xref: /freebsd/sys/dev/ath/ath_hal/ar5210/ar5210_reset.c (revision f126d349810fdb512c0b01e101342d430b947488)
1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2004 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  * $FreeBSD$
20  */
21 #include "opt_ah.h"
22 
23 #include "ah.h"
24 #include "ah_internal.h"
25 
26 #include "ar5210/ar5210.h"
27 #include "ar5210/ar5210reg.h"
28 #include "ar5210/ar5210phy.h"
29 
30 #include "ah_eeprom_v1.h"
31 
32 typedef struct {
33 	uint32_t	Offset;
34 	uint32_t	Value;
35 } REGISTER_VAL;
36 
37 static const REGISTER_VAL ar5k0007_init[] = {
38 #include "ar5210/ar5k_0007.ini"
39 };
40 
41 /* Default Power Settings for channels outside of EEPROM range */
42 static const uint8_t ar5k0007_pwrSettings[17] = {
43 /*	gain delta			pc dac */
44 /* 54  48  36  24  18  12   9   54  48  36  24  18  12   9   6  ob  db	  */
45     9,  9,  0,  0,  0,  0,  0,   2,  2,  6,  6,  6,  6,  6,  6,  2,  2
46 };
47 
48 /*
49  * The delay, in usecs, between writing AR_RC with a reset
50  * request and waiting for the chip to settle.  If this is
51  * too short then the chip does not come out of sleep state.
52  * Note this value was empirically derived and may be dependent
53  * on the host machine (don't know--the problem was identified
54  * on an IBM 570e laptop; 10us delays worked on other systems).
55  */
56 #define	AR_RC_SETTLE_TIME	20000
57 
58 static HAL_BOOL ar5210SetResetReg(struct ath_hal *,
59 		uint32_t resetMask, u_int delay);
60 static HAL_BOOL ar5210SetChannel(struct ath_hal *, struct ieee80211_channel *);
61 static void ar5210SetOperatingMode(struct ath_hal *, int opmode);
62 
63 /*
64  * Places the device in and out of reset and then places sane
65  * values in the registers based on EEPROM config, initialization
66  * vectors (as determined by the mode), and station configuration
67  *
68  * bChannelChange is used to preserve DMA/PCU registers across
69  * a HW Reset during channel change.
70  */
71 HAL_BOOL
72 ar5210Reset(struct ath_hal *ah, HAL_OPMODE opmode,
73 	struct ieee80211_channel *chan, HAL_BOOL bChannelChange,
74 	HAL_RESET_TYPE resetType,
75 	HAL_STATUS *status)
76 {
77 #define	N(a)	(sizeof (a) /sizeof (a[0]))
78 #define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
79 	struct ath_hal_5210 *ahp = AH5210(ah);
80 	const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom;
81 	HAL_CHANNEL_INTERNAL *ichan;
82 	HAL_STATUS ecode;
83 	uint32_t ledstate;
84 	int i, q;
85 
86 	HALDEBUG(ah, HAL_DEBUG_RESET,
87 	    "%s: opmode %u channel %u/0x%x %s channel\n", __func__,
88 	    opmode, chan->ic_freq, chan->ic_flags,
89 	    bChannelChange ? "change" : "same");
90 
91 	if (!IEEE80211_IS_CHAN_5GHZ(chan)) {
92 		/* Only 11a mode */
93 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: channel not 5GHz\n", __func__);
94 		FAIL(HAL_EINVAL);
95 	}
96 	/*
97 	 * Map public channel to private.
98 	 */
99 	ichan = ath_hal_checkchannel(ah, chan);
100 	if (ichan == AH_NULL) {
101 		HALDEBUG(ah, HAL_DEBUG_ANY,
102 		    "%s: invalid channel %u/0x%x; no mapping\n",
103 		    __func__, chan->ic_freq, chan->ic_flags);
104 		FAIL(HAL_EINVAL);
105 	}
106 	switch (opmode) {
107 	case HAL_M_STA:
108 	case HAL_M_IBSS:
109 	case HAL_M_HOSTAP:
110 	case HAL_M_MONITOR:
111 		break;
112 	default:
113 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
114 		    __func__, opmode);
115 		FAIL(HAL_EINVAL);
116 		break;
117 	}
118 
119 	ledstate = OS_REG_READ(ah, AR_PCICFG) &
120 		(AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT);
121 
122 	if (!ar5210ChipReset(ah, chan)) {
123 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n",
124 		    __func__);
125 		FAIL(HAL_EIO);
126 	}
127 
128 	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
129 	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4));
130 	ar5210SetOperatingMode(ah, opmode);
131 
132 	switch (opmode) {
133 	case HAL_M_HOSTAP:
134 		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
135 		OS_REG_WRITE(ah, AR_PCICFG,
136 			AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL);
137 		break;
138 	case HAL_M_IBSS:
139 		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG | AR_BCR_BCMD);
140 		OS_REG_WRITE(ah, AR_PCICFG,
141 			AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL);
142 		break;
143 	case HAL_M_STA:
144 		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
145 		OS_REG_WRITE(ah, AR_PCICFG,
146 			AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL);
147 		break;
148 	case HAL_M_MONITOR:
149 		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
150 		OS_REG_WRITE(ah, AR_PCICFG,
151 			AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL);
152 		break;
153 	}
154 
155 	/* Restore previous led state */
156 	OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
157 
158 #if 0
159 	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
160 	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
161 #endif
162 	/* BSSID, association id, ps-poll */
163 	ar5210WriteAssocid(ah, ahp->ah_bssid, ahp->ah_associd);
164 
165 	OS_REG_WRITE(ah, AR_TXDP0, 0);
166 	OS_REG_WRITE(ah, AR_TXDP1, 0);
167 	OS_REG_WRITE(ah, AR_RXDP, 0);
168 
169 	/*
170 	 * Initialize interrupt state.
