1 /*- 2 * SPDX-License-Identifier: ISC 3 * 4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 5 * Copyright (c) 2002-2008 Atheros Communications, Inc. 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 * 19 * $FreeBSD$ 20 */ 21 #include "opt_ah.h" 22 23 #include "ah.h" 24 #include "ah_internal.h" 25 26 #include "ar5212/ar5212.h" 27 #include "ar5212/ar5212reg.h" 28 #include "ar5212/ar5212phy.h" 29 30 #include "ah_eeprom_v3.h" 31 32 #define AH_5212_2316 33 #include "ar5212/ar5212.ini" 34 35 #define N(a) (sizeof(a)/sizeof(a[0])) 36 37 typedef RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2316; 38 typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2316; 39 #define PWR_TABLE_SIZE_2316 PWR_TABLE_SIZE_2413 40 41 struct ar2316State { 42 RF_HAL_FUNCS base; /* public state, must be first */ 43 uint16_t pcdacTable[PWR_TABLE_SIZE_2316]; 44 45 uint32_t Bank1Data[N(ar5212Bank1_2316)]; 46 uint32_t Bank2Data[N(ar5212Bank2_2316)]; 47 uint32_t Bank3Data[N(ar5212Bank3_2316)]; 48 uint32_t Bank6Data[N(ar5212Bank6_2316)]; 49 uint32_t Bank7Data[N(ar5212Bank7_2316)]; 50 51 /* 52 * Private state for reduced stack usage. 53 */ 54 /* filled out Vpd table for all pdGains (chanL) */ 55 uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL] 56 [MAX_PWR_RANGE_IN_HALF_DB]; 57 /* filled out Vpd table for all pdGains (chanR) */ 58 uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL] 59 [MAX_PWR_RANGE_IN_HALF_DB]; 60 /* filled out Vpd table for all pdGains (interpolated) */ 61 uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL] 62 [MAX_PWR_RANGE_IN_HALF_DB]; 63 }; 64 #define AR2316(ah) ((struct ar2316State *) AH5212(ah)->ah_rfHal) 65 66 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, 67 uint32_t numBits, uint32_t firstBit, uint32_t column); 68 69 static void 70 ar2316WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex, 71 int regWrites) 72 { 73 struct ath_hal_5212 *ahp = AH5212(ah); 74 75 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2316, modesIndex, regWrites); 76 HAL_INI_WRITE_ARRAY(ah, ar5212Common_2316, 1, regWrites); 77 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2316, freqIndex, regWrites); 78 79 /* For AP51 */ 80 if (!ahp->ah_cwCalRequire) { 81 OS_REG_WRITE(ah, 0xa358, (OS_REG_READ(ah, 0xa358) & ~0x2)); 82 } else { 83 ahp->ah_cwCalRequire = AH_FALSE; 84 } 85 } 86 87 /* 88 * Take the MHz channel value and set the Channel value 89 * 90 * ASSUMES: Writes enabled to analog bus 91 */ 92 static HAL_BOOL 93 ar2316SetChannel(struct ath_hal *ah, struct ieee80211_channel *chan) 94 { 95 uint16_t freq = ath_hal_gethwchannel(ah, chan); 96 uint32_t channelSel = 0; 97 uint32_t bModeSynth = 0; 98 uint32_t aModeRefSel = 0; 99 uint32_t reg32 = 0; 100 101 OS_MARK(ah, AH_MARK_SETCHANNEL, freq); 102 103 if (freq < 4800) { 104 uint32_t txctl; 105 106 if (((freq - 2192) % 5) == 0) { 107 channelSel = ((freq - 672) * 2 - 3040)/10; 108 bModeSynth = 0; 109 } else if (((freq - 2224) % 5) == 0) { 110 channelSel = ((freq - 704) * 2 - 3040) / 10; 111 bModeSynth = 1; 112 } else { 113 HALDEBUG(ah, HAL_DEBUG_ANY, 114 "%s: invalid channel %u MHz\n", 115 __func__, freq); 116 return AH_FALSE; 117 } 118 119 channelSel = (channelSel << 2) & 0xff; 120 channelSel = ath_hal_reverseBits(channelSel, 8); 121 122 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); 123 if (freq == 2484) { 124 /* Enable channel spreading for channel 14 */ 125 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 126 txctl | AR_PHY_CCK_TX_CTRL_JAPAN); 127 } else { 128 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 129 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); 130 } 131 } else if ((freq % 20) == 0 && freq >= 5120) { 132 channelSel = ath_hal_reverseBits( 133 ((freq - 4800) / 20 << 2), 8); 134 aModeRefSel = ath_hal_reverseBits(3, 2); 135 } else if ((freq % 10) == 0) { 136 channelSel = ath_hal_reverseBits( 137 ((freq - 4800) / 10 << 1), 8); 138 aModeRefSel = ath_hal_reverseBits(2, 2); 139 } else if ((freq % 5) == 0) { 140 channelSel = ath_hal_reverseBits( 