xref: /freebsd/sys/dev/ath/ath_hal/ar5212/ar2425.c (revision f126d349810fdb512c0b01e101342d430b947488)
1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  * $FreeBSD$
20  */
21 #include "opt_ah.h"
22 
23 #include "ah.h"
24 #include "ah_internal.h"
25 
26 #include "ar5212/ar5212.h"
27 #include "ar5212/ar5212reg.h"
28 #include "ar5212/ar5212phy.h"
29 
30 #include "ah_eeprom_v3.h"
31 
32 #define AH_5212_2425
33 #define AH_5212_2417
34 #include "ar5212/ar5212.ini"
35 
36 #define	N(a)	(sizeof(a)/sizeof(a[0]))
37 
38 struct ar2425State {
39 	RF_HAL_FUNCS	base;		/* public state, must be first */
40 	uint16_t	pcdacTable[PWR_TABLE_SIZE_2413];
41 
42 	uint32_t	Bank1Data[N(ar5212Bank1_2425)];
43 	uint32_t	Bank2Data[N(ar5212Bank2_2425)];
44 	uint32_t	Bank3Data[N(ar5212Bank3_2425)];
45 	uint32_t	Bank6Data[N(ar5212Bank6_2425)];	/* 2417 is same size */
46 	uint32_t	Bank7Data[N(ar5212Bank7_2425)];
47 };
48 #define	AR2425(ah)	((struct ar2425State *) AH5212(ah)->ah_rfHal)
49 
50 extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
51 		uint32_t numBits, uint32_t firstBit, uint32_t column);
52 
53 static void
54 ar2425WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
55 	int writes)
56 {
57 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2425, modesIndex, writes);
58 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2425, 1, writes);
59 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2425, freqIndex, writes);
60 #if 0
61 	/*
62 	 * for SWAN similar to Condor
63 	 * Bit 0 enables link to go to L1 when MAC goes to sleep.
64 	 * Bit 3 enables the loop back the link down to reset.
65 	 */
66 	if (AH_PRIVATE(ah)->ah_ispcie && && ath_hal_pcieL1SKPEnable) {
67 		OS_REG_WRITE(ah, AR_PCIE_PMC,
68 		    AR_PCIE_PMC_ENA_L1 | AR_PCIE_PMC_ENA_RESET);
69 	}
70 	/*
71 	 * for Standby issue in Swan/Condor.
72 	 * Bit 9 (MAC_WOW_PWR_STATE_MASK_D2)to be set to avoid skips
73 	 *	before last Training Sequence 2 (TS2)
74 	 * Bit 8 (MAC_WOW_PWR_STATE_MASK_D1)to be unset to assert
75 	 *	Power Reset along with PCI Reset
76 	 */
77 	OS_REG_SET_BIT(ah, AR_PCIE_PMC, MAC_WOW_PWR_STATE_MASK_D2);
78 #endif
79 }
80 
81 /*
82  * Take the MHz channel value and set the Channel value
83  *
84  * ASSUMES: Writes enabled to analog bus
85  */
86 static HAL_BOOL
87 ar2425SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
88 {
89 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
90 	uint32_t channelSel  = 0;
91 	uint32_t bModeSynth  = 0;
92 	uint32_t aModeRefSel = 0;
93 	uint32_t reg32       = 0;
94 
95 	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
96 
97 	if (freq < 4800) {
98 		uint32_t txctl;
99 
100         channelSel = freq - 2272;
101         channelSel = ath_hal_reverseBits(channelSel, 8);
102 
103 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
104         if (freq == 2484) {
105 			// Enable channel spreading for channel 14
106 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
107 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
108 		} else {
109 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
110 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
111 		}
112 
113 	} else if (((freq % 5) == 2) && (freq <= 5435)) {
114 		freq = freq - 2; /* Align to even 5MHz raster */
115 		channelSel = ath_hal_reverseBits(
116 			(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
117             	aModeRefSel = ath_hal_reverseBits(0, 2);
118 	} else if ((freq % 20) == 0 && freq >= 5120) {
119 		channelSel = ath_hal_reverseBits(