171 	 */
172 	(void) OS_REG_READ(ah, AR_ISR);		/* cleared on read */
173 	OS_REG_WRITE(ah, AR_IMR, 0);
174 	OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
175 	ahp->ah_maskReg = 0;
176 
177 	(void) OS_REG_READ(ah, AR_BSR);		/* cleared on read */
178 	OS_REG_WRITE(ah, AR_TXCFG, AR_DMASIZE_128B);
179 	OS_REG_WRITE(ah, AR_RXCFG, AR_DMASIZE_128B);
180 
181 	OS_REG_WRITE(ah, AR_TOPS, 8);		/* timeout prescale */
182 	OS_REG_WRITE(ah, AR_RXNOFRM, 8);	/* RX no frame timeout */
183 	OS_REG_WRITE(ah, AR_RPGTO, 0);		/* RX frame gap timeout */
184 	OS_REG_WRITE(ah, AR_TXNOFRM, 0);	/* TX no frame timeout */
185 
186 	OS_REG_WRITE(ah, AR_SFR, 0);
187 	OS_REG_WRITE(ah, AR_MIBC, 0);		/* unfreeze ctrs + clr state */
188 	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
189 	OS_REG_WRITE(ah, AR_CFP_DUR, 0);
190 
191 	ar5210SetRxFilter(ah, 0);		/* nothing for now */
192 	OS_REG_WRITE(ah, AR_MCAST_FIL0, 0);	/* multicast filter */
193 	OS_REG_WRITE(ah, AR_MCAST_FIL1, 0);	/* XXX was 2 */
194 
195 	OS_REG_WRITE(ah, AR_TX_MASK0, 0);
196 	OS_REG_WRITE(ah, AR_TX_MASK1, 0);
197 	OS_REG_WRITE(ah, AR_CLR_TMASK, 1);
198 	OS_REG_WRITE(ah, AR_TRIG_LEV, 1);	/* minimum */
199 
200 	ar5210UpdateDiagReg(ah, 0);
201 
202 	OS_REG_WRITE(ah, AR_CFP_PERIOD, 0);
203 	OS_REG_WRITE(ah, AR_TIMER0, 0);		/* next beacon time */
204 	OS_REG_WRITE(ah, AR_TSF_L32, 0);	/* local clock */
205 	OS_REG_WRITE(ah, AR_TIMER1, ~0);	/* next DMA beacon alert */
206 	OS_REG_WRITE(ah, AR_TIMER2, ~0);	/* next SW beacon alert */
207 	OS_REG_WRITE(ah, AR_TIMER3, 1);		/* next ATIM window */
208 
209 	/* Write the INI values for PHYreg initialization */
210 	for (i = 0; i < N(ar5k0007_init); i++) {
211 		uint32_t reg = ar5k0007_init[i].Offset;
212 		/* On channel change, don't reset the PCU registers */
213 		if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
214 			OS_REG_WRITE(ah, reg, ar5k0007_init[i].Value);
215 	}
216 
217 	/* Setup the transmit power values for cards since 0x0[0-2]05 */
218 	if (!ar5210SetTransmitPower(ah, chan)) {
219 		HALDEBUG(ah, HAL_DEBUG_ANY,
220 		    "%s: error init'ing transmit power\n", __func__);
221 		FAIL(HAL_EIO);
222 	}
223 
224 	OS_REG_WRITE(ah, AR_PHY(10),
225 		(OS_REG_READ(ah, AR_PHY(10)) & 0xFFFF00FF) |
226 		(ee->ee_xlnaOn << 8));
227 	OS_REG_WRITE(ah, AR_PHY(13),
228 		(ee->ee_xpaOff << 24) | (ee->ee_xpaOff << 16) |
229 		(ee->ee_xpaOn << 8) | ee->ee_xpaOn);
230 	OS_REG_WRITE(ah, AR_PHY(17),
231 		(OS_REG_READ(ah, AR_PHY(17)) & 0xFFFFC07F) |
232 		((ee->ee_antenna >> 1) & 0x3F80));
233 	OS_REG_WRITE(ah, AR_PHY(18),
234 		(OS_REG_READ(ah, AR_PHY(18)) & 0xFFFC0FFF) |
235 		((ee->ee_antenna << 10) & 0x3F000));
236 	OS_REG_WRITE(ah, AR_PHY(25),
237 		(OS_REG_READ(ah, AR_PHY(25)) & 0xFFF80FFF) |
238 		((ee->ee_thresh62 << 12) & 0x7F000));
239 	OS_REG_WRITE(ah, AR_PHY(68),
240 		(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) |
241 		(ee->ee_antenna & 0x3));
242 
243 	if (!ar5210SetChannel(ah, chan)) {
244 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
245 		    __func__);
246 		FAIL(HAL_EIO);
247 	}
248 	if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
249 		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
250 
251 	/* Activate the PHY */
252 	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ENABLE);
253 
254 	OS_DELAY(1000);		/* Wait a bit (1 msec) */
255 
256 	/* calibrate the HW and poll the bit going to 0 for completion */
257 	OS_REG_WRITE(ah, AR_PHY_AGCCTL,
258 		OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL);
259 	(void) ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0);
260 
261 	/* Perform noise floor calibration and set status */
262 	if (!ar5210CalNoiseFloor(ah, ichan)) {
263 		chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
264 		HALDEBUG(ah, HAL_DEBUG_ANY,
265 		    "%s: noise floor calibration failed\n", __func__);
266 		FAIL(HAL_EIO);
267 	}
268 
269 	for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
270 		ar5210ResetTxQueue(ah, q);
271 
272 	if (AH_PRIVATE(ah)->ah_rfkillEnabled)
273 		ar5210EnableRfKill(ah);
274 
275 	/*
276 	 * Writing to AR_BEACON will start timers. Hence it should be
277 	 * the last register to be written. Do not reset tsf, do not
278 	 * enable beacons at this point, but preserve other values
279 	 * like beaconInterval.