141 (freq - 4800) / 5, 8); 142 aModeRefSel = ath_hal_reverseBits(1, 2); 143 } else { 144 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n", 145 __func__, freq); 146 return AH_FALSE; 147 } 148 149 reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) | 150 (1 << 12) | 0x1; 151 OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff); 152 153 reg32 >>= 8; 154 OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f); 155 156 AH_PRIVATE(ah)->ah_curchan = chan; 157 return AH_TRUE; 158 } 159 160 /* 161 * Reads EEPROM header info from device structure and programs 162 * all rf registers 163 * 164 * REQUIRES: Access to the analog rf device 165 */ 166 static HAL_BOOL 167 ar2316SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan, 168 uint16_t modesIndex, uint16_t *rfXpdGain) 169 { 170 #define RF_BANK_SETUP(_priv, _ix, _col) do { \ 171 int i; \ 172 for (i = 0; i < N(ar5212Bank##_ix##_2316); i++) \ 173 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2316[i][_col];\ 174 } while (0) 175 struct ath_hal_5212 *ahp = AH5212(ah); 176 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 177 uint16_t ob2GHz = 0, db2GHz = 0; 178 struct ar2316State *priv = AR2316(ah); 179 int regWrites = 0; 180 181 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n", 182 __func__, chan->ic_freq, chan->ic_flags, modesIndex); 183 184 HALASSERT(priv != AH_NULL); 185 186 /* Setup rf parameters */ 187 if (IEEE80211_IS_CHAN_B(chan)) { 188 ob2GHz = ee->ee_obFor24; 189 db2GHz = ee->ee_dbFor24; 190 } else { 191 ob2GHz = ee->ee_obFor24g; 192 db2GHz = ee->ee_dbFor24g; 193 } 194 195 /* Bank 1 Write */ 196 RF_BANK_SETUP(priv, 1, 1); 197 198 /* Bank 2 Write */ 199 RF_BANK_SETUP(priv, 2, modesIndex); 200 201 /* Bank 3 Write */ 202 RF_BANK_SETUP(priv, 3, modesIndex); 203 204 /* Bank 6 Write */ 205 RF_BANK_SETUP(priv, 6, modesIndex); 206 207 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 178, 0); 208 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 175, 0); 209 210 /* Bank 7 Setup */ 211 RF_BANK_SETUP(priv, 7, modesIndex); 212 213 /* Write Analog registers */ 214 HAL_INI_WRITE_BANK(ah, ar5212Bank1_2316, priv->Bank1Data, regWrites); 215 HAL_INI_WRITE_BANK(ah, ar5212Bank2_2316, priv->Bank2Data, regWrites); 216 HAL_INI_WRITE_BANK(ah, ar5212Bank3_2316, priv->Bank3Data, regWrites); 217 HAL_INI_WRITE_BANK(ah, ar5212Bank6_2316, priv->Bank6Data, regWrites); 218 HAL_INI_WRITE_BANK(ah, ar5212Bank7_2316, priv->Bank7Data, regWrites); 219 220 /* Now that we have reprogrammed rfgain value, clear the flag. */ 221 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE; 222 223 return AH_TRUE; 224 #undef RF_BANK_SETUP 225 } 226 227 /* 228 * Return a reference to the requested RF Bank. 229 */ 230 static uint32_t * 231 ar2316GetRfBank(struct ath_hal *ah, int bank) 232 { 233 struct ar2316State *priv = AR2316(ah); 234 235 HALASSERT(priv != AH_NULL); 236 switch (bank) { 237 case 1: return priv->Bank1Data; 238 case 2: return priv->Bank2Data; 239 case 3: return priv->Bank3Data; 240 case 6: return priv->Bank6Data; 241 case 7: return priv->Bank7Data; 242 } 243 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n", 244 __func__, bank); 245 return AH_NULL; 246 } 247 248 /* 249 * Return indices surrounding the value in sorted integer lists. 250 * 251 * NB: the input list is assumed to be sorted in ascending order 252 */ 253 static void 254 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize, 255 uint32_t *vlo, uint32_t *vhi) 256 { 257 int16_t target = v; 258 const int16_t *ep = lp+listSize; 259 const int16_t *tp; 260 261 /* 262 * Check first and last elements for out-of-bounds conditions. 