1 /*- 2 * SPDX-License-Identifier: ISC 3 * 4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 5 * Copyright (c) 2002-2004 Atheros Communications, Inc. 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 #include "opt_ah.h" 20 21 #include "ah.h" 22 #include "ah_internal.h" 23 24 #include "ar5210/ar5210.h" 25 #include "ar5210/ar5210reg.h" 26 #include "ar5210/ar5210phy.h" 27 28 #include "ah_eeprom_v1.h" 29 30 typedef struct { 31 uint32_t Offset; 32 uint32_t Value; 33 } REGISTER_VAL; 34 35 static const REGISTER_VAL ar5k0007_init[] = { 36 #include "ar5210/ar5k_0007.ini" 37 }; 38 39 /* Default Power Settings for channels outside of EEPROM range */ 40 static const uint8_t ar5k0007_pwrSettings[17] = { 41 /* gain delta pc dac */ 42 /* 54 48 36 24 18 12 9 54 48 36 24 18 12 9 6 ob db */ 43 9, 9, 0, 0, 0, 0, 0, 2, 2, 6, 6, 6, 6, 6, 6, 2, 2 44 }; 45 46 /* 47 * The delay, in usecs, between writing AR_RC with a reset 48 * request and waiting for the chip to settle. If this is 49 * too short then the chip does not come out of sleep state. 50 * Note this value was empirically derived and may be dependent 51 * on the host machine (don't know--the problem was identified 52 * on an IBM 570e laptop; 10us delays worked on other systems). 53 */ 54 #define AR_RC_SETTLE_TIME 20000 55 56 static HAL_BOOL ar5210SetResetReg(struct ath_hal *, 57 uint32_t resetMask, u_int delay); 58 static HAL_BOOL ar5210SetChannel(struct ath_hal *, struct ieee80211_channel *); 59 static void ar5210SetOperatingMode(struct ath_hal *, int opmode); 60 61 /* 62 * Places the device in and out of reset and then places sane 63 * values in the registers based on EEPROM config, initialization 64 * vectors (as determined by the mode), and station configuration 65 * 66 * bChannelChange is used to preserve DMA/PCU registers across 67 * a HW Reset during channel change. 68 */ 69 HAL_BOOL 70 ar5210Reset(struct ath_hal *ah, HAL_OPMODE opmode, 71 struct ieee80211_channel *chan, HAL_BOOL bChannelChange, 72 HAL_RESET_TYPE resetType, 73 HAL_STATUS *status) 74 { 75 #define N(a) (sizeof (a) /sizeof (a[0])) 76 #define FAIL(_code) do { ecode = _code; goto bad; } while (0) 77 struct ath_hal_5210 *ahp = AH5210(ah); 78 const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom; 79 HAL_CHANNEL_INTERNAL *ichan; 80 HAL_STATUS ecode; 81 uint32_t ledstate; 82 int i, q; 83 84 HALDEBUG(ah, HAL_DEBUG_RESET, 85 "%s: opmode %u channel %u/0x%x %s channel\n", __func__, 86 opmode, chan->ic_freq, chan->ic_flags, 87 bChannelChange ? "change" : "same"); 88 89 if (!IEEE80211_IS_CHAN_5GHZ(chan)) { 90 /* Only 11a mode */ 91 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: channel not 5GHz\n", __func__); 92 FAIL(HAL_EINVAL); 93 } 94 /* 95 * Map public channel to private. 96 */ 97 ichan = ath_hal_checkchannel(ah, chan); 98 if (ichan == AH_NULL) { 99 HALDEBUG(ah, HAL_DEBUG_ANY, 100 "%s: invalid channel %u/0x%x; no mapping\n", 101 __func__, chan->ic_freq, chan->ic_flags); 102 FAIL(HAL_EINVAL); 103 } 104 switch (opmode) { 105 case HAL_M_STA: 106 case HAL_M_IBSS: 107 case HAL_M_HOSTAP: 108 case HAL_M_MONITOR: 109 break; 110 default: 111 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n", 112 __func__, opmode); 113 FAIL(HAL_EINVAL); 114 break; 115 } 116 117 ledstate = OS_REG_READ(ah, AR_PCICFG) & 118 (AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT); 119 120 if (!ar5210ChipReset(ah, chan)) { 121 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", 122 __func__); 123 FAIL(HAL_EIO); 124 } 125 126 OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr)); 127 OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)); 128 ar5210SetOperatingMode(ah, opmode); 129 130 switch (opmode) { 131 case HAL_M_HOSTAP: 132 OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG); 133 OS_REG_WRITE(ah, AR_PCICFG, 134 AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL); 135 break; 136 case HAL_M_IBSS: 137 OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG | AR_BCR_BCMD); 138 OS_REG_WRITE(ah, AR_PCICFG, 139 AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL); 140 break; 141 case HAL_M_STA: 142 OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG); 143 OS_REG_WRITE(ah, AR_PCICFG, 144 AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL); 145 break; 146 case HAL_M_MONITOR: 147 OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG); 148 OS_REG_WRITE(ah, AR_PCICFG, 149 AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL); 150 break; 151 } 152 153 /* Restore previous led state */ 154 OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate); 155 156 #if 0 157 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid)); 158 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4)); 159 #endif 160 /* BSSID, association id, ps-poll */ 161 ar5210WriteAssocid(ah, ahp->ah_bssid, ahp->ah_associd); 162 163 OS_REG_WRITE(ah, AR_TXDP0, 0); 164 OS_REG_WRITE(ah, AR_TXDP1, 0); 165 OS_REG_WRITE(ah, AR_RXDP, 0); 166 167 /* 168 * Initialize interrupt state. 169 */ 170 (void) OS_REG_READ(ah, AR_ISR); /* cleared on read */ 171 OS_REG_WRITE(ah, AR_IMR, 0); 172 OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE); 173 ahp->ah_maskReg = 0; 174 175 (void) OS_REG_READ(ah, AR_BSR); /* cleared on read */ 176 OS_REG_WRITE(ah, AR_TXCFG, AR_DMASIZE_128B); 177 OS_REG_WRITE(ah, AR_RXCFG, AR_DMASIZE_128B); 178 179 OS_REG_WRITE(ah, AR_TOPS, 8); /* timeout prescale */ 180 OS_REG_WRITE(ah, AR_RXNOFRM, 8); /* RX no frame timeout */ 181 OS_REG_WRITE(ah, AR_RPGTO, 0); /* RX frame gap timeout */ 182 OS_REG_WRITE(ah, AR_TXNOFRM, 0); /* TX no frame timeout */ 183 184 OS_REG_WRITE(ah, AR_SFR, 0); 185 OS_REG_WRITE(ah, AR_MIBC, 0); /* unfreeze ctrs + clr state */ 186 OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr); 187 OS_REG_WRITE(ah, AR_CFP_DUR, 0); 188 189 ar5210SetRxFilter(ah, 0); /* nothing for now */ 190 OS_REG_WRITE(ah, AR_MCAST_FIL0, 0); /* multicast filter */ 191 OS_REG_WRITE(ah, AR_MCAST_FIL1, 0); /* XXX was 2 */ 192 193 OS_REG_WRITE(ah, AR_TX_MASK0, 0); 194 OS_REG_WRITE(ah, AR_TX_MASK1, 0); 195 OS_REG_WRITE(ah, AR_CLR_TMASK, 1); 196 OS_REG_WRITE(ah, AR_TRIG_LEV, 1); /* minimum */ 197 198 ar5210UpdateDiagReg(ah, 0); 199 200 OS_REG_WRITE(ah, AR_CFP_PERIOD, 0); 201 OS_REG_WRITE(ah, AR_TIMER0, 0); /* next beacon time */ 202 OS_REG_WRITE(ah, AR_TSF_L32, 0); /* local clock */ 203 OS_REG_WRITE(ah, AR_TIMER1, ~0); /* next DMA beacon alert */ 204 OS_REG_WRITE(ah, AR_TIMER2, ~0); /* next SW beacon alert */ 205 OS_REG_WRITE(ah, AR_TIMER3, 1); /* next ATIM window */ 206 207 /* Write the INI values for PHYreg initialization */ 208 for (i = 0; i < N(ar5k0007_init); i++) { 209 uint32_t reg = ar5k0007_init[i].Offset; 210 /* On channel change, don't reset the PCU registers */ 211 if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000))) 212 OS_REG_WRITE(ah, reg, ar5k0007_init[i].Value); 213 } 214 215 /* Setup the transmit power values for cards since 0x0[0-2]05 */ 216 if (!ar5210SetTransmitPower(ah, chan)) { 217 HALDEBUG(ah, HAL_DEBUG_ANY, 218 "%s: error init'ing transmit power\n", __func__); 219 FAIL(HAL_EIO); 220 } 221 222 OS_REG_WRITE(ah, AR_PHY(10), 223 (OS_REG_READ(ah, AR_PHY(10)) & 0xFFFF00FF) | 224 (ee->ee_xlnaOn << 8)); 225 OS_REG_WRITE(ah, AR_PHY(13), 226 (ee->ee_xpaOff << 24) | (ee->ee_xpaOff << 16) | 227 (ee->ee_xpaOn << 8) | ee->ee_xpaOn); 228 OS_REG_WRITE(ah, AR_PHY(17), 229 (OS_REG_READ(ah, AR_PHY(17)) & 0xFFFFC07F) | 230 ((ee->ee_antenna >> 1) & 0x3F80)); 231 OS_REG_WRITE(ah, AR_PHY(18), 232 (OS_REG_READ(ah, AR_PHY(18)) & 0xFFFC0FFF) | 233 ((ee->ee_antenna << 10) & 0x3F000)); 234 OS_REG_WRITE(ah, AR_PHY(25), 235 (OS_REG_READ(ah, AR_PHY(25)) & 0xFFF80FFF) | 236 ((ee->ee_thresh62 << 12) & 0x7F000)); 237 OS_REG_WRITE(ah, AR_PHY(68), 238 (OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) | 239 (ee->ee_antenna & 0x3)); 240 241 