280 	 */
281 	OS_REG_WRITE(ah, AR_BEACON,
282 		(OS_REG_READ(ah, AR_BEACON) &
283 			~(AR_BEACON_EN | AR_BEACON_RESET_TSF)));
284 
285 	/* Restore user-specified slot time and timeouts */
286 	if (ahp->ah_sifstime != (u_int) -1)
287 		ar5210SetSifsTime(ah, ahp->ah_sifstime);
288 	if (ahp->ah_slottime != (u_int) -1)
289 		ar5210SetSlotTime(ah, ahp->ah_slottime);
290 	if (ahp->ah_acktimeout != (u_int) -1)
291 		ar5210SetAckTimeout(ah, ahp->ah_acktimeout);
292 	if (ahp->ah_ctstimeout != (u_int) -1)
293 		ar5210SetCTSTimeout(ah, ahp->ah_ctstimeout);
294 	if (AH_PRIVATE(ah)->ah_diagreg != 0)
295 		ar5210UpdateDiagReg(ah, AH_PRIVATE(ah)->ah_diagreg);
296 
297 	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
298 
299 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
300 
301 	return AH_TRUE;
302 bad:
303 	if (status != AH_NULL)
304 		*status = ecode;
305 	return AH_FALSE;
306 #undef FAIL
307 #undef N
308 }
309 
310 static void
311 ar5210SetOperatingMode(struct ath_hal *ah, int opmode)
312 {
313 	struct ath_hal_5210 *ahp = AH5210(ah);
314 	uint32_t val;
315 
316 	val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
317 	switch (opmode) {
318 	case HAL_M_HOSTAP:
319 		OS_REG_WRITE(ah, AR_STA_ID1, val
320 			| AR_STA_ID1_AP
321 			| AR_STA_ID1_NO_PSPOLL
322 			| AR_STA_ID1_DESC_ANTENNA
323 			| ahp->ah_staId1Defaults);
324 		break;
325 	case HAL_M_IBSS:
326 		OS_REG_WRITE(ah, AR_STA_ID1, val
327 			| AR_STA_ID1_ADHOC
328 			| AR_STA_ID1_NO_PSPOLL
329 			| AR_STA_ID1_DESC_ANTENNA
330 			| ahp->ah_staId1Defaults);
331 		break;
332 	case HAL_M_STA:
333 		OS_REG_WRITE(ah, AR_STA_ID1, val
334 			| AR_STA_ID1_NO_PSPOLL
335 			| AR_STA_ID1_PWR_SV
336 			| ahp->ah_staId1Defaults);
337 		break;
338 	case HAL_M_MONITOR:
339 		OS_REG_WRITE(ah, AR_STA_ID1, val
340 			| AR_STA_ID1_NO_PSPOLL
341 			| ahp->ah_staId1Defaults);
342 		break;
343 	}
344 }
345 
346 void
347 ar5210SetPCUConfig(struct ath_hal *ah)
348 {
349 	ar5210SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
350 }
351 
352 /*
353  * Places the PHY and Radio chips into reset.  A full reset
354  * must be called to leave this state.  The PCI/MAC/PCU are
355  * not placed into reset as we must receive interrupt to
356  * re-enable the hardware.
357  */
358 HAL_BOOL
359 ar5210PhyDisable(struct ath_hal *ah)
360 {
361 	return ar5210SetResetReg(ah, AR_RC_RPHY, 10);
362 }
363 
364 /*
365  * Places all of hardware into reset
366  */
367 HAL_BOOL
368 ar5210Disable(struct ath_hal *ah)
369 {
370 #define	AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC)
371 	if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
372 		return AH_FALSE;
373 
374 	/*
375 	 * Reset the HW - PCI must be reset after the rest of the
376 	 * device has been reset
377 	 */
378 	if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME))
379 		return AH_FALSE;
380 	OS_DELAY(1000);
381 	(void) ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME);
382 	OS_DELAY(2100);   /* 8245 @ 96Mhz hangs with 2000us. */
383 
384 	return AH_TRUE;
385 #undef AR_RC_HW
386 }
387 
388 /*
389  * Places the hardware into reset and then pulls it out of reset
390  */
391 HAL_BOOL
392 ar5210ChipReset(struct ath_hal *ah, struct ieee80211_channel *chan)
393 {
394 #define	AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC)
395 
396 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s turbo %s\n", __func__,
397 		chan && IEEE80211_IS_CHAN_TURBO(chan) ?