263 */ 264 if (target < lp[0]) { 265 *vlo = *vhi = 0; 266 return; 267 } 268 if (target >= ep[-1]) { 269 *vlo = *vhi = listSize - 1; 270 return; 271 } 272 273 /* look for value being near or between 2 values in list */ 274 for (tp = lp; tp < ep; tp++) { 275 /* 276 * If value is close to the current value of the list 277 * then target is not between values, it is one of the values 278 */ 279 if (*tp == target) { 280 *vlo = *vhi = tp - (const int16_t *) lp; 281 return; 282 } 283 /* 284 * Look for value being between current value and next value 285 * if so return these 2 values 286 */ 287 if (target < tp[1]) { 288 *vlo = tp - (const int16_t *) lp; 289 *vhi = *vlo + 1; 290 return; 291 } 292 } 293 } 294 295 /* 296 * Fill the Vpdlist for indices Pmax-Pmin 297 */ 298 static HAL_BOOL 299 ar2316FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax, 300 const int16_t *pwrList, const int16_t *VpdList, 301 uint16_t numIntercepts, uint16_t retVpdList[][64]) 302 { 303 uint16_t ii, jj, kk; 304 int16_t currPwr = (int16_t)(2*Pmin); 305 /* since Pmin is pwr*2 and pwrList is 4*pwr */ 306 uint32_t idxL, idxR; 307 308 ii = 0; 309 jj = 0; 310 311 if (numIntercepts < 2) 312 return AH_FALSE; 313 314 while (ii <= (uint16_t)(Pmax - Pmin)) { 315 GetLowerUpperIndex(currPwr, pwrList, numIntercepts, 316 &(idxL), &(idxR)); 317 if (idxR < 1) 318 idxR = 1; /* extrapolate below */ 319 if (idxL == (uint32_t)(numIntercepts - 1)) 320 idxL = numIntercepts - 2; /* extrapolate above */ 321 if (pwrList[idxL] == pwrList[idxR]) 322 kk = VpdList[idxL]; 323 else 324 kk = (uint16_t) 325 (((currPwr - pwrList[idxL])*VpdList[idxR]+ 326 (pwrList[idxR] - currPwr)*VpdList[idxL])/ 327 (pwrList[idxR] - pwrList[idxL])); 328 retVpdList[pdGainIdx][ii] = kk; 329 ii++; 330 currPwr += 2; /* half dB steps */ 331 } 332 333 return AH_TRUE; 334 } 335 336 /* 337 * Returns interpolated or the scaled up interpolated value 338 */ 339 static int16_t 340 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight, 341 int16_t targetLeft, int16_t targetRight) 342 { 343 int16_t rv; 344 345 if (srcRight != srcLeft) { 346 rv = ((target - srcLeft)*targetRight + 347 (srcRight - target)*targetLeft) / (srcRight - srcLeft); 348 } else { 349 rv = targetLeft; 350 } 351 return rv; 352 } 353 354 /* 355 * Uses the data points read from EEPROM to reconstruct the pdadc power table 356 * Called by ar2316SetPowerTable() 357 */ 358 static int 359 ar2316getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel, 360 const RAW_DATA_STRUCT_2316 *pRawDataset, 361 uint16_t pdGainOverlap_t2, 362 int16_t *pMinCalPower, uint16_t pPdGainBoundaries[], 363 uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 364 { 365 struct ar2316State *priv = AR2316(ah); 366 #define VpdTable_L priv->vpdTable_L 367 #define VpdTable_R priv->vpdTable_R 368 #define VpdTable_I priv->vpdTable_I 369 uint32_t ii, jj, kk; 370 int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */ 371 uint32_t idxL, idxR; 372 uint32_t numPdGainsUsed = 0; 373 /* 374 * If desired to support -ve power levels in future, just 375 * change pwr_I_0 to signed 5-bits. 376 */ 377 int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; 378 /* to accommodate -ve power levels later on. */ 379 int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; 380 /* to accommodate -ve power levels later on */ 381 uint16_t numVpd = 0; 382 uint16_t Vpd_step; 383 int16_t tmpVal ; 384 uint32_t sizeCurrVpdTable, maxIndex, tgtIndex; 385 386 /* Get upper lower index */ 387 GetLowerUpperIndex(channel, pRawDataset->pChannels, 388 pRawDataset->numChannels, &(idxL), &(idxR)); 389 390 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { 391 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; 392 /* work backwards 'cause highest pdGain for lowest power */ 393 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd; 394 if (numVpd > 0) { 395 pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain; 396 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]; 397 if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) { 398 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]; 399 } 400 Pmin_t2[numPdGainsUsed] = (int16_t) 401 (Pmin_t2[numPdGainsUsed] / 2); 402 Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1]; 403 if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]) 404 Pmax_t2[numPdGainsUsed] = 405 pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]; 406 Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2); 407 ar2316FillVpdTable( 408 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 409 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 410 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L 411 ); 412 ar2316FillVpdTable( 413 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 414 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]), 415 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R 416 ); 417 for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) { 418 VpdTable_I[numPdGainsUsed][kk] = 419 interpolate_signed( 420 channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR], 421 (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]); 422 } 423 /* fill VpdTable_I for this pdGain */ 424 numPdGainsUsed++; 425 } 426 /* if this pdGain is used */ 427 } 428 429 *pMinCalPower = Pmin_t2[0]; 430 kk = 0; /* index for the final table */ 431 for (ii = 0; ii < numPdGainsUsed; ii++) { 432 if (ii == (numPdGainsUsed - 1)) 433 pPdGainBoundaries[ii] = Pmax_t2[ii] + 434 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB; 435 else 436 pPdGainBoundaries[ii] = (uint16_t) 437 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 ); 438 if (pPdGainBoundaries[ii] > 63) { 439 HALDEBUG(ah, HAL_DEBUG_ANY, 440 "%s: clamp pPdGainBoundaries[%d] %d\n", 441 __func__, ii, pPdGainBoundaries[ii]);/*XXX*/ 442 pPdGainBoundaries[ii] = 63; 443 } 444 445 /* Find starting index for this pdGain */ 446 if (ii == 0) 447 ss = 0; /* for the first pdGain, start from index 0 */ 448 else 449 ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 450 pdGainOverlap_t2; 451 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]); 452 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); 453 /* 454 *-ve ss indicates need to extrapolate data below for this pdGain 455 */ 456 while (ss < 0) { 457 tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step); 458 pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal); 459 ss++; 460 } 461 462 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii]; 463 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii]; 464 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; 465 466 while (ss < (int16_t)maxIndex) 467 pPDADCValues[kk++] = VpdTable_I[ii][ss++]; 468 469 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] - 470 VpdTable_I[ii][sizeCurrVpdTable-2]); 471 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); 472 /* 473 * for last gain, pdGainBoundary == Pmax_t2, so will 474 * have to extrapolate 475 */ 476 if (tgtIndex > maxIndex) { /* need to extrapolate above */ 477 while(ss < (int16_t)tgtIndex) { 478 tmpVal = (uint16_t) 479 (VpdTable_I[ii][sizeCurrVpdTable-1] + 480 (ss-maxIndex)*Vpd_step); 481 pPDADCValues[kk++] = (tmpVal > 127) ? 482 127 : tmpVal; 483 ss++; 484 } 485 } /* extrapolated above */ 486 } /* for all pdGainUsed */ 487 488 while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) { 489 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1]; 490 ii++; 491 } 492 while (kk < 128) { 493 pPDADCValues[kk] = pPDADCValues[kk-1]; 494 kk++; 495 } 496 497 return numPdGainsUsed; 498 #undef VpdTable_L 499 #undef VpdTable_R 500 #undef VpdTable_I 501 } 502 503 static HAL_BOOL 504 ar2316SetPowerTable(struct ath_hal *ah, 505 int16_t *minPower, int16_t *maxPower, 506 const struct ieee80211_channel *chan, 507 uint16_t *rfXpdGain) 508 { 509 struct ath_hal_5212 *ahp = AH5212(ah); 510 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 511 const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL; 512 uint16_t pdGainOverlap_t2; 513 int16_t minCalPower2316_t2; 514 uint16_t *pdadcValues = ahp->ah_pcdacTable; 515 uint16_t gainBoundaries[4]; 516 uint32_t reg32, regoffset; 517 int i, numPdGainsUsed; 518 #ifndef AH_USE_INIPDGAIN 519 uint32_t tpcrg1; 520 #endif 521 522 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n", 523 __func__, chan->ic_freq, chan->ic_flags); 524 525 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan)) 526 