xref: /freebsd/sys/dev/ath/ath_hal/ar5212/ar2317.c (revision f126d349810fdb512c0b01e101342d430b947488)
1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  * $FreeBSD$
20  */
21 #include "opt_ah.h"
22 
23 #include "ah.h"
24 #include "ah_internal.h"
25 
26 #include "ar5212/ar5212.h"
27 #include "ar5212/ar5212reg.h"
28 #include "ar5212/ar5212phy.h"
29 
30 #include "ah_eeprom_v3.h"
31 
32 #define AH_5212_2317
33 #include "ar5212/ar5212.ini"
34 
35 #define	N(a)	(sizeof(a)/sizeof(a[0]))
36 
37 typedef	RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2317;
38 typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2317;
39 #define PWR_TABLE_SIZE_2317 PWR_TABLE_SIZE_2413
40 
41 struct ar2317State {
42 	RF_HAL_FUNCS	base;		/* public state, must be first */
43 	uint16_t	pcdacTable[PWR_TABLE_SIZE_2317];
44 
45 	uint32_t	Bank1Data[N(ar5212Bank1_2317)];
46 	uint32_t	Bank2Data[N(ar5212Bank2_2317)];
47 	uint32_t	Bank3Data[N(ar5212Bank3_2317)];
48 	uint32_t	Bank6Data[N(ar5212Bank6_2317)];
49 	uint32_t	Bank7Data[N(ar5212Bank7_2317)];
50 
51 	/*
52 	 * Private state for reduced stack usage.
53 	 */
54 	/* filled out Vpd table for all pdGains (chanL) */
55 	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
56 			    [MAX_PWR_RANGE_IN_HALF_DB];
57 	/* filled out Vpd table for all pdGains (chanR) */
58 	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
59 			    [MAX_PWR_RANGE_IN_HALF_DB];
60 	/* filled out Vpd table for all pdGains (interpolated) */
61 	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
62 			    [MAX_PWR_RANGE_IN_HALF_DB];
63 };
64 #define	AR2317(ah)	((struct ar2317State *) AH5212(ah)->ah_rfHal)
65 
66 extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
67 		uint32_t numBits, uint32_t firstBit, uint32_t column);
68 
69 static void
70 ar2317WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
71 	int writes)
72 {
73 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2317, modesIndex, writes);
74 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2317, 1, writes);
75 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2317, freqIndex, writes);
76 }
77 
78 /*
79  * Take the MHz channel value and set the Channel value
80  *
81  * ASSUMES: Writes enabled to analog bus
82  */
83 static HAL_BOOL
84 ar2317SetChannel(struct ath_hal *ah,  const struct ieee80211_channel *chan)
85 {
86 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
87 	uint32_t channelSel  = 0;
88 	uint32_t bModeSynth  = 0;
89 	uint32_t aModeRefSel = 0;
90 	uint32_t reg32       = 0;
91 
92 	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
93 
94 	if (freq < 4800) {
95 		uint32_t txctl;
96 		channelSel = freq - 2272 ;
97 		channelSel = ath_hal_reverseBits(channelSel, 8);
98 
99 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
100 		if (freq == 2484) {
101 			/* Enable channel spreading for channel 14 */
102 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
103 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
104 		} else {
105 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
106 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
107 		}
108 	} else if ((freq % 20) == 0 && freq >= 5120) {
109 		channelSel = ath_hal_reverseBits(
110 			((freq - 4800) / 20 << 2), 8);
111 		aModeRefSel = ath_hal_reverseBits(3, 2);
112 	} else if ((freq % 10) == 0) {
113 		channelSel = ath_hal_reverseBits(
114 			((freq - 4800) / 10 << 1), 8);
115 		aModeRefSel = ath_hal_reverseBits(2, 2);
116 	} else if ((freq % 5) == 0) {
117 		channelSel = ath_hal_reverseBits(
118 			(freq - 4800) / 5, 8);
119 		aModeRefSel = ath_hal_reverseBits(1, 2);
120 	} else {
121 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
122 		    __func__, freq);
