1 /*- 2 * SPDX-License-Identifier: ISC 3 * 4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 5 * Copyright (c) 2002-2006 Atheros Communications, Inc. 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 #include "opt_ah.h" 20 21 /* 22 * Chips specific device attachment and device info collection 23 * Connects Init Reg Vectors, EEPROM Data, and device Functions. 24 */ 25 #include "ah.h" 26 #include "ah_internal.h" 27 #include "ah_devid.h" 28 29 #include "ar5211/ar5211.h" 30 #include "ar5211/ar5211reg.h" 31 #include "ar5211/ar5211phy.h" 32 33 #include "ah_eeprom_v3.h" 34 35 /* Add static register initialization vectors */ 36 #include "ar5211/boss.ini" 37 38 /* 39 * Structure to hold 11b tuning information for Beanie/Sombrero 40 * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12 41 */ 42 typedef struct { 43 uint32_t refClkSel; /* reference clock, 1 for 16 MHz */ 44 uint32_t channelSelect; /* P[7:4]S[3:0] bits */ 45 uint16_t channel5111; /* 11a channel for 5111 */ 46 } CHAN_INFO_2GHZ; 47 48 #define CI_2GHZ_INDEX_CORRECTION 19 49 static const CHAN_INFO_2GHZ chan2GHzData[] = { 50 { 1, 0x46, 96 }, /* 2312 -19 */ 51 { 1, 0x46, 97 }, /* 2317 -18 */ 52 { 1, 0x46, 98 }, /* 2322 -17 */ 53 { 1, 0x46, 99 }, /* 2327 -16 */ 54 { 1, 0x46, 100 }, /* 2332 -15 */ 55 { 1, 0x46, 101 }, /* 2337 -14 */ 56 { 1, 0x46, 102 }, /* 2342 -13 */ 57 { 1, 0x46, 103 }, /* 2347 -12 */ 58 { 1, 0x46, 104 }, /* 2352 -11 */ 59 { 1, 0x46, 105 }, /* 2357 -10 */ 60 { 1, 0x46, 106 }, /* 2362 -9 */ 61 { 1, 0x46, 107 }, /* 2367 -8 */ 62 { 1, 0x46, 108 }, /* 2372 -7 */ 63 /* index -6 to 0 are pad to make this a nolookup table */ 64 { 1, 0x46, 116 }, /* -6 */ 65 { 1, 0x46, 116 }, /* -5 */ 66 { 1, 0x46, 116 }, /* -4 */ 67 { 1, 0x46, 116 }, /* -3 */ 68 { 1, 0x46, 116 }, /* -2 */ 69 { 1, 0x46, 116 }, /* -1 */ 70 { 1, 0x46, 116 }, /* 0 */ 71 { 1, 0x46, 116 }, /* 2412 1 */ 72 { 1, 0x46, 117 }, /* 2417 2 */ 73 { 1, 0x46, 118 }, /* 2422 3 */ 74 { 1, 0x46, 119 }, /* 2427 4 */ 75 { 1, 0x46, 120 }, /* 2432 5 */ 76 { 1, 0x46, 121 }, /* 2437 6 */ 77 { 1, 0x46, 122 }, /* 2442 7 */ 78 { 1, 0x46, 123 }, /* 2447 8 */ 79 { 1, 0x46, 124 }, /* 2452 9 */ 80 { 1, 0x46, 125 }, /* 2457 10 */ 81 { 1, 0x46, 126 }, /* 2462 11 */ 82 { 1, 0x46, 127 }, /* 2467 12 */ 83 { 1, 0x46, 128 }, /* 2472 13 */ 84 { 1, 0x44, 124 }, /* 2484 14 */ 85 { 1, 0x46, 136 }, /* 2512 15 */ 86 { 1, 0x46, 140 }, /* 2532 16 */ 87 { 1, 0x46, 144 }, /* 2552 17 */ 88 { 1, 0x46, 148 }, /* 2572 18 */ 89 { 1, 0x46, 152 }, /* 2592 19 */ 90 { 1, 0x46, 156 }, /* 2612 20 */ 91 { 1, 0x46, 160 }, /* 2632 21 */ 92 { 1, 0x46, 164 }, /* 2652 22 */ 93 { 1, 0x46, 168 }, /* 2672 23 */ 94 { 1, 0x46, 172 }, /* 2692 24 */ 95 { 1, 0x46, 176 }, /* 2712 25 */ 96 { 1, 0x46, 180 } /* 2732 26 */ 97 }; 98 99 /* Power timeouts in usec to wait for chip to wake-up. */ 100 #define POWER_UP_TIME 2000 101 102 #define DELAY_PLL_SETTLE 300 /* 300 us */ 103 #define DELAY_BASE_ACTIVATE 100 /* 100 us */ 104 105 #define NUM_RATES 8 106 107 static HAL_BOOL ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask); 108 static HAL_BOOL ar5211SetChannel(struct ath_hal *, 109 const struct ieee80211_channel *); 110 static int16_t ar5211RunNoiseFloor(struct ath_hal *, 111 uint8_t runTime, int16_t startingNF); 112 static HAL_BOOL ar5211IsNfGood(struct ath_hal *, 113 struct ieee80211_channel *chan); 114 static HAL_BOOL ar5211SetRf6and7(struct ath_hal *, 115 const struct ieee80211_channel *chan); 116 static HAL_BOOL ar5211SetBoardValues(struct ath_hal *, 117 const struct ieee80211_channel *chan); 118 static void ar5211SetPowerTable(struct ath_hal *, 119 PCDACS_EEPROM *pSrcStruct, uint16_t channel); 120 static HAL_BOOL ar5211SetTransmitPower(struct ath_hal *, 121 const struct ieee80211_channel *); 122 static void ar5211SetRateTable(struct ath_hal *, 123 RD_EDGES_POWER *pRdEdgesPower, TRGT_POWER_INFO *pPowerInfo, 124 uint16_t numChannels, const struct ieee80211_channel *chan); 125 static uint16_t ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue, 126 const PCDACS_EEPROM *pSrcStruct); 127 static HAL_BOOL ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue, 128 const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue); 129 static uint16_t ar5211GetInterpolatedValue(uint16_t target, 130 uint16_t srcLeft, uint16_t srcRight, 131 uint16_t targetLeft, uint16_t targetRight, HAL_BOOL scaleUp); 132 static void ar5211GetLowerUpperValues(uint16_t value, 133 const uint16_t *pList, uint16_t listSize, 134 uint16_t *pLowerValue, uint16_t *pUpperValue); 135 static void ar5211GetLowerUpperPcdacs(uint16_t pcdac, 136 uint16_t channel, const PCDACS_EEPROM *pSrcStruct, 137 uint16_t *pLowerPcdac, uint16_t *pUpperPcdac); 138 139 static void ar5211SetRfgain(struct ath_hal *, const GAIN_VALUES *); 140 static void ar5211RequestRfgain(struct ath_hal *); 141 static HAL_BOOL ar5211InvalidGainReadback(struct ath_hal *, GAIN_VALUES *); 142 static HAL_BOOL ar5211IsGainAdjustNeeded(struct ath_hal *, const GAIN_VALUES *); 143 static int32_t ar5211AdjustGain(struct ath_hal *, GAIN_VALUES *); 144 static void ar5211SetOperatingMode(struct ath_hal *, int opmode); 145 146 /* 147 * Places the device in and out of reset and then places sane 148 * values in the registers based on EEPROM config, initialization 149 * vectors (as determined by the mode), and station configuration 150 * 151 * bChannelChange is used to preserve DMA/PCU registers across 152 * a HW Reset during channel change. 153 */ 154 HAL_BOOL 155 ar5211Reset(struct ath_hal *ah, HAL_OPMODE opmode, 156 struct ieee80211_channel *chan, HAL_BOOL bChannelChange, 157 HAL_RESET_TYPE resetType, 158 HAL_STATUS *status) 159 { 160 uint32_t softLedCfg, softLedState; 161 #define N(a) (sizeof (a) /sizeof (a[0])) 162 #define FAIL(_code) do { ecode = _code; goto bad; } while (0) 163 struct ath_hal_5211 *ahp = AH5211(ah); 164 HAL_CHANNEL_INTERNAL *ichan; 165 uint32_t i, ledstate; 166 HAL_STATUS ecode; 167 int q; 168 169 uint32_t data, synthDelay; 170 uint32_t macStaId1; 171 uint16_t modesIndex = 0, freqIndex = 0; 172 uint32_t saveFrameSeqCount[AR_NUM_DCU]; 173 uint32_t saveTsfLow = 0, saveTsfHigh = 0; 174 uint32_t saveDefAntenna; 175 176 HALDEBUG(ah, HAL_DEBUG_RESET, 177 "%s: opmode %u channel %u/0x%x %s channel\n", 178 __func__, opmode, chan->ic_freq, chan->ic_flags, 179 bChannelChange ? "change" : "same"); 180 181 OS_MARK(ah, AH_MARK_RESET, bChannelChange); 182 /* 183 * Map public channel to private. 184 */ 185 ichan = ath_hal_checkchannel(ah, chan); 186 if (ichan == AH_NULL) 187 FAIL(HAL_EINVAL); 188 switch (opmode) { 189 case HAL_M_STA: 190 case HAL_M_IBSS: 191 case HAL_M_HOSTAP: 192 case HAL_M_MONITOR: 193 break; 194 default: 195 HALDEBUG(ah, HAL_DEBUG_ANY, 196 "%s: invalid operating mode %u\n", __func__, opmode); 197 FAIL(HAL_EINVAL); 198 break; 199 } 200 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3); 201 202 /* Preserve certain DMA hardware registers on a channel change */ 203 if (bChannelChange) { 204 /* 205 * Need to save/restore the TSF because of an issue 206 * that accelerates the TSF during a chip reset. 207 * 208 * We could use system timer routines to more 209 * accurately restore the TSF, but 210 * 1. Timer routines on certain platforms are 211 * not accurate enough (e.g. 1 ms resolution). 212 * 2. It would still not be accurate. 213 * 214 * The most important aspect of this workaround, 215 * is that, after reset, the TSF is behind 216 * other STAs TSFs. This will allow the STA to 217 * properly resynchronize its TSF in adhoc mode. 218 */ 219 saveTsfLow = OS_REG_READ(ah, AR_TSF_L32); 220 saveTsfHigh = OS_REG_READ(ah, AR_TSF_U32); 221 222 /* Read frame sequence count */ 223 if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) { 224 saveFrameSeqCount[0] = OS_REG_READ(ah, AR_D0_SEQNUM); 225 } else { 226 for (i = 0; i < AR_NUM_DCU; i++) 227 saveFrameSeqCount[i] = OS_REG_READ(ah, AR_DSEQNUM(i)); 228 } 229 if (!IEEE80211_IS_CHAN_DFS(chan)) 230 chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT; 231 } 232 233 /* 234 * Preserve the antenna on a channel change 235 */ 236 saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA); 237 if (saveDefAntenna == 0) 238 saveDefAntenna = 1; 239 240 /* Save hardware flag before chip reset clears the register */ 241 macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B; 242 243 /* Save led state from pci config register */ 244 ledstate = OS_REG_READ(ah, AR_PCICFG) & 245 (AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK | 246 AR_PCICFG_LEDSLOW); 247 softLedCfg = OS_REG_READ(ah, AR_GPIOCR); 248 softLedState = OS_REG_READ(ah, AR_GPIODO); 249 250 if (!ar5211ChipReset(ah, chan)) { 251 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__); 252 FAIL(HAL_EIO); 253 } 254 255 /* Setup the indices for the next set