xref: /freebsd/sys/dev/ath/ath_hal/ar5210/ar5210_reset.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2004 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 
24 #include "ar5210/ar5210.h"
25 #include "ar5210/ar5210reg.h"
26 #include "ar5210/ar5210phy.h"
27 
28 #include "ah_eeprom_v1.h"
29 
30 typedef struct {
31 	uint32_t	Offset;
32 	uint32_t	Value;
33 } REGISTER_VAL;
34 
35 static const REGISTER_VAL ar5k0007_init[] = {
36 #include "ar5210/ar5k_0007.ini"
37 };
38 
39 /* Default Power Settings for channels outside of EEPROM range */
40 static const uint8_t ar5k0007_pwrSettings[17] = {
41 /*	gain delta			pc dac */
42 /* 54  48  36  24  18  12   9   54  48  36  24  18  12   9   6  ob  db	  */
43     9,  9,  0,  0,  0,  0,  0,   2,  2,  6,  6,  6,  6,  6,  6,  2,  2
44 };
45 
46 /*
47  * The delay, in usecs, between writing AR_RC with a reset
48  * request and waiting for the chip to settle.  If this is
49  * too short then the chip does not come out of sleep state.
50  * Note this value was empirically derived and may be dependent
51  * on the host machine (don't know--the problem was identified
52  * on an IBM 570e laptop; 10us delays worked on other systems).
53  */
54 #define	AR_RC_SETTLE_TIME	20000
55 
56 static HAL_BOOL ar5210SetResetReg(struct ath_hal *,
57 		uint32_t resetMask, u_int delay);
58 static HAL_BOOL ar5210SetChannel(struct ath_hal *, struct ieee80211_channel *);
59 static void ar5210SetOperatingMode(struct ath_hal *, int opmode);
60 
61 /*
62  * Places the device in and out of reset and then places sane
63  * values in the registers based on EEPROM config, initialization
64  * vectors (as determined by the mode), and station configuration
65  *
66  * bChannelChange is used to preserve DMA/PCU registers across
67  * a HW Reset during channel change.
68  */
69 HAL_BOOL
70 ar5210Reset(struct ath_hal *ah, HAL_OPMODE opmode,
71 	struct ieee80211_channel *chan, HAL_BOOL bChannelChange,
72 	HAL_STATUS *status)
73 {
74 #define	N(a)	(sizeof (a) /sizeof (a[0]))
75 #define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
76 	struct ath_hal_5210 *ahp = AH5210(ah);
77 	const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom;
78 	HAL_CHANNEL_INTERNAL *ichan;
79 	HAL_STATUS ecode;
80 	uint32_t ledstate;
81 	int i, q;
82 
83 	HALDEBUG(ah, HAL_DEBUG_RESET,
84 	    "%s: opmode %u channel %u/0x%x %s channel\n", __func__,
85 	    opmode, chan->ic_freq, chan->ic_flags,
86 	    bChannelChange ? "change" : "same");
87 
88 	if (!IEEE80211_IS_CHAN_5GHZ(chan)) {
89 		/* Only 11a mode */
90 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: channel not 5GHz\n", __func__);
91 		FAIL(HAL_EINVAL);
92 	}
93 	/*
94 	 * Map public channel to private.
95 	 */
96 	ichan = ath_hal_checkchannel(ah, chan);
97 	if (ichan == AH_NULL) {
98 		HALDEBUG(ah, HAL_DEBUG_ANY,
99 		    "%s: invalid channel %u/0x%x; no mapping\n",
100 		    __func__, chan->ic_freq, chan->ic_flags);
101 		FAIL(HAL_EINVAL);
102 	}
103 	switch (opmode) {
104 	case HAL_M_STA:
105 	case HAL_M_IBSS:
106 	case HAL_M_HOSTAP:
107 	case HAL_M_MONITOR:
108 		break;
109 	default:
110 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
111 		    __func__, opmode);
112 		FAIL(HAL_EINVAL);
113 		break;
114 	}
115 
116 	ledstate = OS_REG_READ(ah, AR_PCICFG) &
117 		(AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT);
118 
119 	if (!ar5210ChipReset(ah, chan)) {
120 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n",
121 		    __func__);
122 		FAIL(HAL_EIO);
123 	}
124 
125 	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
126 	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4));
127 	ar5210SetOperatingMode(ah, opmode);
128 
129 	switch (opmode) {
130 	case HAL_M_HOSTAP:
131 		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
132 		OS_REG_WRITE(ah, AR_PCICFG,
133 			AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL);
134 		break;
135 	case HAL_M_IBSS:
136 		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG | AR_BCR_BCMD);
137 		OS_REG_WRITE(ah, AR_PCICFG,
138 			AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL);
139 		break;
140 	case HAL_M_STA:
141 		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
142 		OS_REG_WRITE(ah, AR_PCICFG,
143 			AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL);
144 		break;
145 	case HAL_M_MONITOR:
146 		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
147 		OS_REG_WRITE(ah, AR_PCICFG,
148 			AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL);
149 		break;
150 	}
151 
152 	/* Restore previous led state */
153 	OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
154 
155 	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
156 	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
157 
158 	OS_REG_WRITE(ah, AR_TXDP0, 0);
159 	OS_REG_WRITE(ah, AR_TXDP1, 0);
160 	OS_REG_WRITE(ah, AR_RXDP, 0);
161 
162 	/*
163 	 * Initialize interrupt state.
