xref: /freebsd/sys/dev/ath/ath_hal/ar5212/ar2316.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 
24 #include "ar5212/ar5212.h"
25 #include "ar5212/ar5212reg.h"
26 #include "ar5212/ar5212phy.h"
27 
28 #include "ah_eeprom_v3.h"
29 
30 #define AH_5212_2316
31 #include "ar5212/ar5212.ini"
32 
33 #define	N(a)	(sizeof(a)/sizeof(a[0]))
34 
35 typedef	RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2316;
36 typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2316;
37 #define PWR_TABLE_SIZE_2316 PWR_TABLE_SIZE_2413
38 
39 struct ar2316State {
40 	RF_HAL_FUNCS	base;		/* public state, must be first */
41 	uint16_t	pcdacTable[PWR_TABLE_SIZE_2316];
42 
43 	uint32_t	Bank1Data[N(ar5212Bank1_2316)];
44 	uint32_t	Bank2Data[N(ar5212Bank2_2316)];
45 	uint32_t	Bank3Data[N(ar5212Bank3_2316)];
46 	uint32_t	Bank6Data[N(ar5212Bank6_2316)];
47 	uint32_t	Bank7Data[N(ar5212Bank7_2316)];
48 
49 	/*
50 	 * Private state for reduced stack usage.
51 	 */
52 	/* filled out Vpd table for all pdGains (chanL) */
53 	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
54 			    [MAX_PWR_RANGE_IN_HALF_DB];
55 	/* filled out Vpd table for all pdGains (chanR) */
56 	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
57 			    [MAX_PWR_RANGE_IN_HALF_DB];
58 	/* filled out Vpd table for all pdGains (interpolated) */
59 	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
60 			    [MAX_PWR_RANGE_IN_HALF_DB];
61 };
62 #define	AR2316(ah)	((struct ar2316State *) AH5212(ah)->ah_rfHal)
63 
64 extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
65 		uint32_t numBits, uint32_t firstBit, uint32_t column);
66 
67 static void
68 ar2316WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
69 	int regWrites)
70 {
71 	struct ath_hal_5212 *ahp = AH5212(ah);
72 
73 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2316, modesIndex, regWrites);
74 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2316, 1, regWrites);
75 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2316, freqIndex, regWrites);
76 
77 	/* For AP51 */
78         if (!ahp->ah_cwCalRequire) {
79 		OS_REG_WRITE(ah, 0xa358, (OS_REG_READ(ah, 0xa358) & ~0x2));
80         } else {
81 		ahp->ah_cwCalRequire = AH_FALSE;
82         }
83 }
84 
85 /*
86  * Take the MHz channel value and set the Channel value
87  *
88  * ASSUMES: Writes enabled to analog bus
89  */
90 static HAL_BOOL
91 ar2316SetChannel(struct ath_hal *ah,  struct ieee80211_channel *chan)
92 {
93 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
94 	uint32_t channelSel  = 0;
95 	uint32_t bModeSynth  = 0;
96 	uint32_t aModeRefSel = 0;
97 	uint32_t reg32       = 0;
98 
99 	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
100 
101 	if (freq < 4800) {
102 		uint32_t txctl;
103 
104 		if (((freq - 2192) % 5) == 0) {
105 			channelSel = ((freq - 672) * 2 - 3040)/10;
106 			bModeSynth = 0;
107 		} else if (((freq - 2224) % 5) == 0) {
108 			channelSel = ((freq - 704) * 2 - 3040) / 10;
109 			bModeSynth = 1;
110 		} else {
111 			HALDEBUG(ah, HAL_DEBUG_ANY,
112 			    "%s: invalid channel %u MHz\n",
113 			    __func__, freq);
114 			return AH_FALSE;
115 		}
116 
117 		channelSel = (channelSel << 2) & 0xff;
118 		channelSel = ath_hal_reverseBits(channelSel, 8);
119 
120 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
121 		if (freq == 2484) {
122 			/* Enable channel spreading for channel 14 */
123 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
124 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
125 		} else {
126 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
127 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
128 		}
129 	} else if ((freq % 20) == 0 && freq >= 5120) {
130 		channelSel = ath_hal_reverseBits(
131 			((freq - 4800) / 20 << 2), 8);
