1 /* 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * Copyright (c) 2002-2008 Atheros Communications, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 * 17 * $FreeBSD$ 18 */ 19 #include "opt_ah.h" 20 21 #include "ah.h" 22 #include "ah_internal.h" 23 24 #include "ar5212/ar5212.h" 25 #include "ar5212/ar5212reg.h" 26 #include "ar5212/ar5212phy.h" 27 28 #include "ah_eeprom_v3.h" 29 30 #define AH_5212_2413 31 #include "ar5212/ar5212.ini" 32 33 #define N(a) (sizeof(a)/sizeof(a[0])) 34 35 struct ar2413State { 36 RF_HAL_FUNCS base; /* public state, must be first */ 37 uint16_t pcdacTable[PWR_TABLE_SIZE_2413]; 38 39 uint32_t Bank1Data[N(ar5212Bank1_2413)]; 40 uint32_t Bank2Data[N(ar5212Bank2_2413)]; 41 uint32_t Bank3Data[N(ar5212Bank3_2413)]; 42 uint32_t Bank6Data[N(ar5212Bank6_2413)]; 43 uint32_t Bank7Data[N(ar5212Bank7_2413)]; 44 45 /* 46 * Private state for reduced stack usage. 47 */ 48 /* filled out Vpd table for all pdGains (chanL) */ 49 uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL] 50 [MAX_PWR_RANGE_IN_HALF_DB]; 51 /* filled out Vpd table for all pdGains (chanR) */ 52 uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL] 53 [MAX_PWR_RANGE_IN_HALF_DB]; 54 /* filled out Vpd table for all pdGains (interpolated) */ 55 uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL] 56 [MAX_PWR_RANGE_IN_HALF_DB]; 57 }; 58 #define AR2413(ah) ((struct ar2413State *) AH5212(ah)->ah_rfHal) 59 60 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, 61 uint32_t numBits, uint32_t firstBit, uint32_t column); 62 63 static void 64 ar2413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex, 65 int writes) 66 { 67 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2413, modesIndex, writes); 68 HAL_INI_WRITE_ARRAY(ah, ar5212Common_2413, 1, writes); 69 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2413, freqIndex, writes); 70 } 71 72 /* 73 * Take the MHz channel value and set the Channel value 74 * 75 * ASSUMES: Writes enabled to analog bus 76 */ 77 static HAL_BOOL 78 ar2413SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan) 79 { 80 uint16_t freq = ath_hal_gethwchannel(ah, chan); 81 uint32_t channelSel = 0; 82 uint32_t bModeSynth = 0; 83 uint32_t aModeRefSel = 0; 84 uint32_t reg32 = 0; 85 86 OS_MARK(ah, AH_MARK_SETCHANNEL, freq); 87 88 if (freq < 4800) { 89 uint32_t txctl; 90 91 if (((freq - 2192) % 5) == 0) { 92 channelSel = ((freq - 672) * 2 - 3040)/10; 93 bModeSynth = 0; 94 } else if (((freq - 2224) % 5) == 0) { 95 channelSel = ((freq - 704) * 2 - 3040) / 10; 96 bModeSynth = 1; 97 } else { 98 HALDEBUG(ah, HAL_DEBUG_ANY, 99 "%s: invalid channel %u MHz\n", 100 __func__, freq); 101 return AH_FALSE; 102 } 103 104 channelSel = (channelSel << 2) & 0xff; 105 channelSel = ath_hal_reverseBits(channelSel, 8); 106 107 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); 108 if (freq == 2484) { 109 /* Enable channel spreading for channel 14 */ 110 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 111 txctl | AR_PHY_CCK_TX_CTRL_JAPAN); 112 } else { 113 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 114 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); 115 } 116 } else if (((freq % 5) == 2) && (freq <= 5435)) { 117 freq = freq - 2; /* Align to even 5MHz raster */ 118 channelSel = ath_hal_reverseBits( 119 (uint32_t)(((freq - 4800)*10)/25 + 1), 8); 120 aModeRefSel = ath_hal_reverseBits(0, 2); 121 } else if ((freq % 20) == 0 && freq >= 5120) { 122 channelSel = ath_hal_reverseBits( 123 ((freq - 4800) / 20 << 2), 8); 124 aModeRefSel = ath_hal_reverseBits(3, 2); 125 } else if ((freq % 10) == 0) { 126 channelSel = ath_hal_reverseBits( 127 ((freq - 4800) / 10 << 1), 8); 128 aModeRefSel = ath_hal_reverseBits(2, 2); 129 } else if ((freq % 5) == 0) { 130 channelSel = ath_hal_reverseBits( 131 (freq - 4800) / 5, 8); 132 aModeRefSel = ath_hal_reverseBits(1, 2); 133 } else { 134 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n", 135 __func__, freq); 136 return AH_FALSE; 137 } 138 