xref: /freebsd/sys/dev/ath/ath_hal/ar5212/ar2316.c (revision f7c32ed617858bcd22f8d1b03199099d50125721)
1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  * $FreeBSD$
20  */
21 #include "opt_ah.h"
22 
23 #include "ah.h"
24 #include "ah_internal.h"
25 
26 #include "ar5212/ar5212.h"
27 #include "ar5212/ar5212reg.h"
28 #include "ar5212/ar5212phy.h"
29 
30 #include "ah_eeprom_v3.h"
31 
32 #define AH_5212_2316
33 #include "ar5212/ar5212.ini"
34 
35 #define	N(a)	(sizeof(a)/sizeof(a[0]))
36 
37 typedef	RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2316;
38 typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2316;
39 #define PWR_TABLE_SIZE_2316 PWR_TABLE_SIZE_2413
40 
41 struct ar2316State {
42 	RF_HAL_FUNCS	base;		/* public state, must be first */
43 	uint16_t	pcdacTable[PWR_TABLE_SIZE_2316];
44 
45 	uint32_t	Bank1Data[N(ar5212Bank1_2316)];
46 	uint32_t	Bank2Data[N(ar5212Bank2_2316)];
47 	uint32_t	Bank3Data[N(ar5212Bank3_2316)];
48 	uint32_t	Bank6Data[N(ar5212Bank6_2316)];
49 	uint32_t	Bank7Data[N(ar5212Bank7_2316)];
50 
51 	/*
52 	 * Private state for reduced stack usage.
53 	 */
54 	/* filled out Vpd table for all pdGains (chanL) */
55 	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
56 			    [MAX_PWR_RANGE_IN_HALF_DB];
57 	/* filled out Vpd table for all pdGains (chanR) */
58 	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
59 			    [MAX_PWR_RANGE_IN_HALF_DB];
60 	/* filled out Vpd table for all pdGains (interpolated) */
61 	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
62 			    [MAX_PWR_RANGE_IN_HALF_DB];
63 };
64 #define	AR2316(ah)	((struct ar2316State *) AH5212(ah)->ah_rfHal)
65 
66 extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
67 		uint32_t numBits, uint32_t firstBit, uint32_t column);
68 
69 static void
70 ar2316WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
71 	int regWrites)
72 {
73 	struct ath_hal_5212 *ahp = AH5212(ah);
74 
75 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2316, modesIndex, regWrites);
76 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2316, 1, regWrites);
77 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2316, freqIndex, regWrites);
78 
79 	/* For AP51 */
80         if (!ahp->ah_cwCalRequire) {
81 		OS_REG_WRITE(ah, 0xa358, (OS_REG_READ(ah, 0xa358) & ~0x2));
82         } else {
83 		ahp->ah_cwCalRequire = AH_FALSE;
84         }
85 }
86 
87 /*
88  * Take the MHz channel value and set the Channel value
89  *
90  * ASSUMES: Writes enabled to analog bus
91  */
92 static HAL_BOOL
93 ar2316SetChannel(struct ath_hal *ah,  struct ieee80211_channel *chan)
94 {
95 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
96 	uint32_t channelSel  = 0;
97 	uint32_t bModeSynth  = 0;
98 	uint32_t aModeRefSel = 0;
99 	uint32_t reg32       = 0;
100 
101 	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
102 
103 	if (freq < 4800) {
104 		uint32_t txctl;
105 
106 		if (((freq - 2192) % 5) == 0) {
107 			channelSel = ((freq - 672) * 2 - 3040)/10;
108 			bModeSynth = 0;
109 		} else if (((freq - 2224) % 5) == 0) {
110 			channelSel = ((freq - 704) * 2 - 3040) / 10;
111 			bModeSynth = 1;
112 		} else {
113 			HALDEBUG(ah, HAL_DEBUG_ANY,
114 			    "%s: invalid channel %u MHz\n",
115 			    __func__, freq);
116 			return AH_FALSE;
117 		}
118 
119 		channelSel = (channelSel << 2) & 0xff;
120 		channelSel = ath_hal_reverseBits(channelSel, 8);
121 
122 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
123 		if (freq == 2484) {
124 			/* Enable channel spreading for channel 14 */
125 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
126 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
127 		} else {
128 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
129 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
130 		}
131 	} else if ((freq % 20) == 0 && freq >= 5120) {