if (!ar5210SetChannel(ah, chan)) { 242 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n", 243 __func__); 244 FAIL(HAL_EIO); 245 } 246 if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan)) 247 chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT; 248 249 /* Activate the PHY */ 250 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ENABLE); 251 252 OS_DELAY(1000); /* Wait a bit (1 msec) */ 253 254 /* calibrate the HW and poll the bit going to 0 for completion */ 255 OS_REG_WRITE(ah, AR_PHY_AGCCTL, 256 OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL); 257 (void) ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0); 258 259 /* Perform noise floor calibration and set status */ 260 if (!ar5210CalNoiseFloor(ah, ichan)) { 261 chan->ic_state |= IEEE80211_CHANSTATE_CWINT; 262 HALDEBUG(ah, HAL_DEBUG_ANY, 263 "%s: noise floor calibration failed\n", __func__); 264 FAIL(HAL_EIO); 265 } 266 267 for (q = 0; q < HAL_NUM_TX_QUEUES; q++) 268 ar5210ResetTxQueue(ah, q); 269 270 if (AH_PRIVATE(ah)->ah_rfkillEnabled) 271 ar5210EnableRfKill(ah); 272 273 /* 274 * Writing to AR_BEACON will start timers. Hence it should be 275 * the last register to be written. Do not reset tsf, do not 276 * enable beacons at this point, but preserve other values 277 * like beaconInterval. 278 */ 279 OS_REG_WRITE(ah, AR_BEACON, 280 (OS_REG_READ(ah, AR_BEACON) & 281 ~(AR_BEACON_EN | AR_BEACON_RESET_TSF))); 282 283 /* Restore user-specified slot time and timeouts */ 284 if (ahp->ah_sifstime != (u_int) -1) 285 ar5210SetSifsTime(ah, ahp->ah_sifstime); 286 if (ahp->ah_slottime != (u_int) -1) 287 ar5210SetSlotTime(ah, ahp->ah_slottime); 288 if (ahp->ah_acktimeout != (u_int) -1) 289 ar5210SetAckTimeout(ah, ahp->ah_acktimeout); 290 if (ahp->ah_ctstimeout != (u_int) -1) 291 ar5210SetCTSTimeout(ah, ahp->ah_ctstimeout); 292 if (AH_PRIVATE(ah)->ah_diagreg != 0) 293 ar5210UpdateDiagReg(ah, AH_PRIVATE(ah)->ah_diagreg); 294 295 AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */ 296 297 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__); 298 299 return AH_TRUE; 300 bad: 301 if (status != AH_NULL) 302 *status = ecode; 303 return AH_FALSE; 304 #undef FAIL 305 #undef N 306 } 307 308 static void 309 ar5210SetOperatingMode(struct ath_hal *ah, int opmode) 310 { 311 struct ath_hal_5210 *ahp = AH5210(ah); 312 uint32_t val; 313 314 val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff; 315 switch (opmode) { 316 case HAL_M_HOSTAP: 317 OS_REG_WRITE(ah, AR_STA_ID1, val 318 | AR_STA_ID1_AP 319 | AR_STA_ID1_NO_PSPOLL 320 | AR_STA_ID1_DESC_ANTENNA 321 | ahp->ah_staId1Defaults); 322 break; 323 case HAL_M_IBSS: 324 OS_REG_WRITE(ah, AR_STA_ID1, val 325 | AR_STA_ID1_ADHOC 326 | AR_STA_ID1_NO_PSPOLL 327 | AR_STA_ID1_DESC_ANTENNA 328 | ahp->ah_staId1Defaults); 329 break; 330 case HAL_M_STA: 331 OS_REG_WRITE(ah, AR_STA_ID1, val 332 | AR_STA_ID1_NO_PSPOLL 333 | AR_STA_ID1_PWR_SV 334 | ahp->ah_staId1Defaults); 335 break; 336 case HAL_M_MONITOR: 337 OS_REG_WRITE(ah, AR_STA_ID1, val 338 | AR_STA_ID1_NO_PSPOLL 339 | ahp->ah_staId1Defaults); 340 break; 341 } 342 } 343 344 void 345 ar5210SetPCUConfig(struct ath_hal *ah) 346 { 347 ar5210SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode); 348 } 349 350 /* 351 * Places the PHY and Radio chips into reset. A full reset 352 * must be called to leave this state. The PCI/MAC/PCU are 353 * not placed into reset as we must receive interrupt to 354 * re-enable the hardware. 