132 		aModeRefSel = ath_hal_reverseBits(3, 2);
133 	} else if ((freq % 10) == 0) {
134 		channelSel = ath_hal_reverseBits(
135 			((freq - 4800) / 10 << 1), 8);
136 		aModeRefSel = ath_hal_reverseBits(2, 2);
137 	} else if ((freq % 5) == 0) {
138 		channelSel = ath_hal_reverseBits(
139 			(freq - 4800) / 5, 8);
140 		aModeRefSel = ath_hal_reverseBits(1, 2);
141 	} else {
142 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
143 		    __func__, freq);
144 		return AH_FALSE;
145 	}
146 
147 	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
148 			(1 << 12) | 0x1;
149 	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
150 
151 	reg32 >>= 8;
152 	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
153 
154 	AH_PRIVATE(ah)->ah_curchan = chan;
155 	return AH_TRUE;
156 }
157 
158 /*
159  * Reads EEPROM header info from device structure and programs
160  * all rf registers
161  *
162  * REQUIRES: Access to the analog rf device
163  */
164 static HAL_BOOL
165 ar2316SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan,
166 	uint16_t modesIndex, uint16_t *rfXpdGain)
167 {
168 #define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
169 	int i;								    \
170 	for (i = 0; i < N(ar5212Bank##_ix##_2316); i++)			    \
171 		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2316[i][_col];\
172 } while (0)
173 	struct ath_hal_5212 *ahp = AH5212(ah);
174 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
175 	uint16_t ob2GHz = 0, db2GHz = 0;
176 	struct ar2316State *priv = AR2316(ah);
177 	int regWrites = 0;
178 
179 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
180 	    __func__, chan->ic_freq, chan->ic_flags, modesIndex);
181 
182 	HALASSERT(priv != AH_NULL);
183 
184 	/* Setup rf parameters */
185 	if (IEEE80211_IS_CHAN_B(chan)) {
186 		ob2GHz = ee->ee_obFor24;
187 		db2GHz = ee->ee_dbFor24;
188 	} else {
189 		ob2GHz = ee->ee_obFor24g;
190 		db2GHz = ee->ee_dbFor24g;
191 	}
192 
193 	/* Bank 1 Write */
194 	RF_BANK_SETUP(priv, 1, 1);
195 
196 	/* Bank 2 Write */
197 	RF_BANK_SETUP(priv, 2, modesIndex);
198 
199 	/* Bank 3 Write */
200 	RF_BANK_SETUP(priv, 3, modesIndex);
201 
202 	/* Bank 6 Write */
203 	RF_BANK_SETUP(priv, 6, modesIndex);
204 
205 	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 178, 0);
206 	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 175, 0);
207 
208 	/* Bank 7 Setup */
209 	RF_BANK_SETUP(priv, 7, modesIndex);
210 
211 	/* Write Analog registers */
212 	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2316, priv->Bank1Data, regWrites);
213 	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2316, priv->Bank2Data, regWrites);
214 	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2316, priv->Bank3Data, regWrites);
215 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_2316, priv->Bank6Data, regWrites);
216 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2316, priv->Bank7Data, regWrites);
217 
218 	/* Now that we have reprogrammed rfgain value, clear the flag. */
219 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
220 
221 	return AH_TRUE;
222 #undef	RF_BANK_SETUP
223 }
224 
225 /*
226  * Return a reference to the requested RF Bank.
227  */
228 static uint32_t *
229 ar2316GetRfBank(struct ath_hal *ah, int bank)
230 {
231 	struct ar2316State *priv = AR2316(ah);
232 
233 	HALASSERT(priv != AH_NULL);
234 	switch (bank) {
235 	case 1: return priv->Bank1Data;
236 	case 2: return priv->Bank2Data;
237 	case 3: return priv->Bank3Data;
238 	case 6: return priv->Bank6Data;
239 	case 7: return priv->Bank7Data;
240 	}
241 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
242 	    __func__, bank);
243 	return AH_NULL;
244 }
245 
246 /*
247  * Return indices surrounding the value in sorted integer lists.
