1 /* 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * Copyright (c) 2002-2006 Atheros Communications, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 * 17 * $FreeBSD$ 18 */ 19 #include "opt_ah.h" 20 21 /* 22 * Chips specific device attachment and device info collection 23 * Connects Init Reg Vectors, EEPROM Data, and device Functions. 24 */ 25 #include "ah.h" 26 #include "ah_internal.h" 27 #include "ah_devid.h" 28 29 #include "ar5211/ar5211.h" 30 #include "ar5211/ar5211reg.h" 31 #include "ar5211/ar5211phy.h" 32 33 #include "ah_eeprom_v3.h" 34 35 /* Add static register initialization vectors */ 36 #include "ar5211/boss.ini" 37 38 /* 39 * Structure to hold 11b tuning information for Beanie/Sombrero 40 * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12 41 */ 42 typedef struct { 43 uint32_t refClkSel; /* reference clock, 1 for 16 MHz */ 44 uint32_t channelSelect; /* P[7:4]S[3:0] bits */ 45 uint16_t channel5111; /* 11a channel for 5111 */ 46 } CHAN_INFO_2GHZ; 47 48 #define CI_2GHZ_INDEX_CORRECTION 19 49 static const CHAN_INFO_2GHZ chan2GHzData[] = { 50 { 1, 0x46, 96 }, /* 2312 -19 */ 51 { 1, 0x46, 97 }, /* 2317 -18 */ 52 { 1, 0x46, 98 }, /* 2322 -17 */ 53 { 1, 0x46, 99 }, /* 2327 -16 */ 54 { 1, 0x46, 100 }, /* 2332 -15 */ 55 { 1, 0x46, 101 }, /* 2337 -14 */ 56 { 1, 0x46, 102 }, /* 2342 -13 */ 57 { 1, 0x46, 103 }, /* 2347 -12 */ 58 { 1, 0x46, 104 }, /* 2352 -11 */ 59 { 1, 0x46, 105 }, /* 2357 -10 */ 60 { 1, 0x46, 106 }, /* 2362 -9 */ 61 { 1, 0x46, 107 }, /* 2367 -8 */ 62 { 1, 0x46, 108 }, /* 2372 -7 */ 63 /* index -6 to 0 are pad to make this a nolookup table */ 64 { 1, 0x46, 116 }, /* -6 */ 65 { 1, 0x46, 116 }, /* -5 */ 66 { 1, 0x46, 116 }, /* -4 */ 67 { 1, 0x46, 116 }, /* -3 */ 68 { 1, 0x46, 116 }, /* -2 */ 69 { 1, 0x46, 116 }, /* -1 */ 70 { 1, 0x46, 116 }, /* 0 */ 71 { 1, 0x46, 116 }, /* 2412 1 */ 72 { 1, 0x46, 117 }, /* 2417 2 */ 73 { 1, 0x46, 118 }, /* 2422 3 */ 74 { 1, 0x46, 119 }, /* 2427 4 */ 75 { 1, 0x46, 120 }, /* 2432 5 */ 76 { 1, 0x46, 121 }, /* 2437 6 */ 77 { 1, 0x46, 122 }, /* 2442 7 */ 78 { 1, 0x46, 123 }, /* 2447 8 */ 79 { 1, 0x46, 124 }, /* 2452 9 */ 80 { 1, 0x46, 125 }, /* 2457 10 */ 81 { 1, 0x46, 126 }, /* 2462 11 */ 82 { 1, 0x46, 127 }, /* 2467 12 */ 83 { 1, 0x46, 128 }, /* 2472 13 */ 84 { 1, 0x44, 124 }, /* 2484 14 */ 85 { 1, 0x46, 136 }, /* 2512 15 */ 86 { 1, 0x46, 140 }, /* 2532 16 */ 87 { 1, 0x46, 144 }, /* 2552 17 */ 88 { 1, 0x46, 148 }, /* 2572 18 */ 89 { 1, 0x46, 152 }, /* 2592 19 */ 90 { 1, 0x46, 156 }, /* 2612 20 */ 91 { 1, 0x46, 160 }, /* 2632 21 */ 92 { 1, 0x46, 164 }, /* 2652 22 */ 93 { 1, 0x46, 168 }, /* 2672 23 */ 94 { 1, 0x46, 172 }, /* 2692 24 */ 95 { 1, 0x46, 176 }, /* 2712 25 */ 96 { 1, 0x46, 180 } /* 2732 26 */ 97 }; 98 99 /* Power timeouts in usec to wait for chip to wake-up. */ 100 #define POWER_UP_TIME 2000 101 102 #define DELAY_PLL_SETTLE 300 /* 300 us */ 103 #define DELAY_BASE_ACTIVATE 100 /* 100 us */ 104 105 #define NUM_RATES 8 106 107 static HAL_BOOL ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask); 108 static HAL_BOOL ar5211SetChannel(struct ath_hal *, 109 const struct ieee80211_channel *); 110 static int16_t ar5211RunNoiseFloor(struct ath_hal *, 111 uint8_t runTime, int16_t startingNF); 112 static HAL_BOOL ar5211IsNfGood(struct ath_hal *, 113 struct ieee80211_channel *chan); 114 static HAL_BOOL ar5211SetRf6and7(struct ath_hal *, 115 const struct ieee80211_channel *chan); 116 static HAL_BOOL ar5211SetBoardValues(struct ath_hal *, 117 const struct ieee80211_channel *chan); 118 static void ar5211SetPowerTable(struct ath_hal *, 119 PCDACS_EEPROM *pSrcStruct, uint16_t channel); 120 static HAL_BOOL ar5211SetTransmitPower(struct ath_hal *, 121 const struct ieee80211_channel *); 122 static void ar5211SetRateTable(struct ath_hal *, 123 RD_EDGES_POWER *pRdEdgesPower, TRGT_POWER_INFO *pPowerInfo, 124 uint16_t numChannels, const struct ieee80211_channel *chan); 125 static uint16_t ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue, 126 const PCDACS_EEPROM *pSrcStruct); 127 static HAL_BOOL ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue, 128 const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue); 129 static uint16_t ar5211GetInterpolatedValue(uint16_t target, 130 uint16_t srcLeft, uint16_t srcRight, 131 uint16_t targetLeft, uint16_t targetRight, HAL_BOOL scaleUp); 132 static void ar5211GetLowerUpperValues(uint16_t value, 133 const uint16_t *pList, uint16_t listSize, 134 uint16_t *pLowerValue, uint16_t *pUpperValue); 135 static void ar5211GetLowerUpperPcdacs(uint16_t pcdac, 136 uint16_t channel, const PCDACS_EEPROM *pSrcStruct, 137 uint16_t *pLowerPcdac, uint16_t *pUpperPcdac); 138 139 static void ar5211SetRfgain(struct ath_hal *, const GAIN_VALUES *); 140 static void ar5211RequestRfgain(struct ath_hal *); 141 static HAL_BOOL ar5211InvalidGainReadback(struct ath_hal *, GAIN_VALUES *); 142 static HAL_BOOL ar5211IsGainAdjustNeeded(struct ath_hal *, const GAIN_VALUES *); 143 static int32_t ar5211AdjustGain(struct ath_hal *, GAIN_VALUES *); 144 static void ar5211SetOperatingMode(struct ath_hal *, int opmode); 145 146 /* 147 * Places the device in and out of reset and then places sane 148 * values in the registers based on EEPROM config, initialization 149 * vectors (as determined by the mode), and station configuration 150 * 151 * bChannelChange is used to preserve DMA/PCU registers across 152 * a HW Reset during channel change. 153 */ 154 HAL_BOOL 155 ar5211Reset(struct ath_hal *ah, HAL_OPMODE opmode, 156 struct ieee80211_channel *chan, HAL_BOOL bChannelChange, 157 HAL_STATUS *status) 158 { 159 uint32_t softLedCfg, softLedState; 160 #define N(a) (sizeof (a) /sizeof (a[0])) 161 #define FAIL(_code) do { ecode = _code; goto bad; } while (0) 162 struct ath_hal_5211 *ahp = AH5211(ah); 163 HAL_CHANNEL_INTERNAL *ichan; 164 uint32_t i, ledstate; 165 HAL_STATUS ecode; 166 int q; 167 168 uint32_t data, synthDelay; 169 uint32_t macStaId1; 170 uint16_t modesIndex = 0, freqIndex = 0; 171 uint32_t saveFrameSeqCount[AR_NUM_DCU]; 172 uint32_t saveTsfLow = 0, saveTsfHigh = 0; 173 uint32_t saveDefAntenna; 174 175 HALDEBUG(ah, HAL_DEBUG_RESET, 176 "%s: opmode %u channel %u/0x%x %s channel\n", 177 __func__, opmode, chan->ic_freq, chan->ic_flags, 178 bChannelChange ? "change" : "same"); 179 180 OS_MARK(ah, AH_MARK_RESET, bChannelChange); 181 /* 182 * Map public channel to private. 183 */ 184 ichan = ath_hal_checkchannel(ah, chan); 185 if (ichan == AH_NULL) 186 FAIL(HAL_EINVAL); 187 switch (opmode) { 188 case HAL_M_STA: 189 case HAL_M_IBSS: 190 case HAL_M_HOSTAP: 191 case HAL_M_MONITOR: 192 break; 193 default: 194 HALDEBUG(ah, HAL_DEBUG_ANY, 195 "%s: invalid operating mode %u\n", __func__, opmode); 196 FAIL(HAL_EINVAL); 197 break; 198 } 199 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3); 200 201 /* Preserve certain DMA hardware registers on a channel change */ 202 if (bChannelChange) { 203 /* 204 * Need to save/restore the TSF because of an issue 205 * that accelerates the TSF during a chip reset. 206 * 207 * We could use system timer routines to more 208 * accurately restore the TSF, but 209 * 1. Timer routines on certain platforms are 210 * not accurate enough (e.g. 1 ms resolution). 211 * 2. It would still not be accurate. 212 * 213 * The most important aspect of this workaround, 214 * is that, after reset, the TSF is behind 215 * other STAs TSFs. This will allow the STA to 216 * properly resynchronize its TSF in adhoc mode. 217 */ 218 saveTsfLow = OS_REG_READ(ah, AR_TSF_L32); 219 saveTsfHigh = OS_REG_READ(ah, AR_TSF_U32); 220 221 /* Read frame sequence count */ 222 if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) { 223 saveFrameSeqCount[0] = OS_REG_READ(ah, AR_D0_SEQNUM); 224 } else { 225 for (i = 0; i < AR_NUM_DCU; i++) 226 saveFrameSeqCount[i] = OS_REG_READ(ah, AR_DSEQNUM(i)); 227 } 228 if (!IEEE80211_IS_CHAN_DFS(chan)) 229 chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT; 230 } 231 232 /* 233 * Preserve the antenna on a channel change 234 */ 235 saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA); 236 if (saveDefAntenna == 0) 237 saveDefAntenna = 1; 238 239 /* Save hardware flag before chip reset clears the register */ 240 macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B; 241 242 /* Save led state from pci config register */ 243 ledstate = OS_REG_READ(ah, AR_PCICFG) & 244 (AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK | 245 AR_PCICFG_LEDSLOW); 246 softLedCfg = OS_REG_READ(ah, AR_GPIOCR); 247 softLedState = OS_REG_READ(ah, AR_GPIODO); 248 249 if (!ar5211ChipReset(ah, chan)) { 250 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__); 251 FAIL(HAL_EIO); 252 } 253 254 /* Setup the indices for the next set of register array writes */ 255 if (IEEE80211_IS_CHAN_5GHZ(chan)) { 