132 		channelSel = ath_hal_reverseBits(
133 			((freq - 4800) / 20 << 2), 8);
134 		aModeRefSel = ath_hal_reverseBits(3, 2);
135 	} else if ((freq % 10) == 0) {
136 		channelSel = ath_hal_reverseBits(
137 			((freq - 4800) / 10 << 1), 8);
138 		aModeRefSel = ath_hal_reverseBits(2, 2);
139 	} else if ((freq % 5) == 0) {
140 		channelSel = ath_hal_reverseBits(
141 			(freq - 4800) / 5, 8);
142 		aModeRefSel = ath_hal_reverseBits(1, 2);
143 	} else {
144 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
145 		    __func__, freq);
146 		return AH_FALSE;
147 	}
148 
149 	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
150 			(1 << 12) | 0x1;
151 	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
152 
153 	reg32 >>= 8;
154 	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
155 
156 	AH_PRIVATE(ah)->ah_curchan = chan;
157 	return AH_TRUE;
158 }
159 
160 /*
161  * Reads EEPROM header info from device structure and programs
162  * all rf registers
163  *
164  * REQUIRES: Access to the analog rf device
165  */
166 static HAL_BOOL
167 ar2316SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan,
168 	uint16_t modesIndex, uint16_t *rfXpdGain)
169 {
170 #define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
171 	int i;								    \
172 	for (i = 0; i < N(ar5212Bank##_ix##_2316); i++)			    \
173 		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2316[i][_col];\
174 } while (0)
175 	struct ath_hal_5212 *ahp = AH5212(ah);
176 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
177 	uint16_t ob2GHz = 0, db2GHz = 0;
178 	struct ar2316State *priv = AR2316(ah);
179 	int regWrites = 0;
180 
181 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
182 	    __func__, chan->ic_freq, chan->ic_flags, modesIndex);
183 
184 	HALASSERT(priv != AH_NULL);
185 
186 	/* Setup rf parameters */
187 	if (IEEE80211_IS_CHAN_B(chan)) {
188 		ob2GHz = ee->ee_obFor24;
189 		db2GHz = ee->ee_dbFor24;
190 	} else {
191 		ob2GHz = ee->ee_obFor24g;
192 		db2GHz = ee->ee_dbFor24g;
193 	}
194 
195 	/* Bank 1 Write */
196 	RF_BANK_SETUP(priv, 1, 1);
197 
198 	/* Bank 2 Write */
199 	RF_BANK_SETUP(priv, 2, modesIndex);
200 
201 	/* Bank 3 Write */
202 	RF_BANK_SETUP(priv, 3, modesIndex);
203 
204 	/* Bank 6 Write */
205 	RF_BANK_SETUP(priv, 6, modesIndex);
206 
207 	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 178, 0);
208 	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 175, 0);
209 
210 	/* Bank 7 Setup */
211 	RF_BANK_SETUP(priv, 7, modesIndex);
212 
213 	/* Write Analog registers */
214 	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2316, priv->Bank1Data, regWrites);
215 	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2316, priv->Bank2Data, regWrites);
216 	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2316, priv->Bank3Data, regWrites);
217 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_2316, priv->Bank6Data, regWrites);
218 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2316, priv->Bank7Data, regWrites);
219 
220 	/* Now that we have reprogrammed rfgain value, clear the flag. */
221 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
222 
223 	return AH_TRUE;
224 #undef	RF_BANK_SETUP
225 }
226 
227 /*
228  * Return a reference to the requested RF Bank.
229  */
230 static uint32_t *
231 ar2316GetRfBank(struct ath_hal *ah, int bank)
232 {
233 	struct ar2316State *priv = AR2316(ah);
234 
235 	HALASSERT(priv != AH_NULL);
236 	switch (bank) {
237 	case 1: return priv->Bank1Data;
238 	case 2: return priv->Bank2Data;
239 	case 3: return priv->Bank3Data;
240 	case 6: return priv->Bank6Data;
241 	case 7: return priv->Bank7Data;
242 	}
243 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
244 	    __func__, bank);
245 	return AH_NULL;
246 }
247 
248 /*
249  * Return indices surrounding the value in sorted integer lists.