139 reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) | 140 (1 << 12) | 0x1; 141 OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff); 142 143 reg32 >>= 8; 144 OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f); 145 146 AH_PRIVATE(ah)->ah_curchan = chan; 147 148 return AH_TRUE; 149 } 150 151 /* 152 * Reads EEPROM header info from device structure and programs 153 * all rf registers 154 * 155 * REQUIRES: Access to the analog rf device 156 */ 157 static HAL_BOOL 158 ar2413SetRfRegs(struct ath_hal *ah, 159 const struct ieee80211_channel *chan, 160 uint16_t modesIndex, uint16_t *rfXpdGain) 161 { 162 #define RF_BANK_SETUP(_priv, _ix, _col) do { \ 163 int i; \ 164 for (i = 0; i < N(ar5212Bank##_ix##_2413); i++) \ 165 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2413[i][_col];\ 166 } while (0) 167 struct ath_hal_5212 *ahp = AH5212(ah); 168 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 169 uint16_t ob2GHz = 0, db2GHz = 0; 170 struct ar2413State *priv = AR2413(ah); 171 int regWrites = 0; 172 173 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n", 174 __func__, chan->ic_freq, chan->ic_flags, modesIndex); 175 176 HALASSERT(priv); 177 178 /* Setup rf parameters */ 179 if (IEEE80211_IS_CHAN_B(chan)) { 180 ob2GHz = ee->ee_obFor24; 181 db2GHz = ee->ee_dbFor24; 182 } else { 183 ob2GHz = ee->ee_obFor24g; 184 db2GHz = ee->ee_dbFor24g; 185 } 186 187 /* Bank 1 Write */ 188 RF_BANK_SETUP(priv, 1, 1); 189 190 /* Bank 2 Write */ 191 RF_BANK_SETUP(priv, 2, modesIndex); 192 193 /* Bank 3 Write */ 194 RF_BANK_SETUP(priv, 3, modesIndex); 195 196 /* Bank 6 Write */ 197 RF_BANK_SETUP(priv, 6, modesIndex); 198 199 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 168, 0); 200 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 165, 0); 201 202 /* Bank 7 Setup */ 203 RF_BANK_SETUP(priv, 7, modesIndex); 204 205 /* Write Analog registers */ 206 HAL_INI_WRITE_BANK(ah, ar5212Bank1_2413, priv->Bank1Data, regWrites); 207 HAL_INI_WRITE_BANK(ah, ar5212Bank2_2413, priv->Bank2Data, regWrites); 208 HAL_INI_WRITE_BANK(ah, ar5212Bank3_2413, priv->Bank3Data, regWrites); 209 HAL_INI_WRITE_BANK(ah, ar5212Bank6_2413, priv->Bank6Data, regWrites); 210 HAL_INI_WRITE_BANK(ah, ar5212Bank7_2413, priv->Bank7Data, regWrites); 211 212 /* Now that we have reprogrammed rfgain value, clear the flag. */ 213 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE; 214 215 return AH_TRUE; 216 #undef RF_BANK_SETUP 217 } 218 219 /* 220 * Return a reference to the requested RF Bank. 221 */ 222 static uint32_t * 223 ar2413GetRfBank(struct ath_hal *ah, int bank) 224 { 225 struct ar2413State *priv = AR2413(ah); 226 227 HALASSERT(priv != AH_NULL); 228 switch (bank) { 229 case 1: return priv->Bank1Data; 230 case 2: return priv->Bank2Data; 231 case 3: return priv->Bank3Data; 232 case 6: return priv->Bank6Data; 233 case 7: return priv->Bank7Data; 234 } 235 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n", 236 __func__, bank); 237 return AH_NULL; 238 } 239 240 /* 241 * Return indices surrounding the value in sorted integer lists. 242 * 243 * NB: the input list is assumed to be sorted in ascending order 244 */ 245 static void 246 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize, 247 uint32_t *vlo, uint32_t *vhi) 248 { 249 int16_t target = v; 250 const uint16_t *ep = lp+listSize; 251 const uint16_t *tp; 252 253 /* 254 * Check first and last elements for out-of-bounds conditions. 