120 			((freq - 4800) / 20 << 2), 8);
121 		aModeRefSel = ath_hal_reverseBits(1, 2);
122 	} else if ((freq % 10) == 0) {
123 		channelSel = ath_hal_reverseBits(
124 			((freq - 4800) / 10 << 1), 8);
125 		aModeRefSel = ath_hal_reverseBits(1, 2);
126 	} else if ((freq % 5) == 0) {
127 		channelSel = ath_hal_reverseBits(
128 			(freq - 4800) / 5, 8);
129 		aModeRefSel = ath_hal_reverseBits(1, 2);
130 	} else {
131 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
132 		    __func__, freq);
133 		return AH_FALSE;
134 	}
135 
136 	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
137 			(1 << 12) | 0x1;
138 	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
139 
140 	reg32 >>= 8;
141 	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
142 
143 	AH_PRIVATE(ah)->ah_curchan = chan;
144 	return AH_TRUE;
145 }
146 
147 /*
148  * Reads EEPROM header info from device structure and programs
149  * all rf registers
150  *
151  * REQUIRES: Access to the analog rf device
152  */
153 static HAL_BOOL
154 ar2425SetRfRegs(struct ath_hal *ah,
155 	const struct ieee80211_channel *chan,
156 	uint16_t modesIndex, uint16_t *rfXpdGain)
157 {
158 #define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
159 	int i;								    \
160 	for (i = 0; i < N(ar5212Bank##_ix##_2425); i++)			    \
161 		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2425[i][_col];\
162 } while (0)
163 	struct ath_hal_5212 *ahp = AH5212(ah);
164 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
165 	struct ar2425State *priv = AR2425(ah);
166 	uint16_t ob2GHz = 0, db2GHz = 0;
167 	int regWrites = 0;
168 
169 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
170 	    __func__, chan->ic_freq, chan->ic_flags, modesIndex);
171 
172 	HALASSERT(priv);
173 
174 	/* Setup rf parameters */
175 	if (IEEE80211_IS_CHAN_B(chan)) {
176 		ob2GHz = ee->ee_obFor24;
177 		db2GHz = ee->ee_dbFor24;
178 	} else {
179 		ob2GHz = ee->ee_obFor24g;
180 		db2GHz = ee->ee_dbFor24g;
181 	}
182 
183 	/* Bank 1 Write */
184 	RF_BANK_SETUP(priv, 1, 1);
185 
186 	/* Bank 2 Write */
187 	RF_BANK_SETUP(priv, 2, modesIndex);
188 
189 	/* Bank 3 Write */
190 	RF_BANK_SETUP(priv, 3, modesIndex);
191 
192 	/* Bank 6 Write */
193 	RF_BANK_SETUP(priv, 6, modesIndex);
194 
195         ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 193, 0);
196         ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 190, 0);
197 
198 	/* Bank 7 Setup */
199 	RF_BANK_SETUP(priv, 7, modesIndex);
200 
201 	/* Write Analog registers */
202 	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2425, priv->Bank1Data, regWrites);
203 	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2425, priv->Bank2Data, regWrites);
204 	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2425, priv->Bank3Data, regWrites);
205 	if (IS_2417(ah)) {
206 		HALASSERT(N(ar5212Bank6_2425) == N(ar5212Bank6_2417));
207 		HAL_INI_WRITE_BANK(ah, ar5212Bank6_2417, priv->Bank6Data,
208 		    regWrites);
209 	} else
210 		HAL_INI_WRITE_BANK(ah, ar5212Bank6_2425, priv->Bank6Data,
211 		    regWrites);
212 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2425, priv->Bank7Data, regWrites);
213 
214 	/* Now that we have reprogrammed rfgain value, clear the flag. */
215 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
216 
217 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
218 	return AH_TRUE;
219 #undef	RF_BANK_SETUP
220 }
221 
222 /*
223  * Return a reference to the requested RF Bank.