of register array writes */ 256 if (IEEE80211_IS_CHAN_5GHZ(chan)) { 257 freqIndex = 1; 258 if (IEEE80211_IS_CHAN_TURBO(chan)) 259 modesIndex = 2; 260 else if (IEEE80211_IS_CHAN_A(chan)) 261 modesIndex = 1; 262 else { 263 HALDEBUG(ah, HAL_DEBUG_ANY, 264 "%s: invalid channel %u/0x%x\n", 265 __func__, chan->ic_freq, chan->ic_flags); 266 FAIL(HAL_EINVAL); 267 } 268 } else { 269 freqIndex = 2; 270 if (IEEE80211_IS_CHAN_B(chan)) 271 modesIndex = 3; 272 else if (IEEE80211_IS_CHAN_PUREG(chan)) 273 modesIndex = 4; 274 else { 275 HALDEBUG(ah, HAL_DEBUG_ANY, 276 "%s: invalid channel %u/0x%x\n", 277 __func__, chan->ic_freq, chan->ic_flags); 278 FAIL(HAL_EINVAL); 279 } 280 } 281 282 /* Set correct Baseband to analog shift setting to access analog chips. */ 283 if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) { 284 OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000007); 285 } else { 286 OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000047); 287 } 288 289 /* Write parameters specific to AR5211 */ 290 if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) { 291 if (IEEE80211_IS_CHAN_2GHZ(chan) && 292 AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1) { 293 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 294 uint32_t ob2GHz, db2GHz; 295 296 if (IEEE80211_IS_CHAN_CCK(chan)) { 297 ob2GHz = ee->ee_ob2GHz[0]; 298 db2GHz = ee->ee_db2GHz[0]; 299 } else { 300 ob2GHz = ee->ee_ob2GHz[1]; 301 db2GHz = ee->ee_db2GHz[1]; 302 } 303 ob2GHz = ath_hal_reverseBits(ob2GHz, 3); 304 db2GHz = ath_hal_reverseBits(db2GHz, 3); 305 ar5211Mode2_4[25][freqIndex] = 306 (ar5211Mode2_4[25][freqIndex] & ~0xC0) | 307 ((ob2GHz << 6) & 0xC0); 308 ar5211Mode2_4[26][freqIndex] = 309 (ar5211Mode2_4[26][freqIndex] & ~0x0F) | 310 (((ob2GHz >> 2) & 0x1) | 311 ((db2GHz << 1) & 0x0E)); 312 } 313 for (i = 0; i < N(ar5211Mode2_4); i++) 314 OS_REG_WRITE(ah, ar5211Mode2_4[i][0], 315 ar5211Mode2_4[i][freqIndex]); 316 } 317 318 /* Write the analog registers 6 and 7 before other config */ 319 ar5211SetRf6and7(ah, chan); 320 321 /* Write registers that vary across all modes */ 322 for (i = 0; i < N(ar5211Modes); i++) 323 OS_REG_WRITE(ah, ar5211Modes[i][0], ar5211Modes[i][modesIndex]); 324 325 /* Write RFGain Parameters that differ between 2.4 and 5 GHz */ 326 for (i = 0; i < N(ar5211BB_RfGain); i++) 327 OS_REG_WRITE(ah, ar5211BB_RfGain[i][0], ar5211BB_RfGain[i][freqIndex]); 328 329 /* Write Common Array Parameters */ 330 for (i = 0; i < N(ar5211Common); i++) { 331 uint32_t reg = ar5211Common[i][0]; 332 /* On channel change, don't reset the PCU registers */ 333 if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000))) 334 OS_REG_WRITE(ah, reg, ar5211Common[i][1]); 335 } 336 337 /* Fix pre-AR5211 register values, this includes AR5311s. */ 338 if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) { 339 /* 340 * The TX and RX latency values have changed locations 341 * within the USEC register in AR5211. Since they're 342 * set via the .ini, for both AR5211 and AR5311, they 343 * are written properly here for AR5311. 344 */ 345 data = OS_REG_READ(ah, AR_USEC); 346 /* Must be 0 for proper write in AR5311 */ 347 HALASSERT((data & 0x00700000) == 0); 348 OS_REG_WRITE(ah, AR_USEC, 349 (data & (AR_USEC_M | AR_USEC_32_M | AR5311_USEC_TX_LAT_M)) | 350 ((29 << AR5311_USEC_RX_LAT_S) & AR5311_USEC_RX_LAT_M)); 351 /* The following registers exist only on AR5311. */ 352 OS_REG_WRITE(ah, AR5311_QDCLKGATE, 0); 353 354 /* Set proper ADC & DAC delays for AR5311. */ 355 OS_REG_WRITE(ah, 0x00009878, 0x00000008); 356 357 /* Enable the PCU FIFO corruption ECO on AR5311. */ 358 OS_REG_WRITE(ah, AR_DIAG_SW, 359 OS_REG_READ(ah, AR_DIAG_SW) | AR5311_DIAG_SW_USE_ECO); 360 } 361 362 /* Restore certain DMA hardware registers on a channel change */ 363 if (bChannelChange) { 364 /* Restore TSF */ 365 OS_REG_WRITE(ah, AR_TSF_L32, saveTsfLow); 366 OS_REG_WRITE(ah, AR_TSF_U32, saveTsfHigh); 367 368 if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) { 369 OS_REG_WRITE(ah, AR_D0_SEQNUM, saveFrameSeqCount[0]); 370 } else { 371 for (i = 0; i < AR_NUM_DCU; i++) 372 OS_REG_WRITE(ah, AR_DSEQNUM(i), saveFrameSeqCount[i]); 373 } 374 } 375 376 OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr)); 377 OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4) 378 | macStaId1 379 ); 380 ar5211SetOperatingMode(ah, opmode); 381 382 /* Restore previous led state */ 383 OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate); 384 OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg); 385 OS_REG_WRITE(ah, AR_GPIODO, softLedState); 386 387 /* Restore previous antenna */ 388 OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); 389 390 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid)); 391 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4)); 392 393 /* Restore bmiss rssi & count thresholds */ 394 OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr); 395 396 OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */ 397 398 /* 399 * for pre-Production Oahu only. 400 * Disable clock gating in all DMA blocks. Helps when using 401 * 11B and AES but results in higher power consumption. 402 */ 403 if (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_OAHU && 404 AH_PRIVATE(ah)->ah_macRev < AR_SREV_OAHU_PROD) { 405 OS_REG_WRITE(ah, AR_CFG, 406 OS_REG_READ(ah, AR_CFG) | AR_CFG_CLK_GATE_DIS); 407 } 408 409 /* Setup the transmit power values. */ 410 if (!ar5211SetTransmitPower(ah, chan)) { 411 HALDEBUG(ah, HAL_DEBUG_ANY, 412 "%s: error init'ing transmit power\n", __func__); 413 FAIL(HAL_EIO); 414 } 415 416 /* 417 * Configurable OFDM spoofing for 11n compatibility; used 418 * only when operating in station mode. 419 */ 420 if (opmode != HAL_M_HOSTAP && 421 (AH_PRIVATE(ah)->ah_11nCompat & HAL_DIAG_11N_SERVICES) != 0) { 422 /* NB: override the .ini setting */ 423 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, 424 AR_PHY_FRAME_CTL_ERR_SERV, 425 MS(AH_PRIVATE(ah)->ah_11nCompat, HAL_DIAG_11N_SERVICES)&1); 426 } 427 428 /* Setup board specific options for EEPROM version 3 */ 429 ar5211SetBoardValues(ah, chan); 430 431 if (!ar5211SetChannel(ah, chan)) { 432 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n", 433 __func__); 434 FAIL(HAL_EIO); 435 } 436 437 /* Activate the PHY */ 438 if (AH_PRIVATE(ah)->ah_devid == AR5211_FPGA11B && 439 IEEE80211_IS_CHAN_2GHZ(chan)) 440 OS_REG_WRITE(ah, 0xd808, 0x502); /* required for FPGA */ 441 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); 442 443 /* 444 * Wait for the frequency synth to settle (synth goes on 445 * via AR_PHY_ACTIVE_EN). Read the phy active delay register. 446 * Value is in 100ns increments. 447 */ 448 data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_M; 449 if (IEEE80211_IS_CHAN_CCK(chan)) { 450 synthDelay = (4 * data) / 22; 451 } else { 452 synthDelay = data / 10; 453 } 454 /* 455 * There is an issue if the AP starts the calibration before 456 * the baseband timeout completes. This could result in the 457 * rxclear false triggering. Add an extra delay to ensure this 458 * this does not happen. 459 */ 460 OS_DELAY(synthDelay + DELAY_BASE_ACTIVATE); 461 462 /* Calibrate the AGC and wait for completion. */ 463 OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL, 464 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL); 465 (void) ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0); 466 467 /* Perform noise floor and set status */ 468 if (!ar5211CalNoiseFloor(ah, chan)) { 469 if (!IEEE80211_IS_CHAN_CCK(chan)) 470 chan->ic_state |= IEEE80211_CHANSTATE_CWINT; 471 HALDEBUG(ah, HAL_DEBUG_ANY, 472 "%s: noise floor calibration failed\n", __func__); 473 FAIL(HAL_EIO); 474 } 475 476 /* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */ 477 if (ahp->ah_calibrationTime != 0) { 478 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, 479 AR_PHY_TIMING_CTRL4_DO_IQCAL | (INIT_IQCAL_LOG_COUNT_MAX << AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX_S)); 480 ahp->ah_bIQCalibration = AH_TRUE; 481 } 482 483 /* set 1:1 QCU to DCU mapping for all queues */ 484 for (q = 0; q < AR_NUM_DCU; q++) 485 OS_REG_WRITE(ah, AR_DQCUMASK(q), 1<<q); 486 487 for (q = 0; q < HAL_NUM_TX_QUEUES; q++) 488 ar5211ResetTxQueue(ah, q); 489 490 /* Setup QCU0 transmit interrupt masks (TX_ERR, TX_OK, TX_DESC, TX_URN) */ 491 OS_REG_WRITE(ah, AR_IMR_S0, 492 (AR_IMR_S0_QCU_TXOK & AR_QCU_0) | 493 (AR_IMR_S0_QCU_TXDESC & (AR_QCU_0<<AR_IMR_S0_QCU_TXDESC_S))); 494 OS_REG_WRITE(ah, AR_IMR_S1, (AR_IMR_S1_QCU_TXERR & AR_QCU_0)); 495 OS_REG_WRITE(ah, AR_IMR_S2, (AR_IMR_S2_QCU_TXURN & AR_QCU_0)); 496 497 /* 498 * GBL_EIFS must always be written after writing 499 * to any QCUMASK register. 