248  *
249  * NB: the input list is assumed to be sorted in ascending order
250  */
251 static void
252 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
253                           uint32_t *vlo, uint32_t *vhi)
254 {
255 	int16_t target = v;
256 	const int16_t *ep = lp+listSize;
257 	const int16_t *tp;
258 
259 	/*
260 	 * Check first and last elements for out-of-bounds conditions.
261 	 */
262 	if (target < lp[0]) {
263 		*vlo = *vhi = 0;
264 		return;
265 	}
266 	if (target >= ep[-1]) {
267 		*vlo = *vhi = listSize - 1;
268 		return;
269 	}
270 
271 	/* look for value being near or between 2 values in list */
272 	for (tp = lp; tp < ep; tp++) {
273 		/*
274 		 * If value is close to the current value of the list
275 		 * then target is not between values, it is one of the values
276 		 */
277 		if (*tp == target) {
278 			*vlo = *vhi = tp - (const int16_t *) lp;
279 			return;
280 		}
281 		/*
282 		 * Look for value being between current value and next value
283 		 * if so return these 2 values
284 		 */
285 		if (target < tp[1]) {
286 			*vlo = tp - (const int16_t *) lp;
287 			*vhi = *vlo + 1;
288 			return;
289 		}
290 	}
291 }
292 
293 /*
294  * Fill the Vpdlist for indices Pmax-Pmin
295  */
296 static HAL_BOOL
297 ar2316FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
298 		   const int16_t *pwrList, const int16_t *VpdList,
299 		   uint16_t numIntercepts, uint16_t retVpdList[][64])
300 {
301 	uint16_t ii, jj, kk;
302 	int16_t currPwr = (int16_t)(2*Pmin);
303 	/* since Pmin is pwr*2 and pwrList is 4*pwr */
304 	uint32_t  idxL, idxR;
305 
306 	ii = 0;
307 	jj = 0;
308 
309 	if (numIntercepts < 2)
310 		return AH_FALSE;
311 
312 	while (ii <= (uint16_t)(Pmax - Pmin)) {
313 		GetLowerUpperIndex(currPwr, pwrList, numIntercepts,
314 					 &(idxL), &(idxR));
315 		if (idxR < 1)
316 			idxR = 1;			/* extrapolate below */
317 		if (idxL == (uint32_t)(numIntercepts - 1))
318 			idxL = numIntercepts - 2;	/* extrapolate above */
319 		if (pwrList[idxL] == pwrList[idxR])
320 			kk = VpdList[idxL];
321 		else
322 			kk = (uint16_t)
323 				(((currPwr - pwrList[idxL])*VpdList[idxR]+
324 				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
325 				 (pwrList[idxR] - pwrList[idxL]));
326 		retVpdList[pdGainIdx][ii] = kk;
327 		ii++;
328 		currPwr += 2;				/* half dB steps */
329 	}
330 
331 	return AH_TRUE;
332 }
333 
334 /*
335  * Returns interpolated or the scaled up interpolated value
336  */
337 static int16_t
338 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
339 	int16_t targetLeft, int16_t targetRight)
340 {
341 	int16_t rv;
342 
343 	if (srcRight != srcLeft) {
344 		rv = ((target - srcLeft)*targetRight +
345 		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
346 	} else {
347 		rv = targetLeft;
348 	}
349 	return rv;
350 }
351 
352 /*
353  * Uses the data points read from EEPROM to reconstruct the pdadc power table
354  * Called by ar2316SetPowerTable()
355  */
356 static int
357 ar2316getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
358 		const RAW_DATA_STRUCT_2316 *pRawDataset,
359 		uint16_t pdGainOverlap_t2,
360 		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
361 		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
362 {
363 	struct ar2316State *priv = AR2316(ah);
364 #define	VpdTable_L	priv->vpdTable_L
365 #define	VpdTable_R	priv->vpdTable_R
366 #define	VpdTable_I	priv->vpdTable_I
367 	uint32_t ii, jj, kk;
368 	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
369 	uint32_t idxL, idxR;
370 	uint32_t numPdGainsUsed = 0;
371 	/*
372 	 * If desired to support -ve power levels in future, just
373 	 * change pwr_I_0 to signed 5-bits.
