1 /* 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * Copyright (c) 2002-2008 Atheros Communications, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 * 17 * $FreeBSD$ 18 */ 19 #include "opt_ah.h" 20 21 #include "ah.h" 22 #include "ah_internal.h" 23 24 #include "ar5212/ar5212.h" 25 #include "ar5212/ar5212reg.h" 26 #include "ar5212/ar5212phy.h" 27 28 #include "ah_eeprom_v3.h" 29 30 #define AH_5212_2317 31 #include "ar5212/ar5212.ini" 32 33 #define N(a) (sizeof(a)/sizeof(a[0])) 34 35 typedef RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2317; 36 typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2317; 37 #define PWR_TABLE_SIZE_2317 PWR_TABLE_SIZE_2413 38 39 struct ar2317State { 40 RF_HAL_FUNCS base; /* public state, must be first */ 41 uint16_t pcdacTable[PWR_TABLE_SIZE_2317]; 42 43 uint32_t Bank1Data[N(ar5212Bank1_2317)]; 44 uint32_t Bank2Data[N(ar5212Bank2_2317)]; 45 uint32_t Bank3Data[N(ar5212Bank3_2317)]; 46 uint32_t Bank6Data[N(ar5212Bank6_2317)]; 47 uint32_t Bank7Data[N(ar5212Bank7_2317)]; 48 49 /* 50 * Private state for reduced stack usage. 51 */ 52 /* filled out Vpd table for all pdGains (chanL) */ 53 uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL] 54 [MAX_PWR_RANGE_IN_HALF_DB]; 55 /* filled out Vpd table for all pdGains (chanR) */ 56 uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL] 57 [MAX_PWR_RANGE_IN_HALF_DB]; 58 /* filled out Vpd table for all pdGains (interpolated) */ 59 uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL] 60 [MAX_PWR_RANGE_IN_HALF_DB]; 61 }; 62 #define AR2317(ah) ((struct ar2317State *) AH5212(ah)->ah_rfHal) 63 64 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, 65 uint32_t numBits, uint32_t firstBit, uint32_t column); 66 67 static void 68 ar2317WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex, 69 int writes) 70 { 71 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2317, modesIndex, writes); 72 HAL_INI_WRITE_ARRAY(ah, ar5212Common_2317, 1, writes); 73 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2317, freqIndex, writes); 74 } 75 76 /* 77 * Take the MHz channel value and set the Channel value 78 * 79 * ASSUMES: Writes enabled to analog bus 80 */ 81 static HAL_BOOL 82 ar2317SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan) 83 { 84 uint16_t freq = ath_hal_gethwchannel(ah, chan); 85 uint32_t channelSel = 0; 86 uint32_t bModeSynth = 0; 87 uint32_t aModeRefSel = 0; 88 uint32_t reg32 = 0; 89 90 OS_MARK(ah, AH_MARK_SETCHANNEL, freq); 91 92 if (freq < 4800) { 93 uint32_t txctl; 94 channelSel = freq - 2272 ; 95 channelSel = ath_hal_reverseBits(channelSel, 8); 96 97 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); 98 if (freq == 2484) { 99 /* Enable channel spreading for channel 14 */ 100 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 101 txctl | AR_PHY_CCK_TX_CTRL_JAPAN); 102 } else { 103 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 104 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); 105 } 106 } else if ((freq % 20) == 0 && freq >= 5120) { 107 channelSel = ath_hal_reverseBits( 108 ((freq - 4800) / 20 << 2), 8); 109 aModeRefSel = ath_hal_reverseBits(3, 2); 110 } else if ((freq % 10) == 0) { 111 channelSel = ath_hal_reverseBits( 112 ((freq - 4800) / 10 << 1), 8); 113 aModeRefSel = ath_hal_reverseBits(2, 2); 114 } else if ((freq % 5) == 0) { 115 channelSel = ath_hal_reverseBits( 116 (freq - 4800) / 5, 8); 117 aModeRefSel = ath_hal_reverseBits(1, 2); 118 } else { 119 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n", 120 __func__, freq); 121 return AH_FALSE; 122 } 123 124 reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) | 125 (1 << 12) | 0x1; 126 OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff); 127 128 reg32 >>= 8; 129 OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f); 130 131 AH_PRIVATE(ah)->ah_curchan = chan; 132 return AH_TRUE; 133 } 134 135 /* 136 * Reads EEPROM header info from