1 /* 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * Copyright (c) 2002-2008 Atheros Communications, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 * 17 * $FreeBSD$ 18 */ 19 #include "opt_ah.h" 20 21 #include "ah.h" 22 #include "ah_internal.h" 23 24 #include "ar5212/ar5212.h" 25 #include "ar5212/ar5212reg.h" 26 #include "ar5212/ar5212phy.h" 27 28 #include "ah_eeprom_v3.h" 29 30 #define AH_5212_2316 31 #include "ar5212/ar5212.ini" 32 33 #define N(a) (sizeof(a)/sizeof(a[0])) 34 35 typedef RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2316; 36 typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2316; 37 #define PWR_TABLE_SIZE_2316 PWR_TABLE_SIZE_2413 38 39 struct ar2316State { 40 RF_HAL_FUNCS base; /* public state, must be first */ 41 uint16_t pcdacTable[PWR_TABLE_SIZE_2316]; 42 43 uint32_t Bank1Data[N(ar5212Bank1_2316)]; 44 uint32_t Bank2Data[N(ar5212Bank2_2316)]; 45 uint32_t Bank3Data[N(ar5212Bank3_2316)]; 46 uint32_t Bank6Data[N(ar5212Bank6_2316)]; 47 uint32_t Bank7Data[N(ar5212Bank7_2316)]; 48 49 /* 50 * Private state for reduced stack usage. 51 */ 52 /* filled out Vpd table for all pdGains (chanL) */ 53 uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL] 54 [MAX_PWR_RANGE_IN_HALF_DB]; 55 /* filled out Vpd table for all pdGains (chanR) */ 56 uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL] 57 [MAX_PWR_RANGE_IN_HALF_DB]; 58 /* filled out Vpd table for all pdGains (interpolated) */ 59 uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL] 60 [MAX_PWR_RANGE_IN_HALF_DB]; 61 }; 62 #define AR2316(ah) ((struct ar2316State *) AH5212(ah)->ah_rfHal) 63 64 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, 65 uint32_t numBits, uint32_t firstBit, uint32_t column); 66 67 static void 68 ar2316WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex, 69 int regWrites) 70 { 71 struct ath_hal_5212 *ahp = AH5212(ah); 72 73 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2316, modesIndex, regWrites); 74 HAL_INI_WRITE_ARRAY(ah, ar5212Common_2316, 1, regWrites); 75 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2316, freqIndex, regWrites); 76 77 /* For AP51 */ 78 if (!ahp->ah_cwCalRequire) { 79 OS_REG_WRITE(ah, 0xa358, (OS_REG_READ(ah, 0xa358) & ~0x2)); 80 } else { 81 ahp->ah_cwCalRequire = AH_FALSE; 82 } 83 } 84 85 /* 86 * Take the MHz channel value and set the Channel value 87 * 88 * ASSUMES: Writes enabled to analog bus 89 */ 90 static HAL_BOOL 91 ar2316SetChannel(struct ath_hal *ah, struct ieee80211_channel *chan) 92 { 93 uint16_t freq = ath_hal_gethwchannel(ah, chan); 94 uint32_t channelSel = 0; 95 uint32_t bModeSynth = 0; 96 uint32_t aModeRefSel = 0; 97 uint32_t reg32 = 0; 98 99 OS_MARK(ah, AH_MARK_SETCHANNEL, freq); 100 101 if (freq < 4800) { 102 uint32_t txctl; 103 104 if (((freq - 2192) % 5) == 0) { 105 channelSel = ((freq - 672) * 2 - 3040)/10; 106 bModeSynth = 0; 107 } else if (((freq - 2224) % 5) == 0) { 108 channelSel = ((freq - 704) * 2 - 3040) / 10; 109 bModeSynth = 1; 110 } else { 111 HALDEBUG(ah, HAL_DEBUG_ANY, 112 "%s: invalid channel %u MHz\n", 113 __func__, freq); 114 return AH_FALSE; 115 } 116 117 channelSel = (channelSel << 2) & 0xff; 118 channelSel = ath_hal_reverseBits(channelSel, 8); 119 120 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); 121 if (freq == 2484) { 122 /* Enable channel spreading for channel 14 */ 123 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 124 txctl | AR_PHY_CCK_TX_CTRL_JAPAN); 125 } else { 126 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 127 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); 128 } 129 } else if ((freq % 20) == 0 && freq >= 5120) { 130 channelSel = ath_hal_reverseBits( 131 ((freq - 4800) / 20 << 2), 8); 132 aModeRefSel = ath_hal_reverseBits(3, 2); 133 } else if ((freq % 10) == 0) { 134 channelSel = ath_hal_reverseBits( 135 ((freq - 4800) / 10 << 1), 8); 136 aModeRefSel = ath_hal_reverseBits(2, 2); 137 } else if ((freq % 5) == 0) { 138 channelSel = ath_hal_reverseBits( 139 (freq - 4800) / 5, 8); 140 