xref: /freebsd/sys/dev/ath/ath_hal/ar5212/ar2317.c (revision 193d9e768ba63fcfb187cfd17f461f7d41345048)
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 
24 #include "ar5212/ar5212.h"
25 #include "ar5212/ar5212reg.h"
26 #include "ar5212/ar5212phy.h"
27 
28 #include "ah_eeprom_v3.h"
29 
30 #define AH_5212_2317
31 #include "ar5212/ar5212.ini"
32 
33 #define	N(a)	(sizeof(a)/sizeof(a[0]))
34 
35 typedef	RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2317;
36 typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2317;
37 #define PWR_TABLE_SIZE_2317 PWR_TABLE_SIZE_2413
38 
39 struct ar2317State {
40 	RF_HAL_FUNCS	base;		/* public state, must be first */
41 	uint16_t	pcdacTable[PWR_TABLE_SIZE_2317];
42 
43 	uint32_t	Bank1Data[N(ar5212Bank1_2317)];
44 	uint32_t	Bank2Data[N(ar5212Bank2_2317)];
45 	uint32_t	Bank3Data[N(ar5212Bank3_2317)];
46 	uint32_t	Bank6Data[N(ar5212Bank6_2317)];
47 	uint32_t	Bank7Data[N(ar5212Bank7_2317)];
48 
49 	/*
50 	 * Private state for reduced stack usage.
51 	 */
52 	/* filled out Vpd table for all pdGains (chanL) */
53 	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
54 			    [MAX_PWR_RANGE_IN_HALF_DB];
55 	/* filled out Vpd table for all pdGains (chanR) */
56 	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
57 			    [MAX_PWR_RANGE_IN_HALF_DB];
58 	/* filled out Vpd table for all pdGains (interpolated) */
59 	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
60 			    [MAX_PWR_RANGE_IN_HALF_DB];
61 };
62 #define	AR2317(ah)	((struct ar2317State *) AH5212(ah)->ah_rfHal)
63 
64 extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
65 		uint32_t numBits, uint32_t firstBit, uint32_t column);
66 
67 static void
68 ar2317WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
69 	int writes)
70 {
71 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2317, modesIndex, writes);
72 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2317, 1, writes);
73 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2317, freqIndex, writes);
74 }
75 
76 /*
77  * Take the MHz channel value and set the Channel value
78  *
79  * ASSUMES: Writes enabled to analog bus
80  */
81 static HAL_BOOL
82 ar2317SetChannel(struct ath_hal *ah,  const struct ieee80211_channel *chan)
83 {
84 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
85 	uint32_t channelSel  = 0;
86 	uint32_t bModeSynth  = 0;
87 	uint32_t aModeRefSel = 0;
88 	uint32_t reg32       = 0;
89 
90 	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
91 
92 	if (freq < 4800) {
93 		uint32_t txctl;
94 		channelSel = freq - 2272 ;
95 		channelSel = ath_hal_reverseBits(channelSel, 8);
96 
97 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
98 		if (freq == 2484) {
99 			/* Enable channel spreading for channel 14 */
100 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
101 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
102 		} else {
103 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
104 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
105 		}
106 	} else if ((freq % 20) == 0 && freq >= 5120) {
107 		channelSel = ath_hal_reverseBits(
108 			((freq - 4800) / 20 << 2), 8);
109 		aModeRefSel = ath_hal_reverseBits(3, 2);
110 	} else if ((freq % 10) == 0) {
111 		channelSel = ath_hal_reverseBits(
112 			((freq - 4800) / 10 << 1), 8);
113 		aModeRefSel = ath_hal_reverseBits(2, 2);
114 	} else if ((freq % 5) == 0) {
115 		channelSel = ath_hal_reverseBits(
116 			(freq - 4800) / 5, 8);
117 		aModeRefSel = ath_hal_reverseBits(1, 2);
118 	} else {
119 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
120 		    __func__, freq);
121 		return AH_FALSE;
122 	}
123 