device structure and programs 137 * all rf registers 138 * 139 * REQUIRES: Access to the analog rf device 140 */ 141 static HAL_BOOL 142 ar2317SetRfRegs(struct ath_hal *ah, 143 const struct ieee80211_channel *chan, 144 uint16_t modesIndex, uint16_t *rfXpdGain) 145 { 146 #define RF_BANK_SETUP(_priv, _ix, _col) do { \ 147 int i; \ 148 for (i = 0; i < N(ar5212Bank##_ix##_2317); i++) \ 149 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2317[i][_col];\ 150 } while (0) 151 struct ath_hal_5212 *ahp = AH5212(ah); 152 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 153 uint16_t ob2GHz = 0, db2GHz = 0; 154 struct ar2317State *priv = AR2317(ah); 155 int regWrites = 0; 156 157 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n", 158 __func__, chan->ic_freq, chan->ic_flags, modesIndex); 159 160 HALASSERT(priv); 161 162 /* Setup rf parameters */ 163 if (IEEE80211_IS_CHAN_B(chan)) { 164 ob2GHz = ee->ee_obFor24; 165 db2GHz = ee->ee_dbFor24; 166 } else { 167 ob2GHz = ee->ee_obFor24g; 168 db2GHz = ee->ee_dbFor24g; 169 } 170 171 /* Bank 1 Write */ 172 RF_BANK_SETUP(priv, 1, 1); 173 174 /* Bank 2 Write */ 175 RF_BANK_SETUP(priv, 2, modesIndex); 176 177 /* Bank 3 Write */ 178 RF_BANK_SETUP(priv, 3, modesIndex); 179 180 /* Bank 6 Write */ 181 RF_BANK_SETUP(priv, 6, modesIndex); 182 183 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 193, 0); 184 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 190, 0); 185 186 /* Bank 7 Setup */ 187 RF_BANK_SETUP(priv, 7, modesIndex); 188 189 /* Write Analog registers */ 190 HAL_INI_WRITE_BANK(ah, ar5212Bank1_2317, priv->Bank1Data, regWrites); 191 HAL_INI_WRITE_BANK(ah, ar5212Bank2_2317, priv->Bank2Data, regWrites); 192 HAL_INI_WRITE_BANK(ah, ar5212Bank3_2317, priv->Bank3Data, regWrites); 193 HAL_INI_WRITE_BANK(ah, ar5212Bank6_2317, priv->Bank6Data, regWrites); 194 HAL_INI_WRITE_BANK(ah, ar5212Bank7_2317, priv->Bank7Data, regWrites); 195 /* Now that we have reprogrammed rfgain value, clear the flag. */ 196 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE; 197 198 return AH_TRUE; 199 #undef RF_BANK_SETUP 200 } 201 202 /* 203 * Return a reference to the requested RF Bank. 204 */ 205 static uint32_t * 206 ar2317GetRfBank(struct ath_hal *ah, int bank) 207 { 208 struct ar2317State *priv = AR2317(ah); 209 210 HALASSERT(priv != AH_NULL); 211 switch (bank) { 212 case 1: return priv->Bank1Data; 213 case 2: return priv->Bank2Data; 214 case 3: return priv->Bank3Data; 215 case 6: return priv->Bank6Data; 216 case 7: return priv->Bank7Data; 217 } 218 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n", 219 __func__, bank); 220 return AH_NULL; 221 } 222 223 /* 224 * Return indices surrounding the value in sorted integer lists. 225 * 226 * NB: the input list is assumed to be sorted in ascending order 227 */ 228 static void 229 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize, 230 uint32_t *vlo, uint32_t *vhi) 231 { 232 int16_t target = v; 233 const int16_t *ep = lp+listSize; 234 const int16_t *tp; 235 236 /* 237 * Check first and last elements for out-of-bounds conditions. 238 */ 239 if (target < lp[0]) { 240 *vlo = *vhi = 0; 241 return; 242 } 243 if (target >= ep[-1]) { 244 *vlo = *vhi = listSize - 1; 245 return; 246 } 247 248 /* look for value being near or between 2 values in list */ 249 for (tp = lp; tp < ep; tp++) { 250 /* 251 * If value is close to the current value of the list 252 * then target is not between values, it is one of the values 253 */ 254 if (*tp == target) { 255 *vlo = *vhi = tp - (const int16_t *) lp; 256 return; 257 } 258 /* 259 * Look for value being between current value and next value 260 * if so return these 2 values 261 */ 262 if (target < tp[1]) { 263 *vlo = tp - (const int16_t *) lp; 264 *vhi = *vlo + 1; 265 return; 266 } 267 } 268 } 269 270 /* 271 * Fill the Vpdlist for indices Pmax-Pmin 272 */ 273 static HAL_BOOL 274 ar2317FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax, 