256 freqIndex = 1; 257 if (IEEE80211_IS_CHAN_TURBO(chan)) 258 modesIndex = 2; 259 else if (IEEE80211_IS_CHAN_A(chan)) 260 modesIndex = 1; 261 else { 262 HALDEBUG(ah, HAL_DEBUG_ANY, 263 "%s: invalid channel %u/0x%x\n", 264 __func__, chan->ic_freq, chan->ic_flags); 265 FAIL(HAL_EINVAL); 266 } 267 } else { 268 freqIndex = 2; 269 if (IEEE80211_IS_CHAN_B(chan)) 270 modesIndex = 3; 271 else if (IEEE80211_IS_CHAN_PUREG(chan)) 272 modesIndex = 4; 273 else { 274 HALDEBUG(ah, HAL_DEBUG_ANY, 275 "%s: invalid channel %u/0x%x\n", 276 __func__, chan->ic_freq, chan->ic_flags); 277 FAIL(HAL_EINVAL); 278 } 279 } 280 281 /* Set correct Baseband to analog shift setting to access analog chips. */ 282 if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) { 283 OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000007); 284 } else { 285 OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000047); 286 } 287 288 /* Write parameters specific to AR5211 */ 289 if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) { 290 if (IEEE80211_IS_CHAN_2GHZ(chan) && 291 AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1) { 292 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 293 uint32_t ob2GHz, db2GHz; 294 295 if (IEEE80211_IS_CHAN_CCK(chan)) { 296 ob2GHz = ee->ee_ob2GHz[0]; 297 db2GHz = ee->ee_db2GHz[0]; 298 } else { 299 ob2GHz = ee->ee_ob2GHz[1]; 300 db2GHz = ee->ee_db2GHz[1]; 301 } 302 ob2GHz = ath_hal_reverseBits(ob2GHz, 3); 303 db2GHz = ath_hal_reverseBits(db2GHz, 3); 304 ar5211Mode2_4[25][freqIndex] = 305 (ar5211Mode2_4[25][freqIndex] & ~0xC0) | 306 ((ob2GHz << 6) & 0xC0); 307 ar5211Mode2_4[26][freqIndex] = 308 (ar5211Mode2_4[26][freqIndex] & ~0x0F) | 309 (((ob2GHz >> 2) & 0x1) | 310 ((db2GHz << 1) & 0x0E)); 311 } 312 for (i = 0; i < N(ar5211Mode2_4); i++) 313 OS_REG_WRITE(ah, ar5211Mode2_4[i][0], 314 ar5211Mode2_4[i][freqIndex]); 315 } 316 317 /* Write the analog registers 6 and 7 before other config */ 318 ar5211SetRf6and7(ah, chan); 319 320 /* Write registers that vary across all modes */ 321 for (i = 0; i < N(ar5211Modes); i++) 322 OS_REG_WRITE(ah, ar5211Modes[i][0], ar5211Modes[i][modesIndex]); 323 324 /* Write RFGain Parameters that differ between 2.4 and 5 GHz */ 325 for (i = 0; i < N(ar5211BB_RfGain); i++) 326 OS_REG_WRITE(ah, ar5211BB_RfGain[i][0], ar5211BB_RfGain[i][freqIndex]); 327 328 /* Write Common Array Parameters */ 329 for (i = 0; i < N(ar5211Common); i++) { 330 uint32_t reg = ar5211Common[i][0]; 331 /* On channel change, don't reset the PCU registers */ 332 if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000))) 333 OS_REG_WRITE(ah, reg, ar5211Common[i][1]); 334 } 335 336 /* Fix pre-AR5211 register values, this includes AR5311s. */ 337 if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) { 338 /* 339 * The TX and RX latency values have changed locations 340 * within the USEC register in AR5211. Since they're 341 * set via the .ini, for both AR5211 and AR5311, they 342 * are written properly here for AR5311. 343 */ 344 data = OS_REG_READ(ah, AR_USEC); 345 /* Must be 0 for proper write in AR5311 */ 346 HALASSERT((data & 0x00700000) == 0); 347 OS_REG_WRITE(ah, AR_USEC, 348 (data & (AR_USEC_M | AR_USEC_32_M | AR5311_USEC_TX_LAT_M)) | 349 ((29 << AR5311_USEC_RX_LAT_S) & AR5311_USEC_RX_LAT_M)); 350 /* The following registers exist only on AR5311. */ 351 OS_REG_WRITE(ah, AR5311_QDCLKGATE, 0); 352 353 /* Set proper ADC & DAC delays for AR5311. */ 354 OS_REG_WRITE(ah, 0x00009878, 0x00000008); 355 356 /* Enable the PCU FIFO corruption ECO on AR5311. */ 357 OS_REG_WRITE(ah, AR_DIAG_SW, 358 OS_REG_READ(ah, AR_DIAG_SW) | AR5311_DIAG_SW_USE_ECO); 359 } 360 361 /* Restore certain DMA hardware registers on a channel change */ 362 if (bChannelChange) { 363 /* Restore TSF */ 364 OS_REG_WRITE(ah, AR_TSF_L32, saveTsfLow); 365 OS_REG_WRITE(ah, AR_TSF_U32, saveTsfHigh); 366 367 if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) { 368 OS_REG_WRITE(ah, AR_D0_SEQNUM, saveFrameSeqCount[0]); 369 } else { 370 for (i = 0; i < AR_NUM_DCU; i++) 371 OS_REG_WRITE(ah, AR_DSEQNUM(i), saveFrameSeqCount[i]); 372 } 373 } 374 375 OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr)); 376 OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4) 377 | macStaId1 378 ); 379 ar5211SetOperatingMode(ah, opmode); 380 381 /* Restore previous led state */ 382 OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate); 383 OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg); 384 OS_REG_WRITE(ah, AR_GPIODO, softLedState); 385 386 /* Restore previous antenna */ 387 OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); 388 389 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid)); 390 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4)); 391 392 /* Restore bmiss rssi & count thresholds */ 393 OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr); 394 395 OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */ 396 397 /* 398 * for pre-Production Oahu only. 399 * Disable clock gating in all DMA blocks. Helps when using 400 * 11B and AES but results in higher power consumption. 401 */ 402 if (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_OAHU && 403 AH_PRIVATE(ah)->ah_macRev < AR_SREV_OAHU_PROD) { 404 OS_REG_WRITE(ah, AR_CFG, 405 OS_REG_READ(ah, AR_CFG) | AR_CFG_CLK_GATE_DIS); 406 } 407 408 /* Setup the transmit power values. */ 409 if (!ar5211SetTransmitPower(ah, chan)) { 410 HALDEBUG(ah, HAL_DEBUG_ANY, 411 "%s: error init'ing transmit power\n", __func__); 412 FAIL(HAL_EIO); 413 } 414 415 /* 416 * Configurable OFDM spoofing for 11n compatibility; used 417 * only when operating in station mode. 418 */ 419 if (opmode != HAL_M_HOSTAP && 420 (AH_PRIVATE(ah)->ah_11nCompat & HAL_DIAG_11N_SERVICES) != 0) { 421 /* NB: override the .ini setting */ 422 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, 423 AR_PHY_FRAME_CTL_ERR_SERV, 424 MS(AH_PRIVATE(ah)->ah_11nCompat, HAL_DIAG_11N_SERVICES)&1); 425 } 426 427 /* Setup board specific options for EEPROM version 3 */ 428 ar5211SetBoardValues(ah, chan); 429 430 if (!ar5211SetChannel(ah, chan)) { 431 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n", 432 __func__); 433 FAIL(HAL_EIO); 434 } 435 436 /* Activate the PHY */ 437 if (AH_PRIVATE(ah)->ah_devid == AR5211_FPGA11B && 438 IEEE80211_IS_CHAN_2GHZ(chan)) 439 OS_REG_WRITE(ah, 0xd808, 0x502); /* required for FPGA */ 440 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); 441 442 /* 443 * Wait for the frequency synth to settle (synth goes on 444 * via AR_PHY_ACTIVE_EN). Read the phy active delay register. 445 * Value is in 100ns increments. 446 */ 447 data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_M; 448 if (IEEE80211_IS_CHAN_CCK(chan)) { 449 synthDelay = (4 * data) / 22; 450 } else { 451 synthDelay = data / 10; 452 } 453 /* 454 * There is an issue if the AP starts the calibration before 455 * the baseband timeout completes. This could result in the 456 * rxclear false triggering. Add an extra delay to ensure this 457 * this does not happen. 458 */ 459 OS_DELAY(synthDelay + DELAY_BASE_ACTIVATE); 460 461 /* Calibrate the AGC and wait for completion. */ 462 OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL, 463 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL); 464 (void) ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0); 465 466 /* Perform noise floor and set status */ 467 if (!ar5211CalNoiseFloor(ah, chan)) { 468 if (!IEEE80211_IS_CHAN_CCK(chan)) 469 chan->ic_state |= IEEE80211_CHANSTATE_CWINT; 470 HALDEBUG(ah, HAL_DEBUG_ANY, 471 "%s: noise floor calibration failed\n", __func__); 472 FAIL(HAL_EIO); 473 } 474 475 /* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */ 476 if (ahp->ah_calibrationTime != 0) { 477 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, 478 AR_PHY_TIMING_CTRL4_DO_IQCAL | (INIT_IQCAL_LOG_COUNT_MAX << AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX_S)); 479 ahp->ah_bIQCalibration = AH_TRUE; 480 } 481 482 /* set 1:1 QCU to DCU mapping for all queues */ 483 for (q = 0; q < AR_NUM_DCU; q++) 484 OS_REG_WRITE(ah, AR_DQCUMASK(q), 1<<q); 485 486 for (q = 0; q < HAL_NUM_TX_QUEUES; q++) 487 ar5211ResetTxQueue(ah, q); 488 489 /* Setup QCU0 transmit interrupt masks (TX_ERR, TX_OK, TX_DESC, TX_URN) */ 490 OS_REG_WRITE(ah, AR_IMR_S0, 491 (AR_IMR_S0_QCU_TXOK & AR_QCU_0) | 492 (AR_IMR_S0_QCU_TXDESC & (AR_QCU_0<<AR_IMR_S0_QCU_TXDESC_S))); 493 OS_REG_WRITE(ah, AR_IMR_S1, (AR_IMR_S1_QCU_TXERR & AR_QCU_0)); 494 OS_REG_WRITE(ah, AR_IMR_S2, (AR_IMR_S2_QCU_TXURN & AR_QCU_0)); 495 496 /* 497 * GBL_EIFS must always be written after writing 498 * to any QCUMASK register. 