124 	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
125 			(1 << 12) | 0x1;
126 	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
127 
128 	reg32 >>= 8;
129 	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
130 
131 	AH_PRIVATE(ah)->ah_curchan = chan;
132 	return AH_TRUE;
133 }
134 
135 /*
136  * Reads EEPROM header info from device structure and programs
137  * all rf registers
138  *
139  * REQUIRES: Access to the analog rf device
140  */
141 static HAL_BOOL
142 ar2317SetRfRegs(struct ath_hal *ah,
143 	const struct ieee80211_channel *chan,
144 	uint16_t modesIndex, uint16_t *rfXpdGain)
145 {
146 #define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
147 	int i;								    \
148 	for (i = 0; i < N(ar5212Bank##_ix##_2317); i++)			    \
149 		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2317[i][_col];\
150 } while (0)
151 	struct ath_hal_5212 *ahp = AH5212(ah);
152 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
153 	uint16_t ob2GHz = 0, db2GHz = 0;
154 	struct ar2317State *priv = AR2317(ah);
155 	int regWrites = 0;
156 
157 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
158 	    __func__, chan->ic_freq, chan->ic_flags, modesIndex);
159 
160 	HALASSERT(priv);
161 
162 	/* Setup rf parameters */
163 	if (IEEE80211_IS_CHAN_B(chan)) {
164 		ob2GHz = ee->ee_obFor24;
165 		db2GHz = ee->ee_dbFor24;
166 	} else {
167 		ob2GHz = ee->ee_obFor24g;
168 		db2GHz = ee->ee_dbFor24g;
169 	}
170 
171 	/* Bank 1 Write */
172 	RF_BANK_SETUP(priv, 1, 1);
173 
174 	/* Bank 2 Write */
175 	RF_BANK_SETUP(priv, 2, modesIndex);
176 
177 	/* Bank 3 Write */
178 	RF_BANK_SETUP(priv, 3, modesIndex);
179 
180 	/* Bank 6 Write */
181 	RF_BANK_SETUP(priv, 6, modesIndex);
182 
183 	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 193, 0);
184 	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 190, 0);
185 
186 	/* Bank 7 Setup */
187 	RF_BANK_SETUP(priv, 7, modesIndex);
188 
189 	/* Write Analog registers */
190 	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2317, priv->Bank1Data, regWrites);
191 	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2317, priv->Bank2Data, regWrites);
192 	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2317, priv->Bank3Data, regWrites);
193 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_2317, priv->Bank6Data, regWrites);
194 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2317, priv->Bank7Data, regWrites);
195 	/* Now that we have reprogrammed rfgain value, clear the flag. */
196 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
197 
198 	return AH_TRUE;
199 #undef	RF_BANK_SETUP
200 }
201 
202 /*
203  * Return a reference to the requested RF Bank.
204  */
205 static uint32_t *
206 ar2317GetRfBank(struct ath_hal *ah, int bank)
207 {
208 	struct ar2317State *priv = AR2317(ah);
209 
210 	HALASSERT(priv != AH_NULL);
211 	switch (bank) {
212 	case 1: return priv->Bank1Data;
213 	case 2: return priv->Bank2Data;
214 	case 3: return priv->Bank3Data;
215 	case 6: return priv->Bank6Data;
216 	case 7: return priv->Bank7Data;
217 	}
218 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
219 	    __func__, bank);
220 	return AH_NULL;
221 }
222 
223 /*
224  * Return indices surrounding the value in sorted integer lists.
225  *
226  * NB: the input list is assumed to be sorted in ascending order
227  */
228 static void
229 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
230                           uint32_t *vlo, uint32_t *vhi)
231 {
232 	int16_t target = v;
233 	const int16_t *ep = lp+listSize;
234 	const int16_t *tp;
235 
236 	/*
237 	 * Check first and last elements for out-of-bounds conditions.