123 		return AH_FALSE;
124 	}
125 
126 	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
127 			(1 << 12) | 0x1;
128 	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
129 
130 	reg32 >>= 8;
131 	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
132 
133 	AH_PRIVATE(ah)->ah_curchan = chan;
134 	return AH_TRUE;
135 }
136 
137 /*
138  * Reads EEPROM header info from device structure and programs
139  * all rf registers
140  *
141  * REQUIRES: Access to the analog rf device
142  */
143 static HAL_BOOL
144 ar2317SetRfRegs(struct ath_hal *ah,
145 	const struct ieee80211_channel *chan,
146 	uint16_t modesIndex, uint16_t *rfXpdGain)
147 {
148 #define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
149 	int i;								    \
150 	for (i = 0; i < N(ar5212Bank##_ix##_2317); i++)			    \
151 		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2317[i][_col];\
152 } while (0)
153 	struct ath_hal_5212 *ahp = AH5212(ah);
154 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
155 	uint16_t ob2GHz = 0, db2GHz = 0;
156 	struct ar2317State *priv = AR2317(ah);
157 	int regWrites = 0;
158 
159 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
160 	    __func__, chan->ic_freq, chan->ic_flags, modesIndex);
161 
162 	HALASSERT(priv);
163 
164 	/* Setup rf parameters */
165 	if (IEEE80211_IS_CHAN_B(chan)) {
166 		ob2GHz = ee->ee_obFor24;
167 		db2GHz = ee->ee_dbFor24;
168 	} else {
169 		ob2GHz = ee->ee_obFor24g;
170 		db2GHz = ee->ee_dbFor24g;
171 	}
172 
173 	/* Bank 1 Write */
174 	RF_BANK_SETUP(priv, 1, 1);
175 
176 	/* Bank 2 Write */
177 	RF_BANK_SETUP(priv, 2, modesIndex);
178 
179 	/* Bank 3 Write */
180 	RF_BANK_SETUP(priv, 3, modesIndex);
181 
182 	/* Bank 6 Write */
183 	RF_BANK_SETUP(priv, 6, modesIndex);
184 
185 	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 193, 0);
186 	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 190, 0);
187 
188 	/* Bank 7 Setup */
189 	RF_BANK_SETUP(priv, 7, modesIndex);
190 
191 	/* Write Analog registers */
192 	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2317, priv->Bank1Data, regWrites);
193 	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2317, priv->Bank2Data, regWrites);
194 	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2317, priv->Bank3Data, regWrites);
195 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_2317, priv->Bank6Data, regWrites);
196 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2317, priv->Bank7Data, regWrites);
197 	/* Now that we have reprogrammed rfgain value, clear the flag. */
198 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
199 
200 	return AH_TRUE;
201 #undef	RF_BANK_SETUP
202 }
203 
204 /*
205  * Return a reference to the requested RF Bank.
206  */
207 static uint32_t *
208 ar2317GetRfBank(struct ath_hal *ah, int bank)
209 {
210 	struct ar2317State *priv = AR2317(ah);
211 
212 	HALASSERT(priv != AH_NULL);
213 	switch (bank) {
214 	case 1: return priv->Bank1Data;
215 	case 2: return priv->Bank2Data;
216 	case 3: return priv->Bank3Data;
217 	case 6: return priv->Bank6Data;
218 	case 7: return priv->Bank7Data;
219 	}
220 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
221 	    __func__, bank);
222 	return AH_NULL;
223 }
224 
225 /*
226  * Return indices surrounding the value in sorted integer lists.
227  *
228  * NB: the input list is assumed to be sorted in ascending order
229  */
230 static void
231 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
232                           uint32_t *vlo, uint32_t *vhi)
233 {
234 	int16_t target = v;
235 	const int16_t *ep = lp+listSize;
236 	const int16_t *tp;
237 
238 	/*
239 	 * Check first and last elements for out-of-bounds conditions.