164 	 */
165 	(void) OS_REG_READ(ah, AR_ISR);		/* cleared on read */
166 	OS_REG_WRITE(ah, AR_IMR, 0);
167 	OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
168 	ahp->ah_maskReg = 0;
169 
170 	(void) OS_REG_READ(ah, AR_BSR);		/* cleared on read */
171 	OS_REG_WRITE(ah, AR_TXCFG, AR_DMASIZE_128B);
172 	OS_REG_WRITE(ah, AR_RXCFG, AR_DMASIZE_128B);
173 
174 	OS_REG_WRITE(ah, AR_TOPS, 8);		/* timeout prescale */
175 	OS_REG_WRITE(ah, AR_RXNOFRM, 8);	/* RX no frame timeout */
176 	OS_REG_WRITE(ah, AR_RPGTO, 0);		/* RX frame gap timeout */
177 	OS_REG_WRITE(ah, AR_TXNOFRM, 0);	/* TX no frame timeout */
178 
179 	OS_REG_WRITE(ah, AR_SFR, 0);
180 	OS_REG_WRITE(ah, AR_MIBC, 0);		/* unfreeze ctrs + clr state */
181 	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
182 	OS_REG_WRITE(ah, AR_CFP_DUR, 0);
183 
184 	ar5210SetRxFilter(ah, 0);		/* nothing for now */
185 	OS_REG_WRITE(ah, AR_MCAST_FIL0, 0);	/* multicast filter */
186 	OS_REG_WRITE(ah, AR_MCAST_FIL1, 0);	/* XXX was 2 */
187 
188 	OS_REG_WRITE(ah, AR_TX_MASK0, 0);
189 	OS_REG_WRITE(ah, AR_TX_MASK1, 0);
190 	OS_REG_WRITE(ah, AR_CLR_TMASK, 1);
191 	OS_REG_WRITE(ah, AR_TRIG_LEV, 1);	/* minimum */
192 
193 	OS_REG_WRITE(ah, AR_DIAG_SW, 0);
194 
195 	OS_REG_WRITE(ah, AR_CFP_PERIOD, 0);
196 	OS_REG_WRITE(ah, AR_TIMER0, 0);		/* next beacon time */
197 	OS_REG_WRITE(ah, AR_TSF_L32, 0);	/* local clock */
198 	OS_REG_WRITE(ah, AR_TIMER1, ~0);	/* next DMA beacon alert */
199 	OS_REG_WRITE(ah, AR_TIMER2, ~0);	/* next SW beacon alert */
200 	OS_REG_WRITE(ah, AR_TIMER3, 1);		/* next ATIM window */
201 
202 	/* Write the INI values for PHYreg initialization */
203 	for (i = 0; i < N(ar5k0007_init); i++) {
204 		uint32_t reg = ar5k0007_init[i].Offset;
205 		/* On channel change, don't reset the PCU registers */
206 		if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
207 			OS_REG_WRITE(ah, reg, ar5k0007_init[i].Value);
208 	}
209 
210 	/* Setup the transmit power values for cards since 0x0[0-2]05 */
211 	if (!ar5210SetTransmitPower(ah, chan)) {
212 		HALDEBUG(ah, HAL_DEBUG_ANY,
213 		    "%s: error init'ing transmit power\n", __func__);
214 		FAIL(HAL_EIO);
215 	}
216 
217 	OS_REG_WRITE(ah, AR_PHY(10),
218 		(OS_REG_READ(ah, AR_PHY(10)) & 0xFFFF00FF) |
219 		(ee->ee_xlnaOn << 8));
220 	OS_REG_WRITE(ah, AR_PHY(13),
221 		(ee->ee_xpaOff << 24) | (ee->ee_xpaOff << 16) |
222 		(ee->ee_xpaOn << 8) | ee->ee_xpaOn);
223 	OS_REG_WRITE(ah, AR_PHY(17),
224 		(OS_REG_READ(ah, AR_PHY(17)) & 0xFFFFC07F) |
225 		((ee->ee_antenna >> 1) & 0x3F80));
226 	OS_REG_WRITE(ah, AR_PHY(18),
227 		(OS_REG_READ(ah, AR_PHY(18)) & 0xFFFC0FFF) |
228 		((ee->ee_antenna << 10) & 0x3F000));
229 	OS_REG_WRITE(ah, AR_PHY(25),
230 		(OS_REG_READ(ah, AR_PHY(25)) & 0xFFF80FFF) |
231 		((ee->ee_thresh62 << 12) & 0x7F000));
232 	OS_REG_WRITE(ah, AR_PHY(68),
233 		(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) |
234 		(ee->ee_antenna & 0x3));
235 
236 	if (!ar5210SetChannel(ah, chan)) {
237 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
238 		    __func__);
239 		FAIL(HAL_EIO);
240 	}
241 	if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
242 		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
243 
244 	/* Activate the PHY */
245 	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ENABLE);
246 
247 	OS_DELAY(1000);		/* Wait a bit (1 msec) */
248 
249 	/* calibrate the HW and poll the bit going to 0 for completion */
250 	OS_REG_WRITE(ah, AR_PHY_AGCCTL,
251 		OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL);
252 	(void) ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0);
253 
254 	/* Perform noise floor calibration and set status */
255 	if (!ar5210CalNoiseFloor(ah, ichan)) {
256 		chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
257 		HALDEBUG(ah, HAL_DEBUG_ANY,
258 		    "%s: noise floor calibration failed\n", __func__);
259 		FAIL(HAL_EIO);
260 	}
261 
262 	for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
263 		ar5210ResetTxQueue(ah, q);
264 
265 	if (AH_PRIVATE(ah)->ah_rfkillEnabled)
266 		ar5210EnableRfKill(ah);
267 
268 	/*
269 	 * Writing to AR_BEACON will start timers. Hence it should be
270 	 * the last register to be written. Do not reset tsf, do not
271 	 * enable beacons at this point, but preserve other values
272 	 * like beaconInterval.