500 */ 501 OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, OS_REG_READ(ah, AR_D_GBL_IFS_EIFS)); 502 503 /* Now set up the Interrupt Mask Register and save it for future use */ 504 OS_REG_WRITE(ah, AR_IMR, INIT_INTERRUPT_MASK); 505 ahp->ah_maskReg = INIT_INTERRUPT_MASK; 506 507 /* Enable bus error interrupts */ 508 OS_REG_WRITE(ah, AR_IMR_S2, OS_REG_READ(ah, AR_IMR_S2) | 509 AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR); 510 511 /* Enable interrupts specific to AP */ 512 if (opmode == HAL_M_HOSTAP) { 513 OS_REG_WRITE(ah, AR_IMR, OS_REG_READ(ah, AR_IMR) | AR_IMR_MIB); 514 ahp->ah_maskReg |= AR_IMR_MIB; 515 } 516 517 if (AH_PRIVATE(ah)->ah_rfkillEnabled) 518 ar5211EnableRfKill(ah); 519 520 /* 521 * Writing to AR_BEACON will start timers. Hence it should 522 * be the last register to be written. Do not reset tsf, do 523 * not enable beacons at this point, but preserve other values 524 * like beaconInterval. 525 */ 526 OS_REG_WRITE(ah, AR_BEACON, 527 (OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF))); 528 529 /* Restore user-specified slot time and timeouts */ 530 if (ahp->ah_sifstime != (u_int) -1) 531 ar5211SetSifsTime(ah, ahp->ah_sifstime); 532 if (ahp->ah_slottime != (u_int) -1) 533 ar5211SetSlotTime(ah, ahp->ah_slottime); 534 if (ahp->ah_acktimeout != (u_int) -1) 535 ar5211SetAckTimeout(ah, ahp->ah_acktimeout); 536 if (ahp->ah_ctstimeout != (u_int) -1) 537 ar5211SetCTSTimeout(ah, ahp->ah_ctstimeout); 538 if (AH_PRIVATE(ah)->ah_diagreg != 0) 539 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg); 540 541 AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */ 542 543 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__); 544 545 return AH_TRUE; 546 bad: 547 if (status != AH_NULL) 548 *status = ecode; 549 return AH_FALSE; 550 #undef FAIL 551 #undef N 552 } 553 554 /* 555 * Places the PHY and Radio chips into reset. A full reset 556 * must be called to leave this state. The PCI/MAC/PCU are 557 * not placed into reset as we must receive interrupt to 558 * re-enable the hardware. 559 */ 560 HAL_BOOL 561 ar5211PhyDisable(struct ath_hal *ah) 562 { 563 return ar5211SetResetReg(ah, AR_RC_BB); 564 } 565 566 /* 567 * Places all of hardware into reset 568 */ 569 HAL_BOOL 570 ar5211Disable(struct ath_hal *ah) 571 { 572 if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) 573 return AH_FALSE; 574 /* 575 * Reset the HW - PCI must be reset after the rest of the 576 * device has been reset. 577 */ 578 if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI)) 579 return AH_FALSE; 580 OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */ 581 582 return AH_TRUE; 583 } 584 585 /* 586 * Places the hardware into reset and then pulls it out of reset 587 * 588 * Only write the PLL if we're changing to or from CCK mode 589 * 590 * Attach calls with channelFlags = 0, as the coldreset should have 591 * us in the correct mode and we cannot check the hwchannel flags. 592 */ 593 HAL_BOOL 594 ar5211ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan) 595 { 596 if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) 597 return AH_FALSE; 598 599 /* NB: called from attach with chan null */ 600 if (chan != AH_NULL) { 601 /* Set CCK and Turbo modes correctly */ 602 OS_REG_WRITE(ah, AR_PHY_TURBO, IEEE80211_IS_CHAN_TURBO(chan) ? 603 AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT : 0); 604 if (IEEE80211_IS_CHAN_B(chan)) { 605 OS_REG_WRITE(ah, AR5211_PHY_MODE, 606 AR5211_PHY_MODE_CCK | AR5211_PHY_MODE_RF2GHZ); 607 OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_44); 608 /* Wait for the PLL to settle */ 609 OS_DELAY(DELAY_PLL_SETTLE); 610 } else if (AH_PRIVATE(ah)->ah_devid == AR5211_DEVID) { 611 OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_40); 612 OS_DELAY(DELAY_PLL_SETTLE); 613 OS_REG_WRITE(ah, AR5211_PHY_MODE, 614 AR5211_PHY_MODE_OFDM | (IEEE80211_IS_CHAN_2GHZ(chan) ? 615 AR5211_PHY_MODE_RF2GHZ : 616 AR5211_PHY_MODE_RF5GHZ)); 617 } 618 } 619 620 /* 621 * Reset the HW - PCI must be reset after the rest of the 622 * device has been reset 623 */ 624 if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI)) 625 return AH_FALSE; 626 OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */ 627 628 /* Bring out of sleep mode (AGAIN) */ 629 if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) 630 return AH_FALSE; 631 632 /* Clear warm reset register */ 633 return ar5211SetResetReg(ah, 0); 634 } 635 636 /* 637 * Recalibrate the lower PHY chips to account for temperature/environment 638 * changes. 639 */ 640 HAL_BOOL 641 ar5211PerCalibrationN(struct ath_hal *ah, struct ieee80211_channel *chan, 642 u_int chainMask, HAL_BOOL longCal, HAL_BOOL *isCalDone) 643 { 644 struct ath_hal_5211 *ahp = AH5211(ah); 645 HAL_CHANNEL_INTERNAL *ichan; 646 int32_t qCoff, qCoffDenom; 647 uint32_t data; 648 int32_t iqCorrMeas; 649 int32_t iCoff, iCoffDenom; 650 uint32_t powerMeasQ, powerMeasI; 651 652 ichan = ath_hal_checkchannel(ah, chan); 653 if (ichan == AH_NULL) { 654 HALDEBUG(ah, HAL_DEBUG_ANY, 655 "%s: invalid channel %u/0x%x; no mapping\n", 656 __func__, chan->ic_freq, chan->ic_flags); 657 return AH_FALSE; 658 } 659 /* IQ calibration in progress. Check to see if it has finished. */ 660 if (ahp->ah_bIQCalibration && 661 !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) { 662 /* IQ Calibration has finished. */ 663 ahp->ah_bIQCalibration = AH_FALSE; 664 665 /* Read calibration results. */ 666 powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I); 667 powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q); 668 iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS); 669 670 /* 671 * Prescale these values to remove 64-bit operation requirement at the loss 672 * of a little precision. 673 */ 674 iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128; 675 qCoffDenom = powerMeasQ / 64; 676 677 /* Protect against divide-by-0. */ 678 if (iCoffDenom != 0 && qCoffDenom != 0) { 679 iCoff = (-iqCorrMeas) / iCoffDenom; 680 /* IQCORR_Q_I_COFF is a signed 6 bit number */ 681 iCoff = iCoff & 0x3f; 682 683 qCoff = ((int32_t)powerMeasI / qCoffDenom) - 64; 684 /* IQCORR_Q_Q_COFF is a signed 5 bit number */ 685 qCoff = qCoff & 0x1f; 686 687 HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasI = 0x%08x\n", 688 powerMeasI); 689 HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasQ = 0x%08x\n", 690 powerMeasQ); 691 HALDEBUG(ah, HAL_DEBUG_PERCAL, "iqCorrMeas = 0x%08x\n", 692 iqCorrMeas); 693 HALDEBUG(ah, HAL_DEBUG_PERCAL, "iCoff = %d\n", 694 iCoff); 695 HALDEBUG(ah, HAL_DEBUG_PERCAL, "qCoff = %d\n", 696 qCoff); 697 698 /* Write IQ */ 699 data = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) | 700 AR_PHY_TIMING_CTRL4_IQCORR_ENABLE | 701 (((uint32_t)iCoff) << AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF_S) | 702 ((uint32_t)qCoff); 703 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, data); 704 } 705 } 706 *isCalDone = !ahp->ah_bIQCalibration; 707 708 if (longCal) { 709 /* Perform noise floor and set status */ 710 if (!ar5211IsNfGood(ah, chan)) { 711 /* report up and clear internal state */ 712 chan->ic_state |= IEEE80211_CHANSTATE_CWINT; 713 return AH_FALSE; 714 } 715 if (!ar5211CalNoiseFloor(ah, chan)) { 716 /* 717 * Delay 5ms before retrying the noise floor 718 * just to make sure, as we are in an error 719 * condition here. 720 */ 721 OS_DELAY(5000); 722 if (!ar5211CalNoiseFloor(ah, chan)) { 723 if (!IEEE80211_IS_CHAN_CCK(chan)) 724 chan->ic_state |= IEEE80211_CHANSTATE_CWINT; 725 return AH_FALSE; 726 } 727 } 728 ar5211RequestRfgain(ah); 729 } 730 return AH_TRUE; 731 } 732 733 HAL_BOOL 734 ar5211PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan, 735 HAL_BOOL *isIQdone) 736 { 737 return ar5211PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone); 738 } 739 740 HAL_BOOL 741 ar5211ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan) 742 { 743 /* XXX */ 744 return AH_TRUE; 745 } 746 747 /* 748 * Writes the given reset bit mask into the reset register 749 */ 750 static HAL_BOOL 751 ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask) 752 { 753 uint32_t mask = resetMask ? resetMask : ~0; 754 HAL_BOOL rt; 755 756 (void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */ 757 OS_REG_WRITE(ah, AR_RC, resetMask); 758 759 /* need to wait at least 128 clocks when reseting PCI before read */ 760 OS_DELAY(15); 761 762 resetMask &= AR_RC_MAC | AR_RC_BB; 763 mask &= AR_RC_MAC | AR_RC_BB; 764 rt = ath_hal_wait(ah, AR_RC, mask, resetMask); 765 if ((resetMask & AR_RC_MAC) == 0) { 766 if (isBigEndian()) { 767 /* 768 * Set CFG, little-endian for descriptor accesses. 