240 	 */
241 	if (target < lp[0]) {
242 		*vlo = *vhi = 0;
243 		return;
244 	}
245 	if (target >= ep[-1]) {
246 		*vlo = *vhi = listSize - 1;
247 		return;
248 	}
249 
250 	/* look for value being near or between 2 values in list */
251 	for (tp = lp; tp < ep; tp++) {
252 		/*
253 		 * If value is close to the current value of the list
254 		 * then target is not between values, it is one of the values
255 		 */
256 		if (*tp == target) {
257 			*vlo = *vhi = tp - (const int16_t *) lp;
258 			return;
259 		}
260 		/*
261 		 * Look for value being between current value and next value
262 		 * if so return these 2 values
263 		 */
264 		if (target < tp[1]) {
265 			*vlo = tp - (const int16_t *) lp;
266 			*vhi = *vlo + 1;
267 			return;
268 		}
269 	}
270 }
271 
272 /*
273  * Fill the Vpdlist for indices Pmax-Pmin
274  */
275 static HAL_BOOL
276 ar2317FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
277 		   const int16_t *pwrList, const int16_t *VpdList,
278 		   uint16_t numIntercepts, uint16_t retVpdList[][64])
279 {
280 	uint16_t ii, jj, kk;
281 	int16_t currPwr = (int16_t)(2*Pmin);
282 	/* since Pmin is pwr*2 and pwrList is 4*pwr */
283 	uint32_t  idxL, idxR;
284 
285 	ii = 0;
286 	jj = 0;
287 
288 	if (numIntercepts < 2)
289 		return AH_FALSE;
290 
291 	while (ii <= (uint16_t)(Pmax - Pmin)) {
292 		GetLowerUpperIndex(currPwr, pwrList, numIntercepts,
293 					 &(idxL), &(idxR));
294 		if (idxR < 1)
295 			idxR = 1;			/* extrapolate below */
296 		if (idxL == (uint32_t)(numIntercepts - 1))
297 			idxL = numIntercepts - 2;	/* extrapolate above */
298 		if (pwrList[idxL] == pwrList[idxR])
299 			kk = VpdList[idxL];
300 		else
301 			kk = (uint16_t)
302 				(((currPwr - pwrList[idxL])*VpdList[idxR]+
303 				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
304 				 (pwrList[idxR] - pwrList[idxL]));
305 		retVpdList[pdGainIdx][ii] = kk;
306 		ii++;
307 		currPwr += 2;				/* half dB steps */
308 	}
309 
310 	return AH_TRUE;
311 }
312 
313 /*
314  * Returns interpolated or the scaled up interpolated value
315  */
316 static int16_t
317 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
318 	int16_t targetLeft, int16_t targetRight)
319 {
320 	int16_t rv;
321 
322 	if (srcRight != srcLeft) {
323 		rv = ((target - srcLeft)*targetRight +
324 		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
325 	} else {
326 		rv = targetLeft;
327 	}
328 	return rv;
329 }
330 
331 /*
332  * Uses the data points read from EEPROM to reconstruct the pdadc power table
333  * Called by ar2317SetPowerTable()
334  */
335 static int
336 ar2317getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
337 		const RAW_DATA_STRUCT_2317 *pRawDataset,
338 		uint16_t pdGainOverlap_t2,
339 		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
340 		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
341 {
342 	struct ar2317State *priv = AR2317(ah);
343 #define	VpdTable_L	priv->vpdTable_L
344 #define	VpdTable_R	priv->vpdTable_R
345 #define	VpdTable_I	priv->vpdTable_I
346 	/* XXX excessive stack usage? */
347 	uint32_t ii, jj, kk;
348 	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
349 	uint32_t idxL, idxR;
350 	uint32_t numPdGainsUsed = 0;
351 	/*
352 	 * If desired to support -ve power levels in future, just
353 	 * change pwr_I_0 to signed 5-bits.