398 		"enabled" : "disabled");
399 
400 	if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
401 		return AH_FALSE;
402 
403 	/* Place chip in turbo before reset to cleanly reset clocks */
404 	OS_REG_WRITE(ah, AR_PHY_FRCTL,
405 		chan && IEEE80211_IS_CHAN_TURBO(chan) ? AR_PHY_TURBO_MODE : 0);
406 
407 	/*
408 	 * Reset the HW.
409 	 * PCI must be reset after the rest of the device has been reset.
410 	 */
411 	if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME))
412 		return AH_FALSE;
413 	OS_DELAY(1000);
414 	if (!ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME))
415 		return AH_FALSE;
416 	OS_DELAY(2100);   /* 8245 @ 96Mhz hangs with 2000us. */
417 
418 	/*
419 	 * Bring out of sleep mode (AGAIN)
420 	 *
421 	 * WARNING WARNING WARNING
422 	 *
423 	 * There is a problem with the chip where it doesn't always indicate
424 	 * that it's awake, so initializePowerUp() will fail.
425 	 */
426 	if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
427 		return AH_FALSE;
428 
429 	/* Clear warm reset reg */
430 	return ar5210SetResetReg(ah, 0, 10);
431 #undef AR_RC_HW
432 }
433 
434 enum {
435 	FIRPWR_M	= 0x03fc0000,
436 	FIRPWR_S	= 18,
437 	KCOARSEHIGH_M   = 0x003f8000,
438 	KCOARSEHIGH_S   = 15,
439 	KCOARSELOW_M	= 0x00007f80,
440 	KCOARSELOW_S	= 7,
441 	ADCSAT_ICOUNT_M	= 0x0001f800,
442 	ADCSAT_ICOUNT_S	= 11,
443 	ADCSAT_THRESH_M	= 0x000007e0,
444 	ADCSAT_THRESH_S	= 5
445 };
446 
447 /*
448  * Recalibrate the lower PHY chips to account for temperature/environment
449  * changes.
450  */
451 HAL_BOOL
452 ar5210PerCalibrationN(struct ath_hal *ah,
453 	struct ieee80211_channel *chan, u_int chainMask,
454 	HAL_BOOL longCal, HAL_BOOL *isCalDone)
455 {
456 	uint32_t regBeacon;
457 	uint32_t reg9858, reg985c, reg9868;
458 	HAL_CHANNEL_INTERNAL *ichan;
459 
460 	ichan = ath_hal_checkchannel(ah, chan);
461 	if (ichan == AH_NULL)
462 		return AH_FALSE;
463 	/* Disable tx and rx */
464 	ar5210UpdateDiagReg(ah,
465 		OS_REG_READ(ah, AR_DIAG_SW) | (AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX));
466 
467 	/* Disable Beacon Enable */
468 	regBeacon = OS_REG_READ(ah, AR_BEACON);
469 	OS_REG_WRITE(ah, AR_BEACON, regBeacon & ~AR_BEACON_EN);
470 
471 	/* Delay 4ms to ensure that all tx and rx activity has ceased */
472 	OS_DELAY(4000);
473 
474 	/* Disable AGC to radio traffic */
475 	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000);
476 	/* Wait for the AGC traffic to cease. */
477 	OS_DELAY(10);
478 
479 	/* Change Channel to relock synth */
480 	if (!ar5210SetChannel(ah, chan))
481 		return AH_FALSE;
482 
483 	/* wait for the synthesizer lock to stabilize */
484 	OS_DELAY(1000);
485 
486 	/* Re-enable AGC to radio traffic */
487 	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000));
488 
489 	/*
490 	 * Configure the AGC so that it is highly unlikely (if not
491 	 * impossible) for it to send any gain changes to the analog
492 	 * chip.  We store off the current values so that they can
493 	 * be rewritten below. Setting the following values:
494 	 * firpwr	 = -1
495 	 * Kcoursehigh   = -1
496 	 * Kcourselow	 = -127
497 	 * ADCsat_icount = 2
498 	 * ADCsat_thresh = 12
499 	 */
500 	reg9858 = OS_REG_READ(ah, 0x9858);
501 	reg985c = OS_REG_READ(ah, 0x985c);
502 	reg9868 = OS_REG_READ(ah, 0x9868);
503 
504 	OS_REG_WRITE(ah, 0x9858, (reg9858 & ~FIRPWR_M) |
505 					 ((-1 << FIRPWR_S) & FIRPWR_M));
506 	OS_REG_WRITE(ah, 0x985c,
507 		 (reg985c & ~(KCOARSEHIGH_M | KCOARSELOW_M)) |
508 		 ((-1 << KCOARSEHIGH_S) & KCOARSEHIGH_M) |
509 		 ((-127 << KCOARSELOW_S) & KCOARSELOW_M));
510 	OS_REG_WRITE(ah, 0x9868,
511 		 (reg9868 & ~(ADCSAT_ICOUNT_M | ADCSAT_THRESH_M)) |
512 		 ((2 << ADCSAT_ICOUNT_S) & ADCSAT_ICOUNT_M) |
513 		 ((12 << ADCSAT_THRESH_S) & ADCSAT_THRESH_M));
514 
515 	/* Wait for AGC changes to be enacted */
516 	OS_DELAY(20);
517 
518 	/*
519 	 * We disable RF mix/gain stages for the PGA to avoid a
520 	 * race condition that will occur with receiving a frame
521 	 * and performing the AGC calibration.  This will be
522 	 * re-enabled at the end of offset cal.  We turn off AGC
523 	 * writes during this write as it will go over the analog bus.