250  *
251  * NB: the input list is assumed to be sorted in ascending order
252  */
253 static void
254 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
255                           uint32_t *vlo, uint32_t *vhi)
256 {
257 	int16_t target = v;
258 	const int16_t *ep = lp+listSize;
259 	const int16_t *tp;
260 
261 	/*
262 	 * Check first and last elements for out-of-bounds conditions.
263 	 */
264 	if (target < lp[0]) {
265 		*vlo = *vhi = 0;
266 		return;
267 	}
268 	if (target >= ep[-1]) {
269 		*vlo = *vhi = listSize - 1;
270 		return;
271 	}
272 
273 	/* look for value being near or between 2 values in list */
274 	for (tp = lp; tp < ep; tp++) {
275 		/*
276 		 * If value is close to the current value of the list
277 		 * then target is not between values, it is one of the values
278 		 */
279 		if (*tp == target) {
280 			*vlo = *vhi = tp - (const int16_t *) lp;
281 			return;
282 		}
283 		/*
284 		 * Look for value being between current value and next value
285 		 * if so return these 2 values
286 		 */
287 		if (target < tp[1]) {
288 			*vlo = tp - (const int16_t *) lp;
289 			*vhi = *vlo + 1;
290 			return;
291 		}
292 	}
293 }
294 
295 /*
296  * Fill the Vpdlist for indices Pmax-Pmin
297  */
298 static HAL_BOOL
299 ar2316FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
300 		   const int16_t *pwrList, const int16_t *VpdList,
301 		   uint16_t numIntercepts, uint16_t retVpdList[][64])
302 {
303 	uint16_t ii, jj, kk;
304 	int16_t currPwr = (int16_t)(2*Pmin);
305 	/* since Pmin is pwr*2 and pwrList is 4*pwr */
306 	uint32_t  idxL, idxR;
307 
308 	ii = 0;
309 	jj = 0;
310 
311 	if (numIntercepts < 2)
312 		return AH_FALSE;
313 
314 	while (ii <= (uint16_t)(Pmax - Pmin)) {
315 		GetLowerUpperIndex(currPwr, pwrList, numIntercepts,
316 					 &(idxL), &(idxR));
317 		if (idxR < 1)
318 			idxR = 1;			/* extrapolate below */
319 		if (idxL == (uint32_t)(numIntercepts - 1))
320 			idxL = numIntercepts - 2;	/* extrapolate above */
321 		if (pwrList[idxL] == pwrList[idxR])
322 			kk = VpdList[idxL];
323 		else
324 			kk = (uint16_t)
325 				(((currPwr - pwrList[idxL])*VpdList[idxR]+
326 				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
327 				 (pwrList[idxR] - pwrList[idxL]));
328 		retVpdList[pdGainIdx][ii] = kk;
329 		ii++;
330 		currPwr += 2;				/* half dB steps */
331 	}
332 
333 	return AH_TRUE;
334 }
335 
336 /*
337  * Returns interpolated or the scaled up interpolated value
338  */
339 static int16_t
340 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
341 	int16_t targetLeft, int16_t targetRight)
342 {
343 	int16_t rv;
344 
345 	if (srcRight != srcLeft) {
346 		rv = ((target - srcLeft)*targetRight +
347 		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
348 	} else {
349 		rv = targetLeft;
350 	}
351 	return rv;
352 }
353 
354 /*
355  * Uses the data points read from EEPROM to reconstruct the pdadc power table
356  * Called by ar2316SetPowerTable()
357  */
358 static int
359 ar2316getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
360 		const RAW_DATA_STRUCT_2316 *pRawDataset,
361 		uint16_t pdGainOverlap_t2,
362 		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
363 		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
364 {
365 	struct ar2316State *priv = AR2316(ah);
366 #define	VpdTable_L	priv->vpdTable_L
367 #define	VpdTable_R	priv->vpdTable_R
368 #define	VpdTable_I	priv->vpdTable_I
369 	uint32_t ii, jj, kk;
370 	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
371 	uint32_t idxL, idxR;
372 	uint32_t numPdGainsUsed = 0;
373 	/*
374 	 * If desired to support -ve power levels in future, just
375 	 * change pwr_I_0 to signed 5-bits.