273 	 */
274 	OS_REG_WRITE(ah, AR_BEACON,
275 		(OS_REG_READ(ah, AR_BEACON) &
276 			~(AR_BEACON_EN | AR_BEACON_RESET_TSF)));
277 
278 	/* Restore user-specified slot time and timeouts */
279 	if (ahp->ah_sifstime != (u_int) -1)
280 		ar5210SetSifsTime(ah, ahp->ah_sifstime);
281 	if (ahp->ah_slottime != (u_int) -1)
282 		ar5210SetSlotTime(ah, ahp->ah_slottime);
283 	if (ahp->ah_acktimeout != (u_int) -1)
284 		ar5210SetAckTimeout(ah, ahp->ah_acktimeout);
285 	if (ahp->ah_ctstimeout != (u_int) -1)
286 		ar5210SetCTSTimeout(ah, ahp->ah_ctstimeout);
287 	if (AH_PRIVATE(ah)->ah_diagreg != 0)
288 		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
289 
290 	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
291 
292 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
293 
294 	return AH_TRUE;
295 bad:
296 	if (status != AH_NULL)
297 		*status = ecode;
298 	return AH_FALSE;
299 #undef FAIL
300 #undef N
301 }
302 
303 static void
304 ar5210SetOperatingMode(struct ath_hal *ah, int opmode)
305 {
306 	struct ath_hal_5210 *ahp = AH5210(ah);
307 	uint32_t val;
308 
309 	val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
310 	switch (opmode) {
311 	case HAL_M_HOSTAP:
312 		OS_REG_WRITE(ah, AR_STA_ID1, val
313 			| AR_STA_ID1_AP
314 			| AR_STA_ID1_NO_PSPOLL
315 			| AR_STA_ID1_DESC_ANTENNA
316 			| ahp->ah_staId1Defaults);
317 		break;
318 	case HAL_M_IBSS:
319 		OS_REG_WRITE(ah, AR_STA_ID1, val
320 			| AR_STA_ID1_ADHOC
321 			| AR_STA_ID1_NO_PSPOLL
322 			| AR_STA_ID1_DESC_ANTENNA
323 			| ahp->ah_staId1Defaults);
324 		break;
325 	case HAL_M_STA:
326 		OS_REG_WRITE(ah, AR_STA_ID1, val
327 			| AR_STA_ID1_NO_PSPOLL
328 			| AR_STA_ID1_PWR_SV
329 			| ahp->ah_staId1Defaults);
330 		break;
331 	case HAL_M_MONITOR:
332 		OS_REG_WRITE(ah, AR_STA_ID1, val
333 			| AR_STA_ID1_NO_PSPOLL
334 			| ahp->ah_staId1Defaults);
335 		break;
336 	}
337 }
338 
339 void
340 ar5210SetPCUConfig(struct ath_hal *ah)
341 {
342 	ar5210SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
343 }
344 
345 /*
346  * Places the PHY and Radio chips into reset.  A full reset
347  * must be called to leave this state.  The PCI/MAC/PCU are
348  * not placed into reset as we must receive interrupt to
349  * re-enable the hardware.
350  */
351 HAL_BOOL
352 ar5210PhyDisable(struct ath_hal *ah)
353 {
354 	return ar5210SetResetReg(ah, AR_RC_RPHY, 10);
355 }
356 
357 /*
358  * Places all of hardware into reset
359  */
360 HAL_BOOL
361 ar5210Disable(struct ath_hal *ah)
362 {
363 #define	AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC)
364 	if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
365 		return AH_FALSE;
366 
367 	/*
368 	 * Reset the HW - PCI must be reset after the rest of the
369 	 * device has been reset
370 	 */
371 	if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME))
372 		return AH_FALSE;
373 	OS_DELAY(1000);
374 	(void) ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME);
375 	OS_DELAY(2100);   /* 8245 @ 96Mhz hangs with 2000us. */
376 
377 	return AH_TRUE;
378 #undef AR_RC_HW
379 }
380 
381 /*
382  * Places the hardware into reset and then pulls it out of reset
383  */
384 HAL_BOOL
385 ar5210ChipReset(struct ath_hal *ah, struct ieee80211_channel *chan)
386 {
387 #define	AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC)
388 
389 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s turbo %s\n", __func__,
390 		chan && IEEE80211_IS_CHAN_TURBO(chan) ?