275 const int16_t *pwrList, const int16_t *VpdList, 276 uint16_t numIntercepts, uint16_t retVpdList[][64]) 277 { 278 uint16_t ii, jj, kk; 279 int16_t currPwr = (int16_t)(2*Pmin); 280 /* since Pmin is pwr*2 and pwrList is 4*pwr */ 281 uint32_t idxL, idxR; 282 283 ii = 0; 284 jj = 0; 285 286 if (numIntercepts < 2) 287 return AH_FALSE; 288 289 while (ii <= (uint16_t)(Pmax - Pmin)) { 290 GetLowerUpperIndex(currPwr, pwrList, numIntercepts, 291 &(idxL), &(idxR)); 292 if (idxR < 1) 293 idxR = 1; /* extrapolate below */ 294 if (idxL == (uint32_t)(numIntercepts - 1)) 295 idxL = numIntercepts - 2; /* extrapolate above */ 296 if (pwrList[idxL] == pwrList[idxR]) 297 kk = VpdList[idxL]; 298 else 299 kk = (uint16_t) 300 (((currPwr - pwrList[idxL])*VpdList[idxR]+ 301 (pwrList[idxR] - currPwr)*VpdList[idxL])/ 302 (pwrList[idxR] - pwrList[idxL])); 303 retVpdList[pdGainIdx][ii] = kk; 304 ii++; 305 currPwr += 2; /* half dB steps */ 306 } 307 308 return AH_TRUE; 309 } 310 311 /* 312 * Returns interpolated or the scaled up interpolated value 313 */ 314 static int16_t 315 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight, 316 int16_t targetLeft, int16_t targetRight) 317 { 318 int16_t rv; 319 320 if (srcRight != srcLeft) { 321 rv = ((target - srcLeft)*targetRight + 322 (srcRight - target)*targetLeft) / (srcRight - srcLeft); 323 } else { 324 rv = targetLeft; 325 } 326 return rv; 327 } 328 329 /* 330 * Uses the data points read from EEPROM to reconstruct the pdadc power table 331 * Called by ar2317SetPowerTable() 332 */ 333 static int 334 ar2317getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel, 335 const RAW_DATA_STRUCT_2317 *pRawDataset, 336 uint16_t pdGainOverlap_t2, 337 int16_t *pMinCalPower, uint16_t pPdGainBoundaries[], 338 uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 339 { 340 struct ar2317State *priv = AR2317(ah); 341 #define VpdTable_L priv->vpdTable_L 342 #define VpdTable_R priv->vpdTable_R 343 #define VpdTable_I priv->vpdTable_I 344 /* XXX excessive stack usage? */ 345 uint32_t ii, jj, kk; 346 int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */ 347 uint32_t idxL, idxR; 348 uint32_t numPdGainsUsed = 0; 349 /* 350 * If desired to support -ve power levels in future, just 351 * change pwr_I_0 to signed 5-bits. 352 */ 353 int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; 354 /* to accomodate -ve power levels later on. */ 355 int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; 356 /* to accomodate -ve power levels later on */ 357 uint16_t numVpd = 0; 358 uint16_t Vpd_step; 359 int16_t tmpVal ; 360 uint32_t sizeCurrVpdTable, maxIndex, tgtIndex; 361 362 /* Get upper lower index */ 363 GetLowerUpperIndex(channel, pRawDataset->pChannels, 364 pRawDataset->numChannels, &(idxL), &(idxR)); 365 366 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { 367 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; 368 /* work backwards 'cause highest pdGain for lowest power */ 369 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd; 370 if (numVpd > 0) { 371 pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain; 372 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]; 373 if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) { 374 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]; 375 } 376 Pmin_t2[numPdGainsUsed] = (int16_t) 377 (Pmin_t2[numPdGainsUsed] / 2); 378 Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1]; 379 if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]) 380 Pmax_t2[numPdGainsUsed] = 381 pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]; 382 Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2); 383 ar2317FillVpdTable( 384 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 385 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 386 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L 387 ); 388 ar2317FillVpdTable( 389 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 