376 	 */
377 	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
378 	/* to accommodate -ve power levels later on. */
379 	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
380 	/* to accommodate -ve power levels later on */
381 	uint16_t numVpd = 0;
382 	uint16_t Vpd_step;
383 	int16_t tmpVal ;
384 	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
385 
386 	/* Get upper lower index */
387 	GetLowerUpperIndex(channel, pRawDataset->pChannels,
388 				 pRawDataset->numChannels, &(idxL), &(idxR));
389 
390 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
391 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
392 		/* work backwards 'cause highest pdGain for lowest power */
393 		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
394 		if (numVpd > 0) {
395 			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
396 			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
397 			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
398 				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
399 			}
400 			Pmin_t2[numPdGainsUsed] = (int16_t)
401 				(Pmin_t2[numPdGainsUsed] / 2);
402 			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
403 			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
404 				Pmax_t2[numPdGainsUsed] =
405 					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
406 			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
407 			ar2316FillVpdTable(
408 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
409 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
410 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
411 					   );
412 			ar2316FillVpdTable(
413 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
414 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
415 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
416 					   );
417 			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
418 				VpdTable_I[numPdGainsUsed][kk] =
419 					interpolate_signed(
420 							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
421 							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
422 			}
423 			/* fill VpdTable_I for this pdGain */
424 			numPdGainsUsed++;
425 		}
426 		/* if this pdGain is used */
427 	}
428 
429 	*pMinCalPower = Pmin_t2[0];
430 	kk = 0; /* index for the final table */
431 	for (ii = 0; ii < numPdGainsUsed; ii++) {
432 		if (ii == (numPdGainsUsed - 1))
433 			pPdGainBoundaries[ii] = Pmax_t2[ii] +
434 				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
435 		else
436 			pPdGainBoundaries[ii] = (uint16_t)
437 				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
438 		if (pPdGainBoundaries[ii] > 63) {
439 			HALDEBUG(ah, HAL_DEBUG_ANY,
440 			    "%s: clamp pPdGainBoundaries[%d] %d\n",
441 			    __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
442 			pPdGainBoundaries[ii] = 63;
443 		}
444 
445 		/* Find starting index for this pdGain */
446 		if (ii == 0)
447 			ss = 0; /* for the first pdGain, start from index 0 */
448 		else
449 			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
450 				pdGainOverlap_t2;
451 		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
452 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
453 		/*
454 		 *-ve ss indicates need to extrapolate data below for this pdGain
455 		 */
456 		while (ss < 0) {
457 			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
458 			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
459 			ss++;
460 		}
461 
462 		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
463 		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
464 		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
465 
466 		while (ss < (int16_t)maxIndex)
467 			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
468 
469 		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
470 				       VpdTable_I[ii][sizeCurrVpdTable-2]);
471 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
472 		/*
473 		 * for last gain, pdGainBoundary == Pmax_t2, so will
474 		 * have to extrapolate
475 		 */
476 		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
477 			while(ss < (int16_t)tgtIndex) {
478 				tmpVal = (uint16_t)
479 					(VpdTable_I[ii][sizeCurrVpdTable-1] +
480 					 (ss-maxIndex)*Vpd_step);
481 				pPDADCValues[kk++] = (tmpVal > 127) ?