499 */ 500 OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, OS_REG_READ(ah, AR_D_GBL_IFS_EIFS)); 501 502 /* Now set up the Interrupt Mask Register and save it for future use */ 503 OS_REG_WRITE(ah, AR_IMR, INIT_INTERRUPT_MASK); 504 ahp->ah_maskReg = INIT_INTERRUPT_MASK; 505 506 /* Enable bus error interrupts */ 507 OS_REG_WRITE(ah, AR_IMR_S2, OS_REG_READ(ah, AR_IMR_S2) | 508 AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR); 509 510 /* Enable interrupts specific to AP */ 511 if (opmode == HAL_M_HOSTAP) { 512 OS_REG_WRITE(ah, AR_IMR, OS_REG_READ(ah, AR_IMR) | AR_IMR_MIB); 513 ahp->ah_maskReg |= AR_IMR_MIB; 514 } 515 516 if (AH_PRIVATE(ah)->ah_rfkillEnabled) 517 ar5211EnableRfKill(ah); 518 519 /* 520 * Writing to AR_BEACON will start timers. Hence it should 521 * be the last register to be written. Do not reset tsf, do 522 * not enable beacons at this point, but preserve other values 523 * like beaconInterval. 524 */ 525 OS_REG_WRITE(ah, AR_BEACON, 526 (OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF))); 527 528 /* Restore user-specified slot time and timeouts */ 529 if (ahp->ah_sifstime != (u_int) -1) 530 ar5211SetSifsTime(ah, ahp->ah_sifstime); 531 if (ahp->ah_slottime != (u_int) -1) 532 ar5211SetSlotTime(ah, ahp->ah_slottime); 533 if (ahp->ah_acktimeout != (u_int) -1) 534 ar5211SetAckTimeout(ah, ahp->ah_acktimeout); 535 if (ahp->ah_ctstimeout != (u_int) -1) 536 ar5211SetCTSTimeout(ah, ahp->ah_ctstimeout); 537 if (AH_PRIVATE(ah)->ah_diagreg != 0) 538 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg); 539 540 AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */ 541 542 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__); 543 544 return AH_TRUE; 545 bad: 546 if (status != AH_NULL) 547 *status = ecode; 548 return AH_FALSE; 549 #undef FAIL 550 #undef N 551 } 552 553 /* 554 * Places the PHY and Radio chips into reset. A full reset 555 * must be called to leave this state. The PCI/MAC/PCU are 556 * not placed into reset as we must receive interrupt to 557 * re-enable the hardware. 558 */ 559 HAL_BOOL 560 ar5211PhyDisable(struct ath_hal *ah) 561 { 562 return ar5211SetResetReg(ah, AR_RC_BB); 563 } 564 565 /* 566 * Places all of hardware into reset 567 */ 568 HAL_BOOL 569 ar5211Disable(struct ath_hal *ah) 570 { 571 if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) 572 return AH_FALSE; 573 /* 574 * Reset the HW - PCI must be reset after the rest of the 575 * device has been reset. 576 */ 577 if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI)) 578 return AH_FALSE; 579 OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */ 580 581 return AH_TRUE; 582 } 583 584 /* 585 * Places the hardware into reset and then pulls it out of reset 586 * 587 * Only write the PLL if we're changing to or from CCK mode 588 * 589 * Attach calls with channelFlags = 0, as the coldreset should have 590 * us in the correct mode and we cannot check the hwchannel flags. 591 */ 592 HAL_BOOL 593 ar5211ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan) 594 { 595 if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) 596 return AH_FALSE; 597 598 /* NB: called from attach with chan null */ 599 if (chan != AH_NULL) { 600 /* Set CCK and Turbo modes correctly */ 601 OS_REG_WRITE(ah, AR_PHY_TURBO, IEEE80211_IS_CHAN_TURBO(chan) ? 602 AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT : 0); 603 if (IEEE80211_IS_CHAN_B(chan)) { 604 OS_REG_WRITE(ah, AR5211_PHY_MODE, 605 AR5211_PHY_MODE_CCK | AR5211_PHY_MODE_RF2GHZ); 606 OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_44); 607 /* Wait for the PLL to settle */ 608 OS_DELAY(DELAY_PLL_SETTLE); 609 } else if (AH_PRIVATE(ah)->ah_devid == AR5211_DEVID) { 610 OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_40); 611 OS_DELAY(DELAY_PLL_SETTLE); 612 OS_REG_WRITE(ah, AR5211_PHY_MODE, 613 AR5211_PHY_MODE_OFDM | (IEEE80211_IS_CHAN_2GHZ(chan) ? 614 AR5211_PHY_MODE_RF2GHZ : 615 AR5211_PHY_MODE_RF5GHZ)); 616 } 617 } 618 619 /* 620 * Reset the HW - PCI must be reset after the rest of the 621 * device has been reset 622 */ 623 if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI)) 624 return AH_FALSE; 625 OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */ 626 627 /* Bring out of sleep mode (AGAIN) */ 628 if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) 629 return AH_FALSE; 630 631 /* Clear warm reset register */ 632 return ar5211SetResetReg(ah, 0); 633 } 634 635 /* 636 * Recalibrate the lower PHY chips to account for temperature/environment 637 * changes. 638 */ 639 HAL_BOOL 640 ar5211PerCalibrationN(struct ath_hal *ah, struct ieee80211_channel *chan, 641 u_int chainMask, HAL_BOOL longCal, HAL_BOOL *isCalDone) 642 { 643 struct ath_hal_5211 *ahp = AH5211(ah); 644 HAL_CHANNEL_INTERNAL *ichan; 645 int32_t qCoff, qCoffDenom; 646 uint32_t data; 647 int32_t iqCorrMeas; 648 int32_t iCoff, iCoffDenom; 649 uint32_t powerMeasQ, powerMeasI; 650 651 ichan = ath_hal_checkchannel(ah, chan); 652 if (ichan == AH_NULL) { 653 HALDEBUG(ah, HAL_DEBUG_ANY, 654 "%s: invalid channel %u/0x%x; no mapping\n", 655 __func__, chan->ic_freq, chan->ic_flags); 656 return AH_FALSE; 657 } 658 /* IQ calibration in progress. Check to see if it has finished. */ 659 if (ahp->ah_bIQCalibration && 660 !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) { 661 /* IQ Calibration has finished. */ 662 ahp->ah_bIQCalibration = AH_FALSE; 663 664 /* Read calibration results. */ 665 powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I); 666 powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q); 667 iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS); 668 669 /* 670 * Prescale these values to remove 64-bit operation requirement at the loss 671 * of a little precision. 672 */ 673 iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128; 674 qCoffDenom = powerMeasQ / 64; 675 676 /* Protect against divide-by-0. */ 677 if (iCoffDenom != 0 && qCoffDenom != 0) { 678 iCoff = (-iqCorrMeas) / iCoffDenom; 679 /* IQCORR_Q_I_COFF is a signed 6 bit number */ 680 iCoff = iCoff & 0x3f; 681 682 qCoff = ((int32_t)powerMeasI / qCoffDenom) - 64; 683 /* IQCORR_Q_Q_COFF is a signed 5 bit number */ 684 qCoff = qCoff & 0x1f; 685 686 HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasI = 0x%08x\n", 687 powerMeasI); 688 HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasQ = 0x%08x\n", 689 powerMeasQ); 690 HALDEBUG(ah, HAL_DEBUG_PERCAL, "iqCorrMeas = 0x%08x\n", 691 iqCorrMeas); 692 HALDEBUG(ah, HAL_DEBUG_PERCAL, "iCoff = %d\n", 693 iCoff); 694 HALDEBUG(ah, HAL_DEBUG_PERCAL, "qCoff = %d\n", 695 qCoff); 696 697 /* Write IQ */ 698 data = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) | 699 AR_PHY_TIMING_CTRL4_IQCORR_ENABLE | 700 (((uint32_t)iCoff) << AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF_S) | 701 ((uint32_t)qCoff); 702 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, data); 703 } 704 } 705 *isCalDone = !ahp->ah_bIQCalibration; 706 707 if (longCal) { 708 /* Perform noise floor and set status */ 709 if (!ar5211IsNfGood(ah, chan)) { 710 /* report up and clear internal state */ 711 chan->ic_state |= IEEE80211_CHANSTATE_CWINT; 712 return AH_FALSE; 713 } 714 if (!ar5211CalNoiseFloor(ah, chan)) { 715 /* 716 * Delay 5ms before retrying the noise floor 717 * just to make sure, as we are in an error 718 * condition here. 719 */ 720 OS_DELAY(5000); 721 if (!ar5211CalNoiseFloor(ah, chan)) { 722 if (!IEEE80211_IS_CHAN_CCK(chan)) 723 chan->ic_state |= IEEE80211_CHANSTATE_CWINT; 724 return AH_FALSE; 725 } 726 } 727 ar5211RequestRfgain(ah); 728 } 729 return AH_TRUE; 730 } 731 732 HAL_BOOL 733 ar5211PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan, 734 HAL_BOOL *isIQdone) 735 { 736 return ar5211PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone); 737 } 738 739 HAL_BOOL 740 ar5211ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan) 741 { 742 /* XXX */ 743 return AH_TRUE; 744 } 745 746 /* 747 * Writes the given reset bit mask into the reset register 748 */ 749 static HAL_BOOL 750 ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask) 751 { 752 uint32_t mask = resetMask ? resetMask : ~0; 753 HAL_BOOL rt; 754 755 (void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */ 756 OS_REG_WRITE(ah, AR_RC, resetMask); 757 758 /* need to wait at least 128 clocks when reseting PCI before read */ 759 OS_DELAY(15); 760 761 resetMask &= AR_RC_MAC | AR_RC_BB; 762 mask &= AR_RC_MAC | AR_RC_BB; 763 rt = ath_hal_wait(ah, AR_RC, mask, resetMask); 764 if ((resetMask & AR_RC_MAC) == 0) { 765 if (isBigEndian()) { 766 /* 767 * Set CFG, little-endian for register 768 * and descriptor accesses. 