374 	 */
375 	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
376 	/* to accomodate -ve power levels later on. */
377 	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
378 	/* to accomodate -ve power levels later on */
379 	uint16_t numVpd = 0;
380 	uint16_t Vpd_step;
381 	int16_t tmpVal ;
382 	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
383 
384 	/* Get upper lower index */
385 	GetLowerUpperIndex(channel, pRawDataset->pChannels,
386 				 pRawDataset->numChannels, &(idxL), &(idxR));
387 
388 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
389 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
390 		/* work backwards 'cause highest pdGain for lowest power */
391 		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
392 		if (numVpd > 0) {
393 			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
394 			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
395 			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
396 				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
397 			}
398 			Pmin_t2[numPdGainsUsed] = (int16_t)
399 				(Pmin_t2[numPdGainsUsed] / 2);
400 			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
401 			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
402 				Pmax_t2[numPdGainsUsed] =
403 					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
404 			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
405 			ar2316FillVpdTable(
406 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
407 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
408 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
409 					   );
410 			ar2316FillVpdTable(
411 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
412 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
413 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
414 					   );
415 			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
416 				VpdTable_I[numPdGainsUsed][kk] =
417 					interpolate_signed(
418 							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
419 							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
420 			}
421 			/* fill VpdTable_I for this pdGain */
422 			numPdGainsUsed++;
423 		}
424 		/* if this pdGain is used */
425 	}
426 
427 	*pMinCalPower = Pmin_t2[0];
428 	kk = 0; /* index for the final table */
429 	for (ii = 0; ii < numPdGainsUsed; ii++) {
430 		if (ii == (numPdGainsUsed - 1))
431 			pPdGainBoundaries[ii] = Pmax_t2[ii] +
432 				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
433 		else
434 			pPdGainBoundaries[ii] = (uint16_t)
435 				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
436 		if (pPdGainBoundaries[ii] > 63) {
437 			HALDEBUG(ah, HAL_DEBUG_ANY,
438 			    "%s: clamp pPdGainBoundaries[%d] %d\n",
439 			    __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
440 			pPdGainBoundaries[ii] = 63;
441 		}
442 
443 		/* Find starting index for this pdGain */
444 		if (ii == 0)
445 			ss = 0; /* for the first pdGain, start from index 0 */
446 		else
447 			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
448 				pdGainOverlap_t2;
449 		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
450 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
451 		/*
452 		 *-ve ss indicates need to extrapolate data below for this pdGain
453 		 */
454 		while (ss < 0) {
455 			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
456 			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
457 			ss++;
458 		}
459 
460 		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
461 		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
462 		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
463 
464 		while (ss < (int16_t)maxIndex)
465 			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
466 
467 		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
468 				       VpdTable_I[ii][sizeCurrVpdTable-2]);
469 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
470 		/*
471 		 * for last gain, pdGainBoundary == Pmax_t2, so will
472 		 * have to extrapolate
473 		 */
474 		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
475 			while(ss < (int16_t)tgtIndex) {
476 				tmpVal = (uint16_t)
477 					(VpdTable_I[ii][sizeCurrVpdTable-1] +
478 					 (ss-maxIndex)*Vpd_step);
479 				pPDADCValues[kk++] = (tmpVal > 127) ?
480 					127 : tmpVal;
481 				ss++;
482 			}
483 		}				/* extrapolated above */
484 	}					/* for all pdGainUsed */
485 
486 	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
487 		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
488 		ii++;
489 	}
490 	while (kk < 128) {
491 		pPDADCValues[kk] = pPDADCValues[kk-1];
492 		kk++;
493 	}
494 
495 	return numPdGainsUsed;
496 #undef VpdTable_L
497 #undef VpdTable_R
498 #undef VpdTable_I
499 }
500 
501 static HAL_BOOL
502 ar2316SetPowerTable(struct ath_hal *ah,
503 	int16_t *minPower, int16_t *maxPower,
504 	const struct ieee80211_channel *chan,
505 	uint16_t *rfXpdGain)
506 {
507 	struct ath_hal_5212 *ahp = AH5212(ah);
508 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
509 	const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL;
510 	uint16_t pdGainOverlap_t2;
511 	int16_t minCalPower2316_t2;
512 	uint16_t *pdadcValues = ahp->ah_pcdacTable;
513 	uint16_t gainBoundaries[4];
514 	uint32_t reg32, regoffset;
515 	int i, numPdGainsUsed;
516 #ifndef AH_USE_INIPDGAIN
517 	uint32_t tpcrg1;
518 #endif
519 
520 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
521 	    __func__, chan->ic_freq, chan->ic_flags);
522 
523 	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
524 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
525 	else if (IEEE80211_IS_CHAN_B(chan))
526 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
527 	else {
528 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
529 		return AH_FALSE;
530 	}
531 
532 	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
533 					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
534 
535 	numPdGainsUsed = ar2316getGainBoundariesAndPdadcsForPowers(ah,
536 		chan->channel, pRawDataset, pdGainOverlap_t2,
537 		&minCalPower2316_t2,gainBoundaries, rfXpdGain, pdadcValues);
538 	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
539 
540 #ifdef AH_USE_INIPDGAIN
541 	/*
542 	 * Use pd_gains curve from eeprom; Atheros always uses
543 	 * the default curve from the ini file but some vendors
544 	 * (e.g. Zcomax) want to override this curve and not
545 	 * honoring their settings results in tx power 5dBm low.