391 		"enabled" : "disabled");
392 
393 	if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
394 		return AH_FALSE;
395 
396 	/* Place chip in turbo before reset to cleanly reset clocks */
397 	OS_REG_WRITE(ah, AR_PHY_FRCTL,
398 		chan && IEEE80211_IS_CHAN_TURBO(chan) ? AR_PHY_TURBO_MODE : 0);
399 
400 	/*
401 	 * Reset the HW.
402 	 * PCI must be reset after the rest of the device has been reset.
403 	 */
404 	if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME))
405 		return AH_FALSE;
406 	OS_DELAY(1000);
407 	if (!ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME))
408 		return AH_FALSE;
409 	OS_DELAY(2100);   /* 8245 @ 96Mhz hangs with 2000us. */
410 
411 	/*
412 	 * Bring out of sleep mode (AGAIN)
413 	 *
414 	 * WARNING WARNING WARNING
415 	 *
416 	 * There is a problem with the chip where it doesn't always indicate
417 	 * that it's awake, so initializePowerUp() will fail.
418 	 */
419 	if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
420 		return AH_FALSE;
421 
422 	/* Clear warm reset reg */
423 	return ar5210SetResetReg(ah, 0, 10);
424 #undef AR_RC_HW
425 }
426 
427 enum {
428 	FIRPWR_M	= 0x03fc0000,
429 	FIRPWR_S	= 18,
430 	KCOARSEHIGH_M   = 0x003f8000,
431 	KCOARSEHIGH_S   = 15,
432 	KCOARSELOW_M	= 0x00007f80,
433 	KCOARSELOW_S	= 7,
434 	ADCSAT_ICOUNT_M	= 0x0001f800,
435 	ADCSAT_ICOUNT_S	= 11,
436 	ADCSAT_THRESH_M	= 0x000007e0,
437 	ADCSAT_THRESH_S	= 5
438 };
439 
440 /*
441  * Recalibrate the lower PHY chips to account for temperature/environment
442  * changes.
443  */
444 HAL_BOOL
445 ar5210PerCalibrationN(struct ath_hal *ah,
446 	struct ieee80211_channel *chan, u_int chainMask,
447 	HAL_BOOL longCal, HAL_BOOL *isCalDone)
448 {
449 	uint32_t regBeacon;
450 	uint32_t reg9858, reg985c, reg9868;
451 	HAL_CHANNEL_INTERNAL *ichan;
452 
453 	ichan = ath_hal_checkchannel(ah, chan);
454 	if (ichan == AH_NULL)
455 		return AH_FALSE;
456 	/* Disable tx and rx */
457 	OS_REG_WRITE(ah, AR_DIAG_SW,
458 		OS_REG_READ(ah, AR_DIAG_SW) | (AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX));
459 
460 	/* Disable Beacon Enable */
461 	regBeacon = OS_REG_READ(ah, AR_BEACON);
462 	OS_REG_WRITE(ah, AR_BEACON, regBeacon & ~AR_BEACON_EN);
463 
464 	/* Delay 4ms to ensure that all tx and rx activity has ceased */
465 	OS_DELAY(4000);
466 
467 	/* Disable AGC to radio traffic */
468 	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000);
469 	/* Wait for the AGC traffic to cease. */
470 	OS_DELAY(10);
471 
472 	/* Change Channel to relock synth */
473 	if (!ar5210SetChannel(ah, chan))
474 		return AH_FALSE;
475 
476 	/* wait for the synthesizer lock to stabilize */
477 	OS_DELAY(1000);
478 
479 	/* Re-enable AGC to radio traffic */
480 	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000));
481 
482 	/*
483 	 * Configure the AGC so that it is highly unlikely (if not
484 	 * impossible) for it to send any gain changes to the analog
485 	 * chip.  We store off the current values so that they can
486 	 * be rewritten below. Setting the following values:
487 	 * firpwr	 = -1
488 	 * Kcoursehigh   = -1
489 	 * Kcourselow	 = -127
490 	 * ADCsat_icount = 2
491 	 * ADCsat_thresh = 12
492 	 */
493 	reg9858 = OS_REG_READ(ah, 0x9858);
494 	reg985c = OS_REG_READ(ah, 0x985c);
495 	reg9868 = OS_REG_READ(ah, 0x9868);
496 
497 	OS_REG_WRITE(ah, 0x9858, (reg9858 & ~FIRPWR_M) |
498 					 ((-1 << FIRPWR_S) & FIRPWR_M));
499 	OS_REG_WRITE(ah, 0x985c,
500 		 (reg985c & ~(KCOARSEHIGH_M | KCOARSELOW_M)) |
501 		 ((-1 << KCOARSEHIGH_S) & KCOARSEHIGH_M) |
502 		 ((-127 << KCOARSELOW_S) & KCOARSELOW_M));
503 	OS_REG_WRITE(ah, 0x9868,
504 		 (reg9868 & ~(ADCSAT_ICOUNT_M | ADCSAT_THRESH_M)) |
505 		 ((2 << ADCSAT_ICOUNT_S) & ADCSAT_ICOUNT_M) |
506 		 ((12 << ADCSAT_THRESH_S) & ADCSAT_THRESH_M));
507 
508 	/* Wait for AGC changes to be enacted */
509 	OS_DELAY(20);
510 
511 	/*
512 	 * We disable RF mix/gain stages for the PGA to avoid a
513 	 * race condition that will occur with receiving a frame
514 	 * and performing the AGC calibration.  This will be
515 	 * re-enabled at the end of offset cal.  We turn off AGC
516 	 * writes during this write as it will go over the analog bus.