355 */ 356 HAL_BOOL 357 ar5210PhyDisable(struct ath_hal *ah) 358 { 359 return ar5210SetResetReg(ah, AR_RC_RPHY, 10); 360 } 361 362 /* 363 * Places all of hardware into reset 364 */ 365 HAL_BOOL 366 ar5210Disable(struct ath_hal *ah) 367 { 368 #define AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC) 369 if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) 370 return AH_FALSE; 371 372 /* 373 * Reset the HW - PCI must be reset after the rest of the 374 * device has been reset 375 */ 376 if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME)) 377 return AH_FALSE; 378 OS_DELAY(1000); 379 (void) ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME); 380 OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */ 381 382 return AH_TRUE; 383 #undef AR_RC_HW 384 } 385 386 /* 387 * Places the hardware into reset and then pulls it out of reset 388 */ 389 HAL_BOOL 390 ar5210ChipReset(struct ath_hal *ah, struct ieee80211_channel *chan) 391 { 392 #define AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC) 393 394 HALDEBUG(ah, HAL_DEBUG_RESET, "%s turbo %s\n", __func__, 395 chan && IEEE80211_IS_CHAN_TURBO(chan) ? 396 "enabled" : "disabled"); 397 398 if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) 399 return AH_FALSE; 400 401 /* Place chip in turbo before reset to cleanly reset clocks */ 402 OS_REG_WRITE(ah, AR_PHY_FRCTL, 403 chan && IEEE80211_IS_CHAN_TURBO(chan) ? AR_PHY_TURBO_MODE : 0); 404 405 /* 406 * Reset the HW. 407 * PCI must be reset after the rest of the device has been reset. 408 */ 409 if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME)) 410 return AH_FALSE; 411 OS_DELAY(1000); 412 if (!ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME)) 413 return AH_FALSE; 414 OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */ 415 416 /* 417 * Bring out of sleep mode (AGAIN) 418 * 419 * WARNING WARNING WARNING 420 * 421 * There is a problem with the chip where it doesn't always indicate 422 * that it's awake, so initializePowerUp() will fail. 423 */ 424 if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) 425 return AH_FALSE; 426 427 /* Clear warm reset reg */ 428 return ar5210SetResetReg(ah, 0, 10); 429 #undef AR_RC_HW 430 } 431 432 enum { 433 FIRPWR_M = 0x03fc0000, 434 FIRPWR_S = 18, 435 KCOARSEHIGH_M = 0x003f8000, 436 KCOARSEHIGH_S = 15, 437 KCOARSELOW_M = 0x00007f80, 438 KCOARSELOW_S = 7, 439 ADCSAT_ICOUNT_M = 0x0001f800, 440 ADCSAT_ICOUNT_S = 11, 441 ADCSAT_THRESH_M = 0x000007e0, 442 ADCSAT_THRESH_S = 5 443 }; 444 445 /* 446 * Recalibrate the lower PHY chips to account for temperature/environment 447 * changes. 448 */ 449 HAL_BOOL 450 ar5210PerCalibrationN(struct ath_hal *ah, 451 struct ieee80211_channel *chan, u_int chainMask, 452 HAL_BOOL longCal, HAL_BOOL *isCalDone) 453 { 454 uint32_t regBeacon; 455 uint32_t reg9858, reg985c, reg9868; 456 HAL_CHANNEL_INTERNAL *ichan; 457 458 ichan = ath_hal_checkchannel(ah, chan); 459 if (ichan == AH_NULL) 460 return AH_FALSE; 461 /* Disable tx and rx */ 462 ar5210UpdateDiagReg(ah, 463 OS_REG_READ(ah, AR_DIAG_SW) | (AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX)); 464 465 /* Disable Beacon Enable */ 466 regBeacon = OS_REG_READ(ah, AR_BEACON); 467 OS_REG_WRITE(ah, AR_BEACON, regBeacon & ~AR_BEACON_EN); 468 469 /* Delay 4ms to ensure that all tx and rx activity has ceased */ 470 OS_DELAY(4000); 471 472 /* Disable AGC to radio traffic */ 473 OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000); 474 /* Wait for the AGC traffic to cease. */ 475 OS_DELAY(10); 476 477 /* Change Channel to relock synth */ 478 if (!ar5210SetChannel(ah, chan)) 479 return AH_FALSE; 480 481 /* wait for the synthesizer lock to stabilize */ 482 OS_DELAY(1000); 483 484 /* Re-enable AGC to radio traffic */ 485 OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000)); 486 487 /* 488 * Configure the AGC so that it is highly unlikely (if not 489 * impossible) for it to send any gain changes to the analog 490 * chip. We store off the current values so that they can 491 * be rewritten below. Setting the following values: 492 * firpwr = -1 493 * Kcoursehigh = -1 494 * Kcourselow = -127 495 * ADCsat_icount = 2 496 * ADCsat_thresh = 12 497 */ 498 reg9858 = OS_REG_READ(ah, 0x9858); 499 reg985c = OS_REG_READ(ah, 0x985c); 500 reg9868 = OS_REG_READ(ah, 0x9868); 501 502 OS_REG_WRITE(ah, 0x9858, (reg9858 & ~FIRPWR_M) | 