769 */ 770 mask = INIT_CONFIG_STATUS | 771 AR_CFG_SWTD | AR_CFG_SWRD | AR_CFG_SWRG; 772 OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask)); 773 } else 774 OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS); 775 } 776 return rt; 777 } 778 779 /* 780 * Takes the MHz channel value and sets the Channel value 781 * 782 * ASSUMES: Writes enabled to analog bus before AGC is active 783 * or by disabling the AGC. 784 */ 785 static HAL_BOOL 786 ar5211SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan) 787 { 788 uint32_t refClk, reg32, data2111; 789 int16_t chan5111, chanIEEE; 790 791 chanIEEE = chan->ic_ieee; 792 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 793 const CHAN_INFO_2GHZ* ci = 794 &chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION]; 795 796 data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff) 797 << 5) 798 | (ci->refClkSel << 4); 799 chan5111 = ci->channel5111; 800 } else { 801 data2111 = 0; 802 chan5111 = chanIEEE; 803 } 804 805 /* Rest of the code is common for 5 GHz and 2.4 GHz. */ 806 if (chan5111 >= 145 || (chan5111 & 0x1)) { 807 reg32 = ath_hal_reverseBits(chan5111 - 24, 8) & 0xFF; 808 refClk = 1; 809 } else { 810 reg32 = ath_hal_reverseBits(((chan5111 - 24) / 2), 8) & 0xFF; 811 refClk = 0; 812 } 813 814 reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1; 815 OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff)); 816 reg32 >>= 8; 817 OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff)); 818 819 AH_PRIVATE(ah)->ah_curchan = chan; 820 return AH_TRUE; 821 } 822 823 static int16_t 824 ar5211GetNoiseFloor(struct ath_hal *ah) 825 { 826 int16_t nf; 827 828 nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff; 829 if (nf & 0x100) 830 nf = 0 - ((nf ^ 0x1ff) + 1); 831 return nf; 832 } 833 834 /* 835 * Peform the noisefloor calibration for the length of time set 836 * in runTime (valid values 1 to 7) 837 * 838 * Returns: The NF value at the end of the given time (or 0 for failure) 839 */ 840 int16_t 841 ar5211RunNoiseFloor(struct ath_hal *ah, uint8_t runTime, int16_t startingNF) 842 { 843 int i, searchTime; 844 845 HALASSERT(runTime <= 7); 846 847 /* Setup noise floor run time and starting value */ 848 OS_REG_WRITE(ah, AR_PHY(25), 849 (OS_REG_READ(ah, AR_PHY(25)) & ~0xFFF) | 850 ((runTime << 9) & 0xE00) | (startingNF & 0x1FF)); 851 /* Calibrate the noise floor */ 852 OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL, 853 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF); 854 855 /* Compute the required amount of searchTime needed to finish NF */ 856 if (runTime == 0) { 857 /* 8 search windows * 6.4us each */ 858 searchTime = 8 * 7; 859 } else { 860 /* 512 * runtime search windows * 6.4us each */ 861 searchTime = (runTime * 512) * 7; 862 } 863 864 /* 865 * Do not read noise floor until it has been updated 866 * 867 * As a guesstimate - we may only get 1/60th the time on 868 * the air to see search windows in a heavily congested 869 * network (40 us every 2400 us of time) 870 */ 871 for (i = 0; i < 60; i++) { 872 if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0) 873 break; 874 OS_DELAY(searchTime); 875 } 876 if (i >= 60) { 877 HALDEBUG(ah, HAL_DEBUG_NFCAL, 878 "NF with runTime %d failed to end on channel %d\n", 879 runTime, AH_PRIVATE(ah)->ah_curchan->ic_freq); 880 HALDEBUG(ah, HAL_DEBUG_NFCAL, 881 " PHY NF Reg state: 0x%x\n", 882 OS_REG_READ(ah, AR_PHY_AGC_CONTROL)); 883 HALDEBUG(ah, HAL_DEBUG_NFCAL, 884 " PHY Active Reg state: 0x%x\n", 885 OS_REG_READ(ah, AR_PHY_ACTIVE)); 886 return 0; 887 } 888 889 return ar5211GetNoiseFloor(ah); 890 } 891 892 static HAL_BOOL 893 getNoiseFloorThresh(struct ath_hal *ah, const struct ieee80211_channel *chan, 894 int16_t *nft) 895 { 896 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 897 898 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) { 899 case IEEE80211_CHAN_A: 900 *nft = ee->ee_noiseFloorThresh[0]; 901 break; 902 case IEEE80211_CHAN_B: 903 *nft = ee->ee_noiseFloorThresh[1]; 904 break; 905 case IEEE80211_CHAN_PUREG: 906 *nft = ee->ee_noiseFloorThresh[2]; 907 break; 908 default: 909 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n", 910 __func__, chan->ic_flags); 911 return AH_FALSE; 912 } 913 return AH_TRUE; 914 } 915 916 /* 917 * Read the NF and check it against the noise floor threshhold 918 * 919 * Returns: TRUE if the NF is good 920 */ 921 static HAL_BOOL 922 ar5211IsNfGood(struct ath_hal *ah, struct ieee80211_channel *chan) 923 { 924 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan); 925 int16_t nf, nfThresh; 926 927 if (!getNoiseFloorThresh(ah, chan, &nfThresh)) 928 return AH_FALSE; 929 if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) { 930 HALDEBUG(ah, HAL_DEBUG_ANY, 931 "%s: NF did not complete in calibration window\n", __func__); 932 } 933 nf = ar5211GetNoiseFloor(ah); 934 if (nf > nfThresh) { 935 HALDEBUG(ah, HAL_DEBUG_ANY, 936 "%s: noise floor failed; detected %u, threshold %u\n", 937 __func__, nf, nfThresh); 938 /* 939 * NB: Don't discriminate 2.4 vs 5Ghz, if this 940 * happens it indicates a problem regardless 941 * of the band. 942 */ 943 chan->ic_state |= IEEE80211_CHANSTATE_CWINT; 944 } 945 ichan->rawNoiseFloor = nf; 946 return (nf <= nfThresh); 947 } 948 949 /* 950 * Peform the noisefloor calibration and check for any constant channel 951 * interference. 952 * 953 * NOTE: preAR5211 have a lengthy carrier wave detection process - hence 954 * it is if'ed for MKK regulatory domain only. 955 * 956 * Returns: TRUE for a successful noise floor calibration; else FALSE 957 */ 958 HAL_BOOL 959 ar5211CalNoiseFloor(struct ath_hal *ah, const struct ieee80211_channel *chan) 960 { 961 #define N(a) (sizeof (a) / sizeof (a[0])) 962 /* Check for Carrier Wave interference in MKK regulatory zone */ 963 if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU && 964 (chan->ic_flags & CHANNEL_NFCREQUIRED)) { 965 static const uint8_t runtime[3] = { 0, 2, 7 }; 966 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan); 967 int16_t nf, nfThresh; 968 int i; 969 970 if (!getNoiseFloorThresh(ah, chan, &nfThresh)) 971 return AH_FALSE; 972 /* 973 * Run a quick noise floor that will hopefully 974 * complete (decrease delay time). 975 */ 976 for (i = 0; i < N(runtime); i++) { 977 nf = ar5211RunNoiseFloor(ah, runtime[i], 0); 978 if (nf > nfThresh) { 979 HALDEBUG(ah, HAL_DEBUG_ANY, 980 "%s: run failed with %u > threshold %u " 981 "(runtime %u)\n", __func__, 982 nf, nfThresh, runtime[i]); 983 ichan->rawNoiseFloor = 0; 984 } else 985 ichan->rawNoiseFloor = nf; 986 } 987 return (i <= N(runtime)); 988 } else { 989 /* Calibrate the noise floor */ 990 OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL, 991 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | 992 AR_PHY_AGC_CONTROL_NF); 993 } 994 return AH_TRUE; 995 #undef N 996 } 997 998 /* 999 * Adjust NF based on statistical values for 5GHz frequencies. 1000 */ 1001 int16_t 1002 ar5211GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c) 1003 { 1004 static const struct { 1005 uint16_t freqLow; 1006 int16_t adjust; 1007 } adjust5111[] = { 1008 { 5790, 11 }, /* NB: ordered high -> low */ 1009 { 5730, 10 }, 1010 { 5690, 9 }, 1011 { 5660, 8 }, 1012 { 5610, 7 }, 1013 { 5530, 5 }, 1014 { 5450, 4 }, 1015 { 5379, 2 }, 1016 { 5209, 0 }, /* XXX? bogus but doesn't matter */ 1017 { 0, 1 }, 1018 }; 1019 int i; 1020 1021 for (i = 0; c->channel <= adjust5111[i].freqLow; i++) 1022 ; 1023 /* NB: placeholder for 5111's less severe requirement */ 1024 return adjust5111[i].adjust / 3; 1025 } 1026 1027 /* 1028 * Reads EEPROM header info from device structure and programs 1029 * analog registers 6 and 7 1030 * 1031 * REQUIRES: Access to the analog device 1032 */ 1033 static HAL_BOOL 1034 ar5211SetRf6and7(struct ath_hal *ah, const struct ieee80211_channel *chan) 1035 { 1036 #define N(a) (sizeof (a) / sizeof (a[0])) 1037 uint16_t freq = ath_hal_gethwchannel(ah, chan); 1038 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 1039 struct ath_hal_5211 *ahp = AH5211(ah); 1040 uint16_t rfXpdGain, rfPloSel, rfPwdXpd; 1041 uint16_t tempOB, tempDB; 1042 uint16_t freqIndex; 1043 int i; 1044 1045 freqIndex = IEEE80211_IS_CHAN_2GHZ(chan) ? 