769 */ 770 mask = INIT_CONFIG_STATUS | AR_CFG_SWTD | AR_CFG_SWRD; 771 OS_REG_WRITE(ah, AR_CFG, mask); 772 } else 773 OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS); 774 } 775 return rt; 776 } 777 778 /* 779 * Takes the MHz channel value and sets the Channel value 780 * 781 * ASSUMES: Writes enabled to analog bus before AGC is active 782 * or by disabling the AGC. 783 */ 784 static HAL_BOOL 785 ar5211SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan) 786 { 787 uint32_t refClk, reg32, data2111; 788 int16_t chan5111, chanIEEE; 789 790 chanIEEE = chan->ic_ieee; 791 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 792 const CHAN_INFO_2GHZ* ci = 793 &chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION]; 794 795 data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff) 796 << 5) 797 | (ci->refClkSel << 4); 798 chan5111 = ci->channel5111; 799 } else { 800 data2111 = 0; 801 chan5111 = chanIEEE; 802 } 803 804 /* Rest of the code is common for 5 GHz and 2.4 GHz. */ 805 if (chan5111 >= 145 || (chan5111 & 0x1)) { 806 reg32 = ath_hal_reverseBits(chan5111 - 24, 8) & 0xFF; 807 refClk = 1; 808 } else { 809 reg32 = ath_hal_reverseBits(((chan5111 - 24) / 2), 8) & 0xFF; 810 refClk = 0; 811 } 812 813 reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1; 814 OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff)); 815 reg32 >>= 8; 816 OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff)); 817 818 AH_PRIVATE(ah)->ah_curchan = chan; 819 return AH_TRUE; 820 } 821 822 static int16_t 823 ar5211GetNoiseFloor(struct ath_hal *ah) 824 { 825 int16_t nf; 826 827 nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff; 828 if (nf & 0x100) 829 nf = 0 - ((nf ^ 0x1ff) + 1); 830 return nf; 831 } 832 833 /* 834 * Peform the noisefloor calibration for the length of time set 835 * in runTime (valid values 1 to 7) 836 * 837 * Returns: The NF value at the end of the given time (or 0 for failure) 838 */ 839 int16_t 840 ar5211RunNoiseFloor(struct ath_hal *ah, uint8_t runTime, int16_t startingNF) 841 { 842 int i, searchTime; 843 844 HALASSERT(runTime <= 7); 845 846 /* Setup noise floor run time and starting value */ 847 OS_REG_WRITE(ah, AR_PHY(25), 848 (OS_REG_READ(ah, AR_PHY(25)) & ~0xFFF) | 849 ((runTime << 9) & 0xE00) | (startingNF & 0x1FF)); 850 /* Calibrate the noise floor */ 851 OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL, 852 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF); 853 854 /* Compute the required amount of searchTime needed to finish NF */ 855 if (runTime == 0) { 856 /* 8 search windows * 6.4us each */ 857 searchTime = 8 * 7; 858 } else { 859 /* 512 * runtime search windows * 6.4us each */ 860 searchTime = (runTime * 512) * 7; 861 } 862 863 /* 864 * Do not read noise floor until it has been updated 865 * 866 * As a guesstimate - we may only get 1/60th the time on 867 * the air to see search windows in a heavily congested 868 * network (40 us every 2400 us of time) 869 */ 870 for (i = 0; i < 60; i++) { 871 if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0) 872 break; 873 OS_DELAY(searchTime); 874 } 875 if (i >= 60) { 876 HALDEBUG(ah, HAL_DEBUG_NFCAL, 877 "NF with runTime %d failed to end on channel %d\n", 878 runTime, AH_PRIVATE(ah)->ah_curchan->ic_freq); 879 HALDEBUG(ah, HAL_DEBUG_NFCAL, 880 " PHY NF Reg state: 0x%x\n", 881 OS_REG_READ(ah, AR_PHY_AGC_CONTROL)); 882 HALDEBUG(ah, HAL_DEBUG_NFCAL, 883 " PHY Active Reg state: 0x%x\n", 884 OS_REG_READ(ah, AR_PHY_ACTIVE)); 885 return 0; 886 } 887 888 return ar5211GetNoiseFloor(ah); 889 } 890 891 static HAL_BOOL 892 getNoiseFloorThresh(struct ath_hal *ah, const struct ieee80211_channel *chan, 893 int16_t *nft) 894 { 895 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 896 897 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) { 898 case IEEE80211_CHAN_A: 899 *nft = ee->ee_noiseFloorThresh[0]; 900 break; 901 case IEEE80211_CHAN_B: 902 *nft = ee->ee_noiseFloorThresh[1]; 903 break; 904 case IEEE80211_CHAN_PUREG: 905 *nft = ee->ee_noiseFloorThresh[2]; 906 break; 907 default: 908 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n", 909 __func__, chan->ic_flags); 910 return AH_FALSE; 911 } 912 return AH_TRUE; 913 } 914 915 /* 916 * Read the NF and check it against the noise floor threshold 917 * 918 * Returns: TRUE if the NF is good 919 */ 920 static HAL_BOOL 921 ar5211IsNfGood(struct ath_hal *ah, struct ieee80211_channel *chan) 922 { 923 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan); 924 int16_t nf, nfThresh; 925 926 if (!getNoiseFloorThresh(ah, chan, &nfThresh)) 927 return AH_FALSE; 928 if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) { 929 HALDEBUG(ah, HAL_DEBUG_ANY, 930 "%s: NF did not complete in calibration window\n", __func__); 931 } 932 nf = ar5211GetNoiseFloor(ah); 933 if (nf > nfThresh) { 934 HALDEBUG(ah, HAL_DEBUG_ANY, 935 "%s: noise floor failed; detected %u, threshold %u\n", 936 __func__, nf, nfThresh); 937 /* 938 * NB: Don't discriminate 2.4 vs 5Ghz, if this 939 * happens it indicates a problem regardless 940 * of the band. 941 */ 942 chan->ic_state |= IEEE80211_CHANSTATE_CWINT; 943 } 944 ichan->rawNoiseFloor = nf; 945 return (nf <= nfThresh); 946 } 947 948 /* 949 * Peform the noisefloor calibration and check for any constant channel 950 * interference. 951 * 952 * NOTE: preAR5211 have a lengthy carrier wave detection process - hence 953 * it is if'ed for MKK regulatory domain only. 954 * 955 * Returns: TRUE for a successful noise floor calibration; else FALSE 956 */ 957 HAL_BOOL 958 ar5211CalNoiseFloor(struct ath_hal *ah, const struct ieee80211_channel *chan) 959 { 960 #define N(a) (sizeof (a) / sizeof (a[0])) 961 /* Check for Carrier Wave interference in MKK regulatory zone */ 962 if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU && 963 (chan->ic_flags & CHANNEL_NFCREQUIRED)) { 964 static const uint8_t runtime[3] = { 0, 2, 7 }; 965 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan); 966 int16_t nf, nfThresh; 967 int i; 968 969 if (!getNoiseFloorThresh(ah, chan, &nfThresh)) 970 return AH_FALSE; 971 /* 972 * Run a quick noise floor that will hopefully 973 * complete (decrease delay time). 974 */ 975 for (i = 0; i < N(runtime); i++) { 976 nf = ar5211RunNoiseFloor(ah, runtime[i], 0); 977 if (nf > nfThresh) { 978 HALDEBUG(ah, HAL_DEBUG_ANY, 979 "%s: run failed with %u > threshold %u " 980 "(runtime %u)\n", __func__, 981 nf, nfThresh, runtime[i]); 982 ichan->rawNoiseFloor = 0; 983 } else 984 ichan->rawNoiseFloor = nf; 985 } 986 return (i <= N(runtime)); 987 } else { 988 /* Calibrate the noise floor */ 989 OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL, 990 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | 991 AR_PHY_AGC_CONTROL_NF); 992 } 993 return AH_TRUE; 994 #undef N 995 } 996 997 /* 998 * Adjust NF based on statistical values for 5GHz frequencies. 999 */ 1000 int16_t 1001 ar5211GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c) 1002 { 1003 static const struct { 1004 uint16_t freqLow; 1005 int16_t adjust; 1006 } adjust5111[] = { 1007 { 5790, 11 }, /* NB: ordered high -> low */ 1008 { 5730, 10 }, 1009 { 5690, 9 }, 1010 { 5660, 8 }, 1011 { 5610, 7 }, 1012 { 5530, 5 }, 1013 { 5450, 4 }, 1014 { 5379, 2 }, 1015 { 5209, 0 }, /* XXX? bogus but doesn't matter */ 1016 { 0, 1 }, 1017 }; 1018 int i; 1019 1020 for (i = 0; c->channel <= adjust5111[i].freqLow; i++) 1021 ; 1022 /* NB: placeholder for 5111's less severe requirement */ 1023 return adjust5111[i].adjust / 3; 1024 } 1025 1026 /* 1027 * Reads EEPROM header info from device structure and programs 1028 * analog registers 6 and 7 1029 * 1030 * REQUIRES: Access to the analog device 1031 */ 1032 static HAL_BOOL 1033 ar5211SetRf6and7(struct ath_hal *ah, const struct ieee80211_channel *chan) 1034 { 1035 #define N(a) (sizeof (a) / sizeof (a[0])) 1036 uint16_t freq = ath_hal_gethwchannel(ah, chan); 1037 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 1038 struct ath_hal_5211 *ahp = AH5211(ah); 1039 uint16_t rfXpdGain, rfPloSel, rfPwdXpd; 1040 uint16_t tempOB, tempDB; 1041 uint16_t freqIndex; 1042 int i; 1043 1044 freqIndex = IEEE80211_IS_CHAN_2GHZ(chan) ? 