503 ((-1 << FIRPWR_S) & FIRPWR_M)); 504 OS_REG_WRITE(ah, 0x985c, 505 (reg985c & ~(KCOARSEHIGH_M | KCOARSELOW_M)) | 506 ((-1 << KCOARSEHIGH_S) & KCOARSEHIGH_M) | 507 ((-127 << KCOARSELOW_S) & KCOARSELOW_M)); 508 OS_REG_WRITE(ah, 0x9868, 509 (reg9868 & ~(ADCSAT_ICOUNT_M | ADCSAT_THRESH_M)) | 510 ((2 << ADCSAT_ICOUNT_S) & ADCSAT_ICOUNT_M) | 511 ((12 << ADCSAT_THRESH_S) & ADCSAT_THRESH_M)); 512 513 /* Wait for AGC changes to be enacted */ 514 OS_DELAY(20); 515 516 /* 517 * We disable RF mix/gain stages for the PGA to avoid a 518 * race condition that will occur with receiving a frame 519 * and performing the AGC calibration. This will be 520 * re-enabled at the end of offset cal. We turn off AGC 521 * writes during this write as it will go over the analog bus. 522 */ 523 OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000); 524 OS_DELAY(10); /* wait for the AGC traffic to cease */ 525 OS_REG_WRITE(ah, 0x98D4, 0x21); 526 OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000)); 527 528 /* wait to make sure that additional AGC traffic has quiesced */ 529 OS_DELAY(1000); 530 531 /* AGC calibration (this was added to make the NF threshold check work) */ 532 OS_REG_WRITE(ah, AR_PHY_AGCCTL, 533 OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL); 534 if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0)) { 535 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: AGC calibration timeout\n", 536 __func__); 537 } 538 539 /* Rewrite our AGC values we stored off earlier (return AGC to normal operation) */ 540 OS_REG_WRITE(ah, 0x9858, reg9858); 541 OS_REG_WRITE(ah, 0x985c, reg985c); 542 OS_REG_WRITE(ah, 0x9868, reg9868); 543 544 /* Perform noise floor and set status */ 545 if (!ar5210CalNoiseFloor(ah, ichan)) { 546 /* 547 * Delay 5ms before retrying the noise floor - 548 * just to make sure. We're in an error 549 * condition here 550 */ 551 HALDEBUG(ah, HAL_DEBUG_NFCAL | HAL_DEBUG_PERCAL, 552 "%s: Performing 2nd Noise Cal\n", __func__); 553 OS_DELAY(5000); 554 if (!ar5210CalNoiseFloor(ah, ichan)) 555 chan->ic_state |= IEEE80211_CHANSTATE_CWINT; 556 } 557 558 /* Clear tx and rx disable bit */ 559 ar5210UpdateDiagReg(ah, 560 OS_REG_READ(ah, AR_DIAG_SW) & ~(AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX)); 561 562 /* Re-enable Beacons */ 563 OS_REG_WRITE(ah, AR_BEACON, regBeacon); 564 565 *isCalDone = AH_TRUE; 566 567 return AH_TRUE; 568 } 569 570 HAL_BOOL 571 ar5210PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan, 572 HAL_BOOL *isIQdone) 573 { 574 return ar5210PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone); 575 } 576 577 HAL_BOOL 578 ar5210ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan) 579 { 580 return AH_TRUE; 581 } 582 583 /* 584 * Writes the given reset bit mask into the reset register 585 */ 586 static HAL_BOOL 587 ar5210SetResetReg(struct ath_hal *ah, uint32_t resetMask, u_int delay) 588 { 589 uint32_t mask = resetMask ? resetMask : ~0; 590 HAL_BOOL rt; 591 592 OS_REG_WRITE(ah, AR_RC, resetMask); 593 /* need to wait at least 128 clocks when reseting PCI before read */ 594 OS_DELAY(delay); 595 596 resetMask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC; 597 mask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC; 598 rt = ath_hal_wait(ah, AR_RC, mask, resetMask); 599 if ((resetMask & AR_RC_RMAC) == 0) { 600 if (isBigEndian()) { 601 /* 602 * Set CFG, little-endian for descriptor accesses. 