255 */ 256 if (target < lp[0]) { 257 *vlo = *vhi = 0; 258 return; 259 } 260 if (target >= ep[-1]) { 261 *vlo = *vhi = listSize - 1; 262 return; 263 } 264 265 /* look for value being near or between 2 values in list */ 266 for (tp = lp; tp < ep; tp++) { 267 /* 268 * If value is close to the current value of the list 269 * then target is not between values, it is one of the values 270 */ 271 if (*tp == target) { 272 *vlo = *vhi = tp - (const uint16_t *) lp; 273 return; 274 } 275 /* 276 * Look for value being between current value and next value 277 * if so return these 2 values 278 */ 279 if (target < tp[1]) { 280 *vlo = tp - (const uint16_t *) lp; 281 *vhi = *vlo + 1; 282 return; 283 } 284 } 285 } 286 287 /* 288 * Fill the Vpdlist for indices Pmax-Pmin 289 */ 290 static HAL_BOOL 291 ar2413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax, 292 const int16_t *pwrList, const uint16_t *VpdList, 293 uint16_t numIntercepts, uint16_t retVpdList[][64]) 294 { 295 uint16_t ii, jj, kk; 296 int16_t currPwr = (int16_t)(2*Pmin); 297 /* since Pmin is pwr*2 and pwrList is 4*pwr */ 298 uint32_t idxL, idxR; 299 300 ii = 0; 301 jj = 0; 302 303 if (numIntercepts < 2) 304 return AH_FALSE; 305 306 while (ii <= (uint16_t)(Pmax - Pmin)) { 307 GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList, 308 numIntercepts, &(idxL), &(idxR)); 309 if (idxR < 1) 310 idxR = 1; /* extrapolate below */ 311 if (idxL == (uint32_t)(numIntercepts - 1)) 312 idxL = numIntercepts - 2; /* extrapolate above */ 313 if (pwrList[idxL] == pwrList[idxR]) 314 kk = VpdList[idxL]; 315 else 316 kk = (uint16_t) 317 (((currPwr - pwrList[idxL])*VpdList[idxR]+ 318 (pwrList[idxR] - currPwr)*VpdList[idxL])/ 319 (pwrList[idxR] - pwrList[idxL])); 320 retVpdList[pdGainIdx][ii] = kk; 321 ii++; 322 currPwr += 2; /* half dB steps */ 323 } 324 325 return AH_TRUE; 326 } 327 328 /* 329 * Returns interpolated or the scaled up interpolated value 330 */ 331 static int16_t 332 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight, 333 int16_t targetLeft, int16_t targetRight) 334 { 335 int16_t rv; 336 337 if (srcRight != srcLeft) { 338 rv = ((target - srcLeft)*targetRight + 339 (srcRight - target)*targetLeft) / (srcRight - srcLeft); 340 } else { 341 rv = targetLeft; 342 } 343 return rv; 344 } 345 346 /* 347 * Uses the data points read from EEPROM to reconstruct the pdadc power table 348 * Called by ar2413SetPowerTable() 349 */ 350 static int 351 ar2413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel, 352 const RAW_DATA_STRUCT_2413 *pRawDataset, 353 uint16_t pdGainOverlap_t2, 354 int16_t *pMinCalPower, uint16_t pPdGainBoundaries[], 355 uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 356 { 357 struct ar2413State *priv = AR2413(ah); 358 #define VpdTable_L priv->vpdTable_L 359 #define VpdTable_R priv->vpdTable_R 360 #define VpdTable_I priv->vpdTable_I 361 uint32_t ii, jj, kk; 362 int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */ 363 uint32_t idxL, idxR; 364 uint32_t numPdGainsUsed = 0; 365 /* 366 * If desired to support -ve power levels in future, just 367 * change pwr_I_0 to signed 5-bits. 368 */ 369 int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; 370 /* to accomodate -ve power levels later on. */ 371 int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; 372 /* to accomodate -ve power levels later on */ 373 uint16_t numVpd = 0; 374 uint16_t Vpd_step; 375 int16_t tmpVal ; 376 uint32_t sizeCurrVpdTable, maxIndex, tgtIndex; 377 378 /* Get upper lower index */ 379 GetLowerUpperIndex(channel, pRawDataset->pChannels, 380 pRawDataset->numChannels, &(idxL), &(idxR)); 381 382 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { 383 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; 384 /* work backwards 'cause highest pdGain for lowest power */ 385 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd; 386 if (numVpd > 0) { 387 pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain; 388 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]; 389 if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) { 390 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]; 391 } 392 Pmin_t2[numPdGainsUsed] = (int16_t) 393 (Pmin_t2[numPdGainsUsed] / 2); 394 Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1]; 395 if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]) 396 Pmax_t2[numPdGainsUsed] = 397 pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]; 398 Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2); 399 ar2413FillVpdTable( 400 