517 	 */
518 	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000);
519 	OS_DELAY(10);		 /* wait for the AGC traffic to cease */
520 	OS_REG_WRITE(ah, 0x98D4, 0x21);
521 	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000));
522 
523 	/* wait to make sure that additional AGC traffic has quiesced */
524 	OS_DELAY(1000);
525 
526 	/* AGC calibration (this was added to make the NF threshold check work) */
527 	OS_REG_WRITE(ah, AR_PHY_AGCCTL,
528 		 OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL);
529 	if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0)) {
530 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: AGC calibration timeout\n",
531 		    __func__);
532 	}
533 
534 	/* Rewrite our AGC values we stored off earlier (return AGC to normal operation) */
535 	OS_REG_WRITE(ah, 0x9858, reg9858);
536 	OS_REG_WRITE(ah, 0x985c, reg985c);
537 	OS_REG_WRITE(ah, 0x9868, reg9868);
538 
539 	/* Perform noise floor and set status */
540 	if (!ar5210CalNoiseFloor(ah, ichan)) {
541 		/*
542 		 * Delay 5ms before retrying the noise floor -
543 		 * just to make sure.  We're in an error
544 		 * condition here
545 		 */
546 		HALDEBUG(ah, HAL_DEBUG_NFCAL | HAL_DEBUG_PERCAL,
547 		    "%s: Performing 2nd Noise Cal\n", __func__);
548 		OS_DELAY(5000);
549 		if (!ar5210CalNoiseFloor(ah, ichan))
550 			chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
551 	}
552 
553 	/* Clear tx and rx disable bit */
554 	OS_REG_WRITE(ah, AR_DIAG_SW,
555 		 OS_REG_READ(ah, AR_DIAG_SW) & ~(AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX));
556 
557 	/* Re-enable Beacons */
558 	OS_REG_WRITE(ah, AR_BEACON, regBeacon);
559 
560 	*isCalDone = AH_TRUE;
561 
562 	return AH_TRUE;
563 }
564 
565 HAL_BOOL
566 ar5210PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan,
567 	HAL_BOOL *isIQdone)
568 {
569 	return ar5210PerCalibrationN(ah,  chan, 0x1, AH_TRUE, isIQdone);
570 }
571 
572 HAL_BOOL
573 ar5210ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
574 {
575 	return AH_TRUE;
576 }
577 
578 /*
579  * Writes the given reset bit mask into the reset register
580  */
581 static HAL_BOOL
582 ar5210SetResetReg(struct ath_hal *ah, uint32_t resetMask, u_int delay)
583 {
584 	uint32_t mask = resetMask ? resetMask : ~0;
585 	HAL_BOOL rt;
586 
587 	OS_REG_WRITE(ah, AR_RC, resetMask);
588 	/* need to wait at least 128 clocks when reseting PCI before read */
589 	OS_DELAY(delay);
590 
591 	resetMask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC;
592 	mask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC;
593 	rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
594         if ((resetMask & AR_RC_RMAC) == 0) {
595 		if (isBigEndian()) {
596 			/*
597 			 * Set CFG, little-endian for register
598 			 * and descriptor accesses.
599 			 */
600 			mask = INIT_CONFIG_STATUS |
601 				AR_CFG_SWTD | AR_CFG_SWRD | AR_CFG_SWRG;
602 			OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
603 		} else
604 			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
605 	}
606 	return rt;
607 }
608 
609 
610 /*
611  * Returns: the pcdac value
612  */
613 static uint8_t
614 getPcdac(struct ath_hal *ah, const struct tpcMap *pRD, uint8_t dBm)
615 {
616 	int32_t	 i;
617 	int useNextEntry = AH_FALSE;
618 	uint32_t interp;
619 
620 	for (i = AR_TP_SCALING_ENTRIES - 1; i >= 0; i--) {
621 		/* Check for exact entry */
622 		if (dBm == AR_I2DBM(i)) {
623 			if (pRD->pcdac[i] != 63)
624 				return pRD->pcdac[i];
625 			useNextEntry = AH_TRUE;
626 		} else if (dBm + 1 == AR_I2DBM(i) && i > 0) {
627 			/* Interpolate for between entry with a logish scale */
628 			if (pRD->pcdac[i] != 63 && pRD->pcdac[i-1] != 63) {
629 				interp = (350 * (pRD->pcdac[i] - pRD->pcdac[i-1])) + 999;
630 				interp = (interp / 1000) + pRD->pcdac[i-1];
631 				return interp;
632 			}
633 			useNextEntry = AH_TRUE;
634 		} else if (useNextEntry == AH_TRUE) {
635 			/* Grab the next lowest */
636 			if (pRD->pcdac[i] != 63)
637 				return pRD->pcdac[i];
638 		}
639 	}
640 
641 	/* Return the lowest Entry if we haven't returned */
642 	for (i = 0; i < AR_TP_SCALING_ENTRIES; i++)
643 		if (pRD->pcdac[i] != 63)
644 			return pRD->pcdac[i];
645 
646 	/* No value to return from table */
647 #ifdef AH_DEBUG
648 	ath_hal_printf(ah, "%s: empty transmit power table?\n", __func__);
649 #endif
650 	return 1;
651 }
652 
653 /*
654  * Find or interpolates the gainF value from the table ptr.