524 	 */
525 	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000);
526 	OS_DELAY(10);		 /* wait for the AGC traffic to cease */
527 	OS_REG_WRITE(ah, 0x98D4, 0x21);
528 	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000));
529 
530 	/* wait to make sure that additional AGC traffic has quiesced */
531 	OS_DELAY(1000);
532 
533 	/* AGC calibration (this was added to make the NF threshold check work) */
534 	OS_REG_WRITE(ah, AR_PHY_AGCCTL,
535 		 OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL);
536 	if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0)) {
537 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: AGC calibration timeout\n",
538 		    __func__);
539 	}
540 
541 	/* Rewrite our AGC values we stored off earlier (return AGC to normal operation) */
542 	OS_REG_WRITE(ah, 0x9858, reg9858);
543 	OS_REG_WRITE(ah, 0x985c, reg985c);
544 	OS_REG_WRITE(ah, 0x9868, reg9868);
545 
546 	/* Perform noise floor and set status */
547 	if (!ar5210CalNoiseFloor(ah, ichan)) {
548 		/*
549 		 * Delay 5ms before retrying the noise floor -
550 		 * just to make sure.  We're in an error
551 		 * condition here
552 		 */
553 		HALDEBUG(ah, HAL_DEBUG_NFCAL | HAL_DEBUG_PERCAL,
554 		    "%s: Performing 2nd Noise Cal\n", __func__);
555 		OS_DELAY(5000);
556 		if (!ar5210CalNoiseFloor(ah, ichan))
557 			chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
558 	}
559 
560 	/* Clear tx and rx disable bit */
561 	ar5210UpdateDiagReg(ah,
562 		 OS_REG_READ(ah, AR_DIAG_SW) & ~(AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX));
563 
564 	/* Re-enable Beacons */
565 	OS_REG_WRITE(ah, AR_BEACON, regBeacon);
566 
567 	*isCalDone = AH_TRUE;
568 
569 	return AH_TRUE;
570 }
571 
572 HAL_BOOL
573 ar5210PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan,
574 	HAL_BOOL *isIQdone)
575 {
576 	return ar5210PerCalibrationN(ah,  chan, 0x1, AH_TRUE, isIQdone);
577 }
578 
579 HAL_BOOL
580 ar5210ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
581 {
582 	return AH_TRUE;
583 }
584 
585 /*
586  * Writes the given reset bit mask into the reset register
587  */
588 static HAL_BOOL
589 ar5210SetResetReg(struct ath_hal *ah, uint32_t resetMask, u_int delay)
590 {
591 	uint32_t mask = resetMask ? resetMask : ~0;
592 	HAL_BOOL rt;
593 
594 	OS_REG_WRITE(ah, AR_RC, resetMask);
595 	/* need to wait at least 128 clocks when reseting PCI before read */
596 	OS_DELAY(delay);
597 
598 	resetMask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC;
599 	mask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC;
600 	rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
601         if ((resetMask & AR_RC_RMAC) == 0) {
602 		if (isBigEndian()) {
603 			/*
604 			 * Set CFG, little-endian for descriptor accesses.
605 			 */
606 			mask = INIT_CONFIG_STATUS | AR_CFG_SWTD | AR_CFG_SWRD;
607 			OS_REG_WRITE(ah, AR_CFG, mask);
608 		} else
609 			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
610 	}
611 	return rt;
612 }
613 
614 /*
615  * Returns: the pcdac value
616  */
617 static uint8_t
618 getPcdac(struct ath_hal *ah, const struct tpcMap *pRD, uint8_t dBm)
619 {
620 	int32_t	 i;
621 	int useNextEntry = AH_FALSE;
622 	uint32_t interp;
623 
624 	for (i = AR_TP_SCALING_ENTRIES - 1; i >= 0; i--) {
625 		/* Check for exact entry */
626 		if (dBm == AR_I2DBM(i)) {
627 			if (pRD->pcdac[i] != 63)
628 				return pRD->pcdac[i];
629 			useNextEntry = AH_TRUE;
630 		} else if (dBm + 1 == AR_I2DBM(i) && i > 0) {
631 			/* Interpolate for between entry with a logish scale */
632 			if (pRD->pcdac[i] != 63 && pRD->pcdac[i-1] != 63) {
633 				interp = (350 * (pRD->pcdac[i] - pRD->pcdac[i-1])) + 999;
634 				interp = (interp / 1000) + pRD->pcdac[i-1];
635 				return interp;
636 			}
637 			useNextEntry = AH_TRUE;
638 		} else if (useNextEntry == AH_TRUE) {
639 			/* Grab the next lowest */
640 			if (pRD->pcdac[i] != 63)
641 				return pRD->pcdac[i];
642 		}
643 	}
644 
645 	/* Return the lowest Entry if we haven't returned */
646 	for (i = 0; i < AR_TP_SCALING_ENTRIES; i++)
647 		if (pRD->pcdac[i] != 63)
648 			return pRD->pcdac[i];
649 
650 	/* No value to return from table */
651 #ifdef AH_DEBUG
652 	ath_hal_printf(ah, "%s: empty transmit power table?\n", __func__);
653 #endif
654 	return 1;
655 }
656 
657 /*
658  * Find or interpolates the gainF value from the table ptr.