2 : 1; 1046 1047 /* 1048 * TODO: This array mode correspondes with the index used 1049 * during the read. 1050 * For readability, this should be changed to an enum or #define 1051 */ 1052 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) { 1053 case IEEE80211_CHAN_A: 1054 if (freq > 4000 && freq < 5260) { 1055 tempOB = ee->ee_ob1; 1056 tempDB = ee->ee_db1; 1057 } else if (freq >= 5260 && freq < 5500) { 1058 tempOB = ee->ee_ob2; 1059 tempDB = ee->ee_db2; 1060 } else if (freq >= 5500 && freq < 5725) { 1061 tempOB = ee->ee_ob3; 1062 tempDB = ee->ee_db3; 1063 } else if (freq >= 5725) { 1064 tempOB = ee->ee_ob4; 1065 tempDB = ee->ee_db4; 1066 } else { 1067 /* XXX panic?? */ 1068 tempOB = tempDB = 0; 1069 } 1070 1071 rfXpdGain = ee->ee_xgain[0]; 1072 rfPloSel = ee->ee_xpd[0]; 1073 rfPwdXpd = !ee->ee_xpd[0]; 1074 1075 ar5211Rf6n7[5][freqIndex] = 1076 (ar5211Rf6n7[5][freqIndex] & ~0x10000000) | 1077 (ee->ee_cornerCal.pd84<< 28); 1078 ar5211Rf6n7[6][freqIndex] = 1079 (ar5211Rf6n7[6][freqIndex] & ~0x04000000) | 1080 (ee->ee_cornerCal.pd90 << 26); 1081 ar5211Rf6n7[21][freqIndex] = 1082 (ar5211Rf6n7[21][freqIndex] & ~0x08) | 1083 (ee->ee_cornerCal.gSel << 3); 1084 break; 1085 case IEEE80211_CHAN_B: 1086 tempOB = ee->ee_obFor24; 1087 tempDB = ee->ee_dbFor24; 1088 rfXpdGain = ee->ee_xgain[1]; 1089 rfPloSel = ee->ee_xpd[1]; 1090 rfPwdXpd = !ee->ee_xpd[1]; 1091 break; 1092 case IEEE80211_CHAN_PUREG: 1093 tempOB = ee->ee_obFor24g; 1094 tempDB = ee->ee_dbFor24g; 1095 rfXpdGain = ee->ee_xgain[2]; 1096 rfPloSel = ee->ee_xpd[2]; 1097 rfPwdXpd = !ee->ee_xpd[2]; 1098 break; 1099 default: 1100 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n", 1101 __func__, chan->ic_flags); 1102 return AH_FALSE; 1103 } 1104 1105 HALASSERT(1 <= tempOB && tempOB <= 5); 1106 HALASSERT(1 <= tempDB && tempDB <= 5); 1107 1108 /* Set rfXpdGain and rfPwdXpd */ 1109 ar5211Rf6n7[11][freqIndex] = (ar5211Rf6n7[11][freqIndex] & ~0xC0) | 1110 (((ath_hal_reverseBits(rfXpdGain, 4) << 7) | (rfPwdXpd << 6)) & 0xC0); 1111 ar5211Rf6n7[12][freqIndex] = (ar5211Rf6n7[12][freqIndex] & ~0x07) | 1112 ((ath_hal_reverseBits(rfXpdGain, 4) >> 1) & 0x07); 1113 1114 /* Set OB */ 1115 ar5211Rf6n7[12][freqIndex] = (ar5211Rf6n7[12][freqIndex] & ~0x80) | 1116 ((ath_hal_reverseBits(tempOB, 3) << 7) & 0x80); 1117 ar5211Rf6n7[13][freqIndex] = (ar5211Rf6n7[13][freqIndex] & ~0x03) | 1118 ((ath_hal_reverseBits(tempOB, 3) >> 1) & 0x03); 1119 1120 /* Set DB */ 1121 ar5211Rf6n7[13][freqIndex] = (ar5211Rf6n7[13][freqIndex] & ~0x1C) | 1122 ((ath_hal_reverseBits(tempDB, 3) << 2) & 0x1C); 1123 1124 /* Set rfPloSel */ 1125 ar5211Rf6n7[17][freqIndex] = (ar5211Rf6n7[17][freqIndex] & ~0x08) | 1126 ((rfPloSel << 3) & 0x08); 1127 1128 /* Write the Rf registers 6 & 7 */ 1129 for (i = 0; i < N(ar5211Rf6n7); i++) 1130 OS_REG_WRITE(ah, ar5211Rf6n7[i][0], ar5211Rf6n7[i][freqIndex]); 1131 1132 /* Now that we have reprogrammed rfgain value, clear the flag. */ 1133 ahp->ah_rfgainState = RFGAIN_INACTIVE; 1134 1135 return AH_TRUE; 1136 #undef N 1137 } 1138 1139 HAL_BOOL 1140 ar5211SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings, 1141 const struct ieee80211_channel *chan) 1142 { 1143 #define ANT_SWITCH_TABLE1 0x9960 1144 #define ANT_SWITCH_TABLE2 0x9964 1145 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 1146 struct ath_hal_5211 *ahp = AH5211(ah); 1147 uint32_t antSwitchA, antSwitchB; 1148 int ix; 1149 1150 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) { 1151 case IEEE80211_CHAN_A: ix = 0; break; 1152 case IEEE80211_CHAN_B: ix = 1; break; 1153 case IEEE80211_CHAN_PUREG: ix = 2; break; 1154 default: 1155 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n", 1156 __func__, chan->ic_flags); 1157 return AH_FALSE; 1158 } 1159 1160 antSwitchA = ee->ee_antennaControl[1][ix] 1161 | (ee->ee_antennaControl[2][ix] << 6) 1162 | (ee->ee_antennaControl[3][ix] << 12) 1163 | (ee->ee_antennaControl[4][ix] << 18) 1164 | (ee->ee_antennaControl[5][ix] << 24) 1165 ; 1166 antSwitchB = ee->ee_antennaControl[6][ix] 1167 | (ee->ee_antennaControl[7][ix] << 6) 1168 | (ee->ee_antennaControl[8][ix] << 12) 1169 | (ee->ee_antennaControl[9][ix] << 18) 1170 | (ee->ee_antennaControl[10][ix] << 24) 1171 ; 1172 /* 1173 * For fixed antenna, give the same setting for both switch banks 1174 */ 1175 switch (settings) { 1176 case HAL_ANT_FIXED_A: 1177 antSwitchB = antSwitchA; 1178 break; 1179 case HAL_ANT_FIXED_B: 1180 antSwitchA = antSwitchB; 1181 break; 1182 case HAL_ANT_VARIABLE: 1183 break; 1184 default: 1185 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n", 1186 __func__, settings); 1187 return AH_FALSE; 1188 } 1189 ahp->ah_diversityControl = settings; 1190 1191 OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA); 1192 OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB); 1193 1194 return AH_TRUE; 1195 #undef ANT_SWITCH_TABLE1 1196 #undef ANT_SWITCH_TABLE2 1197 } 1198 1199 /* 1200 * Reads EEPROM header info and programs the device for correct operation 1201 * given the channel value 1202 */ 1203 static HAL_BOOL 1204 ar5211SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan) 1205 { 1206 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 1207 struct ath_hal_5211 *ahp = AH5211(ah); 1208 int arrayMode, falseDectectBackoff; 1209 1210 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) { 1211 case IEEE80211_CHAN_A: 1212 arrayMode = 0; 1213 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, 1214 AR_PHY_FRAME_CTL_TX_CLIP, ee->ee_cornerCal.clip); 1215 break; 1216 case IEEE80211_CHAN_B: 1217 arrayMode = 1; 1218 break; 1219 case IEEE80211_CHAN_PUREG: 1220 arrayMode = 2; 1221 break; 1222 default: 1223 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n", 1224 __func__, chan->ic_flags); 1225 return AH_FALSE; 1226 } 1227 1228 /* Set the antenna register(s) correctly for the chip revision */ 1229 if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) { 1230 OS_REG_WRITE(ah, AR_PHY(68), 1231 (OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) | 0x3); 1232 } else { 1233 OS_REG_WRITE(ah, AR_PHY(68), 1234 (OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFC06) | 1235 (ee->ee_antennaControl[0][arrayMode] << 4) | 0x1); 1236 1237 ar5211SetAntennaSwitchInternal(ah, 1238 ahp->ah_diversityControl, chan); 1239 1240 /* Set the Noise Floor Thresh on ar5211 devices */ 1241 OS_REG_WRITE(ah, AR_PHY_BASE + (90 << 2), 1242 (ee->ee_noiseFloorThresh[arrayMode] & 0x1FF) | (1<<9)); 1243 } 1244 OS_REG_WRITE(ah, AR_PHY_BASE + (17 << 2), 1245 (OS_REG_READ(ah, AR_PHY_BASE + (17 << 2)) & 0xFFFFC07F) | 1246 ((ee->ee_switchSettling[arrayMode] << 7) & 0x3F80)); 1247 OS_REG_WRITE(ah, AR_PHY_BASE + (18 << 2), 1248 (OS_REG_READ(ah, AR_PHY_BASE + (18 << 2)) & 0xFFFC0FFF) | 1249 ((ee->ee_txrxAtten[arrayMode] << 12) & 0x3F000)); 1250 OS_REG_WRITE(ah, AR_PHY_BASE + (20 << 2), 1251 (OS_REG_READ(ah, AR_PHY_BASE + (20 << 2)) & 0xFFFF0000) | 1252 ((ee->ee_pgaDesiredSize[arrayMode] << 8) & 0xFF00) | 1253 (ee->ee_adcDesiredSize[arrayMode] & 0x00FF)); 1254 OS_REG_WRITE(ah, AR_PHY_BASE + (13 << 2), 1255 (ee->ee_txEndToXPAOff[arrayMode] << 24) | 1256 (ee->ee_txEndToXPAOff[arrayMode] << 16) | 1257 (ee->ee_txFrameToXPAOn[arrayMode] << 8) | 1258 ee->ee_txFrameToXPAOn[arrayMode]); 1259 OS_REG_WRITE(ah, AR_PHY_BASE + (10 << 2), 1260 (OS_REG_READ(ah, AR_PHY_BASE + (10 << 2)) & 0xFFFF00FF) | 1261 (ee->ee_txEndToXLNAOn[arrayMode] << 8)); 1262 OS_REG_WRITE(ah, AR_PHY_BASE + (25 << 2), 1263 (OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) & 0xFFF80FFF) | 1264 ((ee->ee_thresh62[arrayMode] << 12) & 0x7F000)); 1265 1266 #define NO_FALSE_DETECT_BACKOFF 2 1267 #define CB22_FALSE_DETECT_BACKOFF 6 1268 /* 1269 * False detect backoff - suspected 32 MHz spur causes 1270 * false detects in OFDM, causing Tx Hangs. Decrease 1271 * weak signal sensitivity for this card. 1272 */ 1273 falseDectectBackoff = NO_FALSE_DETECT_BACKOFF; 1274 if (AH_PRIVATE(ah)->ah_eeversion < AR_EEPROM_VER3_3) { 1275 if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 && 1276 IEEE80211_IS_CHAN_OFDM(chan)) 1277 falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF; 1278 } else { 1279 uint16_t freq = ath_hal_gethwchannel(ah, chan); 1280 uint32_t remainder = freq % 32; 1281 1282 if (remainder && (remainder < 10 || remainder > 22)) 1283 falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode]; 1284 } 1285 OS_REG_WRITE(ah, 0x9924, 1286 (OS_REG_READ(ah, 0x9924) & 0xFFFFFF01) 1287 | ((falseDectectBackoff << 1) & 0xF7)); 1288 1289 return AH_TRUE; 1290 #undef NO_FALSE_DETECT_BACKOFF 1291 #undef CB22_FALSE_DETECT_BACKOFF 1292 } 1293 1294 /* 1295 * Set the limit on the overall output power. Used for dynamic 1296 * transmit power control and the like. 1297 * 1298 * NOTE: The power is passed in is in units of 0.5 dBm. 1299 */ 1300 HAL_BOOL 1301 ar5211SetTxPowerLimit(struct ath_hal *ah, uint32_t limit) 1302 { 1303 1304 AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER); 1305 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, limit); 1306 return AH_TRUE; 1307 } 1308 1309 /* 1310 * Sets the transmit power in the baseband for the given 1311 * operating channel and mode. 1312 */ 1313 static HAL_BOOL 1314 ar5211SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan) 1315 { 1316 uint16_t freq = ath_hal_gethwchannel(ah, chan); 1317 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 1318 TRGT_POWER_INFO *pi; 1319 RD_EDGES_POWER *rep; 1320 PCDACS_EEPROM eepromPcdacs; 1321 u_int nchan, cfgCtl; 1322 int i; 1323 1324 /* setup the pcdac struct to point to the correct info, based on mode */ 1325 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) { 