482 					127 : tmpVal;
483 				ss++;
484 			}
485 		}				/* extrapolated above */
486 	}					/* for all pdGainUsed */
487 
488 	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
489 		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
490 		ii++;
491 	}
492 	while (kk < 128) {
493 		pPDADCValues[kk] = pPDADCValues[kk-1];
494 		kk++;
495 	}
496 
497 	return numPdGainsUsed;
498 #undef VpdTable_L
499 #undef VpdTable_R
500 #undef VpdTable_I
501 }
502 
503 static HAL_BOOL
504 ar2316SetPowerTable(struct ath_hal *ah,
505 	int16_t *minPower, int16_t *maxPower,
506 	const struct ieee80211_channel *chan,
507 	uint16_t *rfXpdGain)
508 {
509 	struct ath_hal_5212 *ahp = AH5212(ah);
510 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
511 	const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL;
512 	uint16_t pdGainOverlap_t2;
513 	int16_t minCalPower2316_t2;
514 	uint16_t *pdadcValues = ahp->ah_pcdacTable;
515 	uint16_t gainBoundaries[4];
516 	uint32_t reg32, regoffset;
517 	int i, numPdGainsUsed;
518 #ifndef AH_USE_INIPDGAIN
519 	uint32_t tpcrg1;
520 #endif
521 
522 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
523 	    __func__, chan->ic_freq, chan->ic_flags);
524 
525 	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
526 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
527 	else if (IEEE80211_IS_CHAN_B(chan))
528 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
529 	else {
530 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
531 		return AH_FALSE;
532 	}
533 
534 	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
535 					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
536 
537 	numPdGainsUsed = ar2316getGainBoundariesAndPdadcsForPowers(ah,
538 		chan->channel, pRawDataset, pdGainOverlap_t2,
539 		&minCalPower2316_t2,gainBoundaries, rfXpdGain, pdadcValues);
540 	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
541 
542 #ifdef AH_USE_INIPDGAIN
543 	/*
544 	 * Use pd_gains curve from eeprom; Atheros always uses
545 	 * the default curve from the ini file but some vendors
546 	 * (e.g. Zcomax) want to override this curve and not
547 	 * honoring their settings results in tx power 5dBm low.
548 	 */
549 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
550 			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
551 #else
552 	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
553 	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
554 		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
555 	switch (numPdGainsUsed) {
556 	case 3:
557 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
558 		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
559 		/* fall thru... */
560 	case 2:
561 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
562 		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
563 		/* fall thru... */
564 	case 1:
565 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
566 		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
567 		break;
568 	}
569 #ifdef AH_DEBUG
570 	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
571 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
572 		    "pd_gains (default 0x%x, calculated 0x%x)\n",
573 		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
574 #endif
575 	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
576 #endif
577 
578 	/*
579 	 * Note the pdadc table may not start at 0 dBm power, could be
580 	 * negative or greater than 0.  Need to offset the power
581 	 * values by the amount of minPower for griffin
582 	 */
583 	if (minCalPower2316_t2 != 0)
584 		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2316_t2);
585 	else
586 		ahp->ah_txPowerIndexOffset = 0;
587 
588 	/* Finally, write the power values into the baseband power table */
589 	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
590 	for (i = 0; i < 32; i++) {
591 		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
592 			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
593 			((pdadcValues[4*i + 2] & 0xFF) << 16) |
594 			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
595 		OS_REG_WRITE(ah, regoffset, reg32);
596 		regoffset += 4;
597 	}
598 
599 	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
600 		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
601 		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
602 		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
603 		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
604 		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
605 
606 	return AH_TRUE;
607 }
608 
609 static int16_t
610 ar2316GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data)
611 {
612 	uint32_t ii,jj;
613 	uint16_t Pmin=0,numVpd;
614 
615 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
616 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