546 	 */
547 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
548 			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
549 #else
550 	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
551 	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
552 		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
553 	switch (numPdGainsUsed) {
554 	case 3:
555 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
556 		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
557 		/* fall thru... */
558 	case 2:
559 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
560 		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
561 		/* fall thru... */
562 	case 1:
563 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
564 		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
565 		break;
566 	}
567 #ifdef AH_DEBUG
568 	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
569 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
570 		    "pd_gains (default 0x%x, calculated 0x%x)\n",
571 		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
572 #endif
573 	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
574 #endif
575 
576 	/*
577 	 * Note the pdadc table may not start at 0 dBm power, could be
578 	 * negative or greater than 0.  Need to offset the power
579 	 * values by the amount of minPower for griffin
580 	 */
581 	if (minCalPower2316_t2 != 0)
582 		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2316_t2);
583 	else
584 		ahp->ah_txPowerIndexOffset = 0;
585 
586 	/* Finally, write the power values into the baseband power table */
587 	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
588 	for (i = 0; i < 32; i++) {
589 		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
590 			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
591 			((pdadcValues[4*i + 2] & 0xFF) << 16) |
592 			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
593 		OS_REG_WRITE(ah, regoffset, reg32);
594 		regoffset += 4;
595 	}
596 
597 	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
598 		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
599 		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
600 		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
601 		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
602 		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
603 
604 	return AH_TRUE;
605 }
606 
607 static int16_t
608 ar2316GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data)
609 {
610 	uint32_t ii,jj;
611 	uint16_t Pmin=0,numVpd;
612 
613 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
614 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
615 		/* work backwards 'cause highest pdGain for lowest power */
616 		numVpd = data->pDataPerPDGain[jj].numVpd;
617 		if (numVpd > 0) {
618 			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
619 			return(Pmin);
620 		}
621 	}
622 	return(Pmin);
623 }
624 
625 static int16_t
626 ar2316GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data)
627 {
628 	uint32_t ii;
629 	uint16_t Pmax=0,numVpd;
630 
631 	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
632 		/* work forwards cuase lowest pdGain for highest power */
633 		numVpd = data->pDataPerPDGain[ii].numVpd;
634 		if (numVpd > 0) {
635 			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
636 			return(Pmax);
637 		}
638 	}
639 	return(Pmax);
640 }
641 
642 static HAL_BOOL
643 ar2316GetChannelMaxMinPower(struct ath_hal *ah,
644 	const struct ieee80211_channel *chan,
645 	int16_t *maxPow, int16_t *minPow)
646 {
647 	uint16_t freq = chan->ic_freq;		/* NB: never mapped */
648 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
649 	const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL;
