channel and the pcdac
605  * used in the search
606  */
607 static void
608 ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
609 	const PCDACS_EEPROM *pSrcStruct,
610 	uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
611 {
612 	const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
613 	int i;
614 
615 	/* Find the channel information */
616 	for (i = 0; i < pSrcStruct->numChannels; i++) {
617 		if (pChannelData->channelValue == channel)
618 			break;
619 		pChannelData++;
620 	}
621 	ar5212GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
622 		      pChannelData->numPcdacValues,
623 		      pLowerPcdac, pUpperPcdac);
624 }
625 
626 static HAL_BOOL
627 ar5111GetChannelMaxMinPower(struct ath_hal *ah,
628 	const struct ieee80211_channel *chan,
629 	int16_t *maxPow, int16_t *minPow)
630 {
631 	/* XXX - Get 5111 power limits! */
632 	/* NB: caller will cope */
633 	return AH_FALSE;
634 }
635 
636 /*
637  * Adjust NF based on statistical values for 5GHz frequencies.
638  */
639 static int16_t
640 ar5111GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
641 {
642 	static const struct {
643 		uint16_t freqLow;
644 		int16_t	  adjust;
645 	} adjust5111[] = {
646 		{ 5790,	6 },	/* NB: ordered high -> low */
647 		{ 5730, 4 },
648 		{ 5690, 3 },
649 		{ 5660, 2 },
650 		{ 5610, 1 },
651 		{ 5530, 0 },
652 		{ 5450, 0 },
653 		{ 5379, 1 },
654 		{ 5209, 3 },
655 		{ 3000, 5 },
656 		{    0, 0 },
657 	};
658 	int i;
659 
660 	for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
661 		;
662 	return adjust5111[i].adjust;
663 }
664 
665 /*
666  * Free memory for analog bank scratch buffers
667  */
668 static void
669 ar5111RfDetach(struct ath_hal *ah)
670 {
671 	struct ath_hal_5212 *ahp = AH5212(ah);
672 
673 	HALASSERT(ahp->ah_rfHal != AH_NULL);
674 	ath_hal_free(ahp->ah_rfHal);
675 	ahp->ah_rfHal = AH_NULL;
676 }
677 
678 /*
679  * Allocate memory for analog bank scratch buffers
680  * Scratch Buffer will be reinitialized every reset so no need to zero now
681  */
682 static HAL_BOOL
683 ar5111RfAttach(struct ath_hal *ah, HAL_STATUS *status)
684 {
685 	struct ath_hal_5212 *ahp = AH5212(ah);
686 	struct ar5111State *priv;
687 
688 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
689 
690 	HALASSERT(ahp->ah_rfHal == AH_NULL);
691 	priv = ath_hal_malloc(sizeof(struct ar5111State));
692 	if (priv == AH_NULL) {
693 		HALDEBUG(ah, HAL_DEBUG_ANY,
694 		    "%s: cannot allocate private state\n", __func__);
695 		*status = HAL_ENOMEM;		/* XXX */
696 		return AH_FALSE;
697 	}
698 	priv->base.rfDetach		= ar5111RfDetach;
699 	priv->base.writeRegs		= ar5111WriteRegs;
700 	priv->base.getRfBank		= ar5111GetRfBank;
701 	priv->base.setChannel		= ar5111SetChannel;
702 	priv->base.setRfRegs		= ar5111SetRfRegs;
703 	priv->base.setPowerTable	= ar5111SetPowerTable;
704 	priv->base.getChannelMaxMinPower = ar5111GetChannelMaxMinPower;
705 	priv->base.getNfAdjust		= ar5111GetNfAdjust;
706 
707 	ahp->ah_pcdacTable = priv->pcdacTable;
708 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
709 	ahp->ah_rfHal = &priv->base;
710 
711 	return AH_TRUE;
712 }
713 
714 static HAL_BOOL
715 ar5111Probe(struct ath_hal *ah)
716 {
717 	return IS_RAD5111(ah);
718 }
719 AH_RF(RF5111, ar5111Probe, ar5111RfAttach);
720