224  */
225 static uint32_t *
226 ar2425GetRfBank(struct ath_hal *ah, int bank)
227 {
228 	struct ar2425State *priv = AR2425(ah);
229 
230 	HALASSERT(priv != AH_NULL);
231 	switch (bank) {
232 	case 1: return priv->Bank1Data;
233 	case 2: return priv->Bank2Data;
234 	case 3: return priv->Bank3Data;
235 	case 6: return priv->Bank6Data;
236 	case 7: return priv->Bank7Data;
237 	}
238 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
239 	    __func__, bank);
240 	return AH_NULL;
241 }
242 
243 /*
244  * Return indices surrounding the value in sorted integer lists.
245  *
246  * NB: the input list is assumed to be sorted in ascending order
247  */
248 static void
249 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
250                           uint32_t *vlo, uint32_t *vhi)
251 {
252 	int16_t target = v;
253 	const uint16_t *ep = lp+listSize;
254 	const uint16_t *tp;
255 
256 	/*
257 	 * Check first and last elements for out-of-bounds conditions.
258 	 */
259 	if (target < lp[0]) {
260 		*vlo = *vhi = 0;
261 		return;
262 	}
263 	if (target >= ep[-1]) {
264 		*vlo = *vhi = listSize - 1;
265 		return;
266 	}
267 
268 	/* look for value being near or between 2 values in list */
269 	for (tp = lp; tp < ep; tp++) {
270 		/*
271 		 * If value is close to the current value of the list
272 		 * then target is not between values, it is one of the values
273 		 */
274 		if (*tp == target) {
275 			*vlo = *vhi = tp - (const uint16_t *) lp;
276 			return;
277 		}
278 		/*
279 		 * Look for value being between current value and next value
280 		 * if so return these 2 values
281 		 */
282 		if (target < tp[1]) {
283 			*vlo = tp - (const uint16_t *) lp;
284 			*vhi = *vlo + 1;
285 			return;
286 		}
287 	}
288 }
289 
290 /*
291  * Fill the Vpdlist for indices Pmax-Pmin
292  */
293 static HAL_BOOL
294 ar2425FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
295 		   const int16_t *pwrList, const uint16_t *VpdList,
296 		   uint16_t numIntercepts,
297 		   uint16_t retVpdList[][64])
298 {
299 	uint16_t ii, jj, kk;
300 	int16_t currPwr = (int16_t)(2*Pmin);
301 	/* since Pmin is pwr*2 and pwrList is 4*pwr */
302 	uint32_t  idxL, idxR;
303 
304 	ii = 0;
305 	jj = 0;
306 
307 	if (numIntercepts < 2)
308 		return AH_FALSE;
309 
310 	while (ii <= (uint16_t)(Pmax - Pmin)) {
311 		GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
312 				   numIntercepts, &(idxL), &(idxR));
313 		if (idxR < 1)
314 			idxR = 1;			/* extrapolate below */
315 		if (idxL == (uint32_t)(numIntercepts - 1))
316 			idxL = numIntercepts - 2;	/* extrapolate above */
317 		if (pwrList[idxL] == pwrList[idxR])
318 			kk = VpdList[idxL];
319 		else
320 			kk = (uint16_t)
321 				(((currPwr - pwrList[idxL])*VpdList[idxR]+
322 				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
323 				 (pwrList[idxR] - pwrList[idxL]));
324 		retVpdList[pdGainIdx][ii] = kk;
325 		ii++;
326 		currPwr += 2;				/* half dB steps */
327 	}
328 
329 	return AH_TRUE;
330 }
331 
332 /*
333  * Returns interpolated or the scaled up interpolated value
334  */
335 static int16_t
336 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
337 	int16_t targetLeft, int16_t targetRight)
338 {
339 	int16_t rv;
340 
341 	if (srcRight != srcLeft) {
342 		rv = ((target - srcLeft)*targetRight +
343 		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
344 	} else {
345 		rv = targetLeft;
346 	}
347 	return rv;
348 }
349 
350 /*
351  * Uses the data points read from EEPROM to reconstruct the pdadc power table
352  * Called by ar2425SetPowerTable()
353  */
354 static void
355 ar2425getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
356 		const RAW_DATA_STRUCT_2413 *pRawDataset,
357 		uint16_t pdGainOverlap_t2,
358 		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
359 		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
360 {
361     /* Note the items statically allocated below are to reduce stack usage */
362 	uint32_t ii, jj, kk;
363 	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
364 	uint32_t idxL, idxR;
365 	uint32_t numPdGainsUsed = 0;
366         static uint16_t VpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
367 	/* filled out Vpd table for all pdGains (chanL) */
368         static uint16_t VpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
369 	/* filled out Vpd table for all pdGains (chanR) */
370         static uint16_t VpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
371 	/* filled out Vpd table for all pdGains (interpolated) */
372 	/*
373 	 * If desired to support -ve power levels in future, just
374 	 * change pwr_I_0 to signed 5-bits.