aModeRefSel = ath_hal_reverseBits(1, 2); 141 } else { 142 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n", 143 __func__, freq); 144 return AH_FALSE; 145 } 146 147 reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) | 148 (1 << 12) | 0x1; 149 OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff); 150 151 reg32 >>= 8; 152 OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f); 153 154 AH_PRIVATE(ah)->ah_curchan = chan; 155 return AH_TRUE; 156 } 157 158 /* 159 * Reads EEPROM header info from device structure and programs 160 * all rf registers 161 * 162 * REQUIRES: Access to the analog rf device 163 */ 164 static HAL_BOOL 165 ar2316SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan, 166 uint16_t modesIndex, uint16_t *rfXpdGain) 167 { 168 #define RF_BANK_SETUP(_priv, _ix, _col) do { \ 169 int i; \ 170 for (i = 0; i < N(ar5212Bank##_ix##_2316); i++) \ 171 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2316[i][_col];\ 172 } while (0) 173 struct ath_hal_5212 *ahp = AH5212(ah); 174 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 175 uint16_t ob2GHz = 0, db2GHz = 0; 176 struct ar2316State *priv = AR2316(ah); 177 int regWrites = 0; 178 179 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n", 180 __func__, chan->ic_freq, chan->ic_flags, modesIndex); 181 182 HALASSERT(priv != AH_NULL); 183 184 /* Setup rf parameters */ 185 if (IEEE80211_IS_CHAN_B(chan)) { 186 ob2GHz = ee->ee_obFor24; 187 db2GHz = ee->ee_dbFor24; 188 } else { 189 ob2GHz = ee->ee_obFor24g; 190 db2GHz = ee->ee_dbFor24g; 191 } 192 193 /* Bank 1 Write */ 194 RF_BANK_SETUP(priv, 1, 1); 195 196 /* Bank 2 Write */ 197 RF_BANK_SETUP(priv, 2, modesIndex); 198 199 /* Bank 3 Write */ 200 RF_BANK_SETUP(priv, 3, modesIndex); 201 202 /* Bank 6 Write */ 203 RF_BANK_SETUP(priv, 6, modesIndex); 204 205 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 178, 0); 206 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 175, 0); 207 208 /* Bank 7 Setup */ 209 RF_BANK_SETUP(priv, 7, modesIndex); 210 211 /* Write Analog registers */ 212 HAL_INI_WRITE_BANK(ah, ar5212Bank1_2316, priv->Bank1Data, regWrites); 213 HAL_INI_WRITE_BANK(ah, ar5212Bank2_2316, priv->Bank2Data, regWrites); 214 HAL_INI_WRITE_BANK(ah, ar5212Bank3_2316, priv->Bank3Data, regWrites); 215 HAL_INI_WRITE_BANK(ah, ar5212Bank6_2316, priv->Bank6Data, regWrites); 216 HAL_INI_WRITE_BANK(ah, ar5212Bank7_2316, priv->Bank7Data, regWrites); 217 218 /* Now that we have reprogrammed rfgain value, clear the flag. */ 219 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE; 220 221 return AH_TRUE; 222 #undef RF_BANK_SETUP 223 } 224 225 /* 226 * Return a reference to the requested RF Bank. 227 */ 228 static uint32_t * 229 ar2316GetRfBank(struct ath_hal *ah, int bank) 230 { 231 struct ar2316State *priv = AR2316(ah); 232 233 HALASSERT(priv != AH_NULL); 234 switch (bank) { 235 case 1: return priv->Bank1Data; 236 case 2: return priv->Bank2Data; 237 case 3: return priv->Bank3Data; 238 case 6: return priv->Bank6Data; 239 case 7: return priv->Bank7Data; 240 } 241 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n", 242 __func__, bank); 243 return AH_NULL; 244 } 245 246 /* 247 * Return indices surrounding the value in sorted integer lists. 248 * 249 * NB: the input list is assumed to be sorted in ascending order 250 */ 251 static void 252 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize, 253 uint32_t *vlo, uint32_t *vhi) 254 { 255 int16_t target = v; 256 const int16_t *ep = lp+listSize; 257 const int16_t *tp; 258 259 /* 260 * Check first and last elements for out-of-bounds conditions. 