238 	 */
239 	if (target < lp[0]) {
240 		*vlo = *vhi = 0;
241 		return;
242 	}
243 	if (target >= ep[-1]) {
244 		*vlo = *vhi = listSize - 1;
245 		return;
246 	}
247 
248 	/* look for value being near or between 2 values in list */
249 	for (tp = lp; tp < ep; tp++) {
250 		/*
251 		 * If value is close to the current value of the list
252 		 * then target is not between values, it is one of the values
253 		 */
254 		if (*tp == target) {
255 			*vlo = *vhi = tp - (const int16_t *) lp;
256 			return;
257 		}
258 		/*
259 		 * Look for value being between current value and next value
260 		 * if so return these 2 values
261 		 */
262 		if (target < tp[1]) {
263 			*vlo = tp - (const int16_t *) lp;
264 			*vhi = *vlo + 1;
265 			return;
266 		}
267 	}
268 }
269 
270 /*
271  * Fill the Vpdlist for indices Pmax-Pmin
272  */
273 static HAL_BOOL
274 ar2317FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
275 		   const int16_t *pwrList, const int16_t *VpdList,
276 		   uint16_t numIntercepts, uint16_t retVpdList[][64])
277 {
278 	uint16_t ii, jj, kk;
279 	int16_t currPwr = (int16_t)(2*Pmin);
280 	/* since Pmin is pwr*2 and pwrList is 4*pwr */
281 	uint32_t  idxL, idxR;
282 
283 	ii = 0;
284 	jj = 0;
285 
286 	if (numIntercepts < 2)
287 		return AH_FALSE;
288 
289 	while (ii <= (uint16_t)(Pmax - Pmin)) {
290 		GetLowerUpperIndex(currPwr, pwrList, numIntercepts,
291 					 &(idxL), &(idxR));
292 		if (idxR < 1)
293 			idxR = 1;			/* extrapolate below */
294 		if (idxL == (uint32_t)(numIntercepts - 1))
295 			idxL = numIntercepts - 2;	/* extrapolate above */
296 		if (pwrList[idxL] == pwrList[idxR])
297 			kk = VpdList[idxL];
298 		else
299 			kk = (uint16_t)
300 				(((currPwr - pwrList[idxL])*VpdList[idxR]+
301 				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
302 				 (pwrList[idxR] - pwrList[idxL]));
303 		retVpdList[pdGainIdx][ii] = kk;
304 		ii++;
305 		currPwr += 2;				/* half dB steps */
306 	}
307 
308 	return AH_TRUE;
309 }
310 
311 /*
312  * Returns interpolated or the scaled up interpolated value
313  */
314 static int16_t
315 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
316 	int16_t targetLeft, int16_t targetRight)
317 {
318 	int16_t rv;
319 
320 	if (srcRight != srcLeft) {
321 		rv = ((target - srcLeft)*targetRight +
322 		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
323 	} else {
324 		rv = targetLeft;
325 	}
326 	return rv;
327 }
328 
329 /*
330  * Uses the data points read from EEPROM to reconstruct the pdadc power table
331  * Called by ar2317SetPowerTable()
332  */
333 static int
334 ar2317getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
335 		const RAW_DATA_STRUCT_2317 *pRawDataset,
336 		uint16_t pdGainOverlap_t2,
337 		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
338 		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
339 {
340 	struct ar2317State *priv = AR2317(ah);
341 #define	VpdTable_L	priv->vpdTable_L
342 #define	VpdTable_R	priv->vpdTable_R
343 #define	VpdTable_I	priv->vpdTable_I
344 	/* XXX excessive stack usage? */
345 	uint32_t ii, jj, kk;
346 	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
347 	uint32_t idxL, idxR;
348 	uint32_t numPdGainsUsed = 0;
349 	/*
350 	 * If desired to support -ve power levels in future, just
351 	 * change pwr_I_0 to signed 5-bits.