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 401 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 402 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L 403 ); 404 ar2413FillVpdTable( 405 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 406 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]), 407 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R 408 ); 409 for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) { 410 VpdTable_I[numPdGainsUsed][kk] = 411 interpolate_signed( 412 channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR], 413 (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]); 414 } 415 /* fill VpdTable_I for this pdGain */ 416 numPdGainsUsed++; 417 } 418 /* if this pdGain is used */ 419 } 420 421 *pMinCalPower = Pmin_t2[0]; 422 kk = 0; /* index for the final table */ 423 for (ii = 0; ii < numPdGainsUsed; ii++) { 424 if (ii == (numPdGainsUsed - 1)) 425 pPdGainBoundaries[ii] = Pmax_t2[ii] + 426 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB; 427 else 428 pPdGainBoundaries[ii] = (uint16_t) 429 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 ); 430 if (pPdGainBoundaries[ii] > 63) { 431 HALDEBUG(ah, HAL_DEBUG_ANY, 432 "%s: clamp pPdGainBoundaries[%d] %d\n", 433 __func__, ii, pPdGainBoundaries[ii]);/*XXX*/ 434 pPdGainBoundaries[ii] = 63; 435 } 436 437 /* Find starting index for this pdGain */ 438 if (ii == 0) 439 ss = 0; /* for the first pdGain, start from index 0 */ 440 else 441 ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 442 pdGainOverlap_t2; 443 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]); 444 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); 445 /* 446 *-ve ss indicates need to extrapolate data below for this pdGain 447 */ 448 while (ss < 0) { 449 tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step); 450 pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal); 451 ss++; 452 } 453 454 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii]; 455 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii]; 456 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; 457 458 while (ss < (int16_t)maxIndex) 459 pPDADCValues[kk++] = VpdTable_I[ii][ss++]; 460 461 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] - 462 VpdTable_I[ii][sizeCurrVpdTable-2]); 463 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); 464 /* 465 * for last gain, pdGainBoundary == Pmax_t2, so will 466 * have to extrapolate 467 */ 468 if (tgtIndex > maxIndex) { /* need to extrapolate above */ 469 while(ss < (int16_t)tgtIndex) { 470 tmpVal = (uint16_t) 471 (VpdTable_I[ii][sizeCurrVpdTable-1] + 472 (ss-maxIndex)*Vpd_step); 473 pPDADCValues[kk++] = (tmpVal > 127) ? 474 127 : tmpVal; 475 ss++; 476 } 477 } /* extrapolated above */ 478 } /* for all pdGainUsed */ 479 480 while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) { 481 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1]; 482 ii++; 483 } 484 while (kk < 128) { 485 pPDADCValues[kk] = pPDADCValues[kk-1]; 486 kk++; 487 } 488 489 return numPdGainsUsed; 490 #undef VpdTable_L 491 #undef VpdTable_R 492 #undef VpdTable_I 493 } 494 495 static HAL_BOOL 496 ar2413SetPowerTable(struct ath_hal *ah, 497 int16_t *minPower, int16_t *maxPower, 498 const struct ieee80211_channel *chan, 499 uint16_t *rfXpdGain) 500 { 501 uint16_t freq = ath_hal_gethwchannel(ah, chan); 502 struct ath_hal_5212 *ahp = AH5212(ah); 503 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 504 const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL; 505 uint16_t pdGainOverlap_t2; 506 int16_t minCalPower2413_t2; 507 uint16_t *pdadcValues = ahp->ah_pcdacTable; 508 uint16_t gainBoundaries[4]; 509 uint32_t reg32, regoffset; 510 int i, numPdGainsUsed; 511 #ifndef AH_USE_INIPDGAIN 512 uint32_t tpcrg1; 513 #endif 514 515 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n", 516 __func__, freq, chan->ic_flags); 517 518 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan)) 519 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; 