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; 527 else if (IEEE80211_IS_CHAN_B(chan)) 528 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; 529 else { 530 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__); 531 return AH_FALSE; 532 } 533 534 pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5), 535 AR_PHY_TPCRG5_PD_GAIN_OVERLAP); 536 537 numPdGainsUsed = ar2316getGainBoundariesAndPdadcsForPowers(ah, 538 chan->channel, pRawDataset, pdGainOverlap_t2, 539 &minCalPower2316_t2,gainBoundaries, rfXpdGain, pdadcValues); 540 HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3); 541 542 #ifdef AH_USE_INIPDGAIN 543 /* 544 * Use pd_gains curve from eeprom; Atheros always uses 545 * the default curve from the ini file but some vendors 546 * (e.g. Zcomax) want to override this curve and not 547 * honoring their settings results in tx power 5dBm low. 548 */ 549 OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 550 (pRawDataset->pDataPerChannel[0].numPdGains - 1)); 551 #else 552 tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1); 553 tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN) 554 | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN); 555 switch (numPdGainsUsed) { 556 case 3: 557 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3; 558 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3); 559 /* fall thru... */ 560 case 2: 561 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2; 562 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2); 563 /* fall thru... */ 564 case 1: 565 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1; 566 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1); 567 break; 568 } 569 #ifdef AH_DEBUG 570 if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1)) 571 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default " 572 "pd_gains (default 0x%x, calculated 0x%x)\n", 573 __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1); 574 #endif 575 OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1); 576 #endif 577 578 /* 579 * Note the pdadc table may not start at 0 dBm power, could be 580 * negative or greater than 0. Need to offset the power 581 * values by the amount of minPower for griffin 582 */ 583 if (minCalPower2316_t2 != 0) 584 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2316_t2); 585 else 586 ahp->ah_txPowerIndexOffset = 0; 587 588 /* Finally, write the power values into the baseband power table */ 589 regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */ 590 for (i = 0; i < 32; i++) { 591 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) | 592 ((pdadcValues[4*i + 1] & 0xFF) << 8) | 593 ((pdadcValues[4*i + 2] & 0xFF) << 16) | 594 ((pdadcValues[4*i + 3] & 0xFF) << 24) ; 595 OS_REG_WRITE(ah, regoffset, reg32); 596 regoffset += 4; 597 } 598 599 OS_REG_WRITE(ah, AR_PHY_TPCRG5, 600 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 601 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | 602 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | 603 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | 604 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); 605 606 return AH_TRUE; 607 } 608 609 static int16_t 610 ar2316GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data) 611 { 612 uint32_t ii,jj; 613 uint16_t Pmin=0,numVpd; 614 615 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { 616 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; 617 /* work backwards 'cause highest pdGain for lowest power */ 618 numVpd = data->pDataPerPDGain[jj].numVpd; 619 if (numVpd > 0) { 620 Pmin = data->pDataPerPDGain[jj].pwr_t4[0]; 621 return(Pmin); 622 } 623 } 624 return(Pmin); 625 } 626 627 static int16_t 628 ar2316GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data) 629 { 630 uint32_t ii; 631 uint16_t Pmax=0,numVpd; 632 633 for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { 634 /* work forwards cuase lowest pdGain for highest power */ 635 numVpd = data->pDataPerPDGain[ii].numVpd; 636 if (numVpd > 0) { 637 Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1]; 638 return(Pmax); 639 } 640 } 641 return(Pmax); 642 } 643 644 static HAL_BOOL 645 ar2316GetChannelMaxMinPower(struct ath_hal *ah, 646 const struct ieee80211_channel *chan, 647 int16_t *maxPow, int16_t *minPow) 648 { 649 uint16_t freq = chan->ic_freq; /* NB: never mapped */ 650 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 651 const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL; 652 const RAW_DATA_PER_CHANNEL_2316 *data=AH_NULL; 653 uint16_t numChannels; 654 int totalD,totalF, totalMin,last, i; 655 656 *maxPow = 0; 657 658 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan)) 659 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; 660 else if (IEEE80211_IS_CHAN_B(chan)) 661 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; 662 else 663 return(AH_FALSE); 664 665 numChannels = pRawDataset->numChannels; 666 data = pRawDataset->pDataPerChannel; 667 668 /* Make sure the channel is in the range of the TP values 669 * (freq piers) 670 */ 671 if (numChannels < 1) 672 return(AH_FALSE); 673 674 if ((freq < data[0].channelValue) || 675 (freq > data[numChannels-1].channelValue)) { 676 if (freq < data[0].channelValue) { 677 *maxPow = ar2316GetMaxPower(ah, &data[0]); 678 *minPow = ar2316GetMinPower(ah, &data[0]); 679 return(AH_TRUE); 680 } else { 681 *maxPow = ar2316GetMaxPower(ah, &data[numChannels - 1]); 682 *minPow = ar2316GetMinPower(ah, &data[numChannels - 1]); 683 return(AH_TRUE); 684 } 685 } 686 687 /* Linearly interpolate the power value now */ 688 for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue); 689 last = i++); 690 totalD = data[i].channelValue - data[last].channelValue; 691 if (totalD > 0) { 692 totalF = ar2316GetMaxPower(ah, &data[i]) - ar2316GetMaxPower(ah, &data[last]); 693 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + 694 ar2316GetMaxPower(ah, &data[last])*totalD)/totalD); 695 totalMin = ar2316GetMinPower(ah, &data[i]) - ar2316GetMinPower(ah, &data[last]); 696 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) + 697 ar2316GetMinPower(ah, &data[last])*totalD)/totalD); 698 return(AH_TRUE); 699 } else { 700 if (freq == data[i].channelValue) { 701 *maxPow = ar2316GetMaxPower(ah, &data[i]); 702 *minPow = ar2316GetMinPower(ah, &data[i]); 703 return(AH_TRUE); 704 } else 705 return(AH_FALSE); 706 } 707 } 708 709 /* 710 * Free memory for analog bank scratch buffers 711 */ 712 static void 713 ar2316RfDetach(struct ath_hal *ah) 714 { 715 struct ath_hal_5212 *ahp = AH5212(ah); 716 717 HALASSERT(ahp->ah_rfHal != AH_NULL); 718 ath_hal_free(ahp->ah_rfHal); 719 ahp->ah_rfHal = AH_NULL; 720 } 721 722 /* 723 * Allocate memory for private state. 724 * Scratch Buffer will be reinitialized every reset so no need to zero now 725 */ 726 static HAL_BOOL 727 ar2316RfAttach(struct ath_hal *ah, HAL_STATUS *status) 728 { 729 struct ath_hal_5212 *ahp = AH5212(ah); 730 struct ar2316State *priv; 731 732 HALASSERT(ah->ah_magic == AR5212_MAGIC); 733 734 HALASSERT(ahp->ah_rfHal == AH_NULL); 735 priv = ath_hal_malloc(sizeof(struct ar2316State)); 736 if (priv == AH_NULL) { 737 HALDEBUG(ah, HAL_DEBUG_ANY, 738 "%s: cannot allocate private state\n", __func__); 739 *status = HAL_ENOMEM; /* XXX */ 740 return AH_FALSE; 741 } 742 priv->base.rfDetach = ar2316RfDetach; 743 priv->base.writeRegs = ar2316WriteRegs; 744 priv->base.getRfBank = ar2316GetRfBank; 745 priv->base.setChannel = ar2316SetChannel; 746 priv->base.setRfRegs = ar2316SetRfRegs; 747 priv->base.setPowerTable = ar2316SetPowerTable; 748 priv->base.getChannelMaxMinPower = ar2316GetChannelMaxMinPower; 749 priv->base.getNfAdjust = ar5212GetNfAdjust; 750 751 ahp->ah_pcdacTable = priv->pcdacTable; 752 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable); 753 ahp->ah_rfHal = &priv->base; 754 755 ahp->ah_cwCalRequire = AH_TRUE; /* force initial cal */ 756 757 return AH_TRUE; 758 } 759 760 static HAL_BOOL 761 ar2316Probe(struct ath_hal *ah) 762 { 763 return IS_2316(ah); 764 } 765 AH_RF(RF2316, ar2316Probe, ar2316RfAttach); 766