352 	 */
353 	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
354 	/* to accommodate -ve power levels later on. */
355 	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
356 	/* to accommodate -ve power levels later on */
357 	uint16_t numVpd = 0;
358 	uint16_t Vpd_step;
359 	int16_t tmpVal ;
360 	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
361 
362 	/* Get upper lower index */
363 	GetLowerUpperIndex(channel, pRawDataset->pChannels,
364 				 pRawDataset->numChannels, &(idxL), &(idxR));
365 
366 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
367 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
368 		/* work backwards 'cause highest pdGain for lowest power */
369 		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
370 		if (numVpd > 0) {
371 			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
372 			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
373 			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
374 				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
375 			}
376 			Pmin_t2[numPdGainsUsed] = (int16_t)
377 				(Pmin_t2[numPdGainsUsed] / 2);
378 			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
379 			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
380 				Pmax_t2[numPdGainsUsed] =
381 					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
382 			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
383 			ar2317FillVpdTable(
384 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
385 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
386 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
387 					   );
388 			ar2317FillVpdTable(
389 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
390 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
391 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
392 					   );
393 			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
394 				VpdTable_I[numPdGainsUsed][kk] =
395 					interpolate_signed(
396 							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
397 							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
398 			}
399 			/* fill VpdTable_I for this pdGain */
400 			numPdGainsUsed++;
401 		}
402 		/* if this pdGain is used */
403 	}
404 
405 	*pMinCalPower = Pmin_t2[0];
406 	kk = 0; /* index for the final table */
407 	for (ii = 0; ii < numPdGainsUsed; ii++) {
408 		if (ii == (numPdGainsUsed - 1))
409 			pPdGainBoundaries[ii] = Pmax_t2[ii] +
410 				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
411 		else
412 			pPdGainBoundaries[ii] = (uint16_t)
413 				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
414 		if (pPdGainBoundaries[ii] > 63) {
415 			HALDEBUG(ah, HAL_DEBUG_ANY,
416 			    "%s: clamp pPdGainBoundaries[%d] %d\n",
417 			   __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
418 			pPdGainBoundaries[ii] = 63;
419 		}
420 
421 		/* Find starting index for this pdGain */
422 		if (ii == 0)
423 			ss = 0; /* for the first pdGain, start from index 0 */
424 		else
425 			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
426 				pdGainOverlap_t2;
427 		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
428 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
429 		/*
430 		 *-ve ss indicates need to extrapolate data below for this pdGain
431 		 */
432 		while (ss < 0) {
433 			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
434 			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
435 			ss++;
436 		}
437 
438 		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
439 		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
440 		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
441 
442 		while (ss < (int16_t)maxIndex)
443 			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
444 
445 		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
446 				       VpdTable_I[ii][sizeCurrVpdTable-2]);
447 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
448 		/*
449 		 * for last gain, pdGainBoundary == Pmax_t2, so will
450 		 * have to extrapolate
451 		 */
452 		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
453 			while(ss < (int16_t)tgtIndex) {
454 				tmpVal = (uint16_t)
455 					(VpdTable_I[ii][sizeCurrVpdTable-1] +
456 					 (ss-maxIndex)*Vpd_step);
457 				pPDADCValues[kk++] = (tmpVal > 127) ?
458 					127 : tmpVal;
459 				ss++;
460 			}
461 		}				/* extrapolated above */
462 	}					/* for all pdGainUsed */
463 
464 	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
465 		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
466 		ii++;
467 	}
468 	while (kk < 128) {
469 		pPDADCValues[kk] = pPDADCValues[kk-1];
470 		kk++;
471 	}
472 
473 	return numPdGainsUsed;
474 #undef VpdTable_L
475 #undef VpdTable_R
476 #undef VpdTable_I
477 }
478 
479 static HAL_BOOL
480 ar2317SetPowerTable(struct ath_hal *ah,
481 	int16_t *minPower, int16_t *maxPower,
482 	const struct ieee80211_channel *chan,
483 	uint16_t *rfXpdGain)
484 {
485 	struct ath_hal_5212 *ahp = AH5212(ah);
486 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
487 	const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
488 	uint16_t pdGainOverlap_t2;
489 	int16_t minCalPower2317_t2;
490 	uint16_t *pdadcValues = ahp->ah_pcdacTable;
491 	uint16_t gainBoundaries[4];
492 	uint32_t reg32, regoffset;
493 	int i, numPdGainsUsed;
494 #ifndef AH_USE_INIPDGAIN
495 	uint32_t tpcrg1;
496 #endif
497 
498 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
499 	    __func__, chan->ic_freq, chan->ic_flags);
500 
501 	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
502 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
503 	else if (IEEE80211_IS_CHAN_B(chan))
504 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
505 	else {
506 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
507 		return AH_FALSE;
508 	}
509 
510 	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
511 					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
512 
513 	numPdGainsUsed = ar2317getGainBoundariesAndPdadcsForPowers(ah,
514 		chan->channel, pRawDataset, pdGainOverlap_t2,
515 		&minCalPower2317_t2,gainBoundaries, rfXpdGain, pdadcValues);
516 	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
517 
518 #ifdef AH_USE_INIPDGAIN
519 	/*
520 	 * Use pd_gains curve from eeprom; Atheros always uses
521 	 * the default curve from the ini file but some vendors
522 	 * (e.g. Zcomax) want to override this curve and not
523 	 * honoring their settings results in tx power 5dBm low.