354 	 */
355 	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
356 	/* to accommodate -ve power levels later on. */
357 	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
358 	/* to accommodate -ve power levels later on */
359 	uint16_t numVpd = 0;
360 	uint16_t Vpd_step;
361 	int16_t tmpVal ;
362 	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
363 
364 	/* Get upper lower index */
365 	GetLowerUpperIndex(channel, pRawDataset->pChannels,
366 				 pRawDataset->numChannels, &(idxL), &(idxR));
367 
368 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
369 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
370 		/* work backwards 'cause highest pdGain for lowest power */
371 		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
372 		if (numVpd > 0) {
373 			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
374 			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
375 			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
376 				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
377 			}
378 			Pmin_t2[numPdGainsUsed] = (int16_t)
379 				(Pmin_t2[numPdGainsUsed] / 2);
380 			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
381 			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
382 				Pmax_t2[numPdGainsUsed] =
383 					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
384 			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
385 			ar2317FillVpdTable(
386 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
387 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
388 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
389 					   );
390 			ar2317FillVpdTable(
391 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
392 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
393 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
394 					   );
395 			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
396 				VpdTable_I[numPdGainsUsed][kk] =
397 					interpolate_signed(
398 							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
399 							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
400 			}
401 			/* fill VpdTable_I for this pdGain */
402 			numPdGainsUsed++;
403 		}
404 		/* if this pdGain is used */
405 	}
406 
407 	*pMinCalPower = Pmin_t2[0];
408 	kk = 0; /* index for the final table */
409 	for (ii = 0; ii < numPdGainsUsed; ii++) {
410 		if (ii == (numPdGainsUsed - 1))
411 			pPdGainBoundaries[ii] = Pmax_t2[ii] +
412 				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
413 		else
414 			pPdGainBoundaries[ii] = (uint16_t)
415 				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
416 		if (pPdGainBoundaries[ii] > 63) {
417 			HALDEBUG(ah, HAL_DEBUG_ANY,
418 			    "%s: clamp pPdGainBoundaries[%d] %d\n",
419 			   __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
420 			pPdGainBoundaries[ii] = 63;
421 		}
422 
423 		/* Find starting index for this pdGain */
424 		if (ii == 0)
425 			ss = 0; /* for the first pdGain, start from index 0 */
426 		else
427 			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
428 				pdGainOverlap_t2;
429 		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
430 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
431 		/*
432 		 *-ve ss indicates need to extrapolate data below for this pdGain
433 		 */
434 		while (ss < 0) {
435 			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
436 			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
437 			ss++;
438 		}
439 
440 		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
441 		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
442 		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
443 
444 		while (ss < (int16_t)maxIndex)
445 			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
446 
447 		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
448 				       VpdTable_I[ii][sizeCurrVpdTable-2]);
449 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
450 		/*
451 		 * for last gain, pdGainBoundary == Pmax_t2, so will
452 		 * have to extrapolate
453 		 */
454 		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
455 			while(ss < (int16_t)tgtIndex) {
456 				tmpVal = (uint16_t)
457 					(VpdTable_I[ii][sizeCurrVpdTable-1] +
458 					 (ss-maxIndex)*Vpd_step);
459 				pPDADCValues[kk++] = (tmpVal > 127) ?
460 					127 : tmpVal;
461 				ss++;
462 			}
463 		}				/* extrapolated above */
464 	}					/* for all pdGainUsed */
465 
466 	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
467 		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
468 		ii++;
469 	}
470 	while (kk < 128) {
471 		pPDADCValues[kk] = pPDADCValues[kk-1];
472 		kk++;
473 	}
474 
475 	return numPdGainsUsed;
476 #undef VpdTable_L
477 #undef VpdTable_R
478 #undef VpdTable_I
479 }
480 
481 static HAL_BOOL
482 ar2317SetPowerTable(struct ath_hal *ah,
483 	int16_t *minPower, int16_t *maxPower,
484 	const struct ieee80211_channel *chan,
485 	uint16_t *rfXpdGain)
486 {
487 	struct ath_hal_5212 *ahp = AH5212(ah);
488 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
489 	const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
490 	uint16_t pdGainOverlap_t2;
491 	int16_t minCalPower2317_t2;
492 	uint16_t *pdadcValues = ahp->ah_pcdacTable;
493 	uint16_t gainBoundaries[4];
494 	uint32_t reg32, regoffset;
495 	int i, numPdGainsUsed;
496 #ifndef AH_USE_INIPDGAIN
497 	uint32_t tpcrg1;
498 #endif
499 
500 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
501 	    __func__, chan->ic_freq, chan->ic_flags);
502 
503 	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
504 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
505 	else if (IEEE80211_IS_CHAN_B(chan))
506 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
507 	else {
508 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
509 		return AH_FALSE;
510 	}
511 
512 	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
513 					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
514 
515 	numPdGainsUsed = ar2317getGainBoundariesAndPdadcsForPowers(ah,
516 		chan->channel, pRawDataset, pdGainOverlap_t2,
517 		&minCalPower2317_t2,gainBoundaries, rfXpdGain, pdadcValues);
518 	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
519 
520 #ifdef AH_USE_INIPDGAIN
521 	/*
522 	 * Use pd_gains curve from eeprom; Atheros always uses
523 	 * the default curve from the ini file but some vendors
524 	 * (e.g. Zcomax) want to override this curve and not
525 	 * honoring their settings results in tx power 5dBm low.