520 else if (IEEE80211_IS_CHAN_B(chan)) 521 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; 522 else { 523 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__); 524 return AH_FALSE; 525 } 526 527 pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5), 528 AR_PHY_TPCRG5_PD_GAIN_OVERLAP); 529 530 numPdGainsUsed = ar2413getGainBoundariesAndPdadcsForPowers(ah, 531 freq, pRawDataset, pdGainOverlap_t2, 532 &minCalPower2413_t2,gainBoundaries, rfXpdGain, pdadcValues); 533 HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3); 534 535 #ifdef AH_USE_INIPDGAIN 536 /* 537 * Use pd_gains curve from eeprom; Atheros always uses 538 * the default curve from the ini file but some vendors 539 * (e.g. Zcomax) want to override this curve and not 540 * honoring their settings results in tx power 5dBm low. 541 */ 542 OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 543 (pRawDataset->pDataPerChannel[0].numPdGains - 1)); 544 #else 545 tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1); 546 tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN) 547 | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN); 548 switch (numPdGainsUsed) { 549 case 3: 550 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3; 551 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3); 552 /* fall thru... */ 553 case 2: 554 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2; 555 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2); 556 /* fall thru... */ 557 case 1: 558 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1; 559 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1); 560 break; 561 } 562 #ifdef AH_DEBUG 563 if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1)) 564 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default " 565 "pd_gains (default 0x%x, calculated 0x%x)\n", 566 __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1); 567 #endif 568 OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1); 569 #endif 570 571 /* 572 * Note the pdadc table may not start at 0 dBm power, could be 573 * negative or greater than 0. Need to offset the power 574 * values by the amount of minPower for griffin 575 */ 576 if (minCalPower2413_t2 != 0) 577 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2); 578 else 579 ahp->ah_txPowerIndexOffset = 0; 580 581 /* Finally, write the power values into the baseband power table */ 582 regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */ 583 for (i = 0; i < 32; i++) { 584 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) | 585 ((pdadcValues[4*i + 1] & 0xFF) << 8) | 586 ((pdadcValues[4*i + 2] & 0xFF) << 16) | 587 ((pdadcValues[4*i + 3] & 0xFF) << 24) ; 588 OS_REG_WRITE(ah, regoffset, reg32); 589 regoffset += 4; 590 } 591 592 OS_REG_WRITE(ah, AR_PHY_TPCRG5, 593 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 594 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | 595 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | 596 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | 597 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); 598 599 return AH_TRUE; 600 } 601 602 static int16_t 603 ar2413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data) 604 { 605 uint32_t ii,jj; 606 uint16_t Pmin=0,numVpd; 607 608 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { 609 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; 610 /* work backwards 'cause highest pdGain for lowest power */ 611 numVpd = data->pDataPerPDGain[jj].numVpd; 612 if (numVpd > 0) { 613 Pmin = data->pDataPerPDGain[jj].pwr_t4[0]; 614 return(Pmin); 615 } 616 } 617 return(Pmin); 618 } 619 620 static int16_t 621 ar2413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data) 622 { 623 uint32_t ii; 624 uint16_t Pmax=0,numVpd; 625 626 for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { 627 /* work forwards cuase lowest pdGain for highest power */ 628 numVpd = data->pDataPerPDGain[ii].numVpd; 629 if (numVpd > 0) { 630 Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1]; 631 return(Pmax); 632 } 633 } 634 return(Pmax); 635 } 636 637 static HAL_BOOL 638 ar2413GetChannelMaxMinPower(struct ath_hal *ah, 639 const struct ieee80211_channel *chan, 640 int16_t *maxPow, int16_t *minPow) 641 { 642 uint16_t freq = chan->ic_freq; /* NB: never mapped */ 643 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 644 const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL; 645 const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL; 646 uint16_t numChannels; 647 int totalD,totalF, totalMin,last, i; 648 649 *maxPow = 0; 650 651 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan)) 652 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; 653 else if (IEEE80211_IS_CHAN_B(chan)) 654 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; 655 else 656 return(AH_FALSE); 657 658 numChannels = pRawDataset->numChannels; 659 data = pRawDataset->pDataPerChannel; 660 661 /* Make sure the channel is in the range of the TP values 662 * (freq piers) 663 */ 664 if (numChannels < 1) 665 return(AH_FALSE); 666 667 if ((freq < data[0].channelValue) || 668 (freq > data[numChannels-1].channelValue)) { 669 if (freq < data[0].channelValue) { 670 *maxPow = ar2413GetMaxPower(ah, &data[0]); 671 *minPow = ar2413GetMinPower(ah, &data[0]); 672 return(AH_TRUE); 673 } else { 674 *maxPow = ar2413GetMaxPower(ah, &data[numChannels - 1]); 675 *minPow = ar2413GetMinPower(ah, &data[numChannels - 1]); 676 return(AH_TRUE); 677 } 678 } 679 680 /* Linearly interpolate the power value now */ 681 for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue); 682 last = i++); 683 totalD = data[i].channelValue - data[last].channelValue; 684 if (totalD > 0) { 685 totalF = ar2413GetMaxPower(ah, &data[i]) - ar2413GetMaxPower(ah, &data[last]); 686 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + 687 ar2413GetMaxPower(ah, &data[last])*totalD)/totalD); 688 totalMin = ar2413GetMinPower(ah, &data[i]) - ar2413GetMinPower(ah, &data[last]); 689 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) + 690 ar2413GetMinPower(ah, &data[last])*totalD)/totalD); 691 return(AH_TRUE); 692 } else { 693 if (freq == data[i].channelValue) { 694 *maxPow = ar2413GetMaxPower(ah, &data[i]); 695 *minPow = ar2413GetMinPower(ah, &data[i]); 696 return(AH_TRUE); 697 } else 698 return(AH_FALSE); 699 } 700 } 701 702 /* 703 * Free memory for analog bank scratch buffers 704 */ 705 static void 706 ar2413RfDetach(struct ath_hal *ah) 707 { 708 struct ath_hal_5212 *ahp = AH5212(ah); 709 710 HALASSERT(ahp->ah_rfHal != AH_NULL); 711 ath_hal_free(ahp->ah_rfHal); 712 ahp->ah_rfHal = AH_NULL; 713 } 714 715 /* 716 * Allocate memory for analog bank scratch buffers 717 * Scratch Buffer will be reinitialized every reset so no need to zero now 718 */ 719 static HAL_BOOL 720 ar2413RfAttach(struct ath_hal *ah, HAL_STATUS *status) 721 { 722 struct ath_hal_5212 *ahp = AH5212(ah); 723 struct ar2413State *priv; 724 725 HALASSERT(ah->ah_magic == AR5212_MAGIC); 726 727 HALASSERT(ahp->ah_rfHal == AH_NULL); 728 priv = ath_hal_malloc(sizeof(struct ar2413State)); 729 if (priv == AH_NULL) { 730 HALDEBUG(ah, HAL_DEBUG_ANY, 731 "%s: cannot allocate private state\n", __func__); 732 *status = HAL_ENOMEM; /* XXX */ 733 return AH_FALSE; 734 } 735 priv->base.rfDetach = ar2413RfDetach; 736 priv->base.writeRegs = ar2413WriteRegs; 737 priv->base.getRfBank = ar2413GetRfBank; 738 priv->base.setChannel = ar2413SetChannel; 739 priv->base.setRfRegs = ar2413SetRfRegs; 740 priv->base.setPowerTable = ar2413SetPowerTable; 741 priv->base.getChannelMaxMinPower = ar2413GetChannelMaxMinPower; 742 priv->base.getNfAdjust = ar5212GetNfAdjust; 743 744 ahp->ah_pcdacTable = priv->pcdacTable; 745 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable); 746 ahp->ah_rfHal = &priv->base; 747 748 return AH_TRUE; 749 } 750 751 static HAL_BOOL 752 ar2413Probe(struct ath_hal *ah) 753 { 754 return IS_2413(ah); 755 } 756 AH_RF(RF2413, ar2413Probe, ar2413RfAttach); 757