655  */
656 static uint8_t
657 getGainF(struct ath_hal *ah, const struct tpcMap *pRD,
658 	uint8_t pcdac, uint8_t *dBm)
659 {
660 	uint32_t interp;
661 	int low, high, i;
662 
663 	low = high = -1;
664 
665 	for (i = 0; i < AR_TP_SCALING_ENTRIES; i++) {
666 		if(pRD->pcdac[i] == 63)
667 			continue;
668 		if (pcdac == pRD->pcdac[i]) {
669 			*dBm = AR_I2DBM(i);
670 			return pRD->gainF[i];  /* Exact Match */
671 		}
672 		if (pcdac > pRD->pcdac[i])
673 			low = i;
674 		if (pcdac < pRD->pcdac[i]) {
675 			high = i;
676 			if (low == -1) {
677 				*dBm = AR_I2DBM(i);
678 				/* PCDAC is lower than lowest setting */
679 				return pRD->gainF[i];
680 			}
681 			break;
682 		}
683 	}
684 	if (i >= AR_TP_SCALING_ENTRIES && low == -1) {
685 		/* No settings were found */
686 #ifdef AH_DEBUG
687 		ath_hal_printf(ah,
688 			"%s: no valid entries in the pcdac table: %d\n",
689 			__func__, pcdac);
690 #endif
691 		return 63;
692 	}
693 	if (i >= AR_TP_SCALING_ENTRIES) {
694 		/* PCDAC setting was above the max setting in the table */
695 		*dBm = AR_I2DBM(low);
696 		return pRD->gainF[low];
697 	}
698 	/* Only exact if table has no missing entries */
699 	*dBm = (low + high) + 3;
700 
701 	/*
702 	 * Perform interpolation between low and high values to find gainF
703 	 * linearly scale the pcdac between low and high
704 	 */
705 	interp = ((pcdac - pRD->pcdac[low]) * 1000) /
706 		  (pRD->pcdac[high] - pRD->pcdac[low]);
707 	/*
708 	 * Multiply the scale ratio by the gainF difference
709 	 * (plus a rnd up factor)
710 	 */
711 	interp = ((interp * (pRD->gainF[high] - pRD->gainF[low])) + 999) / 1000;
712 
713 	/* Add ratioed gain_f to low gain_f value */
714 	return interp + pRD->gainF[low];
715 }
716 
717 HAL_BOOL
718 ar5210SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
719 {
720 	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, AR5210_MAX_RATE_POWER);
721 	/* XXX flush to h/w */
722 	return AH_TRUE;
723 }
724 
725 /*
726  * Get TXPower values and set them in the radio
727  */
728 static HAL_BOOL
729 setupPowerSettings(struct ath_hal *ah, const struct ieee80211_channel *chan,
730 	uint8_t cp[17])
731 {
732 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
733 	const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom;
734 	uint8_t gainFRD, gainF36, gainF48, gainF54;
735 	uint8_t dBmRD, dBm36, dBm48, dBm54, dontcare;
736 	uint32_t rd, group;
737 	const struct tpcMap  *pRD;
738 
739 	/* Set OB/DB Values regardless of channel */
740 	cp[15] = (ee->ee_biasCurrents >> 4) & 0x7;
741 	cp[16] = ee->ee_biasCurrents & 0x7;
742 
743 	if (freq < 5170 || freq > 5320) {
744 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u\n",
745 		    __func__, freq);
746 		return AH_FALSE;
747 	}
748 
749 	HALASSERT(ee->ee_version >= AR_EEPROM_VER1 &&
750 	    ee->ee_version < AR_EEPROM_VER3);
751 
752 	/* Match regulatory domain */
753 	for (rd = 0; rd < AR_REG_DOMAINS_MAX; rd++)
754 		if (AH_PRIVATE(ah)->ah_currentRD == ee->ee_regDomain[rd])
755 			break;
756 	if (rd == AR_REG_DOMAINS_MAX) {
757 #ifdef AH_DEBUG
758 		ath_hal_printf(ah,
759 			"%s: no calibrated regulatory domain matches the "
760 			"current regularly domain (0x%0x)\n", __func__,
761 			AH_PRIVATE(ah)->ah_currentRD);
762 #endif
763 		return AH_FALSE;
764 	}
765 	group = ((freq - 5170) / 10);
766 
767 	if (group > 11) {
768 		/* Pull 5.29 into the 5.27 group */
769 		group--;
770 	}
771 
772 	/* Integer divide will set group from 0 to 4 */
773 	group = group / 3;
774 	pRD   = &ee->ee_tpc[group];
775 
776 	/* Set PC DAC Values */
777 	cp[14] = pRD->regdmn[rd];
778 	cp[9]  = AH_MIN(pRD->regdmn[rd], pRD->rate36);
779 	cp[8]  = AH_MIN(pRD->regdmn[rd], pRD->rate48);