526 	 */
527 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
528 			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
529 #else
530 	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
531 	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
532 		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
533 	switch (numPdGainsUsed) {
534 	case 3:
535 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
536 		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
537 		/* fall thru... */
538 	case 2:
539 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
540 		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
541 		/* fall thru... */
542 	case 1:
543 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
544 		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
545 		break;
546 	}
547 #ifdef AH_DEBUG
548 	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
549 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
550 		    "pd_gains (default 0x%x, calculated 0x%x)\n",
551 		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
552 #endif
553 	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
554 #endif
555 
556 	/*
557 	 * Note the pdadc table may not start at 0 dBm power, could be
558 	 * negative or greater than 0.  Need to offset the power
559 	 * values by the amount of minPower for griffin
560 	 */
561 	if (minCalPower2317_t2 != 0)
562 		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2317_t2);
563 	else
564 		ahp->ah_txPowerIndexOffset = 0;
565 
566 	/* Finally, write the power values into the baseband power table */
567 	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
568 	for (i = 0; i < 32; i++) {
569 		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
570 			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
571 			((pdadcValues[4*i + 2] & 0xFF) << 16) |
572 			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
573 		OS_REG_WRITE(ah, regoffset, reg32);
574 		regoffset += 4;
575 	}
576 
577 	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
578 		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
579 		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
580 		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
581 		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
582 		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
583 
584 	return AH_TRUE;
585 }
586 
587 static int16_t
588 ar2317GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
589 {
590 	uint32_t ii,jj;
591 	uint16_t Pmin=0,numVpd;
592 
593 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
594 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
595 		/* work backwards 'cause highest pdGain for lowest power */
596 		numVpd = data->pDataPerPDGain[jj].numVpd;
597 		if (numVpd > 0) {
598 			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
599 			return(Pmin);
600 		}
601 	}
602 	return(Pmin);
603 }
604 
605 static int16_t
606 ar2317GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
607 {
608 	uint32_t ii;
609 	uint16_t Pmax=0,numVpd;
610 	uint16_t vpdmax;
611 
612 	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
613 		/* work forwards cuase lowest pdGain for highest power */
614 		numVpd = data->pDataPerPDGain[ii].numVpd;
615 		if (numVpd > 0) {
616 			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
617 			vpdmax = data->pDataPerPDGain[ii].Vpd[numVpd-1];
618 			return(Pmax);
619 		}
620 	}
621 	return(Pmax);
622 }
623 
624 static HAL_BOOL
625 ar2317GetChannelMaxMinPower(struct ath_hal *ah,
626 	const struct ieee80211_channel *chan,
627 	int16_t *maxPow, int16_t *minPow)
628 {
629 	uint16_t freq = chan->ic_freq;		/* NB: never mapped */
630 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