390 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]), 391 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R 392 ); 393 for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) { 394 VpdTable_I[numPdGainsUsed][kk] = 395 interpolate_signed( 396 channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR], 397 (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]); 398 } 399 /* fill VpdTable_I for this pdGain */ 400 numPdGainsUsed++; 401 } 402 /* if this pdGain is used */ 403 } 404 405 *pMinCalPower = Pmin_t2[0]; 406 kk = 0; /* index for the final table */ 407 for (ii = 0; ii < numPdGainsUsed; ii++) { 408 if (ii == (numPdGainsUsed - 1)) 409 pPdGainBoundaries[ii] = Pmax_t2[ii] + 410 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB; 411 else 412 pPdGainBoundaries[ii] = (uint16_t) 413 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 ); 414 if (pPdGainBoundaries[ii] > 63) { 415 HALDEBUG(ah, HAL_DEBUG_ANY, 416 "%s: clamp pPdGainBoundaries[%d] %d\n", 417 __func__, ii, pPdGainBoundaries[ii]);/*XXX*/ 418 pPdGainBoundaries[ii] = 63; 419 } 420 421 /* Find starting index for this pdGain */ 422 if (ii == 0) 423 ss = 0; /* for the first pdGain, start from index 0 */ 424 else 425 ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 426 pdGainOverlap_t2; 427 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]); 428 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); 429 /* 430 *-ve ss indicates need to extrapolate data below for this pdGain 431 */ 432 while (ss < 0) { 433 tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step); 434 pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal); 435 ss++; 436 } 437 438 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii]; 439 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii]; 440 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; 441 442 while (ss < (int16_t)maxIndex) 443 pPDADCValues[kk++] = VpdTable_I[ii][ss++]; 444 445 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] - 446 VpdTable_I[ii][sizeCurrVpdTable-2]); 447 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); 448 /* 449 * for last gain, pdGainBoundary == Pmax_t2, so will 450 * have to extrapolate 451 */ 452 if (tgtIndex > maxIndex) { /* need to extrapolate above */ 453 while(ss < (int16_t)tgtIndex) { 454 tmpVal = (uint16_t) 455 (VpdTable_I[ii][sizeCurrVpdTable-1] + 456 (ss-maxIndex)*Vpd_step); 457 pPDADCValues[kk++] = (tmpVal > 127) ? 458 127 : tmpVal; 459 ss++; 460 } 461 } /* extrapolated above */ 462 } /* for all pdGainUsed */ 463 464 while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) { 465 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1]; 466 ii++; 467 } 468 while (kk < 128) { 469 pPDADCValues[kk] = pPDADCValues[kk-1]; 470 kk++; 471 } 472 473 return numPdGainsUsed; 474 #undef VpdTable_L 475 #undef VpdTable_R 476 #undef VpdTable_I 477 } 478 479 static HAL_BOOL 480 ar2317SetPowerTable(struct ath_hal *ah, 481 int16_t *minPower, int16_t *maxPower, 482 const struct ieee80211_channel *chan, 483 uint16_t *rfXpdGain) 484 { 485 struct ath_hal_5212 *ahp = AH5212(ah); 486 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 487 const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL; 488 uint16_t pdGainOverlap_t2; 489 int16_t minCalPower2317_t2; 490 uint16_t *pdadcValues = ahp->ah_pcdacTable; 491 uint16_t gainBoundaries[4]; 492 uint32_t reg32, regoffset; 493 int i, numPdGainsUsed; 494 #ifndef AH_USE_INIPDGAIN 495 uint32_t tpcrg1; 496 #endif 497 498 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n", 499 __func__, chan->ic_freq, chan->ic_flags); 500 501 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan)) 502 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; 503 else if (IEEE80211_IS_CHAN_B(chan)) 504 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; 505 else { 506 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__); 507 return