780 	cp[7]  = AH_MIN(pRD->regdmn[rd], pRD->rate54);
781 
782 	/* Find Corresponding gainF values for RD, 36, 48, 54 */
783 	gainFRD = getGainF(ah, pRD, pRD->regdmn[rd], &dBmRD);
784 	gainF36 = getGainF(ah, pRD, cp[9], &dBm36);
785 	gainF48 = getGainF(ah, pRD, cp[8], &dBm48);
786 	gainF54 = getGainF(ah, pRD, cp[7], &dBm54);
787 
788 	/* Power Scale if requested */
789 	if (AH_PRIVATE(ah)->ah_tpScale != HAL_TP_SCALE_MAX) {
790 		static const uint16_t tpcScaleReductionTable[5] =
791 			{ 0, 3, 6, 9, AR5210_MAX_RATE_POWER };
792 		uint16_t tpScale;
793 
794 		tpScale = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
795 		if (dBmRD < tpScale+3)
796 			dBmRD = 3;		/* min */
797 		else
798 			dBmRD -= tpScale;
799 		cp[14]  = getPcdac(ah, pRD, dBmRD);
800 		gainFRD = getGainF(ah, pRD, cp[14], &dontcare);
801 		dBm36   = AH_MIN(dBm36, dBmRD);
802 		cp[9]   = getPcdac(ah, pRD, dBm36);
803 		gainF36 = getGainF(ah, pRD, cp[9], &dontcare);
804 		dBm48   = AH_MIN(dBm48, dBmRD);
805 		cp[8]   = getPcdac(ah, pRD, dBm48);
806 		gainF48 = getGainF(ah, pRD, cp[8], &dontcare);
807 		dBm54   = AH_MIN(dBm54, dBmRD);
808 		cp[7]   = getPcdac(ah, pRD, dBm54);
809 		gainF54 = getGainF(ah, pRD, cp[7], &dontcare);
810 	}
811 	/* Record current dBm at rate 6 */
812 	AH_PRIVATE(ah)->ah_maxPowerLevel = 2*dBmRD;
813 
814 	cp[13] = cp[12] = cp[11] = cp[10] = cp[14];
815 
816 	/* Set GainF Values */
817 	cp[0] = gainFRD - gainF54;
818 	cp[1] = gainFRD - gainF48;
819 	cp[2] = gainFRD - gainF36;
820 	/* 9, 12, 18, 24 have no gain_delta from 6 */
821 	cp[3] = cp[4] = cp[5] = cp[6] = 0;
822 	return AH_TRUE;
823 }
824 
825 /*
826  * Places the device in and out of reset and then places sane
827  * values in the registers based on EEPROM config, initialization
828  * vectors (as determined by the mode), and station configuration
829  */
830 HAL_BOOL
831 ar5210SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan)
832 {
833 #define	N(a)	(sizeof (a) / sizeof (a[0]))
834 	static const uint32_t pwr_regs_start[17] = {
835 		0x00000000, 0x00000000, 0x00000000,
836 		0x00000000, 0x00000000, 0xf0000000,
837 		0xcc000000, 0x00000000, 0x00000000,
838 		0x00000000, 0x0a000000, 0x000000e2,
839 		0x0a000020, 0x01000002, 0x01000018,
840 		0x40000000, 0x00000418
841 	};
842 	uint16_t i;
843 	uint8_t cp[sizeof(ar5k0007_pwrSettings)];
844 	uint32_t pwr_regs[17];
845 
846 	OS_MEMCPY(pwr_regs, pwr_regs_start, sizeof(pwr_regs));
847 	OS_MEMCPY(cp, ar5k0007_pwrSettings, sizeof(cp));
848 
849 	/* Check the EEPROM tx power calibration settings */
850 	if (!setupPowerSettings(ah, chan, cp)) {
851 #ifdef AH_DEBUG
852 		ath_hal_printf(ah, "%s: unable to setup power settings\n",
853 			__func__);
854 #endif
855 		return AH_FALSE;
856 	}
857 	if (cp[15] < 1 || cp[15] > 5) {
858 #ifdef AH_DEBUG
859 		ath_hal_printf(ah, "%s: OB out of range (%u)\n",
860 			__func__, cp[15]);
861 #endif
862 		return AH_FALSE;
863 	}
864 	if (cp[16] < 1 || cp[16] > 5) {
865 #ifdef AH_DEBUG
866 		ath_hal_printf(ah, "%s: DB out of range (%u)\n",
867 			__func__, cp[16]);
868 #endif
869 		return AH_FALSE;
870 	}
871 
872 	/* reverse bits of the transmit power array */
873 	for (i = 0; i < 7; i++)
874 		cp[i] = ath_hal_reverseBits(cp[i], 5);
875 	for (i = 7; i < 15; i++)
876 		cp[i] = ath_hal_reverseBits(cp[i], 6);
877 
878 	/* merge transmit power values into the register - quite gross */
879 	pwr_regs[0] |= ((cp[1] << 5) & 0xE0) | (cp[0] & 0x1F);
880 	pwr_regs[1] |= ((cp[3] << 7) & 0x80) | ((cp[2] << 2) & 0x7C) |
881 			((cp[1] >> 3) & 0x03);
882 	pwr_regs[2] |= ((cp[4] << 4) & 0xF0) | ((cp[3] >> 1) & 0x0F);
883 	pwr_regs[3] |= ((cp[6] << 6) & 0xC0) | ((cp[5] << 1) & 0x3E) |
884 		       ((cp[4] >> 4) & 0x01);