375 	 */
376         static int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
377 	/* to accommodate -ve power levels later on. */
378         static int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
379 	/* to accommodate -ve power levels later on */
380 	uint16_t numVpd = 0;
381 	uint16_t Vpd_step;
382 	int16_t tmpVal ;
383 	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
384 
385 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "==>%s:\n", __func__);
386 
387 	/* Get upper lower index */
388 	GetLowerUpperIndex(channel, pRawDataset->pChannels,
389 				 pRawDataset->numChannels, &(idxL), &(idxR));
390 
391 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
392 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
393 		/* work backwards 'cause highest pdGain for lowest power */
394 		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
395 		if (numVpd > 0) {
396 			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
397 			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
398 			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
399 				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
400 			}
401 			Pmin_t2[numPdGainsUsed] = (int16_t)
402 				(Pmin_t2[numPdGainsUsed] / 2);
403 			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
404 			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
405 				Pmax_t2[numPdGainsUsed] =
406 					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
407 			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
408 			ar2425FillVpdTable(
409 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
410 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
411 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
412 					   );
413 			ar2425FillVpdTable(
414 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
415 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
416 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
417 					   );
418 			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
419 				VpdTable_I[numPdGainsUsed][kk] =
420 					interpolate_signed(
421 							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
422 							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
423 			}
424 			/* fill VpdTable_I for this pdGain */
425 			numPdGainsUsed++;
426 		}
427 		/* if this pdGain is used */
428 	}
429 
430 	*pMinCalPower = Pmin_t2[0];
431 	kk = 0; /* index for the final table */
432 	for (ii = 0; ii < numPdGainsUsed; ii++) {
433 		if (ii == (numPdGainsUsed - 1))
434 			pPdGainBoundaries[ii] = Pmax_t2[ii] +
435 				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
436 		else
437 			pPdGainBoundaries[ii] = (uint16_t)
438 				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
439 
440 		/* Find starting index for this pdGain */
441 		if (ii == 0)
442 			ss = 0; /* for the first pdGain, start from index 0 */
443 		else
444 			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
445 				pdGainOverlap_t2;
446 		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
447 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
448 		/*
449 		 *-ve ss indicates need to extrapolate data below for this pdGain
450 		 */
451 		while (ss < 0) {
452 			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
453 			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
454 			ss++;
455 		}
456 
457 		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
458 		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
459 		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
460 
461 		while (ss < (int16_t)maxIndex)
462 			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
463 
464 		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
465 				       VpdTable_I[ii][sizeCurrVpdTable-2]);
466 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
467 		/*
468 		 * for last gain, pdGainBoundary == Pmax_t2, so will
469 		 * have to extrapolate
470 		 */
471 		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
472 			while(ss < (int16_t)tgtIndex) {
473 				tmpVal = (uint16_t)
474 					(VpdTable_I[ii][sizeCurrVpdTable-1] +
475 					 (ss-maxIndex)*Vpd_step);
476 				pPDADCValues[kk++] = (tmpVal > 127) ?