659  */
660 static uint8_t
661 getGainF(struct ath_hal *ah, const struct tpcMap *pRD,
662 	uint8_t pcdac, uint8_t *dBm)
663 {
664 	uint32_t interp;
665 	int low, high, i;
666 
667 	low = high = -1;
668 
669 	for (i = 0; i < AR_TP_SCALING_ENTRIES; i++) {
670 		if(pRD->pcdac[i] == 63)
671 			continue;
672 		if (pcdac == pRD->pcdac[i]) {
673 			*dBm = AR_I2DBM(i);
674 			return pRD->gainF[i];  /* Exact Match */
675 		}
676 		if (pcdac > pRD->pcdac[i])
677 			low = i;
678 		if (pcdac < pRD->pcdac[i]) {
679 			high = i;
680 			if (low == -1) {
681 				*dBm = AR_I2DBM(i);
682 				/* PCDAC is lower than lowest setting */
683 				return pRD->gainF[i];
684 			}
685 			break;
686 		}
687 	}
688 	if (i >= AR_TP_SCALING_ENTRIES && low == -1) {
689 		/* No settings were found */
690 #ifdef AH_DEBUG
691 		ath_hal_printf(ah,
692 			"%s: no valid entries in the pcdac table: %d\n",
693 			__func__, pcdac);
694 #endif
695 		return 63;
696 	}
697 	if (i >= AR_TP_SCALING_ENTRIES) {
698 		/* PCDAC setting was above the max setting in the table */
699 		*dBm = AR_I2DBM(low);
700 		return pRD->gainF[low];
701 	}
702 	/* Only exact if table has no missing entries */
703 	*dBm = (low + high) + 3;
704 
705 	/*
706 	 * Perform interpolation between low and high values to find gainF
707 	 * linearly scale the pcdac between low and high
708 	 */
709 	interp = ((pcdac - pRD->pcdac[low]) * 1000) /
710 		  (pRD->pcdac[high] - pRD->pcdac[low]);
711 	/*
712 	 * Multiply the scale ratio by the gainF difference
713 	 * (plus a rnd up factor)
714 	 */
715 	interp = ((interp * (pRD->gainF[high] - pRD->gainF[low])) + 999) / 1000;
716 
717 	/* Add ratioed gain_f to low gain_f value */
718 	return interp + pRD->gainF[low];
719 }
720 
721 HAL_BOOL
722 ar5210SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
723 {
724 	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, AR5210_MAX_RATE_POWER);
725 	/* XXX flush to h/w */
726 	return AH_TRUE;
727 }
728 
729 /*
730  * Get TXPower values and set them in the radio
731  */
732 static HAL_BOOL
733 setupPowerSettings(struct ath_hal *ah, const struct ieee80211_channel *chan,
734 	uint8_t cp[17])
735 {
736 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
737 	const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom;
738 	uint8_t gainFRD, gainF36, gainF48, gainF54;
739 	uint8_t dBmRD, dBm36, dBm48, dBm54, dontcare;
740 	uint32_t rd, group;
741 	const struct tpcMap  *pRD;
742 
743 	/* Set OB/DB Values regardless of channel */
744 	cp[15] = (ee->ee_biasCurrents >> 4) & 0x7;
745 	cp[16] = ee->ee_biasCurrents & 0x7;
746 
747 	if (freq < 5170 || freq > 5320) {
748 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u\n",
749 		    __func__, freq);
750 		return AH_FALSE;
751 	}
752 
753 	HALASSERT(ee->ee_version >= AR_EEPROM_VER1 &&
754 	    ee->ee_version < AR_EEPROM_VER3);
755 
756 	/* Match regulatory domain */
757 	for (rd = 0; rd < AR_REG_DOMAINS_MAX; rd++)
758 		if (AH_PRIVATE(ah)->ah_currentRD == ee->ee_regDomain[rd])
759 			break;
760 	if (rd == AR_REG_DOMAINS_MAX) {
761 #ifdef AH_DEBUG
762 		ath_hal_printf(ah,
763 			"%s: no calibrated regulatory domain matches the "
764 			"current regularly domain (0x%0x)\n", __func__,
765 			AH_PRIVATE(ah)->ah_currentRD);
766 #endif
767 		return AH_FALSE;
768 	}
769 	group = ((freq - 5170) / 10);
770 
771 	if (group > 11) {
772 		/* Pull 5.29 into the 5.27 group */
773 		group--;
774 	}
775 
776 	/* Integer divide will set group from 0 to 4 */
777 	group = group / 3;
778 	pRD   = &ee->ee_tpc[group];
779 
780 	/* Set PC DAC Values */
781 	cp[14] = pRD->regdmn[rd];
782 	cp[9]  = AH_MIN(pRD->regdmn[rd], pRD->rate36);
783 	cp[8]  = AH_MIN(pRD->regdmn[rd], pRD->rate48);
