1 /* 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * Copyright (c) 2002-2004 Atheros Communications, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 * 17 * $FreeBSD$ 18 */ 19 #include "opt_ah.h" 20 21 #include "ah.h" 22 #include "ah_internal.h" 23 24 #include "ar5210/ar5210.h" 25 #include "ar5210/ar5210reg.h" 26 #include "ar5210/ar5210phy.h" 27 28 #include "ah_eeprom_v1.h" 29 30 typedef struct { 31 uint32_t Offset; 32 uint32_t Value; 33 } REGISTER_VAL; 34 35 static const REGISTER_VAL ar5k0007_init[] = { 36 #include "ar5210/ar5k_0007.ini" 37 }; 38 39 /* Default Power Settings for channels outside of EEPROM range */ 40 static const uint8_t ar5k0007_pwrSettings[17] = { 41 /* gain delta pc dac */ 42 /* 54 48 36 24 18 12 9 54 48 36 24 18 12 9 6 ob db */ 43 9, 9, 0, 0, 0, 0, 0, 2, 2, 6, 6, 6, 6, 6, 6, 2, 2 44 }; 45 46 /* 47 * The delay, in usecs, between writing AR_RC with a reset 48 * request and waiting for the chip to settle. If this is 49 * too short then the chip does not come out of sleep state. 50 * Note this value was empirically derived and may be dependent 51 * on the host machine (don't know--the problem was identified 52 * on an IBM 570e laptop; 10us delays worked on other systems). 53 */ 54 #define AR_RC_SETTLE_TIME 20000 55 56 static HAL_BOOL ar5210SetResetReg(struct ath_hal *, 57 uint32_t resetMask, u_int delay); 58 static HAL_BOOL ar5210SetChannel(struct ath_hal *, struct ieee80211_channel *); 59 static void ar5210SetOperatingMode(struct ath_hal *, int opmode); 60 61 /* 62 * Places the device in and out of reset and then places sane 63 * values in the registers based on EEPROM config, initialization 64 * vectors (as determined by the mode), and station configuration 65 * 66 * bChannelChange is used to preserve DMA/PCU registers across 67 * a HW Reset during channel change. 68 */ 69 HAL_BOOL 70 ar5210Reset(struct ath_hal *ah, HAL_OPMODE opmode, 71 struct ieee80211_channel *chan, HAL_BOOL bChannelChange, 72 HAL_STATUS *status) 73 { 74 #define N(a) (sizeof (a) /sizeof (a[0])) 75 #define FAIL(_code) do { ecode = _code; goto bad; } while (0) 76 struct ath_hal_5210 *ahp = AH5210(ah); 77 const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom; 78 HAL_CHANNEL_INTERNAL *ichan; 79 HAL_STATUS ecode; 80 uint32_t ledstate; 81 int i, q; 82 83 HALDEBUG(ah, HAL_DEBUG_RESET, 84 "%s: opmode %u channel %u/0x%x %s channel\n", __func__, 85 opmode, chan->ic_freq, chan->ic_flags, 86 bChannelChange ? "change" : "same"); 87 88 if (!IEEE80211_IS_CHAN_5GHZ(chan)) { 89 /* Only 11a mode */ 90 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: channel not 5GHz\n", __func__); 91 FAIL(HAL_EINVAL); 92 } 93 /* 94 * Map public channel to private. 95 */ 96 ichan = ath_hal_checkchannel(ah, chan); 97 if (ichan == AH_NULL) { 98 HALDEBUG(ah, HAL_DEBUG_ANY, 99 "%s: invalid channel %u/0x%x; no mapping\n", 100 __func__, chan->ic_freq, chan->ic_flags); 101 FAIL(HAL_EINVAL); 102 } 103 switch (opmode) { 104 case HAL_M_STA: 105 case HAL_M_IBSS: 106 case HAL_M_HOSTAP: 107 case HAL_M_MONITOR: 108 break; 109 default: 110 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n", 111 __func__, opmode); 112 FAIL(HAL_EINVAL); 113 break; 114 } 115 116 ledstate = OS_REG_READ(ah, AR_PCICFG) & 117 (AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT); 118 119 if (!ar5210ChipReset(ah, chan)) { 120 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", 121 __func__); 122 FAIL(HAL_EIO); 123 } 124 125 OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr)); 126 OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)); 127 