xref: /freebsd/sys/dev/ath/ath_hal/ar5211/ar5211_keycache.c (revision 47dd1d1b619cc035b82b49a91a25544309ff95ae)
1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2006 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  * $FreeBSD$
20  */
21 #include "opt_ah.h"
22 
23 #include "ah.h"
24 #include "ah_internal.h"
25 
26 #include "ar5211/ar5211.h"
27 #include "ar5211/ar5211reg.h"
28 
29 /*
30  *  Chips-specific key cache routines.
31  */
32 
33 #define	AR_KEYTABLE_SIZE	128
34 #define	KEY_XOR			0xaa
35 
36 /*
37  * Return the size of the hardware key cache.
38  */
39 uint32_t
40 ar5211GetKeyCacheSize(struct ath_hal *ah)
41 {
42 	return AR_KEYTABLE_SIZE;
43 }
44 
45 /*
46  * Return true if the specific key cache entry is valid.
47  */
48 HAL_BOOL
49 ar5211IsKeyCacheEntryValid(struct ath_hal *ah, uint16_t entry)
50 {
51 	if (entry < AR_KEYTABLE_SIZE) {
52 		uint32_t val = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
53 		if (val & AR_KEYTABLE_VALID)
54 			return AH_TRUE;
55 	}
56 	return AH_FALSE;
57 }
58 
59 /*
60  * Clear the specified key cache entry
61  */
62 HAL_BOOL
63 ar5211ResetKeyCacheEntry(struct ath_hal *ah, uint16_t entry)
64 {
65 	if (entry < AR_KEYTABLE_SIZE) {
66 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
67 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
68 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
69 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
70 		OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
71 		OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), 0);
72 		OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
73 		OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
74 		return AH_TRUE;
75 	}
76 	return AH_FALSE;
77 }
78 
79 /*
80  * Sets the mac part of the specified key cache entry and mark it valid.
81  */
82 HAL_BOOL
83 ar5211SetKeyCacheEntryMac(struct ath_hal *ah, uint16_t entry, const uint8_t *mac)
84 {
85 	uint32_t macHi, macLo;
86 
87 	if (entry >= AR_KEYTABLE_SIZE) {
88 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
89 		    __func__, entry);
90 		return AH_FALSE;
91 	}
92 
93 	/*
94 	 * Set MAC address -- shifted right by 1.  MacLo is
95 	 * the 4 MSBs, and MacHi is the 2 LSBs.
96 	 */
97 	if (mac != AH_NULL) {
98 		macHi = (mac[5] << 8) | mac[4];
99 		macLo = (mac[3] << 24)| (mac[2] << 16)
100 		      | (mac[1] << 8) | mac[0];
101 		macLo >>= 1;
102 		macLo |= (macHi & 1) << 31;	/* carry */
103 		macHi >>= 1;
104 	} else {
105 		macLo = macHi = 0;
106 	}
107 
108 	OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
109 	OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
110 	return AH_TRUE;
111 }
112 
113 /*
114  * Sets the contents of the specified key cache entry.
115  */
116 HAL_BOOL
117 ar5211SetKeyCacheEntry(struct ath_hal *ah, uint16_t entry,
118                        const HAL_KEYVAL *k, const uint8_t *mac,
119                        int xorKey)
120 {
121 	uint32_t key0, key1, key2, key3, key4;
122 	uint32_t keyType;
123 	uint32_t xorMask= xorKey ?
124 		(KEY_XOR << 24 | KEY_XOR << 16 | KEY_XOR << 8 | KEY_XOR) : 0;
125 
126 	if (entry >= AR_KEYTABLE_SIZE) {
127 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
128 		    __func__, entry);
129 		return AH_FALSE;
130 	}
131 	switch (k->kv_type) {
132 	case HAL_CIPHER_AES_OCB:
133 		keyType = AR_KEYTABLE_TYPE_AES;
134 		break;
135 	case HAL_CIPHER_WEP:
136 		if (k->kv_len < 40 / NBBY) {
137 			HALDEBUG(ah, HAL_DEBUG_ANY,
138 			    "%s: WEP key length %u too small\n",
139 			    __func__, k->kv_len);
140 			return AH_FALSE;
141 		}
142 		if (k->kv_len <= 40 / NBBY)
143 			keyType = AR_KEYTABLE_TYPE_40;
144 		else if (k->kv_len <= 104 / NBBY)
145 			keyType = AR_KEYTABLE_TYPE_104;
146 		else
147 			keyType = AR_KEYTABLE_TYPE_128;
148 		break;
149 	case HAL_CIPHER_CLR:
150 		keyType = AR_KEYTABLE_TYPE_CLR;
151 		break;
152 	default:
153 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cipher %u not supported\n",
154 			__func__, k->kv_type);
155 		return AH_FALSE;
156 	}
157 
158 	key0 = LE_READ_4(k->kv_val+0) ^ xorMask;
159 	key1 = (LE_READ_2(k->kv_val+4) ^ xorMask) & 0xffff;
160 	key2 = LE_READ_4(k->kv_val+6) ^ xorMask;
161 	key3 = (LE_READ_2(k->kv_val+10) ^ xorMask) & 0xffff;
162 	key4 = LE_READ_4(k->kv_val+12) ^ xorMask;
163 	if (k->kv_len <= 104 / NBBY)
164 		key4 &= 0xff;
165 
166 
167 	/*
168 	 * Note: WEP key cache hardware requires that each double-word
169 	 * pair be written in even/odd order (since the destination is
170 	 * a 64-bit register).  Don't reorder these writes w/o
171 	 * understanding this!
172 	 */
173 	OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
174 	OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
175 	OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
176 	OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
177 	OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
178 	OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
179 	return ar5211SetKeyCacheEntryMac(ah, entry, mac);
180 }
181