784 	cp[7]  = AH_MIN(pRD->regdmn[rd], pRD->rate54);
785 
786 	/* Find Corresponding gainF values for RD, 36, 48, 54 */
787 	gainFRD = getGainF(ah, pRD, pRD->regdmn[rd], &dBmRD);
788 	gainF36 = getGainF(ah, pRD, cp[9], &dBm36);
789 	gainF48 = getGainF(ah, pRD, cp[8], &dBm48);
790 	gainF54 = getGainF(ah, pRD, cp[7], &dBm54);
791 
792 	/* Power Scale if requested */
793 	if (AH_PRIVATE(ah)->ah_tpScale != HAL_TP_SCALE_MAX) {
794 		static const uint16_t tpcScaleReductionTable[5] =
795 			{ 0, 3, 6, 9, AR5210_MAX_RATE_POWER };
796 		uint16_t tpScale;
797 
798 		tpScale = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
799 		if (dBmRD < tpScale+3)
800 			dBmRD = 3;		/* min */
801 		else
802 			dBmRD -= tpScale;
803 		cp[14]  = getPcdac(ah, pRD, dBmRD);
804 		gainFRD = getGainF(ah, pRD, cp[14], &dontcare);
805 		dBm36   = AH_MIN(dBm36, dBmRD);
806 		cp[9]   = getPcdac(ah, pRD, dBm36);
807 		gainF36 = getGainF(ah, pRD, cp[9], &dontcare);
808 		dBm48   = AH_MIN(dBm48, dBmRD);
809 		cp[8]   = getPcdac(ah, pRD, dBm48);
810 		gainF48 = getGainF(ah, pRD, cp[8], &dontcare);
811 		dBm54   = AH_MIN(dBm54, dBmRD);
812 		cp[7]   = getPcdac(ah, pRD, dBm54);
813 		gainF54 = getGainF(ah, pRD, cp[7], &dontcare);
814 	}
815 	/* Record current dBm at rate 6 */
816 	AH_PRIVATE(ah)->ah_maxPowerLevel = 2*dBmRD;
817 
818 	cp[13] = cp[12] = cp[11] = cp[10] = cp[14];
819 
820 	/* Set GainF Values */
821 	cp[0] = gainFRD - gainF54;
822 	cp[1] = gainFRD - gainF48;
823 	cp[2] = gainFRD - gainF36;
824 	/* 9, 12, 18, 24 have no gain_delta from 6 */
825 	cp[3] = cp[4] = cp[5] = cp[6] = 0;
826 	return AH_TRUE;
827 }
828 
829 /*
830  * Places the device in and out of reset and then places sane
831  * values in the registers based on EEPROM config, initialization
832  * vectors (as determined by the mode), and station configuration
833  */
834 HAL_BOOL
835 ar5210SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan)
836 {
837 #define	N(a)	(sizeof (a) / sizeof (a[0]))
838 	static const uint32_t pwr_regs_start[17] = {
839 		0x00000000, 0x00000000, 0x00000000,
840 		0x00000000, 0x00000000, 0xf0000000,
841 		0xcc000000, 0x00000000, 0x00000000,
842 		0x00000000, 0x0a000000, 0x000000e2,
843 		0x0a000020, 0x01000002, 0x01000018,
844 		0x40000000, 0x00000418
845 	};
846 	uint16_t i;
847 	uint8_t cp[sizeof(ar5k0007_pwrSettings)];
848 	uint32_t pwr_regs[17];
849 
850 	OS_MEMCPY(pwr_regs, pwr_regs_start, sizeof(pwr_regs));
851 	OS_MEMCPY(cp, ar5k0007_pwrSettings, sizeof(cp));
852 
853 	/* Check the EEPROM tx power calibration settings */
854 	if (!setupPowerSettings(ah, chan, cp)) {
855 #ifdef AH_DEBUG
856 		ath_hal_printf(ah, "%s: unable to setup power settings\n",
857 			__func__);
858 #endif
859 		return AH_FALSE;
860 	}
861 	if (cp[15] < 1 || cp[15] > 5) {
862 #ifdef AH_DEBUG
863 		ath_hal_printf(ah, "%s: OB out of range (%u)\n",
864 			__func__, cp[15]);
865 #endif
866 		return AH_FALSE;
867 	}
868 	if (cp[16] < 1 || cp[16] > 5) {
869 #ifdef AH_DEBUG
870 		ath_hal_printf(ah, "%s: DB out of range (%u)\n",
871 			__func__, cp[16]);
872 #endif
873 		return AH_FALSE;
874 	}
875 
876 	/* reverse bits of the transmit power array */
877 	for (i = 0; i < 7; i++)
878 		cp[i] = ath_hal_reverseBits(cp[i], 5);
879 	for (i = 7; i < 15; i++)
880 		cp[i] = ath_hal_reverseBits(cp[i], 6);
881 
882 	/* merge transmit power values into the register - quite gross */
883 	pwr_regs[0] |= ((cp[1] << 5) & 0xE0) | (cp[0] & 0x1F);
884 	pwr_regs[1] |= ((cp[3] << 7) & 0x80) | ((cp[2] << 2) & 0x7C) |
885 			((cp[1] >> 3) & 0x03);
886 	pwr_regs[2] |= ((cp[4] << 4) & 0xF0) | ((cp[3] >> 1) & 0x0F);
887 	pwr_regs[3] |= ((cp[6] << 6) & 0xC0) | ((cp[5] << 1) & 0x3E) |
888 		       ((cp[4] >> 4) & 0x01);
889 	pwr_regs[4] |= ((cp[7] << 3) & 0xF8) | ((cp[6] >> 2) & 0x07);