261 */ 262 if (target < lp[0]) { 263 *vlo = *vhi = 0; 264 return; 265 } 266 if (target >= ep[-1]) { 267 *vlo = *vhi = listSize - 1; 268 return; 269 } 270 271 /* look for value being near or between 2 values in list */ 272 for (tp = lp; tp < ep; tp++) { 273 /* 274 * If value is close to the current value of the list 275 * then target is not between values, it is one of the values 276 */ 277 if (*tp == target) { 278 *vlo = *vhi = tp - (const int16_t *) lp; 279 return; 280 } 281 /* 282 * Look for value being between current value and next value 283 * if so return these 2 values 284 */ 285 if (target < tp[1]) { 286 *vlo = tp - (const int16_t *) lp; 287 *vhi = *vlo + 1; 288 return; 289 } 290 } 291 } 292 293 /* 294 * Fill the Vpdlist for indices Pmax-Pmin 295 */ 296 static HAL_BOOL 297 ar2316FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax, 298 const int16_t *pwrList, const int16_t *VpdList, 299 uint16_t numIntercepts, uint16_t retVpdList[][64]) 300 { 301 uint16_t ii, jj, kk; 302 int16_t currPwr = (int16_t)(2*Pmin); 303 /* since Pmin is pwr*2 and pwrList is 4*pwr */ 304 uint32_t idxL, idxR; 305 306 ii = 0; 307 jj = 0; 308 309 if (numIntercepts < 2) 310 return AH_FALSE; 311 312 while (ii <= (uint16_t)(Pmax - Pmin)) { 313 GetLowerUpperIndex(currPwr, pwrList, numIntercepts, 314 &(idxL), &(idxR)); 315 if (idxR < 1) 316 idxR = 1; /* extrapolate below */ 317 if (idxL == (uint32_t)(numIntercepts - 1)) 318 idxL = numIntercepts - 2; /* extrapolate above */ 319 if (pwrList[idxL] == pwrList[idxR]) 320 kk = VpdList[idxL]; 321 else 322 kk = (uint16_t) 323 (((currPwr - pwrList[idxL])*VpdList[idxR]+ 324 (pwrList[idxR] - currPwr)*VpdList[idxL])/ 325 (pwrList[idxR] - pwrList[idxL])); 326 retVpdList[pdGainIdx][ii] = kk; 327 ii++; 328 currPwr += 2; /* half dB steps */ 329 } 330 331 return AH_TRUE; 332 } 333 334 /* 335 * Returns interpolated or the scaled up interpolated value 336 */ 337 static int16_t 338 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight, 339 int16_t targetLeft, int16_t targetRight) 340 { 341 int16_t rv; 342 343 if (srcRight != srcLeft) { 344 rv = ((target - srcLeft)*targetRight + 345 (srcRight - target)*targetLeft) / (srcRight - srcLeft); 346 } else { 347 rv = targetLeft; 348 } 349 return rv; 350 } 351 352 /* 353 * Uses the data points read from EEPROM to reconstruct the pdadc power table 354 * Called by ar2316SetPowerTable() 355 */ 356 static int 357 ar2316getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel, 358 const RAW_DATA_STRUCT_2316 *pRawDataset, 359 uint16_t pdGainOverlap_t2, 360 int16_t *pMinCalPower, uint16_t pPdGainBoundaries[], 361 uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 362 { 363 struct ar2316State *priv = AR2316(ah); 364 #define VpdTable_L priv->vpdTable_L 365 #define VpdTable_R priv->vpdTable_R 366 #define VpdTable_I priv->vpdTable_I 367 uint32_t ii, jj, kk; 368 int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */ 369 uint32_t idxL, idxR; 370 uint32_t numPdGainsUsed = 0; 371 /* 372 * If desired to support -ve power levels in future, just 373 * change pwr_I_0 to signed 5-bits. 374 */ 375 int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; 376 /* to accomodate -ve power levels later on. */ 377 int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; 378 /* to accomodate -ve power levels later on */ 379 uint16_t numVpd = 0; 380 uint16_t Vpd_step; 381 int16_t tmpVal ; 382 uint32_t sizeCurrVpdTable, maxIndex, tgtIndex; 383 384 /* Get upper lower index */ 385 GetLowerUpperIndex(channel, pRawDataset->pChannels, 386 pRawDataset->numChannels, &(idxL), &(idxR)); 387 388 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { 389 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; 390 /* work backwards 'cause highest pdGain for lowest power */ 391 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd; 392 if (numVpd > 0) { 393 pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain; 394 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]; 395 if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) { 396 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]; 397 } 398 Pmin_t2[numPdGainsUsed] = (int16_t) 399 (Pmin_t2[numPdGainsUsed] / 2); 400 Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1]; 401 if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]) 402 Pmax_t2[numPdGainsUsed] = 403 pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]; 404 Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2); 405 ar2316FillVpdTable( 406 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 407 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 408 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L 409 ); 410 ar2316FillVpdTable( 411 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 412 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]), 413 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R 414 ); 415 for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) { 416 VpdTable_I[numPdGainsUsed][kk] = 417 interpolate_signed( 418 channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR], 419 (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]); 420 } 421 /* fill VpdTable_I for this pdGain */ 422 numPdGainsUsed++; 423 } 424 /* if this pdGain is used */ 425 } 426 427 *pMinCalPower = Pmin_t2[0]; 428 kk = 0; /* index for the final table */ 429 for (ii = 0; ii < numPdGainsUsed; ii++) { 430 if (ii == (numPdGainsUsed - 1)) 431 pPdGainBoundaries[ii] = Pmax_t2[ii] + 432 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB; 433 else 434 pPdGainBoundaries[ii] = (uint16_t) 435 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 ); 436 if (pPdGainBoundaries[ii] > 63) { 437 HALDEBUG(ah, HAL_DEBUG_ANY, 438 "%s: clamp pPdGainBoundaries[%d] %d\n", 439 __func__, ii, pPdGainBoundaries[ii]);/*XXX*/ 440 pPdGainBoundaries[ii] = 63; 441 } 442 443 /* Find starting index for this pdGain */ 444 if (ii == 0) 445 ss = 0; /* for the first pdGain, start from index 0 */ 446 else 447 ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 448 pdGainOverlap_t2; 449 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]); 450 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); 451 /* 452 *-ve ss indicates need to extrapolate data below for this pdGain 453 */ 454 while (ss < 0) { 455 tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step); 456 pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal); 457 ss++; 458 } 459 460 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii]; 461 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii]; 462 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; 463 464 while (ss < (int16_t)maxIndex) 465 pPDADCValues[kk++] = VpdTable_I[ii][ss++]; 466 467 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] - 468 VpdTable_I[ii][sizeCurrVpdTable-2]); 469 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); 470 /* 471 * for last gain, pdGainBoundary == Pmax_t2, so will 472 * have to extrapolate 473 */ 474 if (tgtIndex > maxIndex) { /* need to extrapolate above */ 475 while(ss < (int16_t)tgtIndex) { 476 tmpVal = (uint16_t) 477 (VpdTable_I[ii][sizeCurrVpdTable-1] + 478 (ss-maxIndex)*Vpd_step); 479 pPDADCValues[kk++] = (tmpVal > 127) ? 480 127 : tmpVal; 481 ss++; 482 } 483 } /* extrapolated above */ 484 } /* for all pdGainUsed */ 485 486 while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) { 487 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1]; 488 ii++; 489 } 490 while (kk < 128) { 491 pPDADCValues[kk] = pPDADCValues[kk-1]; 492 kk++; 493 } 494 495 return numPdGainsUsed; 496 #undef VpdTable_L 497 #undef VpdTable_R 498 #undef VpdTable_I 499 } 500 501 static HAL_BOOL 502 ar2316SetPowerTable(struct ath_hal *ah, 503 int16_t *minPower, int16_t *maxPower, 504 const struct ieee80211_channel *chan, 505 uint16_t *rfXpdGain) 506 { 507 struct ath_hal_5212 *ahp = AH5212(ah); 508 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 509 const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL; 510 uint16_t pdGainOverlap_t2; 511 int16_t minCalPower2316_t2; 512 uint16_t *pdadcValues = ahp->ah_pcdacTable; 513 uint16_t gainBoundaries[4]; 514 uint32_t reg32, regoffset; 515 int i, numPdGainsUsed; 516 #ifndef AH_USE_INIPDGAIN 517 uint32_t tpcrg1; 518 #endif 519 520 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n", 521 __func__, chan->ic_freq, chan->ic_flags); 522 523 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan)) 524 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; 