2 : 1; 1045 1046 /* 1047 * TODO: This array mode correspondes with the index used 1048 * during the read. 1049 * For readability, this should be changed to an enum or #define 1050 */ 1051 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) { 1052 case IEEE80211_CHAN_A: 1053 if (freq > 4000 && freq < 5260) { 1054 tempOB = ee->ee_ob1; 1055 tempDB = ee->ee_db1; 1056 } else if (freq >= 5260 && freq < 5500) { 1057 tempOB = ee->ee_ob2; 1058 tempDB = ee->ee_db2; 1059 } else if (freq >= 5500 && freq < 5725) { 1060 tempOB = ee->ee_ob3; 1061 tempDB = ee->ee_db3; 1062 } else if (freq >= 5725) { 1063 tempOB = ee->ee_ob4; 1064 tempDB = ee->ee_db4; 1065 } else { 1066 /* XXX panic?? */ 1067 tempOB = tempDB = 0; 1068 } 1069 1070 rfXpdGain = ee->ee_xgain[0]; 1071 rfPloSel = ee->ee_xpd[0]; 1072 rfPwdXpd = !ee->ee_xpd[0]; 1073 1074 ar5211Rf6n7[5][freqIndex] = 1075 (ar5211Rf6n7[5][freqIndex] & ~0x10000000) | 1076 (ee->ee_cornerCal.pd84<< 28); 1077 ar5211Rf6n7[6][freqIndex] = 1078 (ar5211Rf6n7[6][freqIndex] & ~0x04000000) | 1079 (ee->ee_cornerCal.pd90 << 26); 1080 ar5211Rf6n7[21][freqIndex] = 1081 (ar5211Rf6n7[21][freqIndex] & ~0x08) | 1082 (ee->ee_cornerCal.gSel << 3); 1083 break; 1084 case IEEE80211_CHAN_B: 1085 tempOB = ee->ee_obFor24; 1086 tempDB = ee->ee_dbFor24; 1087 rfXpdGain = ee->ee_xgain[1]; 1088 rfPloSel = ee->ee_xpd[1]; 1089 rfPwdXpd = !ee->ee_xpd[1]; 1090 break; 1091 case IEEE80211_CHAN_PUREG: 1092 tempOB = ee->ee_obFor24g; 1093 tempDB = ee->ee_dbFor24g; 1094 rfXpdGain = ee->ee_xgain[2]; 1095 rfPloSel = ee->ee_xpd[2]; 1096 rfPwdXpd = !ee->ee_xpd[2]; 1097 break; 1098 default: 1099 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n", 1100 __func__, chan->ic_flags); 1101 return AH_FALSE; 1102 } 1103 1104 HALASSERT(1 <= tempOB && tempOB <= 5); 1105 HALASSERT(1 <= tempDB && tempDB <= 5); 1106 1107 /* Set rfXpdGain and rfPwdXpd */ 1108 ar5211Rf6n7[11][freqIndex] = (ar5211Rf6n7[11][freqIndex] & ~0xC0) | 1109 (((ath_hal_reverseBits(rfXpdGain, 4) << 7) | (rfPwdXpd << 6)) & 0xC0); 1110 ar5211Rf6n7[12][freqIndex] = (ar5211Rf6n7[12][freqIndex] & ~0x07) | 1111 ((ath_hal_reverseBits(rfXpdGain, 4) >> 1) & 0x07); 1112 1113 /* Set OB */ 1114 ar5211Rf6n7[12][freqIndex] = (ar5211Rf6n7[12][freqIndex] & ~0x80) | 1115 ((ath_hal_reverseBits(tempOB, 3) << 7) & 0x80); 1116 ar5211Rf6n7[13][freqIndex] = (ar5211Rf6n7[13][freqIndex] & ~0x03) | 1117 ((ath_hal_reverseBits(tempOB, 3) >> 1) & 0x03); 1118 1119 /* Set DB */ 1120 ar5211Rf6n7[13][freqIndex] = (ar5211Rf6n7[13][freqIndex] & ~0x1C) | 1121 ((ath_hal_reverseBits(tempDB, 3) << 2) & 0x1C); 1122 1123 /* Set rfPloSel */ 1124 ar5211Rf6n7[17][freqIndex] = (ar5211Rf6n7[17][freqIndex] & ~0x08) | 1125 ((rfPloSel << 3) & 0x08); 1126 1127 /* Write the Rf registers 6 & 7 */ 1128 for (i = 0; i < N(ar5211Rf6n7); i++) 1129 OS_REG_WRITE(ah, ar5211Rf6n7[i][0], ar5211Rf6n7[i][freqIndex]); 1130 1131 /* Now that we have reprogrammed rfgain value, clear the flag. */ 1132 ahp->ah_rfgainState = RFGAIN_INACTIVE; 1133 1134 return AH_TRUE; 1135 #undef N 1136 } 1137 1138 HAL_BOOL 1139 ar5211SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings, 1140 const struct ieee80211_channel *chan) 1141 { 1142 #define ANT_SWITCH_TABLE1 0x9960 1143 #define ANT_SWITCH_TABLE2 0x9964 1144 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 1145 struct ath_hal_5211 *ahp = AH5211(ah); 1146 uint32_t antSwitchA, antSwitchB; 1147 int ix; 1148 1149 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) { 1150 case IEEE80211_CHAN_A: ix = 0; break; 1151 case IEEE80211_CHAN_B: ix = 1; break; 1152 case IEEE80211_CHAN_PUREG: ix = 2; break; 1153 default: 1154 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n", 1155 __func__, chan->ic_flags); 1156 return AH_FALSE; 1157 } 1158 1159 antSwitchA = ee->ee_antennaControl[1][ix] 1160 | (ee->ee_antennaControl[2][ix] << 6) 1161 | (ee->ee_antennaControl[3][ix] << 12) 1162 | (ee->ee_antennaControl[4][ix] << 18) 1163 | (ee->ee_antennaControl[5][ix] << 24) 1164 ; 1165 antSwitchB = ee->ee_antennaControl[6][ix] 1166 | (ee->ee_antennaControl[7][ix] << 6) 1167 | (ee->ee_antennaControl[8][ix] << 12) 1168 | (ee->ee_antennaControl[9][ix] << 18) 1169 | (ee->ee_antennaControl[10][ix] << 24) 1170 ; 1171 /* 1172 * For fixed antenna, give the same setting for both switch banks 1173 */ 1174 switch (settings) { 1175 case HAL_ANT_FIXED_A: 1176 antSwitchB = antSwitchA; 1177 break; 1178 case HAL_ANT_FIXED_B: 1179 antSwitchA = antSwitchB; 1180 break; 1181 case HAL_ANT_VARIABLE: 1182 break; 1183 default: 1184 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n", 1185 __func__, settings); 1186 return AH_FALSE; 1187 } 1188 ahp->ah_diversityControl = settings; 1189 1190 OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA); 1191 OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB); 1192 1193 return AH_TRUE; 1194 #undef ANT_SWITCH_TABLE1 1195 #undef ANT_SWITCH_TABLE2 1196 } 1197 1198 /* 1199 * Reads EEPROM header info and programs the device for correct operation 1200 * given the channel value 1201 */ 1202 static HAL_BOOL 1203 ar5211SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan) 1204 { 1205 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 1206 struct ath_hal_5211 *ahp = AH5211(ah); 1207 int arrayMode, falseDectectBackoff; 1208 1209 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) { 1210 case IEEE80211_CHAN_A: 1211 arrayMode = 0; 1212 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, 1213 AR_PHY_FRAME_CTL_TX_CLIP, ee->ee_cornerCal.clip); 1214 break; 1215 case IEEE80211_CHAN_B: 1216 arrayMode = 1; 1217 break; 1218 case IEEE80211_CHAN_PUREG: 1219 arrayMode = 2; 1220 break; 1221 default: 1222 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n", 1223 __func__, chan->ic_flags); 1224 return AH_FALSE; 1225 } 1226 1227 /* Set the antenna register(s) correctly for the chip revision */ 1228 if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) { 1229 OS_REG_WRITE(ah, AR_PHY(68), 1230 (OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) | 0x3); 1231 } else { 1232 OS_REG_WRITE(ah, AR_PHY(68), 1233 (OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFC06) | 1234 (ee->ee_antennaControl[0][arrayMode] << 4) | 0x1); 1235 1236 ar5211SetAntennaSwitchInternal(ah, 1237 ahp->ah_diversityControl, chan); 1238 1239 /* Set the Noise Floor Thresh on ar5211 devices */ 1240 OS_REG_WRITE(ah, AR_PHY_BASE + (90 << 2), 1241 (ee->ee_noiseFloorThresh[arrayMode] & 0x1FF) | (1<<9)); 1242 } 1243 OS_REG_WRITE(ah, AR_PHY_BASE + (17 << 2), 1244 (OS_REG_READ(ah, AR_PHY_BASE + (17 << 2)) & 0xFFFFC07F) | 1245 ((ee->ee_switchSettling[arrayMode] << 7) & 0x3F80)); 1246 OS_REG_WRITE(ah, AR_PHY_BASE + (18 << 2), 1247 (OS_REG_READ(ah, AR_PHY_BASE + (18 << 2)) & 0xFFFC0FFF) | 1248 ((ee->ee_txrxAtten[arrayMode] << 12) & 0x3F000)); 1249 OS_REG_WRITE(ah, AR_PHY_BASE + (20 << 2), 1250 (OS_REG_READ(ah, AR_PHY_BASE + (20 << 2)) & 0xFFFF0000) | 1251 ((ee->ee_pgaDesiredSize[arrayMode] << 8) & 0xFF00) | 1252 (ee->ee_adcDesiredSize[arrayMode] & 0x00FF)); 1253 OS_REG_WRITE(ah, AR_PHY_BASE + (13 << 2), 1254 (ee->ee_txEndToXPAOff[arrayMode] << 24) | 1255 (ee->ee_txEndToXPAOff[arrayMode] << 16) | 1256 (ee->ee_txFrameToXPAOn[arrayMode] << 8) | 1257 ee->ee_txFrameToXPAOn[arrayMode]); 1258 OS_REG_WRITE(ah, AR_PHY_BASE + (10 << 2), 1259 (OS_REG_READ(ah, AR_PHY_BASE + (10 << 2)) & 0xFFFF00FF) | 1260 (ee->ee_txEndToXLNAOn[arrayMode] << 8)); 1261 OS_REG_WRITE(ah, AR_PHY_BASE + (25 << 2), 1262 (OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) & 0xFFF80FFF) | 1263 ((ee->ee_thresh62[arrayMode] << 12) & 0x7F000)); 1264 1265 #define NO_FALSE_DETECT_BACKOFF 2 1266 #define CB22_FALSE_DETECT_BACKOFF 6 1267 /* 1268 * False detect backoff - suspected 32 MHz spur causes 1269 * false detects in OFDM, causing Tx Hangs. Decrease 1270 * weak signal sensitivity for this card. 1271 */ 1272 falseDectectBackoff = NO_FALSE_DETECT_BACKOFF; 1273 if (AH_PRIVATE(ah)->ah_eeversion < AR_EEPROM_VER3_3) { 1274 if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 && 1275 IEEE80211_IS_CHAN_OFDM(chan)) 1276 falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF; 1277 } else { 1278 uint16_t freq = ath_hal_gethwchannel(ah, chan); 1279 uint32_t remainder = freq % 32; 1280 1281 if (remainder && (remainder < 10 || remainder > 22)) 1282 falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode]; 1283 } 1284 OS_REG_WRITE(ah, 0x9924, 1285 (OS_REG_READ(ah, 0x9924) & 0xFFFFFF01) 1286 | ((falseDectectBackoff << 1) & 0xF7)); 1287 1288 return AH_TRUE; 1289 #undef NO_FALSE_DETECT_BACKOFF 1290 #undef CB22_FALSE_DETECT_BACKOFF 1291 } 1292 1293 /* 1294 * Set the limit on the overall output power. Used for dynamic 1295 * transmit power control and the like. 1296 * 1297 * NOTE: The power is passed in is in units of 0.5 dBm. 1298 */ 1299 HAL_BOOL 1300 ar5211SetTxPowerLimit(struct ath_hal *ah, uint32_t limit) 1301 { 1302 1303 AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER); 1304 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, limit); 1305 return AH_TRUE; 1306 } 1307 1308 /* 1309 * Sets the transmit power in the baseband for the given 1310 * operating channel and mode. 1311 */ 1312 static HAL_BOOL 1313 ar5211SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan) 1314 { 1315 uint16_t freq = ath_hal_gethwchannel(ah, chan); 1316 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 1317 TRGT_POWER_INFO *pi; 1318 RD_EDGES_POWER *rep; 1319 PCDACS_EEPROM eepromPcdacs; 1320 u_int nchan, cfgCtl; 1321 int i; 1322 1323 /* setup the pcdac struct to point to the correct info, based on mode */ 1324 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) { 1325 