477 					127 : tmpVal;
478 				ss++;
479 			}
480 		}				/* extrapolated above */
481 	}					/* for all pdGainUsed */
482 
483 	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
484 		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
485 		ii++;
486 	}
487 	while (kk < 128) {
488 		pPDADCValues[kk] = pPDADCValues[kk-1];
489 		kk++;
490 	}
491 
492 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
493 }
494 
495 /* Same as 2413 set power table */
496 static HAL_BOOL
497 ar2425SetPowerTable(struct ath_hal *ah,
498 	int16_t *minPower, int16_t *maxPower,
499 	const struct ieee80211_channel *chan,
500 	uint16_t *rfXpdGain)
501 {
502 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
503 	struct ath_hal_5212 *ahp = AH5212(ah);
504 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
505 	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
506 	uint16_t pdGainOverlap_t2;
507 	int16_t minCalPower2413_t2;
508 	uint16_t *pdadcValues = ahp->ah_pcdacTable;
509 	uint16_t gainBoundaries[4];
510 	uint32_t i, reg32, regoffset;
511 
512 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s:chan 0x%x flag 0x%x\n",
513 	    __func__, freq, chan->ic_flags);
514 
515 	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
516 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
517 	else if (IEEE80211_IS_CHAN_B(chan))
518 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
519 	else {
520 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s:illegal mode\n", __func__);
521 		return AH_FALSE;
522 	}
523 
524 	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
525 					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
526 
527 	ar2425getGainBoundariesAndPdadcsForPowers(ah, freq,
528 		pRawDataset, pdGainOverlap_t2,&minCalPower2413_t2,gainBoundaries,
529 		rfXpdGain, pdadcValues);
530 
531 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
532 			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
533 
534 	/*
535 	 * Note the pdadc table may not start at 0 dBm power, could be
536 	 * negative or greater than 0.  Need to offset the power
537 	 * values by the amount of minPower for griffin
538 	 */
539 	if (minCalPower2413_t2 != 0)
540 		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
541 	else
542 		ahp->ah_txPowerIndexOffset = 0;
543 
544 	/* Finally, write the power values into the baseband power table */
545 	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
546 	for (i = 0; i < 32; i++) {
547 		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
548 			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
549 			((pdadcValues[4*i + 2] & 0xFF) << 16) |
550 			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
551 		OS_REG_WRITE(ah, regoffset, reg32);
552 		regoffset += 4;
553 	}
554 
555 	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
556 		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
557 		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
558 		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
559 		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
560 		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
561 
562 	return AH_TRUE;
563 }
564 
565 static int16_t
566 ar2425GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
567 {
568 	uint32_t ii,jj;
569 	uint16_t Pmin=0,numVpd;
570 
571 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
572 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
573 		/* work backwards 'cause highest pdGain for lowest power */
574 		numVpd = data->pDataPerPDGain[jj].numVpd;
575 		if (numVpd > 0) {
576 			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
577 			return(Pmin);
578 		}
579 	}
580 	return(Pmin);
581 }
582 
583 static int16_t
584 ar2425GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
585 {
586 	uint32_t ii;
587 	uint16_t Pmax=0,numVpd;
588 
589 	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
590 		/* work forwards cuase lowest pdGain for highest power */
591 		numVpd = data->pDataPerPDGain[ii].numVpd;
592 		if (numVpd > 0) {
593 			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
594 			return(Pmax);