603 */ 604 mask = INIT_CONFIG_STATUS | AR_CFG_SWTD | AR_CFG_SWRD; 605 OS_REG_WRITE(ah, AR_CFG, mask); 606 } else 607 OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS); 608 } 609 return rt; 610 } 611 612 /* 613 * Returns: the pcdac value 614 */ 615 static uint8_t 616 getPcdac(struct ath_hal *ah, const struct tpcMap *pRD, uint8_t dBm) 617 { 618 int32_t i; 619 int useNextEntry = AH_FALSE; 620 uint32_t interp; 621 622 for (i = AR_TP_SCALING_ENTRIES - 1; i >= 0; i--) { 623 /* Check for exact entry */ 624 if (dBm == AR_I2DBM(i)) { 625 if (pRD->pcdac[i] != 63) 626 return pRD->pcdac[i]; 627 useNextEntry = AH_TRUE; 628 } else if (dBm + 1 == AR_I2DBM(i) && i > 0) { 629 /* Interpolate for between entry with a logish scale */ 630 if (pRD->pcdac[i] != 63 && pRD->pcdac[i-1] != 63) { 631 interp = (350 * (pRD->pcdac[i] - pRD->pcdac[i-1])) + 999; 632 interp = (interp / 1000) + pRD->pcdac[i-1]; 633 return interp; 634 } 635 useNextEntry = AH_TRUE; 636 } else if (useNextEntry == AH_TRUE) { 637 /* Grab the next lowest */ 638 if (pRD->pcdac[i] != 63) 639 return pRD->pcdac[i]; 640 } 641 } 642 643 /* Return the lowest Entry if we haven't returned */ 644 for (i = 0; i < AR_TP_SCALING_ENTRIES; i++) 645 if (pRD->pcdac[i] != 63) 646 return pRD->pcdac[i]; 647 648 /* No value to return from table */ 649 #ifdef AH_DEBUG 650 ath_hal_printf(ah, "%s: empty transmit power table?\n", __func__); 651 #endif 652 return 1; 653 } 654 655 /* 656 * Find or interpolates the gainF value from the table ptr. 657 */ 658 static uint8_t 659 getGainF(struct ath_hal *ah, const struct tpcMap *pRD, 660 uint8_t pcdac, uint8_t *dBm) 661 { 662 uint32_t interp; 663 int low, high, i; 664 665 low = high = -1; 666 667 for (i = 0; i < AR_TP_SCALING_ENTRIES; i++) { 668 if(pRD->pcdac[i] == 63) 669 continue; 670 if (pcdac == pRD->pcdac[i]) { 671 *dBm = AR_I2DBM(i); 672 return pRD->gainF[i]; /* Exact Match */ 673 } 674 if (pcdac > pRD->pcdac[i]) 675 low = i; 676 if (pcdac < pRD->pcdac[i]) { 677 high = i; 678 if (low == -1) { 679 *dBm = AR_I2DBM(i); 680 /* PCDAC is lower than lowest setting */ 681 return pRD->gainF[i]; 682 } 683 break; 684 } 685 } 686 if (i >= AR_TP_SCALING_ENTRIES && low == -1) { 687 /* No settings were found */ 688 #ifdef AH_DEBUG 689 ath_hal_printf(ah, 690 "%s: no valid entries in the pcdac table: %d\n", 691 __func__, pcdac); 692 #endif 693 return 63; 694 } 695 if (i >= AR_TP_SCALING_ENTRIES) { 696 /* PCDAC setting was above the max setting in the table */ 697 *dBm = AR_I2DBM(low); 698 return pRD->gainF[low]; 699 } 700 /* Only exact if table has no missing entries */ 701 *dBm = (low + high) + 3; 702 703 /* 704 * Perform interpolation between low and high values to find gainF 705 * linearly scale the pcdac between low and high 706 */ 707 interp = ((pcdac - pRD->pcdac[low]) * 1000) / 708 (pRD->pcdac[high] - pRD->pcdac[low]); 709 /* 710 * Multiply the scale ratio by the gainF difference 711 * (plus a rnd up factor) 712 */ 713 interp = ((interp * (pRD->gainF[high] - pRD->gainF[low])) + 999) / 1000; 714 715 /* Add ratioed gain_f to low gain_f value */ 716 return interp + pRD->gainF[low]; 717 } 718 719 HAL_BOOL 720 ar5210SetTxPowerLimit(struct ath_hal *ah, uint32_t limit) 721 { 722 AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, AR5210_MAX_RATE_POWER); 723 /* XXX flush to h/w */ 724 return AH_TRUE; 725 } 726 727 /* 728 * Get TXPower values and set them in the radio 729 */ 730 static HAL_BOOL 731 setupPowerSettings(struct ath_hal *ah, const struct ieee80211_channel *chan, 732 uint8_t cp[17]) 733 { 734 uint16_t freq = ath_hal_gethwchannel(ah, chan); 735 const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom; 736 uint8_t gainFRD, gainF36, gainF48, gainF54; 737 uint8_t dBmRD, dBm36, dBm48, dBm54, dontcare; 738 uint32_t rd, group; 739 const struct tpcMap *pRD; 740 741 /* Set OB/DB Values regardless of channel */ 742 cp[15] = (ee->ee_biasCurrents >> 4) & 0x7; 743 cp[16] = ee->ee_biasCurrents & 0x7; 744 745 if (freq < 5170 || freq > 5320) { 746 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u\n", 747 __func__, freq); 748 return AH_FALSE; 749 } 750 751 HALASSERT(ee->ee_version >= AR_EEPROM_VER1 && 752 ee->ee_version < AR_EEPROM_VER3); 753 754 /* Match regulatory domain */ 755 for (rd = 0; rd < AR_REG_DOMAINS_MAX; rd++) 756 if (AH_PRIVATE(ah)->ah_currentRD == ee->ee_regDomain[rd]) 757 break; 758 if (rd == AR_REG_DOMAINS_MAX) { 