631 	const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
632 	const RAW_DATA_PER_CHANNEL_2317 *data=AH_NULL;
633 	uint16_t numChannels;
634 	int totalD,totalF, totalMin,last, i;
635 
636 	*maxPow = 0;
637 
638 	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
639 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
640 	else if (IEEE80211_IS_CHAN_B(chan))
641 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
642 	else
643 		return(AH_FALSE);
644 
645 	numChannels = pRawDataset->numChannels;
646 	data = pRawDataset->pDataPerChannel;
647 
648 	/* Make sure the channel is in the range of the TP values
649 	 *  (freq piers)
650 	 */
651 	if (numChannels < 1)
652 		return(AH_FALSE);
653 
654 	if ((freq < data[0].channelValue) ||
655 	    (freq > data[numChannels-1].channelValue)) {
656 		if (freq < data[0].channelValue) {
657 			*maxPow = ar2317GetMaxPower(ah, &data[0]);
658 			*minPow = ar2317GetMinPower(ah, &data[0]);
659 			return(AH_TRUE);
660 		} else {
661 			*maxPow = ar2317GetMaxPower(ah, &data[numChannels - 1]);
662 			*minPow = ar2317GetMinPower(ah, &data[numChannels - 1]);
663 			return(AH_TRUE);
664 		}
665 	}
666 
667 	/* Linearly interpolate the power value now */
668 	for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
669 	     last = i++);
670 	totalD = data[i].channelValue - data[last].channelValue;
671 	if (totalD > 0) {
672 		totalF = ar2317GetMaxPower(ah, &data[i]) - ar2317GetMaxPower(ah, &data[last]);
673 		*maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) +
674 				     ar2317GetMaxPower(ah, &data[last])*totalD)/totalD);
675 		totalMin = ar2317GetMinPower(ah, &data[i]) - ar2317GetMinPower(ah, &data[last]);
676 		*minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
677 				     ar2317GetMinPower(ah, &data[last])*totalD)/totalD);
678 		return(AH_TRUE);
679 	} else {
680 		if (freq == data[i].channelValue) {
681 			*maxPow = ar2317GetMaxPower(ah, &data[i]);
682 			*minPow = ar2317GetMinPower(ah, &data[i]);
683 			return(AH_TRUE);
684 		} else
685 			return(AH_FALSE);
686 	}
687 }
688 
689 /*
690  * Free memory for analog bank scratch buffers
691  */
692 static void
693 ar2317RfDetach(struct ath_hal *ah)
694 {
695 	struct ath_hal_5212 *ahp = AH5212(ah);
696 
697 	HALASSERT(ahp->ah_rfHal != AH_NULL);
698 	ath_hal_free(ahp->ah_rfHal);
699 	ahp->ah_rfHal = AH_NULL;
700 }
701 
702 /*
703  * Allocate memory for analog bank scratch buffers
704  * Scratch Buffer will be reinitialized every reset so no need to zero now
705  */
706 static HAL_BOOL
707 ar2317RfAttach(struct ath_hal *ah, HAL_STATUS *status)
708 {
709 	struct ath_hal_5212 *ahp = AH5212(ah);
710 	struct ar2317State *priv;
711 
712 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
713 
714 	HALASSERT(ahp->ah_rfHal == AH_NULL);
715 	priv = ath_hal_malloc(sizeof(struct ar2317State));
716 	if (priv == AH_NULL) {
717 		HALDEBUG(ah, HAL_DEBUG_ANY,
718 		    "%s: cannot allocate private state\n", __func__);
719 		*status = HAL_ENOMEM;		/* XXX */
720 		return AH_FALSE;
721 	}
722 	priv->base.rfDetach		= ar2317RfDetach;
723 	priv->base.writeRegs		= ar2317WriteRegs;
724 	priv->base.getRfBank		= ar2317GetRfBank;
725 	priv->base.setChannel		= ar2317SetChannel;
726 	priv->base.setRfRegs		= ar2317SetRfRegs;
727 	priv->base.setPowerTable	= ar2317SetPowerTable;
728 	priv->base.getChannelMaxMinPower = ar2317GetChannelMaxMinPower;
729 	priv->base.getNfAdjust		= ar5212GetNfAdjust;
730 
731 	ahp->ah_pcdacTable = priv->pcdacTable;
732 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
733 	ahp->ah_rfHal = &priv->base;
734 
735 	return AH_TRUE;
736 }
737 
738 static HAL_BOOL
739 ar2317Probe(struct ath_hal *ah)
740 {
741 	return IS_2317(ah);
742 }
743 AH_RF(RF2317, ar2317Probe, ar2317RfAttach);
744