AH_FALSE; 508 } 509 510 pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5), 511 AR_PHY_TPCRG5_PD_GAIN_OVERLAP); 512 513 numPdGainsUsed = ar2317getGainBoundariesAndPdadcsForPowers(ah, 514 chan->channel, pRawDataset, pdGainOverlap_t2, 515 &minCalPower2317_t2,gainBoundaries, rfXpdGain, pdadcValues); 516 HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3); 517 518 #ifdef AH_USE_INIPDGAIN 519 /* 520 * Use pd_gains curve from eeprom; Atheros always uses 521 * the default curve from the ini file but some vendors 522 * (e.g. Zcomax) want to override this curve and not 523 * honoring their settings results in tx power 5dBm low. 524 */ 525 OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 526 (pRawDataset->pDataPerChannel[0].numPdGains - 1)); 527 #else 528 tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1); 529 tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN) 530 | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN); 531 switch (numPdGainsUsed) { 532 case 3: 533 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3; 534 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3); 535 /* fall thru... */ 536 case 2: 537 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2; 538 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2); 539 /* fall thru... */ 540 case 1: 541 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1; 542 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1); 543 break; 544 } 545 #ifdef AH_DEBUG 546 if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1)) 547 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default " 548 "pd_gains (default 0x%x, calculated 0x%x)\n", 549 __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1); 550 #endif 551 OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1); 552 #endif 553 554 /* 555 * Note the pdadc table may not start at 0 dBm power, could be 556 * negative or greater than 0. Need to offset the power 557 * values by the amount of minPower for griffin 558 */ 559 if (minCalPower2317_t2 != 0) 560 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2317_t2); 561 else 562 ahp->ah_txPowerIndexOffset = 0; 563 564 /* Finally, write the power values into the baseband power table */ 565 regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */ 566 for (i = 0; i < 32; i++) { 567 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) | 568 ((pdadcValues[4*i + 1] & 0xFF) << 8) | 569 ((pdadcValues[4*i + 2] & 0xFF) << 16) | 570 ((pdadcValues[4*i + 3] & 0xFF) << 24) ; 571 OS_REG_WRITE(ah, regoffset, reg32); 572 regoffset += 4; 573 } 574 575 OS_REG_WRITE(ah, AR_PHY_TPCRG5, 576 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 577 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | 578 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | 579 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | 580 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); 581 582 return AH_TRUE; 583 } 584 585 static int16_t 586 ar2317GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data) 587 { 588 uint32_t ii,jj; 589 uint16_t Pmin=0,numVpd; 590 591 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { 592 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; 593 /* work backwards 'cause highest pdGain for lowest power */ 594 numVpd = data->pDataPerPDGain[jj].numVpd; 595 if (numVpd > 0) { 596 Pmin = data->pDataPerPDGain[jj].pwr_t4[0]; 597 return(Pmin); 598 } 599 } 600 return(Pmin); 601 } 602 603 static int16_t 604 ar2317GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data) 605 { 606 uint32_t ii; 607 uint16_t Pmax=0,numVpd; 608 uint16_t vpdmax; 609 610 for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { 611 /* work forwards cuase lowest pdGain for highest power */ 612 numVpd = data->pDataPerPDGain[ii].numVpd; 613 if (numVpd > 0) { 614 Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1]; 615 vpdmax = data->pDataPerPDGain[ii].Vpd[numVpd-1]; 616 