759 #ifdef AH_DEBUG 760 ath_hal_printf(ah, 761 "%s: no calibrated regulatory domain matches the " 762 "current regularly domain (0x%0x)\n", __func__, 763 AH_PRIVATE(ah)->ah_currentRD); 764 #endif 765 return AH_FALSE; 766 } 767 group = ((freq - 5170) / 10); 768 769 if (group > 11) { 770 /* Pull 5.29 into the 5.27 group */ 771 group--; 772 } 773 774 /* Integer divide will set group from 0 to 4 */ 775 group = group / 3; 776 pRD = &ee->ee_tpc[group]; 777 778 /* Set PC DAC Values */ 779 cp[14] = pRD->regdmn[rd]; 780 cp[9] = AH_MIN(pRD->regdmn[rd], pRD->rate36); 781 cp[8] = AH_MIN(pRD->regdmn[rd], pRD->rate48); 782 cp[7] = AH_MIN(pRD->regdmn[rd], pRD->rate54); 783 784 /* Find Corresponding gainF values for RD, 36, 48, 54 */ 785 gainFRD = getGainF(ah, pRD, pRD->regdmn[rd], &dBmRD); 786 gainF36 = getGainF(ah, pRD, cp[9], &dBm36); 787 gainF48 = getGainF(ah, pRD, cp[8], &dBm48); 788 gainF54 = getGainF(ah, pRD, cp[7], &dBm54); 789 790 /* Power Scale if requested */ 791 if (AH_PRIVATE(ah)->ah_tpScale != HAL_TP_SCALE_MAX) { 792 static const uint16_t tpcScaleReductionTable[5] = 793 { 0, 3, 6, 9, AR5210_MAX_RATE_POWER }; 794 uint16_t tpScale; 795 796 tpScale = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale]; 797 if (dBmRD < tpScale+3) 798 dBmRD = 3; /* min */ 799 else 800 dBmRD -= tpScale; 801 cp[14] = getPcdac(ah, pRD, dBmRD); 802 gainFRD = getGainF(ah, pRD, cp[14], &dontcare); 803 dBm36 = AH_MIN(dBm36, dBmRD); 804 cp[9] = getPcdac(ah, pRD, dBm36); 805 gainF36 = getGainF(ah, pRD, cp[9], &dontcare); 806 dBm48 = AH_MIN(dBm48, dBmRD); 807 cp[8] = getPcdac(ah, pRD, dBm48); 808 gainF48 = getGainF(ah, pRD, cp[8], &dontcare); 809 dBm54 = AH_MIN(dBm54, dBmRD); 810 cp[7] = getPcdac(ah, pRD, dBm54); 811 gainF54 = getGainF(ah, pRD, cp[7], &dontcare); 812 } 813 /* Record current dBm at rate 6 */ 814 AH_PRIVATE(ah)->ah_maxPowerLevel = 2*dBmRD; 815 816 cp[13] = cp[12] = cp[11] = cp[10] = cp[14]; 817 818 /* Set GainF Values */ 819 cp[0] = gainFRD - gainF54; 820 cp[1] = gainFRD - gainF48; 821 cp[2] = gainFRD - gainF36; 822 /* 9, 12, 18, 24 have no gain_delta from 6 */ 823 cp[3] = cp[4] = cp[5] = cp[6] = 0; 824 return AH_TRUE; 825 } 826 827 /* 828 * Places the device in and out of reset and then places sane 829 * values in the registers based on EEPROM config, initialization 830 * vectors (as determined by the mode), and station configuration 831 */ 832 HAL_BOOL 833 ar5210SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan) 834 { 835 #define N(a) (sizeof (a) / sizeof (a[0])) 836 static const uint32_t pwr_regs_start[17] = { 837 0x00000000, 0x00000000, 0x00000000, 838 0x00000000, 0x00000000, 0xf0000000, 839 0xcc000000, 0x00000000, 0x00000000, 840 0x00000000, 0x0a000000, 0x000000e2, 841 0x0a000020, 0x01000002, 0x01000018, 842 0x40000000, 0x00000418 843 }; 844 uint16_t i; 845 uint8_t cp[sizeof(ar5k0007_pwrSettings)]; 846 uint32_t pwr_regs[17]; 847 848 OS_MEMCPY(pwr_regs, pwr_regs_start, sizeof(pwr_regs)); 849 OS_MEMCPY(cp, ar5k0007_pwrSettings, sizeof(cp)); 850 851 /* Check the EEPROM tx power calibration settings */ 852 if (!setupPowerSettings(ah, chan, cp)) { 853 #ifdef AH_DEBUG 854 ath_hal_printf(ah, "%s: unable to setup power settings\n", 855 __func__); 856 #endif 857 return AH_FALSE; 858 } 859 if (cp[15] < 1 || cp[15] > 5) { 860 #ifdef AH_DEBUG 861 ath_hal_printf(ah, "%s: OB out of range (%u)\n", 862 __func__, cp[15]); 863 #endif 864 return AH_FALSE; 865 } 866 if (cp[16] < 1 || cp[16] > 5) { 867 #ifdef AH_DEBUG 868 ath_hal_printf(ah, "%s: DB out of range (%u)\n", 869 __func__, cp[16]); 870 #endif 871 return AH_FALSE; 872 } 873 874 /* reverse bits of the transmit power array */ 875 for (i = 0; i < 7; i++) 876 cp[i] = ath_hal_reverseBits(cp[i], 5); 877 for (i = 7; i < 15; i++) 878 cp[i] = ath_hal_reverseBits(cp[i], 6); 879 880 /* merge transmit power values into the register - quite gross */ 881 pwr_regs[0] |= ((cp[1] << 5) & 0xE0) | (cp[0] & 