650 	const RAW_DATA_PER_CHANNEL_2316 *data=AH_NULL;
651 	uint16_t numChannels;
652 	int totalD,totalF, totalMin,last, i;
653 
654 	*maxPow = 0;
655 
656 	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
657 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
658 	else if (IEEE80211_IS_CHAN_B(chan))
659 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
660 	else
661 		return(AH_FALSE);
662 
663 	numChannels = pRawDataset->numChannels;
664 	data = pRawDataset->pDataPerChannel;
665 
666 	/* Make sure the channel is in the range of the TP values
667 	 *  (freq piers)
668 	 */
669 	if (numChannels < 1)
670 		return(AH_FALSE);
671 
672 	if ((freq < data[0].channelValue) ||
673 	    (freq > data[numChannels-1].channelValue)) {
674 		if (freq < data[0].channelValue) {
675 			*maxPow = ar2316GetMaxPower(ah, &data[0]);
676 			*minPow = ar2316GetMinPower(ah, &data[0]);
677 			return(AH_TRUE);
678 		} else {
679 			*maxPow = ar2316GetMaxPower(ah, &data[numChannels - 1]);
680 			*minPow = ar2316GetMinPower(ah, &data[numChannels - 1]);
681 			return(AH_TRUE);
682 		}
683 	}
684 
685 	/* Linearly interpolate the power value now */
686 	for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
687 	     last = i++);
688 	totalD = data[i].channelValue - data[last].channelValue;
689 	if (totalD > 0) {
690 		totalF = ar2316GetMaxPower(ah, &data[i]) - ar2316GetMaxPower(ah, &data[last]);
691 		*maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) +
692 				     ar2316GetMaxPower(ah, &data[last])*totalD)/totalD);
693 		totalMin = ar2316GetMinPower(ah, &data[i]) - ar2316GetMinPower(ah, &data[last]);
694 		*minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
695 				     ar2316GetMinPower(ah, &data[last])*totalD)/totalD);
696 		return(AH_TRUE);
697 	} else {
698 		if (freq == data[i].channelValue) {
699 			*maxPow = ar2316GetMaxPower(ah, &data[i]);
700 			*minPow = ar2316GetMinPower(ah, &data[i]);
701 			return(AH_TRUE);
702 		} else
703 			return(AH_FALSE);
704 	}
705 }
706 
707 /*
708  * Free memory for analog bank scratch buffers
709  */
710 static void
711 ar2316RfDetach(struct ath_hal *ah)
712 {
713 	struct ath_hal_5212 *ahp = AH5212(ah);
714 
715 	HALASSERT(ahp->ah_rfHal != AH_NULL);
716 	ath_hal_free(ahp->ah_rfHal);
717 	ahp->ah_rfHal = AH_NULL;
718 }
719 
720 /*
721  * Allocate memory for private state.
722  * Scratch Buffer will be reinitialized every reset so no need to zero now
723  */
724 static HAL_BOOL
725 ar2316RfAttach(struct ath_hal *ah, HAL_STATUS *status)
726 {
727 	struct ath_hal_5212 *ahp = AH5212(ah);
728 	struct ar2316State *priv;
729 
730 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
731 
732 	HALASSERT(ahp->ah_rfHal == AH_NULL);
733 	priv = ath_hal_malloc(sizeof(struct ar2316State));
734 	if (priv == AH_NULL) {
735 		HALDEBUG(ah, HAL_DEBUG_ANY,
736 		    "%s: cannot allocate private state\n", __func__);
737 		*status = HAL_ENOMEM;		/* XXX */
738 		return AH_FALSE;
739 	}
740 	priv->base.rfDetach		= ar2316RfDetach;
741 	priv->base.writeRegs		= ar2316WriteRegs;
742 	priv->base.getRfBank		= ar2316GetRfBank;
743 	priv->base.setChannel		= ar2316SetChannel;
744 	priv->base.setRfRegs		= ar2316SetRfRegs;
745 	priv->base.setPowerTable	= ar2316SetPowerTable;
746 	priv->base.getChannelMaxMinPower = ar2316GetChannelMaxMinPower;
747 	priv->base.getNfAdjust		= ar5212GetNfAdjust;
748 
749 	ahp->ah_pcdacTable = priv->pcdacTable;
750 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
751 	ahp->ah_rfHal = &priv->base;
752 
753 	ahp->ah_cwCalRequire = AH_TRUE;		/* force initial cal */
754 
755 	return AH_TRUE;
756 }
757 
758 static HAL_BOOL
759 ar2316Probe(struct ath_hal *ah)
760 {
761 	return IS_2316(ah);
762 }
763 AH_RF(RF2316, ar2316Probe, ar2316RfAttach);
764