524 	 */
525 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
526 			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
527 #else
528 	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
529 	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
530 		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
531 	switch (numPdGainsUsed) {
532 	case 3:
533 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
534 		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
535 		/* fall thru... */
536 	case 2:
537 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
538 		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
539 		/* fall thru... */
540 	case 1:
541 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
542 		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
543 		break;
544 	}
545 #ifdef AH_DEBUG
546 	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
547 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
548 		    "pd_gains (default 0x%x, calculated 0x%x)\n",
549 		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
550 #endif
551 	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
552 #endif
553 
554 	/*
555 	 * Note the pdadc table may not start at 0 dBm power, could be
556 	 * negative or greater than 0.  Need to offset the power
557 	 * values by the amount of minPower for griffin
558 	 */
559 	if (minCalPower2317_t2 != 0)
560 		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2317_t2);
561 	else
562 		ahp->ah_txPowerIndexOffset = 0;
563 
564 	/* Finally, write the power values into the baseband power table */
565 	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
566 	for (i = 0; i < 32; i++) {
567 		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
568 			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
569 			((pdadcValues[4*i + 2] & 0xFF) << 16) |
570 			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
571 		OS_REG_WRITE(ah, regoffset, reg32);
572 		regoffset += 4;
573 	}
574 
575 	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
576 		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
577 		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
578 		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
579 		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
580 		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
581 
582 	return AH_TRUE;
583 }
584 
585 static int16_t
586 ar2317GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
587 {
588 	uint32_t ii,jj;
589 	uint16_t Pmin=0,numVpd;
590 
591 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
592 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
593 		/* work backwards 'cause highest pdGain for lowest power */
594 		numVpd = data->pDataPerPDGain[jj].numVpd;
595 		if (numVpd > 0) {
596 			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
597 			return(Pmin);
598 		}
599 	}
600 	return(Pmin);
601 }
602 
603 static int16_t
604 ar2317GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
605 {
606 	uint32_t ii;
607 	uint16_t Pmax=0,numVpd;
608 	uint16_t vpdmax;
609 
610 	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
611 		/* work forwards cuase lowest pdGain for highest power */
612 		numVpd = data->pDataPerPDGain[ii].numVpd;
613 		if (numVpd > 0) {
614 			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
615 			vpdmax = data->pDataPerPDGain[ii].Vpd[numVpd-1];
616 			return(Pmax);
617 		}
618 	}
619 	return(Pmax);
620 }
621 
622 static HAL_BOOL
623 ar2317GetChannelMaxMinPower(struct ath_hal *ah,
624 	const struct ieee80211_channel *chan,
625 	int16_t *maxPow, int16_t *minPow)
626 {
627 	uint16_t freq = chan->ic_freq;		/* NB: never mapped */
628 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