595 		}
596 	}
597 	return(Pmax);
598 }
599 
600 static
601 HAL_BOOL
602 ar2425GetChannelMaxMinPower(struct ath_hal *ah,
603 	const struct ieee80211_channel *chan,
604 	int16_t *maxPow, int16_t *minPow)
605 {
606 	uint16_t freq = chan->ic_freq;		/* NB: never mapped */
607 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
608 	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
609 	const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
610 	uint16_t numChannels;
611 	int totalD,totalF, totalMin,last, i;
612 
613 	*maxPow = 0;
614 
615 	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
616 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
617 	else if (IEEE80211_IS_CHAN_B(chan))
618 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
619 	else
620 		return(AH_FALSE);
621 
622 	numChannels = pRawDataset->numChannels;
623 	data = pRawDataset->pDataPerChannel;
624 
625 	/* Make sure the channel is in the range of the TP values
626 	 *  (freq piers)
627 	 */
628 	if (numChannels < 1)
629 		return(AH_FALSE);
630 
631 	if ((freq < data[0].channelValue) ||
632 	    (freq > data[numChannels-1].channelValue)) {
633 		if (freq < data[0].channelValue) {
634 			*maxPow = ar2425GetMaxPower(ah, &data[0]);
635 			*minPow = ar2425GetMinPower(ah, &data[0]);
636 			return(AH_TRUE);
637 		} else {
638 			*maxPow = ar2425GetMaxPower(ah, &data[numChannels - 1]);
639 			*minPow = ar2425GetMinPower(ah, &data[numChannels - 1]);
640 			return(AH_TRUE);
641 		}
642 	}
643 
644 	/* Linearly interpolate the power value now */
645 	for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
646 	     last = i++);
647 	totalD = data[i].channelValue - data[last].channelValue;
648 	if (totalD > 0) {
649 		totalF = ar2425GetMaxPower(ah, &data[i]) - ar2425GetMaxPower(ah, &data[last]);
650 		*maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) +
651 				     ar2425GetMaxPower(ah, &data[last])*totalD)/totalD);
652 		totalMin = ar2425GetMinPower(ah, &data[i]) - ar2425GetMinPower(ah, &data[last]);
653 		*minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
654 				     ar2425GetMinPower(ah, &data[last])*totalD)/totalD);
655 		return(AH_TRUE);
656 	} else {
657 		if (freq == data[i].channelValue) {
658 			*maxPow = ar2425GetMaxPower(ah, &data[i]);
659 			*minPow = ar2425GetMinPower(ah, &data[i]);
660 			return(AH_TRUE);
661 		} else
662 			return(AH_FALSE);
663 	}
664 }
665 
666 /*
667  * Free memory for analog bank scratch buffers
668  */
669 static void
670 ar2425RfDetach(struct ath_hal *ah)
671 {
672 	struct ath_hal_5212 *ahp = AH5212(ah);
673 
674 	HALASSERT(ahp->ah_rfHal != AH_NULL);
675 	ath_hal_free(ahp->ah_rfHal);
676 	ahp->ah_rfHal = AH_NULL;
677 }
678 
679 /*
680  * Allocate memory for analog bank scratch buffers
681  * Scratch Buffer will be reinitialized every reset so no need to zero now
682  */
683 static HAL_BOOL
684 ar2425RfAttach(struct ath_hal *ah, HAL_STATUS *status)
685 {
686 	struct ath_hal_5212 *ahp = AH5212(ah);
687 	struct ar2425State *priv;
688 
689 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
690 
691 	HALASSERT(ahp->ah_rfHal == AH_NULL);
692 	priv = ath_hal_malloc(sizeof(struct ar2425State));
693 	if (priv == AH_NULL) {
694 		HALDEBUG(ah, HAL_DEBUG_ANY,
695 		    "%s: cannot allocate private state\n", __func__);
696 		*status = HAL_ENOMEM;		/* XXX */
697 		return AH_FALSE;
698 	}
699 	priv->base.rfDetach		= ar2425RfDetach;
700 	priv->base.writeRegs		= ar2425WriteRegs;
701 	priv->base.getRfBank		= ar2425GetRfBank;
702 	priv->base.setChannel		= ar2425SetChannel;
703 	priv->base.setRfRegs		= ar2425SetRfRegs;
704 	priv->base.setPowerTable	= ar2425SetPowerTable;
705 	priv->base.getChannelMaxMinPower = ar2425GetChannelMaxMinPower;
706 	priv->base.getNfAdjust		= ar5212GetNfAdjust;
707 
708 	ahp->ah_pcdacTable = priv->pcdacTable;
709 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
710 	ahp->ah_rfHal = &priv->base;
711 
712 	return AH_TRUE;
713 }
714 
715 static HAL_BOOL
716 ar2425Probe(struct ath_hal *ah)
717 {
718 	return IS_2425(ah) || IS_2417(ah);
719 }
720 AH_RF(RF2425, ar2425Probe, ar2425RfAttach);
721