525 else if (IEEE80211_IS_CHAN_B(chan)) 526 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; 527 else { 528 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__); 529 return AH_FALSE; 530 } 531 532 pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5), 533 AR_PHY_TPCRG5_PD_GAIN_OVERLAP); 534 535 numPdGainsUsed = ar2316getGainBoundariesAndPdadcsForPowers(ah, 536 chan->channel, pRawDataset, pdGainOverlap_t2, 537 &minCalPower2316_t2,gainBoundaries, rfXpdGain, pdadcValues); 538 HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3); 539 540 #ifdef AH_USE_INIPDGAIN 541 /* 542 * Use pd_gains curve from eeprom; Atheros always uses 543 * the default curve from the ini file but some vendors 544 * (e.g. Zcomax) want to override this curve and not 545 * honoring their settings results in tx power 5dBm low. 546 */ 547 OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 548 (pRawDataset->pDataPerChannel[0].numPdGains - 1)); 549 #else 550 tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1); 551 tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN) 552 | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN); 553 switch (numPdGainsUsed) { 554 case 3: 555 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3; 556 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3); 557 /* fall thru... */ 558 case 2: 559 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2; 560 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2); 561 /* fall thru... */ 562 case 1: 563 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1; 564 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1); 565 break; 566 } 567 #ifdef AH_DEBUG 568 if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1)) 569 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default " 570 "pd_gains (default 0x%x, calculated 0x%x)\n", 571 __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1); 572 #endif 573 OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1); 574 #endif 575 576 /* 577 * Note the pdadc table may not start at 0 dBm power, could be 578 * negative or greater than 0. Need to offset the power 579 * values by the amount of minPower for griffin 580 */ 581 if (minCalPower2316_t2 != 0) 582 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2316_t2); 583 else 584 ahp->ah_txPowerIndexOffset = 0; 585 586 /* Finally, write the power values into the baseband power table */ 587 regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */ 588 for (i = 0; i < 32; i++) { 589 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) | 590 ((pdadcValues[4*i + 1] & 0xFF) << 8) | 591 ((pdadcValues[4*i + 2] & 0xFF) << 16) | 592 ((pdadcValues[4*i + 3] & 0xFF) << 24) ; 593 OS_REG_WRITE(ah, regoffset, reg32); 594 regoffset += 4; 595 } 596 597 OS_REG_WRITE(ah, AR_PHY_TPCRG5, 598 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 599 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | 600 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | 601 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | 602 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); 603 604 return AH_TRUE; 605 } 606 607 static int16_t 608 ar2316GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data) 609 { 610 uint32_t ii,jj; 611 uint16_t Pmin=0,numVpd; 612 613 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { 614 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; 615 /* work backwards 'cause highest pdGain for lowest power */ 616 numVpd = data->pDataPerPDGain[jj].numVpd; 617 if (numVpd > 0) { 618 Pmin = data->pDataPerPDGain[jj].pwr_t4[0]; 619 return(Pmin); 620 } 621 } 622 return(Pmin); 623 } 624 625 static int16_t 626 ar2316GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data) 627 { 628 uint32_t ii; 629 uint16_t Pmax=0,numVpd; 630 631 for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { 632 /* work forwards cuase lowest pdGain for highest power */ 633 numVpd = data->pDataPerPDGain[ii].numVpd; 634 if (numVpd > 0) { 635 Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1]; 636 return(Pmax); 637 } 638 } 639 return(Pmax); 640 } 641 642 static HAL_BOOL 643 ar2316GetChannelMaxMinPower(struct ath_hal *ah, 644 const struct ieee80211_channel *chan, 645 int16_t *maxPow, int16_t *minPow) 646 { 647 uint16_t freq = chan->ic_freq; /* NB: never mapped */ 648 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 649 const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL; 650 const RAW_DATA_PER_CHANNEL_2316 *data=AH_NULL; 651 uint16_t numChannels; 652 int totalD,totalF, totalMin,last, i; 653 654 *maxPow = 0; 655 656 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan)) 657 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; 658 else if (IEEE80211_IS_CHAN_B(chan)) 659 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; 660 else 661 return(AH_FALSE); 662 663 numChannels = pRawDataset->numChannels; 664 data = pRawDataset->pDataPerChannel; 665 666 /* Make sure the channel is in the range of the TP values 667 * (freq piers) 668 */ 669 if (numChannels < 1) 670 return(AH_FALSE); 671 672 if ((freq < data[0].channelValue) || 673 (freq > data[numChannels-1].channelValue)) { 674 if (freq < data[0].channelValue) { 675 *maxPow = ar2316GetMaxPower(ah, &data[0]); 676 *minPow = ar2316GetMinPower(ah, &data[0]); 677 return(AH_TRUE); 678 } else { 679 *maxPow = ar2316GetMaxPower(ah, &data[numChannels - 1]); 680 *minPow = ar2316GetMinPower(ah, &data[numChannels - 1]); 681 return(AH_TRUE); 682 } 683 } 684 685 /* Linearly interpolate the power value now */ 686 for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue); 687 last = i++); 688 totalD = data[i].channelValue - data[last].channelValue; 689 if (totalD > 0) { 690 totalF = ar2316GetMaxPower(ah, &data[i]) - ar2316GetMaxPower(ah, &data[last]); 691 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + 692 ar2316GetMaxPower(ah, &data[last])*totalD)/totalD); 693 totalMin = ar2316GetMinPower(ah, &data[i]) - ar2316GetMinPower(ah, &data[last]); 694 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) + 695 ar2316GetMinPower(ah, &data[last])*totalD)/totalD); 696 return(AH_TRUE); 697 } else { 698 if (freq == data[i].channelValue) { 699 *maxPow = ar2316GetMaxPower(ah, &data[i]); 700 *minPow = ar2316GetMinPower(ah, &data[i]); 701 return(AH_TRUE); 702 } else 703 return(AH_FALSE); 704 } 705 } 706 707 /* 708 * Free memory for analog bank scratch buffers 709 */ 710 static void 711 ar2316RfDetach(struct ath_hal *ah) 712 { 713 struct ath_hal_5212 *ahp = AH5212(ah); 714 715 HALASSERT(ahp->ah_rfHal != AH_NULL); 716 ath_hal_free(ahp->ah_rfHal); 717 ahp->ah_rfHal = AH_NULL; 718 } 719 720 /* 721 * Allocate memory for private state. 722 * Scratch Buffer will be reinitialized every reset so no need to zero now 723 */ 724 static HAL_BOOL 725 ar2316RfAttach(struct ath_hal *ah, HAL_STATUS *status) 726 { 727 struct ath_hal_5212 *ahp = AH5212(ah); 728 struct ar2316State *priv; 729 730 HALASSERT(ah->ah_magic == AR5212_MAGIC); 731 732 HALASSERT(ahp->ah_rfHal == AH_NULL); 733 priv = ath_hal_malloc(sizeof(struct ar2316State)); 734 if (priv == AH_NULL) { 735 HALDEBUG(ah, HAL_DEBUG_ANY, 736 "%s: cannot allocate private state\n", __func__); 737 *status = HAL_ENOMEM; /* XXX */ 738 return AH_FALSE; 739 } 740 priv->base.rfDetach = ar2316RfDetach; 741 priv->base.writeRegs = ar2316WriteRegs; 742 priv->base.getRfBank = ar2316GetRfBank; 743 priv->base.setChannel = ar2316SetChannel; 744 priv->base.setRfRegs = ar2316SetRfRegs; 745 priv->base.setPowerTable = ar2316SetPowerTable; 746 priv->base.getChannelMaxMinPower = ar2316GetChannelMaxMinPower; 747 priv->base.getNfAdjust = ar5212GetNfAdjust; 748 749 ahp->ah_pcdacTable = priv->pcdacTable; 750 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable); 751 ahp->ah_rfHal = &priv->base; 752 753 ahp->ah_cwCalRequire = AH_TRUE; /* force initial cal */ 754 755 return AH_TRUE; 756 } 757 758 static HAL_BOOL 759 ar2316Probe(struct ath_hal *ah) 760 { 761 return IS_2316(ah); 762 } 763 AH_RF(RF2316, ar2316Probe, ar2316RfAttach); 764