case IEEE80211_CHAN_A: 1326 eepromPcdacs.numChannels = ee->ee_numChannels11a; 1327 eepromPcdacs.pChannelList= ee->ee_channels11a; 1328 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a; 1329 nchan = ee->ee_numTargetPwr_11a; 1330 pi = ee->ee_trgtPwr_11a; 1331 break; 1332 case IEEE80211_CHAN_PUREG: 1333 eepromPcdacs.numChannels = ee->ee_numChannels2_4; 1334 eepromPcdacs.pChannelList= ee->ee_channels11g; 1335 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g; 1336 nchan = ee->ee_numTargetPwr_11g; 1337 pi = ee->ee_trgtPwr_11g; 1338 break; 1339 case IEEE80211_CHAN_B: 1340 eepromPcdacs.numChannels = ee->ee_numChannels2_4; 1341 eepromPcdacs.pChannelList= ee->ee_channels11b; 1342 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b; 1343 nchan = ee->ee_numTargetPwr_11b; 1344 pi = ee->ee_trgtPwr_11b; 1345 break; 1346 default: 1347 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n", 1348 __func__, chan->ic_flags); 1349 return AH_FALSE; 1350 } 1351 1352 ar5211SetPowerTable(ah, &eepromPcdacs, freq); 1353 1354 rep = AH_NULL; 1355 /* Match CTL to EEPROM value */ 1356 cfgCtl = ath_hal_getctl(ah, chan); 1357 for (i = 0; i < ee->ee_numCtls; i++) 1358 if (ee->ee_ctl[i] != 0 && ee->ee_ctl[i] == cfgCtl) { 1359 rep = &ee->ee_rdEdgesPower[i * NUM_EDGES]; 1360 break; 1361 } 1362 ar5211SetRateTable(ah, rep, pi, nchan, chan); 1363 1364 return AH_TRUE; 1365 } 1366 1367 /* 1368 * Read the transmit power levels from the structures taken 1369 * from EEPROM. Interpolate read transmit power values for 1370 * this channel. Organize the transmit power values into a 1371 * table for writing into the hardware. 1372 */ 1373 void 1374 ar5211SetPowerTable(struct ath_hal *ah, PCDACS_EEPROM *pSrcStruct, 1375 uint16_t channel) 1376 { 1377 static FULL_PCDAC_STRUCT pcdacStruct; 1378 static uint16_t pcdacTable[PWR_TABLE_SIZE]; 1379 1380 uint16_t i, j; 1381 uint16_t *pPcdacValues; 1382 int16_t *pScaledUpDbm; 1383 int16_t minScaledPwr; 1384 int16_t maxScaledPwr; 1385 int16_t pwr; 1386 uint16_t pcdacMin = 0; 1387 uint16_t pcdacMax = 63; 1388 uint16_t pcdacTableIndex; 1389 uint16_t scaledPcdac; 1390 uint32_t addr; 1391 uint32_t temp32; 1392 1393 OS_MEMZERO(&pcdacStruct, sizeof(FULL_PCDAC_STRUCT)); 1394 OS_MEMZERO(pcdacTable, sizeof(uint16_t) * PWR_TABLE_SIZE); 1395 pPcdacValues = pcdacStruct.PcdacValues; 1396 pScaledUpDbm = pcdacStruct.PwrValues; 1397 1398 /* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */ 1399 for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++) 1400 pPcdacValues[j] = i; 1401 1402 pcdacStruct.numPcdacValues = j; 1403 pcdacStruct.pcdacMin = PCDAC_START; 1404 pcdacStruct.pcdacMax = PCDAC_STOP; 1405 1406 /* Fill out the power values for this channel */ 1407 for (j = 0; j < pcdacStruct.numPcdacValues; j++ ) 1408 pScaledUpDbm[j] = ar5211GetScaledPower(channel, pPcdacValues[j], pSrcStruct); 1409 1410 /* Now scale the pcdac values to fit in the 64 entry power table */ 1411 minScaledPwr = pScaledUpDbm[0]; 1412 maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1]; 1413 1414 /* find minimum and make monotonic */ 1415 for (j = 0; j < pcdacStruct.numPcdacValues; j++) { 1416 if (minScaledPwr >= pScaledUpDbm[j]) { 1417 minScaledPwr = pScaledUpDbm[j]; 1418 pcdacMin = j; 1419 } 1420 /* 1421 * Make the full_hsh monotonically increasing otherwise 1422 * interpolation algorithm will get fooled gotta start 1423 * working from the top, hence i = 63 - j. 1424 */ 1425 i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j); 1426 if (i == 0) 1427 break; 1428 if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) { 1429 /* 1430 * It could be a glitch, so make the power for 1431 * this pcdac the same as the power from the 1432 * next highest pcdac. 1433 */ 1434 pScaledUpDbm[i - 1] = pScaledUpDbm[i]; 1435 } 1436 } 1437 1438 for (j = 0; j < pcdacStruct.numPcdacValues; j++) 1439 if (maxScaledPwr < pScaledUpDbm[j]) { 1440 maxScaledPwr = pScaledUpDbm[j]; 1441 pcdacMax = j; 1442 } 1443 1444 /* Find the first power level with a pcdac */ 1445 pwr = (uint16_t)(PWR_STEP * ((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN); 1446 1447 /* Write all the first pcdac entries based off the pcdacMin */ 1448 pcdacTableIndex = 0; 1449 for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++) 1450 pcdacTable[pcdacTableIndex++] = pcdacMin; 1451 1452 i = 0; 1453 while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1]) { 1454 pwr += PWR_STEP; 1455 /* stop if dbM > max_power_possible */ 1456 while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] && 1457 (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0) 1458 i++; 1459 /* scale by 2 and add 1 to enable round up or down as needed */ 1460 scaledPcdac = (uint16_t)(ar5211GetInterpolatedValue(pwr, 1461 pScaledUpDbm[i], pScaledUpDbm[i+1], 1462 (uint16_t)(pPcdacValues[i] * 2), 1463 (uint16_t)(pPcdacValues[i+1] * 2), 0) + 1); 1464 1465 pcdacTable[pcdacTableIndex] = scaledPcdac / 2; 1466 if (pcdacTable[pcdacTableIndex] > pcdacMax) 1467 pcdacTable[pcdacTableIndex] = pcdacMax; 1468 pcdacTableIndex++; 1469 } 1470 1471 /* Write all the last pcdac entries based off the last valid pcdac */ 1472 while (pcdacTableIndex < PWR_TABLE_SIZE) { 1473 pcdacTable[pcdacTableIndex] = pcdacTable[pcdacTableIndex - 1]; 1474 pcdacTableIndex++; 1475 } 1476 1477 /* Finally, write the power values into the baseband power table */ 1478 addr = AR_PHY_BASE + (608 << 2); 1479 for (i = 0; i < 32; i++) { 1480 temp32 = 0xffff & ((pcdacTable[2 * i + 1] << 8) | 0xff); 1481 temp32 = (temp32 << 16) | (0xffff & ((pcdacTable[2 * i] << 8) | 0xff)); 1482 OS_REG_WRITE(ah, addr, temp32); 1483 addr += 4; 1484 } 1485 1486 } 1487 1488 /* 1489 * Set the transmit power in the baseband for the given 1490 * operating channel and mode. 1491 */ 1492 static void 1493 ar5211SetRateTable(struct ath_hal *ah, RD_EDGES_POWER *pRdEdgesPower, 1494 TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels, 1495 const struct ieee80211_channel *chan) 1496 { 1497 uint16_t freq = ath_hal_gethwchannel(ah, chan); 1498 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 1499 struct ath_hal_5211 *ahp = AH5211(ah); 1500 static uint16_t ratesArray[NUM_RATES]; 1501 static const uint16_t tpcScaleReductionTable[5] = 1502 { 0, 3, 6, 9, MAX_RATE_POWER }; 1503 1504 uint16_t *pRatesPower; 1505 uint16_t lowerChannel, lowerIndex=0, lowerPower=0; 1506 uint16_t upperChannel, upperIndex=0, upperPower=0; 1507 uint16_t twiceMaxEdgePower=63; 1508 uint16_t twicePower = 0; 1509 uint16_t i, numEdges; 1510 uint16_t tempChannelList[NUM_EDGES]; /* temp array for holding edge channels */ 1511 uint16_t twiceMaxRDPower; 1512 int16_t scaledPower = 0; /* for gcc -O2 */ 1513 uint16_t mask = 0x3f; 1514 HAL_BOOL paPreDEnable = 0; 1515 int8_t twiceAntennaGain, twiceAntennaReduction = 0; 1516 1517 pRatesPower = ratesArray; 1518 twiceMaxRDPower = chan->ic_maxregpower * 2; 1519 1520 if (IEEE80211_IS_CHAN_5GHZ(chan)) { 1521 twiceAntennaGain = ee->ee_antennaGainMax[0]; 1522 } else { 1523 twiceAntennaGain = ee->ee_antennaGainMax[1]; 1524 } 1525 1526 twiceAntennaReduction = ath_hal_getantennareduction(ah, chan, twiceAntennaGain); 1527 1528 if (pRdEdgesPower) { 1529 /* Get the edge power */ 1530 for (i = 0; i < NUM_EDGES; i++) { 1531 if (pRdEdgesPower[i].rdEdge == 0) 1532 break; 1533 tempChannelList[i] = pRdEdgesPower[i].rdEdge; 1534 } 1535 numEdges = i; 1536 1537 ar5211GetLowerUpperValues(freq, tempChannelList, 1538 numEdges, &lowerChannel, &upperChannel); 1539 /* Get the index for this channel */ 1540 for (i = 0; i < numEdges; i++) 1541 if (lowerChannel == tempChannelList[i]) 1542 break; 1543 HALASSERT(i != numEdges); 1544 1545 if ((lowerChannel == upperChannel && 1546 lowerChannel == freq) || 1547 pRdEdgesPower[i].flag) { 1548 twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower; 1549 HALASSERT(twiceMaxEdgePower > 0); 1550 } 1551 } 1552 1553 /* extrapolate the power values for the test Groups */ 1554 for (i = 0; i < numChannels; i++) 1555 tempChannelList[i] = pPowerInfo[i].testChannel; 1556 1557 ar5211GetLowerUpperValues(freq, tempChannelList, 1558 numChannels, &lowerChannel, &upperChannel); 1559 1560 /* get the index for the channel */ 1561 for (i = 0; i < numChannels; i++) { 1562 if (lowerChannel == tempChannelList[i]) 1563 lowerIndex = i; 1564 if (upperChannel == tempChannelList[i]) { 1565 upperIndex = i; 1566 break; 1567 } 1568 } 1569 1570 for (i = 0; i < NUM_RATES; i++) { 1571 if (IEEE80211_IS_CHAN_OFDM(chan)) { 1572 /* power for rates 6,9,12,18,24 is all the same */ 1573 if (i < 5) { 1574 lowerPower = pPowerInfo[lowerIndex].twicePwr6_24; 1575 upperPower = pPowerInfo[upperIndex].twicePwr6_24; 1576 } else if (i == 5) { 1577 lowerPower = pPowerInfo[lowerIndex].twicePwr36; 1578 upperPower = pPowerInfo[upperIndex].twicePwr36; 1579 } else if (i == 6) { 1580 lowerPower = pPowerInfo[lowerIndex].twicePwr48; 1581 upperPower = pPowerInfo[upperIndex].twicePwr48; 1582 } else if (i == 7) { 1583 lowerPower = pPowerInfo[lowerIndex].twicePwr54; 1584 upperPower = pPowerInfo[upperIndex].twicePwr54; 1585 } 1586 } else { 1587 switch (i) { 1588 case 0: 1589 case 1: 1590 lowerPower = pPowerInfo[lowerIndex].twicePwr6_24; 1591 upperPower = pPowerInfo[upperIndex].twicePwr6_24; 1592 break; 1593 case 2: 1594 case 3: 1595 lowerPower = pPowerInfo[lowerIndex].twicePwr36; 1596 upperPower = pPowerInfo[upperIndex].twicePwr36; 1597 break; 1598 case 4: 1599 case 5: 1600 lowerPower = pPowerInfo[lowerIndex].twicePwr48; 1601 upperPower = pPowerInfo[upperIndex].twicePwr48; 1602 break; 1603 case 6: 1604 case 7: 1605 lowerPower = pPowerInfo[lowerIndex].twicePwr54; 1606 upperPower = pPowerInfo[upperIndex].twicePwr54; 1607 break; 1608 } 1609 } 1610 1611 twicePower = ar5211GetInterpolatedValue(freq, 1612 lowerChannel, upperChannel, lowerPower, upperPower, 0); 1613 1614 /* Reduce power by band edge restrictions */ 1615 twicePower = AH_MIN(twicePower, twiceMaxEdgePower); 1616 1617 /* 1618 * If turbo is set, reduce power to keep power 1619 * consumption under 2 Watts. Note that we always do 1620 * this unless specially configured. Then we limit 1621 * power only for non-AP operation. 1622 */ 1623 if (IEEE80211_IS_CHAN_TURBO(chan) && 1624 AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1 1625 #ifdef AH_ENABLE_AP_SUPPORT 1626 && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP 1627 #endif 1628 ) { 1629 twicePower = AH_MIN(twicePower, ee->ee_turbo2WMaxPower5); 1630 } 1631 1632 /* Reduce power by max regulatory domain allowed restrictions */ 1633 pRatesPower[i] = AH_MIN(twicePower, twiceMaxRDPower - twiceAntennaReduction); 1634 1635 /* Use 6 Mb power level for transmit power scaling reduction */ 1636 /* We don't want to reduce higher rates if its not needed */ 1637 if (i == 0) { 1638 scaledPower = pRatesPower[0] - 1639 (tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2); 1640 if (scaledPower < 1) 1641 scaledPower = 1; 1642 } 1643 1644 pRatesPower[i] = AH_MIN(pRatesPower[i], scaledPower); 1645 } 1646 1647 /* Record txPower at Rate 6 for info gathering */ 1648 ahp->ah_tx6PowerInHalfDbm = pRatesPower[0]; 1649 1650 #ifdef AH_DEBUG 1651 HALDEBUG(ah, HAL_DEBUG_RESET, 1652 "%s: final output power setting %d MHz:\n", 1653 __func__, chan->ic_freq); 1654 HALDEBUG(ah, HAL_DEBUG_RESET, 1655 "6 Mb %d dBm, MaxRD: %d dBm, MaxEdge %d dBm\n", 1656 scaledPower / 2, twiceMaxRDPower / 2, twiceMaxEdgePower / 2); 1657 HALDEBUG(ah, HAL_DEBUG_RESET, "TPC Scale %d dBm - Ant Red %d dBm\n", 1658 tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2, 1659 twiceAntennaReduction / 2); 1660 if (IEEE80211_IS_CHAN_TURBO(chan) && 1661 AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1) 1662 HALDEBUG(ah, HAL_DEBUG_RESET, "Max Turbo %d dBm\n", 1663 ee->ee_turbo2WMaxPower5); 1664 HALDEBUG(ah, HAL_DEBUG_RESET, 1665 " %2d | %2d | %2d | %2d | %2d | %2d | %2d | %2d dBm\n", 1666 pRatesPower[0] / 2, pRatesPower[1] / 2, pRatesPower[2] / 2, 1667 pRatesPower[3] / 2, pRatesPower[4] / 2, pRatesPower[5] / 2, 1668 pRatesPower[6] / 2, pRatesPower[7] / 2); 1669 #endif /* AH_DEBUG */ 1670 1671 /* Write the power table into the hardware */ 1672 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1, 1673 ((paPreDEnable & 1)<< 30) | ((pRatesPower[3] & mask) << 24) | 1674 ((paPreDEnable & 1)<< 22) | ((pRatesPower[2] & mask) << 16) | 1675 ((paPreDEnable & 1)<< 14) | ((pRatesPower[1] & mask) << 8) | 1676 ((paPreDEnable & 1)<< 6 ) | (pRatesPower[0] & mask)); 1677 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2, 1678 ((paPreDEnable & 1)<< 30) | ((pRatesPower[7] & mask) << 24) | 1679 ((paPreDEnable & 1)<< 22) | ((pRatesPower[6] & mask) << 16) | 1680 ((paPreDEnable & 1)<< 14) | ((pRatesPower[5] & mask) << 8) | 1681 ((paPreDEnable & 1)<< 6 ) | (pRatesPower[4] & mask)); 1682 1683 /* set max power to the power value at rate 6 */ 1684 ar5211SetTxPowerLimit(ah, pRatesPower[0]); 1685 1686 AH_PRIVATE(ah)->ah_maxPowerLevel = pRatesPower[0]; 1687 } 1688 1689 /* 1690 * Get or interpolate the pcdac value from the calibrated data 1691 */ 1692 uint16_t 1693 ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue, 1694 const PCDACS_EEPROM *pSrcStruct) 1695 { 1696 uint16_t powerValue; 1697 uint16_t lFreq, rFreq; /* left and right frequency values */ 1698 uint16_t llPcdac, ulPcdac; /* lower and upper left pcdac values */ 1699 uint16_t lrPcdac, urPcdac; /* lower and upper right pcdac values */ 1700 uint16_t lPwr, uPwr; /* lower and upper temp pwr values */ 1701 uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */ 1702 1703 if (ar5211FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue)) 1704 /* value was copied from srcStruct */ 1705 return powerValue; 1706 1707 ar5211GetLowerUpperValues(channel, pSrcStruct->pChannelList, 1708 pSrcStruct->numChannels, &lFreq, &rFreq); 1709 ar5211GetLowerUpperPcdacs(pcdacValue, lFreq, pSrcStruct, 1710 &llPcdac, &ulPcdac); 1711 ar5211GetLowerUpperPcdacs(pcdacValue, rFreq, pSrcStruct, 1712 &lrPcdac, &urPcdac); 1713 1714 /* get the power index for the pcdac value */ 1715 ar5211FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr); 1716 ar5211FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr); 1717 lScaledPwr = ar5211GetInterpolatedValue(pcdacValue, 1718 llPcdac, ulPcdac, lPwr, uPwr, 0); 1719 1720 ar5211FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr); 1721 ar5211FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr); 1722 rScaledPwr = ar5211GetInterpolatedValue(pcdacValue, 1723 lrPcdac, urPcdac, lPwr, uPwr, 0); 1724 1725 return ar5211GetInterpolatedValue(channel, lFreq, rFreq, 1726 lScaledPwr, rScaledPwr, 0); 1727 } 1728 1729 /* 1730 * Find the value from the calibrated source data struct 1731 */ 1732 HAL_BOOL 1733 ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue, 1734 const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue) 1735 { 1736 const DATA_PER_CHANNEL *pChannelData; 1737 const uint16_t *pPcdac; 1738 uint16_t i, j; 1739 1740 pChannelData = pSrcStruct->pDataPerChannel; 1741 for (i = 0; i < pSrcStruct->numChannels; i++ ) { 1742 if (pChannelData->channelValue == channel) { 1743 pPcdac = pChannelData->PcdacValues; 1744 for (j = 0; j < pChannelData->numPcdacValues; j++ ) { 1745 if (*pPcdac == pcdacValue) { 1746 *powerValue = pChannelData->PwrValues[j]; 1747 return AH_TRUE; 1748 } 1749 pPcdac++; 1750 } 1751 } 1752 pChannelData++; 1753 } 1754 return AH_FALSE; 1755 } 1756 1757 /* 1758 * Returns interpolated or the scaled up interpolated value 1759 */ 1760 uint16_t 1761 ar5211GetInterpolatedValue(uint16_t target, 1762 uint16_t srcLeft, uint16_t srcRight, 1763 uint16_t targetLeft, uint16_t targetRight, 1764 HAL_BOOL scaleUp) 1765 { 1766 uint16_t rv; 1767 int16_t lRatio; 1768 uint16_t scaleValue = EEP_SCALE; 1769 1770 /* to get an accurate ratio, always scale, if want to scale, then don't scale back down */ 1771 if ((targetLeft * targetRight) == 0) 1772 return 0; 1773 if (scaleUp) 1774 scaleValue = 1; 1775 1776 if (srcRight != srcLeft) { 1777 /* 1778 * Note the ratio always need to be scaled, 1779 * since it will be a fraction. 1780 */ 1781 lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft); 1782 if (lRatio < 0) { 1783 /* Return as Left target if value would be negative */ 1784 rv = targetLeft * (scaleUp ? EEP_SCALE : 1); 1785 } else if (lRatio > EEP_SCALE) { 1786 /* Return as Right target if Ratio is greater than 100% (SCALE) */ 1787 rv = targetRight * (scaleUp ? EEP_SCALE : 1); 1788 } else { 1789 rv = (lRatio * targetRight + (EEP_SCALE - lRatio) * 1790 targetLeft) / scaleValue; 1791 } 1792 } else { 1793 rv = targetLeft; 1794 if (scaleUp) 1795 rv *= EEP_SCALE; 1796 } 1797 return rv; 1798 } 1799 1800 /* 1801 * Look for value being within 0.1 of the search values 1802 * however, NDIS can't do float calculations, so multiply everything 1803 * up by EEP_SCALE so can do integer arithmatic 1804 * 1805 * INPUT value -value to search for 1806 * INPUT pList -ptr to the list to search 1807 * INPUT listSize -number of entries in list 1808 * OUTPUT pLowerValue -return the lower value 1809 * OUTPUT pUpperValue -return the upper value 1810 */ 1811 void 1812 ar5211GetLowerUpperValues(uint16_t value, 1813 const uint16_t *pList, uint16_t listSize, 1814 uint16_t *pLowerValue, uint16_t *pUpperValue) 1815 { 1816 const uint16_t listEndValue = *(pList + listSize - 1); 1817 uint32_t target = value * EEP_SCALE; 1818 int i; 1819 1820 /* 1821 * See if value is lower than the first value in the list 1822 * if so return first value 1823 */ 1824 if (target < (uint32_t)(*pList * EEP_SCALE - EEP_DELTA)) { 1825 *pLowerValue = *pList; 1826 *pUpperValue = *pList; 1827 return; 1828 } 1829 1830 /* 1831 * See if value is greater than last value in list 1832 * if so return last value 1833 */ 1834 if (target > (uint32_t)(listEndValue * EEP_SCALE + EEP_DELTA)) { 1835 *pLowerValue = listEndValue; 1836 *pUpperValue = listEndValue; 1837 return; 1838 } 1839 1840 /* look for value being near or between 2 values in list */ 1841 for (i = 0; i < listSize; i++) { 1842 /* 1843 * If value is close to the current value of the list 1844 * then target is not between values, it is one of the values 1845 */ 1846 if (abs(pList[i] * EEP_SCALE - (int32_t) target) < EEP_DELTA) { 1847 *pLowerValue = pList[i]; 1848 *pUpperValue = pList[i]; 1849 return; 1850 } 1851 1852 /* 1853 * Look for value being between current value and next value 1854 * if so return these 2 values 1855 */ 1856 if (target < (uint32_t)(pList[i + 1] * EEP_SCALE - EEP_DELTA)) { 1857 *pLowerValue = pList[i]; 1858 *pUpperValue = pList[i + 1]; 1859 return; 1860 } 1861 } 1862 } 1863 1864 /* 1865 * Get the upper and lower pcdac given the channel and the pcdac 1866 * used in the search 1867 */ 1868 void 1869 ar5211GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel, 1870 const PCDACS_EEPROM *pSrcStruct, 1871 uint16_t *pLowerPcdac, uint16_t *pUpperPcdac) 1872 { 1873 const DATA_PER_CHANNEL *pChannelData; 1874 int i; 1875 1876 /* Find the channel information */ 1877 pChannelData = pSrcStruct->pDataPerChannel; 1878 for (i = 0; i < pSrcStruct->numChannels; i++) { 1879 if (pChannelData->channelValue == channel) 1880 break; 1881 pChannelData++; 1882 } 1883 ar5211GetLowerUpperValues(pcdac, pChannelData->PcdacValues, 1884 pChannelData->numPcdacValues, pLowerPcdac, pUpperPcdac); 1885 } 1886 1887 #define DYN_ADJ_UP_MARGIN 15 1888 #define DYN_ADJ_LO_MARGIN 20 1889 1890 static const GAIN_OPTIMIZATION_LADDER gainLadder = { 1891 9, /* numStepsInLadder */ 1892 4, /* defaultStepNum */ 1893 { { {4, 1, 1, 1}, 6, "FG8"}, 1894 { {4, 0, 1, 1}, 4, "FG7"}, 1895 { {3, 1, 1, 1}, 3, "FG6"}, 1896 { {4, 0, 0, 1}, 1, "FG5"}, 1897 { {4, 1, 1, 0}, 0, "FG4"}, /* noJack */ 1898 { {4, 0, 1, 0}, -2, "FG3"}, /* halfJack */ 1899 { {3, 1, 1, 0}, -3, "FG2"}, /* clip3 */ 1900 { {4, 0, 0, 0}, -4, "FG1"}, /* noJack */ 1901 { {2, 1, 1, 0}, -6, "FG0"} /* clip2 */ 1902 } 1903 }; 1904 1905 /* 1906 * Initialize the gain structure to good values 1907 */ 1908 void 1909 ar5211InitializeGainValues(struct ath_hal *ah) 1910 { 1911 struct ath_hal_5211 *ahp = AH5211(ah); 1912 GAIN_VALUES *gv = &ahp->ah_gainValues; 1913 1914 /* initialize gain optimization values */ 1915 gv->currStepNum = gainLadder.defaultStepNum; 1916 gv->currStep = &gainLadder.optStep[gainLadder.defaultStepNum]; 1917 gv->active = AH_TRUE; 1918 gv->loTrig = 20; 1919 gv->hiTrig = 35; 1920 } 1921 1922 static HAL_BOOL 1923 ar5211InvalidGainReadback(struct ath_hal *ah, GAIN_VALUES *gv) 1924 { 1925 const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan; 1926 uint32_t gStep, g; 1927 uint32_t L1, L2, L3, L4; 1928 1929 if (IEEE80211_IS_CHAN_CCK(chan)) { 1930 gStep = 0x18; 1931 L1 = 0; 1932 L2 = gStep + 4; 1933 L3 = 0x40; 1934 L4 = L3 + 50; 1935 1936 gv->loTrig = L1; 1937 gv->hiTrig = L4+5; 1938 } else { 1939 gStep = 0x3f; 1940 L1 = 0; 1941 L2 = 50; 1942 L3 = L1; 1943 L4 = L3 + 50; 1944 1945 gv->loTrig = L1 + DYN_ADJ_LO_MARGIN; 1946 gv->hiTrig = L4 - DYN_ADJ_UP_MARGIN; 1947 } 1948 g = gv->currGain; 1949 1950 return !((g >= L1 && g<= L2) || (g >= L3 && g <= L4)); 1951 } 1952 1953 /* 1954 * Enable the probe gain check on the next packet 1955 */ 1956 static void 1957 ar5211RequestRfgain(struct ath_hal *ah) 1958 { 1959 struct ath_hal_5211 *ahp = AH5211(ah); 1960 1961 /* Enable the gain readback probe */ 1962 OS_REG_WRITE(ah, AR_PHY_PAPD_PROBE, 1963 SM(ahp->ah_tx6PowerInHalfDbm, AR_PHY_PAPD_PROBE_POWERTX) 1964 | AR_PHY_PAPD_PROBE_NEXT_TX); 1965 1966 ahp->ah_rfgainState = HAL_RFGAIN_READ_REQUESTED; 1967 } 1968 1969 /* 1970 * Exported call to check for a recent gain reading and return 1971 * the current state of the thermal calibration gain engine. 1972 */ 1973 HAL_RFGAIN 1974 ar5211GetRfgain(struct ath_hal *ah) 1975 { 1976 struct ath_hal_5211 *ahp = AH5211(ah); 1977 GAIN_VALUES *gv = &ahp->ah_gainValues; 1978 uint32_t rddata; 1979 1980 if (!gv->active) 1981 return HAL_RFGAIN_INACTIVE; 1982 1983 if (ahp->ah_rfgainState == HAL_RFGAIN_READ_REQUESTED) { 1984 /* Caller had asked to setup a new reading. Check it. */ 1985 rddata = OS_REG_READ(ah, AR_PHY_PAPD_PROBE); 1986 1987 if ((rddata & AR_PHY_PAPD_PROBE_NEXT_TX) == 0) { 1988 /* bit got cleared, we have a new reading. */ 1989 gv->currGain = rddata >> AR_PHY_PAPD_PROBE_GAINF_S; 1990 /* inactive by default */ 1991 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE; 1992 1993 if (!ar5211InvalidGainReadback(ah, gv) && 1994 ar5211IsGainAdjustNeeded(ah, gv) && 1995 ar5211AdjustGain(ah, gv) > 0) { 1996 /* 1997 * Change needed. Copy ladder info 1998 * into eeprom info. 1999 */ 2000 ar5211SetRfgain(ah, gv); 2001 ahp->ah_rfgainState = HAL_RFGAIN_NEED_CHANGE; 2002 } 2003 } 2004 } 2005 return ahp->ah_rfgainState; 2006 } 2007 2008 /* 2009 * Check to see if our readback gain level sits within the linear 2010 * region of our current variable attenuation window 2011 */ 2012 static HAL_BOOL 2013 ar5211IsGainAdjustNeeded(struct ath_hal *ah, const GAIN_VALUES *gv) 2014 { 2015 return (gv->currGain <= gv->loTrig || gv->currGain >= gv->hiTrig); 2016 } 2017 2018 /* 2019 * Move the rabbit ears in the correct direction. 2020 */ 2021 static int32_t 2022 ar5211AdjustGain(struct ath_hal *ah, GAIN_VALUES *gv) 2023 { 2024 /* return > 0 for valid adjustments. */ 2025 if (!gv->active) 2026 return -1; 2027 2028 gv->currStep = &gainLadder.optStep[gv->currStepNum]; 2029 if (gv->currGain >= gv->hiTrig) { 2030 if (gv->currStepNum == 0) { 2031 HALDEBUG(ah, HAL_DEBUG_RFPARAM, 2032 "%s: Max gain limit.\n", __func__); 2033 return -1; 2034 } 2035 HALDEBUG(ah, HAL_DEBUG_RFPARAM, 2036 "%s: Adding gain: currG=%d [%s] --> ", 2037 __func__, gv->currGain, gv->currStep->stepName); 2038 gv->targetGain = gv->currGain; 2039 while (gv->targetGain >= gv->hiTrig && gv->currStepNum > 0) { 2040 gv->targetGain -= 2 * (gainLadder.optStep[--(gv->currStepNum)].stepGain - 2041 gv->currStep->stepGain); 2042 gv->currStep = &gainLadder.optStep[gv->currStepNum]; 2043 } 2044 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n", 2045 gv->targetGain, gv->currStep->stepName); 2046 return 1; 2047 } 2048 if (gv->currGain <= gv->loTrig) { 2049 if (gv->currStepNum == gainLadder.numStepsInLadder-1) { 2050 HALDEBUG(ah, HAL_DEBUG_RFPARAM, 2051 "%s: Min gain limit.\n", __func__); 2052 return -2; 2053 } 2054 HALDEBUG(ah, HAL_DEBUG_RFPARAM, 2055 "%s: Deducting gain: currG=%d [%s] --> ", 2056 __func__, gv->currGain, gv->currStep->stepName); 2057 gv->targetGain = gv->currGain; 2058 while (gv->targetGain <= gv->loTrig && 2059 gv->currStepNum < (gainLadder.numStepsInLadder - 1)) { 2060 gv->targetGain -= 2 * 2061 (gainLadder.optStep[++(gv->currStepNum)].stepGain - gv->currStep->stepGain); 2062 gv->currStep = &gainLadder.optStep[gv->currStepNum]; 2063 } 2064 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n", 2065 gv->targetGain, gv->currStep->stepName); 2066 return 2; 2067 } 2068 return 0; /* caller didn't call needAdjGain first */ 2069 } 2070 2071 /* 2072 * Adjust the 5GHz EEPROM information with the desired calibration values. 2073 */ 2074 static void 2075 ar5211SetRfgain(struct ath_hal *ah, const GAIN_VALUES *gv) 2076 { 2077 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 2078 2079 if (!gv->active) 2080 return; 2081 ee->ee_cornerCal.clip = gv->currStep->paramVal[0]; /* bb_tx_clip */ 2082 ee->ee_cornerCal.pd90 = gv->currStep->paramVal[1]; /* rf_pwd_90 */ 2083 ee->ee_cornerCal.pd84 = gv->currStep->paramVal[2]; /* rf_pwd_84 */ 2084 ee->ee_cornerCal.gSel = gv->currStep->paramVal[3]; /* rf_rfgainsel */ 2085 } 2086 2087 static void 2088 ar5211SetOperatingMode(struct ath_hal *ah, int opmode) 2089 { 2090 struct ath_hal_5211 *ahp = AH5211(ah); 2091 uint32_t val; 2092 2093 val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff; 2094 switch (opmode) { 2095 case HAL_M_HOSTAP: 2096 OS_REG_WRITE(ah, AR_STA_ID1, val 2097 | AR_STA_ID1_STA_AP 2098 | AR_STA_ID1_RTS_USE_DEF 2099 | ahp->ah_staId1Defaults); 2100 break; 2101 case HAL_M_IBSS: 2102 OS_REG_WRITE(ah, AR_STA_ID1, val 2103 | AR_STA_ID1_ADHOC 2104 | AR_STA_ID1_DESC_ANTENNA 2105 | ahp->ah_staId1Defaults); 2106 break; 2107 case HAL_M_STA: 2108 case HAL_M_MONITOR: 2109 OS_REG_WRITE(ah, AR_STA_ID1, val 2110 | AR_STA_ID1_DEFAULT_ANTENNA 2111 | ahp->ah_staId1Defaults); 2112 break; 2113 } 2114 } 2115 2116 void 2117 ar5211SetPCUConfig(struct ath_hal *ah) 2118 { 2119 ar5211SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode); 2120 } 2121