629 	const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
630 	const RAW_DATA_PER_CHANNEL_2317 *data=AH_NULL;
631 	uint16_t numChannels;
632 	int totalD,totalF, totalMin,last, i;
633 
634 	*maxPow = 0;
635 
636 	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
637 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
638 	else if (IEEE80211_IS_CHAN_B(chan))
639 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
640 	else
641 		return(AH_FALSE);
642 
643 	numChannels = pRawDataset->numChannels;
644 	data = pRawDataset->pDataPerChannel;
645 
646 	/* Make sure the channel is in the range of the TP values
647 	 *  (freq piers)
648 	 */
649 	if (numChannels < 1)
650 		return(AH_FALSE);
651 
652 	if ((freq < data[0].channelValue) ||
653 	    (freq > data[numChannels-1].channelValue)) {
654 		if (freq < data[0].channelValue) {
655 			*maxPow = ar2317GetMaxPower(ah, &data[0]);
656 			*minPow = ar2317GetMinPower(ah, &data[0]);
657 			return(AH_TRUE);
658 		} else {
659 			*maxPow = ar2317GetMaxPower(ah, &data[numChannels - 1]);
660 			*minPow = ar2317GetMinPower(ah, &data[numChannels - 1]);
661 			return(AH_TRUE);
662 		}
663 	}
664 
665 	/* Linearly interpolate the power value now */
666 	for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
667 	     last = i++);
668 	totalD = data[i].channelValue - data[last].channelValue;
669 	if (totalD > 0) {
670 		totalF = ar2317GetMaxPower(ah, &data[i]) - ar2317GetMaxPower(ah, &data[last]);
671 		*maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) +
672 				     ar2317GetMaxPower(ah, &data[last])*totalD)/totalD);
673 		totalMin = ar2317GetMinPower(ah, &data[i]) - ar2317GetMinPower(ah, &data[last]);
674 		*minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
675 				     ar2317GetMinPower(ah, &data[last])*totalD)/totalD);
676 		return(AH_TRUE);
677 	} else {
678 		if (freq == data[i].channelValue) {
679 			*maxPow = ar2317GetMaxPower(ah, &data[i]);
680 			*minPow = ar2317GetMinPower(ah, &data[i]);
681 			return(AH_TRUE);
682 		} else
683 			return(AH_FALSE);
684 	}
685 }
686 
687 /*
688  * Free memory for analog bank scratch buffers
689  */
690 static void
691 ar2317RfDetach(struct ath_hal *ah)
692 {
693 	struct ath_hal_5212 *ahp = AH5212(ah);
694 
695 	HALASSERT(ahp->ah_rfHal != AH_NULL);
696 	ath_hal_free(ahp->ah_rfHal);
697 	ahp->ah_rfHal = AH_NULL;
698 }
699 
700 /*
701  * Allocate memory for analog bank scratch buffers
702  * Scratch Buffer will be reinitialized every reset so no need to zero now
703  */
704 static HAL_BOOL
705 ar2317RfAttach(struct ath_hal *ah, HAL_STATUS *status)
706 {
707 	struct ath_hal_5212 *ahp = AH5212(ah);
708 	struct ar2317State *priv;
709 
710 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
711 
712 	HALASSERT(ahp->ah_rfHal == AH_NULL);
713 	priv = ath_hal_malloc(sizeof(struct ar2317State));
714 	if (priv == AH_NULL) {
715 		HALDEBUG(ah, HAL_DEBUG_ANY,
716 		    "%s: cannot allocate private state\n", __func__);
717 		*status = HAL_ENOMEM;		/* XXX */
718 		return AH_FALSE;
719 	}
720 	priv->base.rfDetach		= ar2317RfDetach;
721 	priv->base.writeRegs		= ar2317WriteRegs;
722 	priv->base.getRfBank		= ar2317GetRfBank;
723 	priv->base.setChannel		= ar2317SetChannel;
724 	priv->base.setRfRegs		= ar2317SetRfRegs;
725 	priv->base.setPowerTable	= ar2317SetPowerTable;
726 	priv->base.getChannelMaxMinPower = ar2317GetChannelMaxMinPower;
727 	priv->base.getNfAdjust		= ar5212GetNfAdjust;
728 
729 	ahp->ah_pcdacTable = priv->pcdacTable;
730 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
731 	ahp->ah_rfHal = &priv->base;
732 
733 	return AH_TRUE;
734 }
735 
736 static HAL_BOOL
737 ar2317Probe(struct ath_hal *ah)
738 {
739 	return IS_2317(ah);
740 }
741 AH_RF(RF2317, ar2317Probe, ar2317RfAttach);
742