1326 case IEEE80211_CHAN_A: 1327 eepromPcdacs.numChannels = ee->ee_numChannels11a; 1328 eepromPcdacs.pChannelList= ee->ee_channels11a; 1329 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a; 1330 nchan = ee->ee_numTargetPwr_11a; 1331 pi = ee->ee_trgtPwr_11a; 1332 break; 1333 case IEEE80211_CHAN_PUREG: 1334 eepromPcdacs.numChannels = ee->ee_numChannels2_4; 1335 eepromPcdacs.pChannelList= ee->ee_channels11g; 1336 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g; 1337 nchan = ee->ee_numTargetPwr_11g; 1338 pi = ee->ee_trgtPwr_11g; 1339 break; 1340 case IEEE80211_CHAN_B: 1341 eepromPcdacs.numChannels = ee->ee_numChannels2_4; 1342 eepromPcdacs.pChannelList= ee->ee_channels11b; 1343 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b; 1344 nchan = ee->ee_numTargetPwr_11b; 1345 pi = ee->ee_trgtPwr_11b; 1346 break; 1347 default: 1348 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n", 1349 __func__, chan->ic_flags); 1350 return AH_FALSE; 1351 } 1352 1353 ar5211SetPowerTable(ah, &eepromPcdacs, freq); 1354 1355 rep = AH_NULL; 1356 /* Match CTL to EEPROM value */ 1357 cfgCtl = ath_hal_getctl(ah, chan); 1358 for (i = 0; i < ee->ee_numCtls; i++) 1359 if (ee->ee_ctl[i] != 0 && ee->ee_ctl[i] == cfgCtl) { 1360 rep = &ee->ee_rdEdgesPower[i * NUM_EDGES]; 1361 break; 1362 } 1363 ar5211SetRateTable(ah, rep, pi, nchan, chan); 1364 1365 return AH_TRUE; 1366 } 1367 1368 /* 1369 * Read the transmit power levels from the structures taken 1370 * from EEPROM. Interpolate read transmit power values for 1371 * this channel. Organize the transmit power values into a 1372 * table for writing into the hardware. 1373 */ 1374 void 1375 ar5211SetPowerTable(struct ath_hal *ah, PCDACS_EEPROM *pSrcStruct, 1376 uint16_t channel) 1377 { 1378 static FULL_PCDAC_STRUCT pcdacStruct; 1379 static uint16_t pcdacTable[PWR_TABLE_SIZE]; 1380 1381 uint16_t i, j; 1382 uint16_t *pPcdacValues; 1383 int16_t *pScaledUpDbm; 1384 int16_t minScaledPwr; 1385 int16_t maxScaledPwr; 1386 int16_t pwr; 1387 uint16_t pcdacMin = 0; 1388 uint16_t pcdacMax = 63; 1389 uint16_t pcdacTableIndex; 1390 uint16_t scaledPcdac; 1391 uint32_t addr; 1392 uint32_t temp32; 1393 1394 OS_MEMZERO(&pcdacStruct, sizeof(FULL_PCDAC_STRUCT)); 1395 OS_MEMZERO(pcdacTable, sizeof(uint16_t) * PWR_TABLE_SIZE); 1396 pPcdacValues = pcdacStruct.PcdacValues; 1397 pScaledUpDbm = pcdacStruct.PwrValues; 1398 1399 /* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */ 1400 for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++) 1401 pPcdacValues[j] = i; 1402 1403 pcdacStruct.numPcdacValues = j; 1404 pcdacStruct.pcdacMin = PCDAC_START; 1405 pcdacStruct.pcdacMax = PCDAC_STOP; 1406 1407 /* Fill out the power values for this channel */ 1408 for (j = 0; j < pcdacStruct.numPcdacValues; j++ ) 1409 pScaledUpDbm[j] = ar5211GetScaledPower(channel, pPcdacValues[j], pSrcStruct); 1410 1411 /* Now scale the pcdac values to fit in the 64 entry power table */ 1412 minScaledPwr = pScaledUpDbm[0]; 1413 maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1]; 1414 1415 /* find minimum and make monotonic */ 1416 for (j = 0; j < pcdacStruct.numPcdacValues; j++) { 1417 if (minScaledPwr >= pScaledUpDbm[j]) { 1418 minScaledPwr = pScaledUpDbm[j]; 1419 pcdacMin = j; 1420 } 1421 /* 1422 * Make the full_hsh monotonically increasing otherwise 1423 * interpolation algorithm will get fooled gotta start 1424 * working from the top, hence i = 63 - j. 1425 */ 1426 i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j); 1427 if (i == 0) 1428 break; 1429 if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) { 1430 /* 1431 * It could be a glitch, so make the power for 1432 * this pcdac the same as the power from the 1433 * next highest pcdac. 1434 */ 1435 pScaledUpDbm[i - 1] = pScaledUpDbm[i]; 1436 } 1437 } 1438 1439 for (j = 0; j < pcdacStruct.numPcdacValues; j++) 1440 if (maxScaledPwr < pScaledUpDbm[j]) { 1441 maxScaledPwr = pScaledUpDbm[j]; 1442 pcdacMax = j; 1443 } 1444 1445 /* Find the first power level with a pcdac */ 1446 pwr = (uint16_t)(PWR_STEP * ((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN); 1447 1448 /* Write all the first pcdac entries based off the pcdacMin */ 1449 pcdacTableIndex = 0; 1450 for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++) 1451 pcdacTable[pcdacTableIndex++] = pcdacMin; 1452 1453 i = 0; 1454 while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1]) { 1455 pwr += PWR_STEP; 1456 /* stop if dbM > max_power_possible */ 1457 while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] && 1458 (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0) 1459 i++; 1460 /* scale by 2 and add 1 to enable round up or down as needed */ 1461 scaledPcdac = (uint16_t)(ar5211GetInterpolatedValue(pwr, 1462 pScaledUpDbm[i], pScaledUpDbm[i+1], 1463 (uint16_t)(pPcdacValues[i] * 2), 1464 (uint16_t)(pPcdacValues[i+1] * 2), 0) + 1); 1465 1466 pcdacTable[pcdacTableIndex] = scaledPcdac / 2; 1467 if (pcdacTable[pcdacTableIndex] > pcdacMax) 1468 pcdacTable[pcdacTableIndex] = pcdacMax; 1469 pcdacTableIndex++; 1470 } 1471 1472 /* Write all the last pcdac entries based off the last valid pcdac */ 1473 while (pcdacTableIndex < PWR_TABLE_SIZE) { 1474 pcdacTable[pcdacTableIndex] = pcdacTable[pcdacTableIndex - 1]; 1475 pcdacTableIndex++; 1476 } 1477 1478 /* Finally, write the power values into the baseband power table */ 1479 addr = AR_PHY_BASE + (608 << 2); 1480 for (i = 0; i < 32; i++) { 1481 temp32 = 0xffff & ((pcdacTable[2 * i + 1] << 8) | 0xff); 1482 temp32 = (temp32 << 16) | (0xffff & ((pcdacTable[2 * i] << 8) | 0xff)); 1483 OS_REG_WRITE(ah, addr, temp32); 1484 addr += 4; 1485 } 1486 1487 } 1488 1489 /* 1490 * Set the transmit power in the baseband for the given 1491 * operating channel and mode. 1492 */ 1493 static void 1494 ar5211SetRateTable(struct ath_hal *ah, RD_EDGES_POWER *pRdEdgesPower, 1495 TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels, 1496 const struct ieee80211_channel *chan) 1497 { 1498 uint16_t freq = ath_hal_gethwchannel(ah, chan); 1499 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 1500 struct ath_hal_5211 *ahp = AH5211(ah); 1501 static uint16_t ratesArray[NUM_RATES]; 1502 static const uint16_t tpcScaleReductionTable[5] = 1503 { 0, 3, 6, 9, MAX_RATE_POWER }; 1504 1505 uint16_t *pRatesPower; 1506 uint16_t lowerChannel, lowerIndex=0, lowerPower=0; 1507 uint16_t upperChannel, upperIndex=0, upperPower=0; 1508 uint16_t twiceMaxEdgePower=63; 1509 uint16_t twicePower = 0; 1510 uint16_t i, numEdges; 1511 uint16_t tempChannelList[NUM_EDGES]; /* temp array for holding edge channels */ 1512 uint16_t twiceMaxRDPower; 1513 int16_t scaledPower = 0; /* for gcc -O2 */ 1514 uint16_t mask = 0x3f; 1515 HAL_BOOL paPreDEnable = 0; 1516 int8_t twiceAntennaGain, twiceAntennaReduction = 0; 1517 1518 pRatesPower = ratesArray; 1519 twiceMaxRDPower = chan->ic_maxregpower * 2; 1520 1521 if (IEEE80211_IS_CHAN_5GHZ(chan)) { 1522 twiceAntennaGain = ee->ee_antennaGainMax[0]; 1523 } else { 1524 twiceAntennaGain = ee->ee_antennaGainMax[1]; 1525 } 1526 1527 twiceAntennaReduction = ath_hal_getantennareduction(ah, chan, twiceAntennaGain); 1528 1529 if (pRdEdgesPower) { 1530 /* Get the edge power */ 1531 for (i = 0; i < NUM_EDGES; i++) { 1532 if (pRdEdgesPower[i].rdEdge == 0) 1533 break; 1534 tempChannelList[i] = pRdEdgesPower[i].rdEdge; 1535 } 1536 numEdges = i; 1537 1538 ar5211GetLowerUpperValues(freq, tempChannelList, 1539 numEdges, &lowerChannel, &upperChannel); 1540 /* Get the index for this channel */ 1541 for (i = 0; i < numEdges; i++) 1542 if (lowerChannel == tempChannelList[i]) 1543 break; 1544 HALASSERT(i != numEdges); 1545 1546 if ((lowerChannel == upperChannel && 1547 lowerChannel == freq) || 1548 pRdEdgesPower[i].flag) { 1549 twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower; 1550 HALASSERT(twiceMaxEdgePower > 0); 1551 } 1552 } 1553 1554 /* extrapolate the power values for the test Groups */ 1555 for (i = 0; i < numChannels; i++) 1556 tempChannelList[i] = pPowerInfo[i].testChannel; 1557 1558 ar5211GetLowerUpperValues(freq, tempChannelList, 1559 numChannels, &lowerChannel, &upperChannel); 1560 1561 /* get the index for the channel */ 1562 for (i = 0; i < numChannels; i++) { 1563 if (lowerChannel == tempChannelList[i]) 1564 lowerIndex = i; 1565 if (upperChannel == tempChannelList[i]) { 1566 upperIndex = i; 1567 break; 1568 } 1569 } 1570 1571 for (i = 0; i < NUM_RATES; i++) { 1572 if (IEEE80211_IS_CHAN_OFDM(chan)) { 1573 /* power for rates 6,9,12,18,24 is all the same */ 1574 if (i < 5) { 1575 lowerPower = pPowerInfo[lowerIndex].twicePwr6_24; 1576 upperPower = pPowerInfo[upperIndex].twicePwr6_24; 1577 } else if (i == 5) { 1578 lowerPower = pPowerInfo[lowerIndex].twicePwr36; 1579 upperPower = pPowerInfo[upperIndex].twicePwr36; 1580 } else if (i == 6) { 1581 lowerPower = pPowerInfo[lowerIndex].twicePwr48; 1582 upperPower = pPowerInfo[upperIndex].twicePwr48; 1583 } else if (i == 7) { 1584 lowerPower = pPowerInfo[lowerIndex].twicePwr54; 1585 upperPower = pPowerInfo[upperIndex].twicePwr54; 1586 } 1587 } else { 1588 switch (i) { 1589 case 0: 1590 case 1: 1591 lowerPower = pPowerInfo[lowerIndex].twicePwr6_24; 1592 upperPower = pPowerInfo[upperIndex].twicePwr6_24; 1593 break; 1594 case 2: 1595 case 3: 1596 lowerPower = pPowerInfo[lowerIndex].twicePwr36; 1597 upperPower = pPowerInfo[upperIndex].twicePwr36; 1598 break; 1599 case 4: 1600 case 5: 1601 lowerPower = pPowerInfo[lowerIndex].twicePwr48; 1602 upperPower = pPowerInfo[upperIndex].twicePwr48; 1603 break; 1604 case 6: 1605 case 7: 1606 lowerPower = pPowerInfo[lowerIndex].twicePwr54; 1607 upperPower = pPowerInfo[upperIndex].twicePwr54; 1608 break; 1609 } 1610 } 1611 1612 twicePower = ar5211GetInterpolatedValue(freq, 1613 lowerChannel, upperChannel, lowerPower, upperPower, 0); 1614 1615 /* Reduce power by band edge restrictions */ 1616 twicePower = AH_MIN(twicePower, twiceMaxEdgePower); 1617 1618 /* 1619 * If turbo is set, reduce power to keep power 1620 * consumption under 2 Watts. Note that we always do 1621 * this unless specially configured. Then we limit 1622 * power only for non-AP operation. 1623 */ 1624 if (IEEE80211_IS_CHAN_TURBO(chan) && 1625 AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1 1626 #ifdef AH_ENABLE_AP_SUPPORT 1627 && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP 1628 #endif 1629 ) { 1630 twicePower = AH_MIN(twicePower, ee->ee_turbo2WMaxPower5); 1631 } 1632 1633 /* Reduce power by max regulatory domain allowed restrictions */ 1634 pRatesPower[i] = AH_MIN(twicePower, twiceMaxRDPower - twiceAntennaReduction); 1635 1636 /* Use 6 Mb power level for transmit power scaling reduction */ 1637 /* We don't want to reduce higher rates if its not needed */ 1638 if (i == 0) { 1639 scaledPower = pRatesPower[0] - 1640 (tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2); 1641 if (scaledPower < 1) 1642 scaledPower = 1; 1643 } 1644 1645 pRatesPower[i] = AH_MIN(pRatesPower[i], scaledPower); 1646 } 1647 1648 /* Record txPower at Rate 6 for info gathering */ 1649 ahp->ah_tx6PowerInHalfDbm = pRatesPower[0]; 1650 1651 #ifdef AH_DEBUG 1652 HALDEBUG(ah, HAL_DEBUG_RESET, 1653 "%s: final output power setting %d MHz:\n", 1654 __func__, chan->ic_freq); 1655 HALDEBUG(ah, HAL_DEBUG_RESET, 1656 "6 Mb %d dBm, MaxRD: %d dBm, MaxEdge %d dBm\n", 1657 scaledPower / 2, twiceMaxRDPower / 2, twiceMaxEdgePower / 2); 1658 HALDEBUG(ah, HAL_DEBUG_RESET, "TPC Scale %d dBm - Ant Red %d dBm\n", 1659 tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2, 1660 twiceAntennaReduction / 2); 1661 if (IEEE80211_IS_CHAN_TURBO(chan) && 1662 AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1) 1663 HALDEBUG(ah, HAL_DEBUG_RESET, "Max Turbo %d dBm\n", 1664 ee->ee_turbo2WMaxPower5); 1665 HALDEBUG(ah, HAL_DEBUG_RESET, 1666 " %2d | %2d | %2d | %2d | %2d | %2d | %2d | %2d dBm\n", 1667 pRatesPower[0] / 2, pRatesPower[1] / 2, pRatesPower[2] / 2, 1668 pRatesPower[3] / 2, pRatesPower[4] / 2, pRatesPower[5] / 2, 1669 pRatesPower[6] / 2, pRatesPower[7] / 2); 1670 #endif /* AH_DEBUG */ 1671 1672 /* Write the power table into the hardware */ 1673 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1, 1674 ((paPreDEnable & 1)<< 30) | ((pRatesPower[3] & mask) << 24) | 1675 ((paPreDEnable & 1)<< 22) | ((pRatesPower[2] & mask) << 16) | 1676 ((paPreDEnable & 1)<< 14) | ((pRatesPower[1] & mask) << 8) | 1677 ((paPreDEnable & 1)<< 6 ) | (pRatesPower[0] & mask)); 1678 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2, 1679 ((paPreDEnable & 1)<< 30) | ((pRatesPower[7] & mask) << 24) | 1680 ((paPreDEnable & 1)<< 22) | ((pRatesPower[6] & mask) << 16) | 1681 ((paPreDEnable & 1)<< 14) | ((pRatesPower[5] & mask) << 8) | 1682 ((paPreDEnable & 1)<< 6 ) | (pRatesPower[4] & mask)); 1683 1684 /* set max power to the power value at rate 6 */ 1685 ar5211SetTxPowerLimit(ah, pRatesPower[0]); 1686 1687 AH_PRIVATE(ah)->ah_maxPowerLevel = pRatesPower[0]; 1688 } 1689 1690 /* 1691 * Get or interpolate the pcdac value from the calibrated data 1692 */ 1693 uint16_t 1694 ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue, 1695 const PCDACS_EEPROM *pSrcStruct) 1696 { 1697 uint16_t powerValue; 1698 uint16_t lFreq, rFreq; /* left and right frequency values */ 1699 uint16_t llPcdac, ulPcdac; /* lower and upper left pcdac values */ 1700 uint16_t lrPcdac, urPcdac; /* lower and upper right pcdac values */ 1701 uint16_t lPwr, uPwr; /* lower and upper temp pwr values */ 1702 uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */ 1703 1704 if (ar5211FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue)) 1705 /* value was copied from srcStruct */ 1706 return powerValue; 1707 1708 ar5211GetLowerUpperValues(channel, pSrcStruct->pChannelList, 1709 pSrcStruct->numChannels, &lFreq, &rFreq); 1710 ar5211GetLowerUpperPcdacs(pcdacValue, lFreq, pSrcStruct, 1711 &llPcdac, &ulPcdac); 1712 ar5211GetLowerUpperPcdacs(pcdacValue, rFreq, pSrcStruct, 1713 &lrPcdac, &urPcdac); 1714 1715 /* get the power index for the pcdac value */ 1716 ar5211FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr); 1717 ar5211FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr); 1718 lScaledPwr = ar5211GetInterpolatedValue(pcdacValue, 1719 llPcdac, ulPcdac, lPwr, uPwr, 0); 1720 1721 ar5211FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr); 1722 ar5211FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr); 1723 rScaledPwr = ar5211GetInterpolatedValue(pcdacValue, 1724 lrPcdac, urPcdac, lPwr, uPwr, 0); 1725 1726 return ar5211GetInterpolatedValue(channel, lFreq, rFreq, 1727 lScaledPwr, rScaledPwr, 0); 1728 } 1729 1730 /* 1731 * Find the value from the calibrated source data struct 1732 */ 1733 HAL_BOOL 1734 ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue, 1735 const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue) 1736 { 1737 const DATA_PER_CHANNEL *pChannelData; 1738 const uint16_t *pPcdac; 1739 uint16_t i, j; 1740 1741 pChannelData = pSrcStruct->pDataPerChannel; 1742 for (i = 0; i < pSrcStruct->numChannels; i++ ) { 1743 if (pChannelData->channelValue == channel) { 1744 pPcdac = pChannelData->PcdacValues; 1745 for (j = 0; j < pChannelData->numPcdacValues; j++ ) { 1746 if (*pPcdac == pcdacValue) { 1747 *powerValue = pChannelData->PwrValues[j]; 1748 return AH_TRUE; 1749 } 1750 pPcdac++; 1751 } 1752 } 1753 pChannelData++; 1754 } 1755 return AH_FALSE; 1756 } 1757 1758 /* 1759 * Returns interpolated or the scaled up interpolated value 1760 */ 1761 uint16_t 1762 ar5211GetInterpolatedValue(uint16_t target, 1763 uint16_t srcLeft, uint16_t srcRight, 1764 uint16_t targetLeft, uint16_t targetRight, 1765 HAL_BOOL scaleUp) 1766 { 1767 uint16_t rv; 1768 int16_t lRatio; 1769 uint16_t scaleValue = EEP_SCALE; 1770 1771 /* to get an accurate ratio, always scale, if want to scale, then don't scale back down */ 1772 if ((targetLeft * targetRight) == 0) 1773 return 0; 1774 if (scaleUp) 1775 scaleValue = 1; 1776 1777 if (srcRight != srcLeft) { 1778 /* 1779 * Note the ratio always need to be scaled, 1780 * since it will be a fraction. 1781 */ 1782 lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft); 1783 if (lRatio < 0) { 1784 /* Return as Left target if value would be negative */ 1785 rv = targetLeft * (scaleUp ? EEP_SCALE : 1); 1786 } else if (lRatio > EEP_SCALE) { 1787 /* Return as Right target if Ratio is greater than 100% (SCALE) */ 1788 rv = targetRight * (scaleUp ? EEP_SCALE : 1); 1789 } else { 1790 rv = (lRatio * targetRight + (EEP_SCALE - lRatio) * 1791 targetLeft) / scaleValue; 1792 } 1793 } else { 1794 rv = targetLeft; 1795 if (scaleUp) 1796 rv *= EEP_SCALE; 1797 } 1798 return rv; 1799 } 1800 1801 /* 1802 * Look for value being within 0.1 of the search values 1803 * however, NDIS can't do float calculations, so multiply everything 1804 * up by EEP_SCALE so can do integer arithmatic 1805 * 1806 * INPUT value -value to search for 1807 * INPUT pList -ptr to the list to search 1808 * INPUT listSize -number of entries in list 1809 * OUTPUT pLowerValue -return the lower value 1810 * OUTPUT pUpperValue -return the upper value 1811 */ 1812 void 1813 ar5211GetLowerUpperValues(uint16_t value, 1814 const uint16_t *pList, uint16_t listSize, 1815 uint16_t *pLowerValue, uint16_t *pUpperValue) 1816 { 1817 const uint16_t listEndValue = *(pList + listSize - 1); 1818 uint32_t target = value * EEP_SCALE; 1819 int i; 1820 1821 /* 1822 * See if value is lower than the first value in the list 1823 * if so return first value 1824 */ 1825 if (target < (uint32_t)(*pList * EEP_SCALE - EEP_DELTA)) { 1826 *pLowerValue = *pList; 1827 *pUpperValue = *pList; 1828 return; 1829 } 1830 1831 /* 1832 * See if value is greater than last value in list 1833 * if so return last value 1834 */ 1835 if (target > (uint32_t)(listEndValue * EEP_SCALE + EEP_DELTA)) { 1836 *pLowerValue = listEndValue; 1837 *pUpperValue = listEndValue; 1838 return; 1839 } 1840 1841 /* look for value being near or between 2 values in list */ 1842 for (i = 0; i < listSize; i++) { 1843 /* 1844 * If value is close to the current value of the list 1845 * then target is not between values, it is one of the values 1846 */ 1847 if (abs(pList[i] * EEP_SCALE - (int32_t) target) < EEP_DELTA) { 1848 *pLowerValue = pList[i]; 1849 *pUpperValue = pList[i]; 1850 return; 1851 } 1852 1853 /* 1854 * Look for value being between current value and next value 1855 * if so return these 2 values 1856 */ 1857 if (target < (uint32_t)(pList[i + 1] * EEP_SCALE - EEP_DELTA)) { 1858 *pLowerValue = pList[i]; 1859 *pUpperValue = pList[i + 1]; 1860 return; 1861 } 1862 } 1863 } 1864 1865 /* 1866 * Get the upper and lower pcdac given the channel and the pcdac 1867 * used in the search 1868 */ 1869 void 1870 ar5211GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel, 1871 const PCDACS_EEPROM *pSrcStruct, 1872 uint16_t *pLowerPcdac, uint16_t *pUpperPcdac) 1873 { 1874 const DATA_PER_CHANNEL *pChannelData; 1875 int i; 1876 1877 /* Find the channel information */ 1878 pChannelData = pSrcStruct->pDataPerChannel; 1879 for (i = 0; i < pSrcStruct->numChannels; i++) { 1880 if (pChannelData->channelValue == channel) 1881 break; 1882 pChannelData++; 1883 } 1884 ar5211GetLowerUpperValues(pcdac, pChannelData->PcdacValues, 1885 pChannelData->numPcdacValues, pLowerPcdac, pUpperPcdac); 1886 } 1887 1888 #define DYN_ADJ_UP_MARGIN 15 1889 #define DYN_ADJ_LO_MARGIN 20 1890 1891 static const GAIN_OPTIMIZATION_LADDER gainLadder = { 1892 9, /* numStepsInLadder */ 1893 4, /* defaultStepNum */ 1894 { { {4, 1, 1, 1}, 6, "FG8"}, 1895 { {4, 0, 1, 1}, 4, "FG7"}, 1896 { {3, 1, 1, 1}, 3, "FG6"}, 1897 { {4, 0, 0, 1}, 1, "FG5"}, 1898 { {4, 1, 1, 0}, 0, "FG4"}, /* noJack */ 1899 { {4, 0, 1, 0}, -2, "FG3"}, /* halfJack */ 1900 { {3, 1, 1, 0}, -3, "FG2"}, /* clip3 */ 1901 { {4, 0, 0, 0}, -4, "FG1"}, /* noJack */ 1902 { {2, 1, 1, 0}, -6, "FG0"} /* clip2 */ 1903 } 1904 }; 1905 1906 /* 1907 * Initialize the gain structure to good values 1908 */ 1909 void 1910 ar5211InitializeGainValues(struct ath_hal *ah) 1911 { 1912 struct ath_hal_5211 *ahp = AH5211(ah); 1913 GAIN_VALUES *gv = &ahp->ah_gainValues; 1914 1915 /* initialize gain optimization values */ 1916 gv->currStepNum = gainLadder.defaultStepNum; 1917 gv->currStep = &gainLadder.optStep[gainLadder.defaultStepNum]; 1918 gv->active = AH_TRUE; 1919 gv->loTrig = 20; 1920 gv->hiTrig = 35; 1921 } 1922 1923 static HAL_BOOL 1924 ar5211InvalidGainReadback(struct ath_hal *ah, GAIN_VALUES *gv) 1925 { 1926 const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan; 1927 uint32_t gStep, g; 1928 uint32_t L1, L2, L3, L4; 1929 1930 if (IEEE80211_IS_CHAN_CCK(chan)) { 1931 gStep = 0x18; 1932 L1 = 0; 1933 L2 = gStep + 4; 1934 L3 = 0x40; 1935 L4 = L3 + 50; 1936 1937 gv->loTrig = L1; 1938 gv->hiTrig = L4+5; 1939 } else { 1940 gStep = 0x3f; 1941 L1 = 0; 1942 L2 = 50; 1943 L3 = L1; 1944 L4 = L3 + 50; 1945 1946 gv->loTrig = L1 + DYN_ADJ_LO_MARGIN; 1947 gv->hiTrig = L4 - DYN_ADJ_UP_MARGIN; 1948 } 1949 g = gv->currGain; 1950 1951 return !((g >= L1 && g<= L2) || (g >= L3 && g <= L4)); 1952 } 1953 1954 /* 1955 * Enable the probe gain check on the next packet 1956 */ 1957 static void 1958 ar5211RequestRfgain(struct ath_hal *ah) 1959 { 1960 struct ath_hal_5211 *ahp = AH5211(ah); 1961 1962 /* Enable the gain readback probe */ 1963 OS_REG_WRITE(ah, AR_PHY_PAPD_PROBE, 1964 SM(ahp->ah_tx6PowerInHalfDbm, AR_PHY_PAPD_PROBE_POWERTX) 1965 | AR_PHY_PAPD_PROBE_NEXT_TX); 1966 1967 ahp->ah_rfgainState = HAL_RFGAIN_READ_REQUESTED; 1968 } 1969 1970 /* 1971 * Exported call to check for a recent gain reading and return 1972 * the current state of the thermal calibration gain engine. 1973 */ 1974 HAL_RFGAIN 1975 ar5211GetRfgain(struct ath_hal *ah) 1976 { 1977 struct ath_hal_5211 *ahp = AH5211(ah); 1978 GAIN_VALUES *gv = &ahp->ah_gainValues; 1979 uint32_t rddata; 1980 1981 if (!gv->active) 1982 return HAL_RFGAIN_INACTIVE; 1983 1984 if (ahp->ah_rfgainState == HAL_RFGAIN_READ_REQUESTED) { 1985 /* Caller had asked to setup a new reading. Check it. */ 1986 rddata = OS_REG_READ(ah, AR_PHY_PAPD_PROBE); 1987 1988 if ((rddata & AR_PHY_PAPD_PROBE_NEXT_TX) == 0) { 1989 /* bit got cleared, we have a new reading. */ 1990 gv->currGain = rddata >> AR_PHY_PAPD_PROBE_GAINF_S; 1991 /* inactive by default */ 1992 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE; 1993 1994 if (!ar5211InvalidGainReadback(ah, gv) && 1995 ar5211IsGainAdjustNeeded(ah, gv) && 1996 ar5211AdjustGain(ah, gv) > 0) { 1997 /* 1998 * Change needed. Copy ladder info 1999 * into eeprom info. 2000 */ 2001 ar5211SetRfgain(ah, gv); 2002 ahp->ah_rfgainState = HAL_RFGAIN_NEED_CHANGE; 2003 } 2004 } 2005 } 2006 return ahp->ah_rfgainState; 2007 } 2008 2009 /* 2010 * Check to see if our readback gain level sits within the linear 2011 * region of our current variable attenuation window 2012 */ 2013 static HAL_BOOL 2014 ar5211IsGainAdjustNeeded(struct ath_hal *ah, const GAIN_VALUES *gv) 2015 { 2016 return (gv->currGain <= gv->loTrig || gv->currGain >= gv->hiTrig); 2017 } 2018 2019 /* 2020 * Move the rabbit ears in the correct direction. 2021 */ 2022 static int32_t 2023 ar5211AdjustGain(struct ath_hal *ah, GAIN_VALUES *gv) 2024 { 2025 /* return > 0 for valid adjustments. */ 2026 if (!gv->active) 2027 return -1; 2028 2029 gv->currStep = &gainLadder.optStep[gv->currStepNum]; 2030 if (gv->currGain >= gv->hiTrig) { 2031 if (gv->currStepNum == 0) { 2032 HALDEBUG(ah, HAL_DEBUG_RFPARAM, 2033 "%s: Max gain limit.\n", __func__); 2034 return -1; 2035 } 2036 HALDEBUG(ah, HAL_DEBUG_RFPARAM, 2037 "%s: Adding gain: currG=%d [%s] --> ", 2038 __func__, gv->currGain, gv->currStep->stepName); 2039 gv->targetGain = gv->currGain; 2040 while (gv->targetGain >= gv->hiTrig && gv->currStepNum > 0) { 2041 gv->targetGain -= 2 * (gainLadder.optStep[--(gv->currStepNum)].stepGain - 2042 gv->currStep->stepGain); 2043 gv->currStep = &gainLadder.optStep[gv->currStepNum]; 2044 } 2045 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n", 2046 gv->targetGain, gv->currStep->stepName); 2047 return 1; 2048 } 2049 if (gv->currGain <= gv->loTrig) { 2050 if (gv->currStepNum == gainLadder.numStepsInLadder-1) { 2051 HALDEBUG(ah, HAL_DEBUG_RFPARAM, 2052 "%s: Min gain limit.\n", __func__); 2053 return -2; 2054 } 2055 HALDEBUG(ah, HAL_DEBUG_RFPARAM, 2056 "%s: Deducting gain: currG=%d [%s] --> ", 2057 __func__, gv->currGain, gv->currStep->stepName); 2058 gv->targetGain = gv->currGain; 2059 while (gv->targetGain <= gv->loTrig && 2060 gv->currStepNum < (gainLadder.numStepsInLadder - 1)) { 2061 gv->targetGain -= 2 * 2062 (gainLadder.optStep[++(gv->currStepNum)].stepGain - gv->currStep->stepGain); 2063 gv->currStep = &gainLadder.optStep[gv->currStepNum]; 2064 } 2065 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n", 2066 gv->targetGain, gv->currStep->stepName); 2067 return 2; 2068 } 2069 return 0; /* caller didn't call needAdjGain first */ 2070 } 2071 2072 /* 2073 * Adjust the 5GHz EEPROM information with the desired calibration values. 2074 */ 2075 static void 2076 ar5211SetRfgain(struct ath_hal *ah, const GAIN_VALUES *gv) 2077 { 2078 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 2079 2080 if (!gv->active) 2081 return; 2082 ee->ee_cornerCal.clip = gv->currStep->paramVal[0]; /* bb_tx_clip */ 2083 ee->ee_cornerCal.pd90 = gv->currStep->paramVal[1]; /* rf_pwd_90 */ 2084 ee->ee_cornerCal.pd84 = gv->currStep->paramVal[2]; /* rf_pwd_84 */ 2085 ee->ee_cornerCal.gSel = gv->currStep->paramVal[3]; /* rf_rfgainsel */ 2086 } 2087 2088 static void 2089 ar5211SetOperatingMode(struct ath_hal *ah, int opmode) 2090 { 2091 struct ath_hal_5211 *ahp = AH5211(ah); 2092 uint32_t val; 2093 2094 val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff; 2095 switch (opmode) { 2096 case HAL_M_HOSTAP: 2097 OS_REG_WRITE(ah, AR_STA_ID1, val 2098 | AR_STA_ID1_STA_AP 2099 | AR_STA_ID1_RTS_USE_DEF 2100 | ahp->ah_staId1Defaults); 2101 break; 2102 case HAL_M_IBSS: 2103 OS_REG_WRITE(ah, AR_STA_ID1, val 2104 | AR_STA_ID1_ADHOC 2105 | AR_STA_ID1_DESC_ANTENNA 2106 | ahp->ah_staId1Defaults); 2107 break; 2108 case HAL_M_STA: 2109 case HAL_M_MONITOR: 2110 OS_REG_WRITE(ah, AR_STA_ID1, val 2111 | AR_STA_ID1_DEFAULT_ANTENNA 2112 | ahp->ah_staId1Defaults); 2113 break; 2114 } 2115 } 2116 2117 void 2118 ar5211SetPCUConfig(struct ath_hal *ah) 2119 { 2120 ar5211SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode); 2121 } 2122