885 	pwr_regs[4] |= ((cp[7] << 3) & 0xF8) | ((cp[6] >> 2) & 0x07);
886 	pwr_regs[5] |= ((cp[9] << 7) & 0x80) | ((cp[8] << 1) & 0x7E) |
887 			((cp[7] >> 5) & 0x01);
888 	pwr_regs[6] |= ((cp[10] << 5) & 0xE0) | ((cp[9] >> 1) & 0x1F);
889 	pwr_regs[7] |= ((cp[11] << 3) & 0xF8) | ((cp[10] >> 3) & 0x07);
890 	pwr_regs[8] |= ((cp[12] << 1) & 0x7E) | ((cp[11] >> 5) & 0x01);
891 	pwr_regs[9] |= ((cp[13] << 5) & 0xE0);
892 	pwr_regs[10] |= ((cp[14] << 3) & 0xF8) | ((cp[13] >> 3) & 0x07);
893 	pwr_regs[11] |= ((cp[14] >> 5) & 0x01);
894 
895 	/* Set OB */
896 	pwr_regs[8] |=  (ath_hal_reverseBits(cp[15], 3) << 7) & 0x80;
897 	pwr_regs[9] |=  (ath_hal_reverseBits(cp[15], 3) >> 1) & 0x03;
898 
899 	/* Set DB */
900 	pwr_regs[9] |=  (ath_hal_reverseBits(cp[16], 3) << 2) & 0x1C;
901 
902 	/* Write the registers */
903 	for (i = 0; i < N(pwr_regs)-1; i++)
904 		OS_REG_WRITE(ah, 0x0000989c, pwr_regs[i]);
905 	/* last write is a flush */
906 	OS_REG_WRITE(ah, 0x000098d4, pwr_regs[i]);
907 
908 	return AH_TRUE;
909 #undef N
910 }
911 
912 /*
913  * Takes the MHz channel value and sets the Channel value
914  *
915  * ASSUMES: Writes enabled to analog bus before AGC is active
916  *   or by disabling the AGC.
917  */
918 static HAL_BOOL
919 ar5210SetChannel(struct ath_hal *ah, struct ieee80211_channel *chan)
920 {
921 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
922 	uint32_t data;
923 
924 	/* Set the Channel */
925 	data = ath_hal_reverseBits((freq - 5120)/10, 5);
926 	data = (data << 1) | 0x41;
927 	OS_REG_WRITE(ah, AR_PHY(0x27), data);
928 	OS_REG_WRITE(ah, AR_PHY(0x30), 0);
929 	AH_PRIVATE(ah)->ah_curchan = chan;
930 	return AH_TRUE;
931 }
932 
933 int16_t
934 ar5210GetNoiseFloor(struct ath_hal *ah)
935 {
936 	int16_t nf;
937 
938 	nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
939 	if (nf & 0x100)
940 		nf = 0 - ((nf ^ 0x1ff) + 1);
941 	return nf;
942 }
943 
944 #define NORMAL_NF_THRESH (-72)
945 /*
946  * Peform the noisefloor calibration and check for
947  * any constant channel interference
948  *
949  * Returns: TRUE for a successful noise floor calibration; else FALSE
950  */
951 HAL_BOOL
952 ar5210CalNoiseFloor(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
953 {
954 	int32_t nf, nfLoops;
955 
956 	/* Calibrate the noise floor */
957 	OS_REG_WRITE(ah, AR_PHY_AGCCTL,
958 		OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_NF);
959 
960 	/* Do not read noise floor until it has done the first update */
961 	if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_NF, 0)) {
962 #ifdef ATH_HAL_DEBUG
963 		ath_hal_printf(ah, " -PHY NF Reg state: 0x%x\n",
964 			OS_REG_READ(ah, AR_PHY_AGCCTL));
965 		ath_hal_printf(ah, " -MAC Reset Reg state: 0x%x\n",
966 			OS_REG_READ(ah, AR_RC));
967 		ath_hal_printf(ah, " -PHY Active Reg state: 0x%x\n",
968 			OS_REG_READ(ah, AR_PHY_ACTIVE));
969 #endif /* ATH_HAL_DEBUG */
970 		return AH_FALSE;
971 	}
972 
973 	nf = 0;
974 	/* Keep checking until the floor is below the threshold or the nf is done */
975 	for (nfLoops = 0; ((nfLoops < 21) && (nf > NORMAL_NF_THRESH)); nfLoops++) {
976 		OS_DELAY(1000); /* Sleep for 1 ms */
977 		nf = ar5210GetNoiseFloor(ah);
978 	}
979 
980 	if (nf > NORMAL_NF_THRESH) {
981 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: Bad noise cal %d\n",
982 		    __func__, nf);
983 		ichan->rawNoiseFloor = 0;
984 		return AH_FALSE;
985 	}
986 	ichan->rawNoiseFloor = nf;
987 	return AH_TRUE;
988 }
989 
990 /*
991  * Adjust NF based on statistical values for 5GHz frequencies.
992  */
993 int16_t
994 ar5210GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
995 {
996 	return 0;
997 }
998 
999 HAL_RFGAIN
1000 ar5210GetRfgain(struct ath_hal *ah)
1001 {
1002 	return HAL_RFGAIN_INACTIVE;
1003 }
1004