0x1F); 882 pwr_regs[1] |= ((cp[3] << 7) & 0x80) | ((cp[2] << 2) & 0x7C) | 883 ((cp[1] >> 3) & 0x03); 884 pwr_regs[2] |= ((cp[4] << 4) & 0xF0) | ((cp[3] >> 1) & 0x0F); 885 pwr_regs[3] |= ((cp[6] << 6) & 0xC0) | ((cp[5] << 1) & 0x3E) | 886 ((cp[4] >> 4) & 0x01); 887 pwr_regs[4] |= ((cp[7] << 3) & 0xF8) | ((cp[6] >> 2) & 0x07); 888 pwr_regs[5] |= ((cp[9] << 7) & 0x80) | ((cp[8] << 1) & 0x7E) | 889 ((cp[7] >> 5) & 0x01); 890 pwr_regs[6] |= ((cp[10] << 5) & 0xE0) | ((cp[9] >> 1) & 0x1F); 891 pwr_regs[7] |= ((cp[11] << 3) & 0xF8) | ((cp[10] >> 3) & 0x07); 892 pwr_regs[8] |= ((cp[12] << 1) & 0x7E) | ((cp[11] >> 5) & 0x01); 893 pwr_regs[9] |= ((cp[13] << 5) & 0xE0); 894 pwr_regs[10] |= ((cp[14] << 3) & 0xF8) | ((cp[13] >> 3) & 0x07); 895 pwr_regs[11] |= ((cp[14] >> 5) & 0x01); 896 897 /* Set OB */ 898 pwr_regs[8] |= (ath_hal_reverseBits(cp[15], 3) << 7) & 0x80; 899 pwr_regs[9] |= (ath_hal_reverseBits(cp[15], 3) >> 1) & 0x03; 900 901 /* Set DB */ 902 pwr_regs[9] |= (ath_hal_reverseBits(cp[16], 3) << 2) & 0x1C; 903 904 /* Write the registers */ 905 for (i = 0; i < N(pwr_regs)-1; i++) 906 OS_REG_WRITE(ah, 0x0000989c, pwr_regs[i]); 907 /* last write is a flush */ 908 OS_REG_WRITE(ah, 0x000098d4, pwr_regs[i]); 909 910 return AH_TRUE; 911 #undef N 912 } 913 914 /* 915 * Takes the MHz channel value and sets the Channel value 916 * 917 * ASSUMES: Writes enabled to analog bus before AGC is active 918 * or by disabling the AGC. 919 */ 920 static HAL_BOOL 921 ar5210SetChannel(struct ath_hal *ah, struct ieee80211_channel *chan) 922 { 923 uint16_t freq = ath_hal_gethwchannel(ah, chan); 924 uint32_t data; 925 926 /* Set the Channel */ 927 data = ath_hal_reverseBits((freq - 5120)/10, 5); 928 data = (data << 1) | 0x41; 929 OS_REG_WRITE(ah, AR_PHY(0x27), data); 930 OS_REG_WRITE(ah, AR_PHY(0x30), 0); 931 AH_PRIVATE(ah)->ah_curchan = chan; 932 return AH_TRUE; 933 } 934 935 int16_t 936 ar5210GetNoiseFloor(struct ath_hal *ah) 937 { 938 int16_t nf; 939 940 nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff; 941 if (nf & 0x100) 942 nf = 0 - ((nf ^ 0x1ff) + 1); 943 return nf; 944 } 945 946 #define NORMAL_NF_THRESH (-72) 947 /* 948 * Peform the noisefloor calibration and check for 949 * any constant channel interference 950 * 951 * Returns: TRUE for a successful noise floor calibration; else FALSE 952 */ 953 HAL_BOOL 954 ar5210CalNoiseFloor(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan) 955 { 956 int32_t nf, nfLoops; 957 958 /* Calibrate the noise floor */ 959 OS_REG_WRITE(ah, AR_PHY_AGCCTL, 960 OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_NF); 961 962 /* Do not read noise floor until it has done the first update */ 963 if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_NF, 0)) { 964 #ifdef ATH_HAL_DEBUG 965 ath_hal_printf(ah, " -PHY NF Reg state: 0x%x\n", 966 OS_REG_READ(ah, AR_PHY_AGCCTL)); 967 ath_hal_printf(ah, " -MAC Reset Reg state: 0x%x\n", 968 OS_REG_READ(ah, AR_RC)); 969 ath_hal_printf(ah, " -PHY Active Reg state: 0x%x\n", 970 OS_REG_READ(ah, AR_PHY_ACTIVE)); 971 #endif /* ATH_HAL_DEBUG */ 972 return AH_FALSE; 973 } 974 975 nf = 0; 976 /* Keep checking until the floor is below the threshold or the nf is done */ 977 for (nfLoops = 0; ((nfLoops < 21) && (nf > NORMAL_NF_THRESH)); nfLoops++) { 978 OS_DELAY(1000); /* Sleep for 1 ms */ 979 nf = ar5210GetNoiseFloor(ah); 980 } 981 982 if (nf > NORMAL_NF_THRESH) { 983 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: Bad noise cal %d\n", 984 __func__, nf); 985 ichan->rawNoiseFloor = 0; 986 return AH_FALSE; 987 } 988 ichan->rawNoiseFloor = nf; 989 return AH_TRUE; 990 } 991 992 /* 993 * Adjust NF based on statistical values for 5GHz frequencies. 994 */ 995 int16_t 996 ar5210GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c) 997 { 998 return 0; 999 } 1000 1001 HAL_RFGAIN 1002 ar5210GetRfgain(struct ath_hal *ah) 1003 { 1004 return HAL_RFGAIN_INACTIVE; 1005 } 1006