890 	pwr_regs[5] |= ((cp[9] << 7) & 0x80) | ((cp[8] << 1) & 0x7E) |
891 			((cp[7] >> 5) & 0x01);
892 	pwr_regs[6] |= ((cp[10] << 5) & 0xE0) | ((cp[9] >> 1) & 0x1F);
893 	pwr_regs[7] |= ((cp[11] << 3) & 0xF8) | ((cp[10] >> 3) & 0x07);
894 	pwr_regs[8] |= ((cp[12] << 1) & 0x7E) | ((cp[11] >> 5) & 0x01);
895 	pwr_regs[9] |= ((cp[13] << 5) & 0xE0);
896 	pwr_regs[10] |= ((cp[14] << 3) & 0xF8) | ((cp[13] >> 3) & 0x07);
897 	pwr_regs[11] |= ((cp[14] >> 5) & 0x01);
898 
899 	/* Set OB */
900 	pwr_regs[8] |=  (ath_hal_reverseBits(cp[15], 3) << 7) & 0x80;
901 	pwr_regs[9] |=  (ath_hal_reverseBits(cp[15], 3) >> 1) & 0x03;
902 
903 	/* Set DB */
904 	pwr_regs[9] |=  (ath_hal_reverseBits(cp[16], 3) << 2) & 0x1C;
905 
906 	/* Write the registers */
907 	for (i = 0; i < N(pwr_regs)-1; i++)
908 		OS_REG_WRITE(ah, 0x0000989c, pwr_regs[i]);
909 	/* last write is a flush */
910 	OS_REG_WRITE(ah, 0x000098d4, pwr_regs[i]);
911 
912 	return AH_TRUE;
913 #undef N
914 }
915 
916 /*
917  * Takes the MHz channel value and sets the Channel value
918  *
919  * ASSUMES: Writes enabled to analog bus before AGC is active
920  *   or by disabling the AGC.
921  */
922 static HAL_BOOL
923 ar5210SetChannel(struct ath_hal *ah, struct ieee80211_channel *chan)
924 {
925 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
926 	uint32_t data;
927 
928 	/* Set the Channel */
929 	data = ath_hal_reverseBits((freq - 5120)/10, 5);
930 	data = (data << 1) | 0x41;
931 	OS_REG_WRITE(ah, AR_PHY(0x27), data);
932 	OS_REG_WRITE(ah, AR_PHY(0x30), 0);
933 	AH_PRIVATE(ah)->ah_curchan = chan;
934 	return AH_TRUE;
935 }
936 
937 int16_t
938 ar5210GetNoiseFloor(struct ath_hal *ah)
939 {
940 	int16_t nf;
941 
942 	nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
943 	if (nf & 0x100)
944 		nf = 0 - ((nf ^ 0x1ff) + 1);
945 	return nf;
946 }
947 
948 #define NORMAL_NF_THRESH (-72)
949 /*
950  * Peform the noisefloor calibration and check for
951  * any constant channel interference
952  *
953  * Returns: TRUE for a successful noise floor calibration; else FALSE
954  */
955 HAL_BOOL
956 ar5210CalNoiseFloor(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
957 {
958 	int32_t nf, nfLoops;
959 
960 	/* Calibrate the noise floor */
961 	OS_REG_WRITE(ah, AR_PHY_AGCCTL,
962 		OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_NF);
963 
964 	/* Do not read noise floor until it has done the first update */
965 	if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_NF, 0)) {
966 #ifdef ATH_HAL_DEBUG
967 		ath_hal_printf(ah, " -PHY NF Reg state: 0x%x\n",
968 			OS_REG_READ(ah, AR_PHY_AGCCTL));
969 		ath_hal_printf(ah, " -MAC Reset Reg state: 0x%x\n",
970 			OS_REG_READ(ah, AR_RC));
971 		ath_hal_printf(ah, " -PHY Active Reg state: 0x%x\n",
972 			OS_REG_READ(ah, AR_PHY_ACTIVE));
973 #endif /* ATH_HAL_DEBUG */
974 		return AH_FALSE;
975 	}
976 
977 	nf = 0;
978 	/* Keep checking until the floor is below the threshold or the nf is done */
979 	for (nfLoops = 0; ((nfLoops < 21) && (nf > NORMAL_NF_THRESH)); nfLoops++) {
980 		OS_DELAY(1000); /* Sleep for 1 ms */
981 		nf = ar5210GetNoiseFloor(ah);
982 	}
983 
984 	if (nf > NORMAL_NF_THRESH) {
985 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: Bad noise cal %d\n",
986 		    __func__, nf);
987 		ichan->rawNoiseFloor = 0;
988 		return AH_FALSE;
989 	}
990 	ichan->rawNoiseFloor = nf;
991 	return AH_TRUE;
992 }
993 
994 /*
995  * Adjust NF based on statistical values for 5GHz frequencies.
996  */
997 int16_t
998 ar5210GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
999 {
1000 	return 0;
1001 }
1002 
1003 HAL_RFGAIN
1004 ar5210GetRfgain(struct ath_hal *ah)
1005 {
1006 	return HAL_RFGAIN_INACTIVE;
1007 }
1008