617 		/* work backwards 'cause highest pdGain for lowest power */
618 		numVpd = data->pDataPerPDGain[jj].numVpd;
619 		if (numVpd > 0) {
620 			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
621 			return(Pmin);
622 		}
623 	}
624 	return(Pmin);
625 }
626 
627 static int16_t
628 ar2316GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data)
629 {
630 	uint32_t ii;
631 	uint16_t Pmax=0,numVpd;
632 
633 	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
634 		/* work forwards cuase lowest pdGain for highest power */
635 		numVpd = data->pDataPerPDGain[ii].numVpd;
636 		if (numVpd > 0) {
637 			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
638 			return(Pmax);
639 		}
640 	}
641 	return(Pmax);
642 }
643 
644 static HAL_BOOL
645 ar2316GetChannelMaxMinPower(struct ath_hal *ah,
646 	const struct ieee80211_channel *chan,
647 	int16_t *maxPow, int16_t *minPow)
648 {
649 	uint16_t freq = chan->ic_freq;		/* NB: never mapped */
650 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
651 	const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL;
652 	const RAW_DATA_PER_CHANNEL_2316 *data=AH_NULL;
653 	uint16_t numChannels;
654 	int totalD,totalF, totalMin,last, i;
655 
656 	*maxPow = 0;
657 
658 	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
659 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
660 	else if (IEEE80211_IS_CHAN_B(chan))
661 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
662 	else
663 		return(AH_FALSE);
664 
665 	numChannels = pRawDataset->numChannels;
666 	data = pRawDataset->pDataPerChannel;
667 
668 	/* Make sure the channel is in the range of the TP values
669 	 *  (freq piers)
670 	 */
671 	if (numChannels < 1)
672 		return(AH_FALSE);
673 
674 	if ((freq < data[0].channelValue) ||
675 	    (freq > data[numChannels-1].channelValue)) {
676 		if (freq < data[0].channelValue) {
677 			*maxPow = ar2316GetMaxPower(ah, &data[0]);
678 			*minPow = ar2316GetMinPower(ah, &data[0]);
679 			return(AH_TRUE);
680 		} else {
681 			*maxPow = ar2316GetMaxPower(ah, &data[numChannels - 1]);
682 			*minPow = ar2316GetMinPower(ah, &data[numChannels - 1]);
683 			return(AH_TRUE);
684 		}
685 	}
686 
687 	/* Linearly interpolate the power value now */
688 	for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
689 	     last = i++);
690 	totalD = data[i].channelValue - data[last].channelValue;
691 	if (totalD > 0) {
692 		totalF = ar2316GetMaxPower(ah, &data[i]) - ar2316GetMaxPower(ah, &data[last]);
693 		*maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) +
694 				     ar2316GetMaxPower(ah, &data[last])*totalD)/totalD);
695 		totalMin = ar2316GetMinPower(ah, &data[i]) - ar2316GetMinPower(ah, &data[last]);
696 		*minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
697 				     ar2316GetMinPower(ah, &data[last])*totalD)/totalD);
698 		return(AH_TRUE);
699 	} else {
700 		if (freq == data[i].channelValue) {
701 			*maxPow = ar2316GetMaxPower(ah, &data[i]);
702 			*minPow = ar2316GetMinPower(ah, &data[i]);
703 			return(AH_TRUE);
704 		} else
705 			return(AH_FALSE);
706 	}
707 }
708 
709 /*
710  * Free memory for analog bank scratch buffers
711  */
712 static void
713 ar2316RfDetach(struct ath_hal *ah)
714 {
715 	struct ath_hal_5212 *ahp = AH5212(ah);
716 
717 	HALASSERT(ahp->ah_rfHal != AH_NULL);
718 	ath_hal_free(ahp->ah_rfHal);
719 	ahp->ah_rfHal = AH_NULL;
720 }
721 
722 /*
723  * Allocate memory for private state.
724  * Scratch Buffer will be reinitialized every reset so no need to zero now
725  */
726 static HAL_BOOL
727 ar2316RfAttach(struct ath_hal *ah, HAL_STATUS *status)
728 {
729 	struct ath_hal_5212 *ahp = AH5212(ah);
730 	struct ar2316State *priv;
731 
732 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
733 
734 	HALASSERT(ahp->ah_rfHal == AH_NULL);
735 	priv = ath_hal_malloc(sizeof(struct ar2316State));
736 	if (priv == AH_NULL) {
737 		HALDEBUG(ah, HAL_DEBUG_ANY,
738 		    "%s: cannot allocate private state\n", __func__);
739 		*status = HAL_ENOMEM;		/* XXX */
740 		return AH_FALSE;
741 	}
742 	priv->base.rfDetach		= ar2316RfDetach;
743 	priv->base.writeRegs		= ar2316WriteRegs;
744 	priv->base.getRfBank		= ar2316GetRfBank;
745 	priv->base.setChannel		= ar2316SetChannel;
746 	priv->base.setRfRegs		= ar2316SetRfRegs;
747 	priv->base.setPowerTable	= ar2316SetPowerTable;
748 	priv->base.getChannelMaxMinPower = ar2316GetChannelMaxMinPower;
749 	priv->base.getNfAdjust		= ar5212GetNfAdjust;
750 
751 	ahp->ah_pcdacTable = priv->pcdacTable;
752 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
753 	ahp->ah_rfHal = &priv->base;
754 
755 	ahp->ah_cwCalRequire = AH_TRUE;		/* force initial cal */
756 
757 	return AH_TRUE;
758 }
759 
760 static HAL_BOOL
761 ar2316Probe(struct ath_hal *ah)
762 {
763 	return IS_2316(ah);
764 }
765 AH_RF(RF2316, ar2316Probe, ar2316RfAttach);
766