return(Pmax); 617 } 618 } 619 return(Pmax); 620 } 621 622 static HAL_BOOL 623 ar2317GetChannelMaxMinPower(struct ath_hal *ah, 624 const struct ieee80211_channel *chan, 625 int16_t *maxPow, int16_t *minPow) 626 { 627 uint16_t freq = chan->ic_freq; /* NB: never mapped */ 628 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 629 const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL; 630 const RAW_DATA_PER_CHANNEL_2317 *data=AH_NULL; 631 uint16_t numChannels; 632 int totalD,totalF, totalMin,last, i; 633 634 *maxPow = 0; 635 636 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan)) 637 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; 638 else if (IEEE80211_IS_CHAN_B(chan)) 639 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; 640 else 641 return(AH_FALSE); 642 643 numChannels = pRawDataset->numChannels; 644 data = pRawDataset->pDataPerChannel; 645 646 /* Make sure the channel is in the range of the TP values 647 * (freq piers) 648 */ 649 if (numChannels < 1) 650 return(AH_FALSE); 651 652 if ((freq < data[0].channelValue) || 653 (freq > data[numChannels-1].channelValue)) { 654 if (freq < data[0].channelValue) { 655 *maxPow = ar2317GetMaxPower(ah, &data[0]); 656 *minPow = ar2317GetMinPower(ah, &data[0]); 657 return(AH_TRUE); 658 } else { 659 *maxPow = ar2317GetMaxPower(ah, &data[numChannels - 1]); 660 *minPow = ar2317GetMinPower(ah, &data[numChannels - 1]); 661 return(AH_TRUE); 662 } 663 } 664 665 /* Linearly interpolate the power value now */ 666 for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue); 667 last = i++); 668 totalD = data[i].channelValue - data[last].channelValue; 669 if (totalD > 0) { 670 totalF = ar2317GetMaxPower(ah, &data[i]) - ar2317GetMaxPower(ah, &data[last]); 671 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + 672 ar2317GetMaxPower(ah, &data[last])*totalD)/totalD); 673 totalMin = ar2317GetMinPower(ah, &data[i]) - ar2317GetMinPower(ah, &data[last]); 674 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) + 675 ar2317GetMinPower(ah, &data[last])*totalD)/totalD); 676 return(AH_TRUE); 677 } else { 678 if (freq == data[i].channelValue) { 679 *maxPow = ar2317GetMaxPower(ah, &data[i]); 680 *minPow = ar2317GetMinPower(ah, &data[i]); 681 return(AH_TRUE); 682 } else 683 return(AH_FALSE); 684 } 685 } 686 687 /* 688 * Free memory for analog bank scratch buffers 689 */ 690 static void 691 ar2317RfDetach(struct ath_hal *ah) 692 { 693 struct ath_hal_5212 *ahp = AH5212(ah); 694 695 HALASSERT(ahp->ah_rfHal != AH_NULL); 696 ath_hal_free(ahp->ah_rfHal); 697 ahp->ah_rfHal = AH_NULL; 698 } 699 700 /* 701 * Allocate memory for analog bank scratch buffers 702 * Scratch Buffer will be reinitialized every reset so no need to zero now 703 */ 704 static HAL_BOOL 705 ar2317RfAttach(struct ath_hal *ah, HAL_STATUS *status) 706 { 707 struct ath_hal_5212 *ahp = AH5212(ah); 708 struct ar2317State *priv; 709 710 HALASSERT(ah->ah_magic == AR5212_MAGIC); 711 712 HALASSERT(ahp->ah_rfHal == AH_NULL); 713 priv = ath_hal_malloc(sizeof(struct ar2317State)); 714 if (priv == AH_NULL) { 715 HALDEBUG(ah, HAL_DEBUG_ANY, 716 "%s: cannot allocate private state\n", __func__); 717 *status = HAL_ENOMEM; /* XXX */ 718 return AH_FALSE; 719 } 720 priv->base.rfDetach = ar2317RfDetach; 721 priv->base.writeRegs = ar2317WriteRegs; 722 priv->base.getRfBank = ar2317GetRfBank; 723 priv->base.setChannel = ar2317SetChannel; 724 priv->base.setRfRegs = ar2317SetRfRegs; 725 priv->base.setPowerTable = ar2317SetPowerTable; 726 priv->base.getChannelMaxMinPower = ar2317GetChannelMaxMinPower; 727 priv->base.getNfAdjust = ar5212GetNfAdjust; 728 729 ahp->ah_pcdacTable = priv->pcdacTable; 730 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable); 731 ahp->ah_rfHal = &priv->base; 732 733 return AH_TRUE; 734 } 735 736 static HAL_BOOL 737 ar2317Probe(struct ath_hal *ah) 738 { 739 return IS_2317(ah); 740 } 741 AH_RF(RF2317, ar2317Probe, ar2317RfAttach); 742