ar5210SetOperatingMode(ah, opmode); 128 129 switch (opmode) { 130 case HAL_M_HOSTAP: 131 OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG); 132 OS_REG_WRITE(ah, AR_PCICFG, 133 AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL); 134 break; 135 case HAL_M_IBSS: 136 OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG | AR_BCR_BCMD); 137 OS_REG_WRITE(ah, AR_PCICFG, 138 AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL); 139 break; 140 case HAL_M_STA: 141 OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG); 142 OS_REG_WRITE(ah, AR_PCICFG, 143 AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL); 144 break; 145 case HAL_M_MONITOR: 146 OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG); 147 OS_REG_WRITE(ah, AR_PCICFG, 148 AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL); 149 break; 150 } 151 152 /* Restore previous led state */ 153 OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate); 154 155 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid)); 156 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4)); 157 158 OS_REG_WRITE(ah, AR_TXDP0, 0); 159 OS_REG_WRITE(ah, AR_TXDP1, 0); 160 OS_REG_WRITE(ah, AR_RXDP, 0); 161 162 /* 163 * Initialize interrupt state. 164 */ 165 (void) OS_REG_READ(ah, AR_ISR); /* cleared on read */ 166 OS_REG_WRITE(ah, AR_IMR, 0); 167 OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE); 168 ahp->ah_maskReg = 0; 169 170 (void) OS_REG_READ(ah, AR_BSR); /* cleared on read */ 171 OS_REG_WRITE(ah, AR_TXCFG, AR_DMASIZE_128B); 172 OS_REG_WRITE(ah, AR_RXCFG, AR_DMASIZE_128B); 173 174 OS_REG_WRITE(ah, AR_TOPS, 8); /* timeout prescale */ 175 OS_REG_WRITE(ah, AR_RXNOFRM, 8); /* RX no frame timeout */ 176 OS_REG_WRITE(ah, AR_RPGTO, 0); /* RX frame gap timeout */ 177 OS_REG_WRITE(ah, AR_TXNOFRM, 0); /* TX no frame timeout */ 178 179 OS_REG_WRITE(ah, AR_SFR, 0); 180 OS_REG_WRITE(ah, AR_MIBC, 0); /* unfreeze ctrs + clr state */ 181 OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr); 182 OS_REG_WRITE(ah, AR_CFP_DUR, 0); 183 184 ar5210SetRxFilter(ah, 0); /* nothing for now */ 185 OS_REG_WRITE(ah, AR_MCAST_FIL0, 0); /* multicast filter */ 186 OS_REG_WRITE(ah, AR_MCAST_FIL1, 0); /* XXX was 2 */ 187 188 OS_REG_WRITE(ah, AR_TX_MASK0, 0); 189 OS_REG_WRITE(ah, AR_TX_MASK1, 0); 190 OS_REG_WRITE(ah, AR_CLR_TMASK, 1); 191 OS_REG_WRITE(ah, AR_TRIG_LEV, 1); /* minimum */ 192 193 ar5210UpdateDiagReg(ah, 0); 194 195 OS_REG_WRITE(ah, AR_CFP_PERIOD, 0); 196 OS_REG_WRITE(ah, AR_TIMER0, 0); /* next beacon time */ 197 OS_REG_WRITE(ah, AR_TSF_L32, 0); /* local clock */ 198 OS_REG_WRITE(ah, AR_TIMER1, ~0); /* next DMA beacon alert */ 199 OS_REG_WRITE(ah, AR_TIMER2, ~0); /* next SW beacon alert */ 200 OS_REG_WRITE(ah, AR_TIMER3, 1); /* next ATIM window */ 201 202 /* Write the INI values for PHYreg initialization */ 203 for (i = 0; i < N(ar5k0007_init); i++) { 204 uint32_t reg = ar5k0007_init[i].Offset; 205 /* On channel change, don't reset the PCU registers */ 206 if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000))) 207 OS_REG_WRITE(ah, reg, ar5k0007_init[i].Value); 208 } 209 210 /* Setup the transmit power values for cards since 0x0[0-2]05 */ 211 if (!ar5210SetTransmitPower(ah, chan)) { 212 HALDEBUG(ah, HAL_DEBUG_ANY, 213 "%s: error init'ing transmit power\n", __func__); 214 FAIL(HAL_EIO); 215 } 216 217 OS_REG_WRITE(ah, AR_PHY(10), 218 (OS_REG_READ(ah, AR_PHY(10)) & 0xFFFF00FF) | 219 (ee->ee_xlnaOn << 8)); 220 OS_REG_WRITE(ah, AR_PHY(13), 221 (ee->ee_xpaOff << 24) | (ee->ee_xpaOff << 16) | 222 (ee->ee_xpaOn << 8) | ee->ee_xpaOn); 223 OS_REG_WRITE(ah, AR_PHY(17), 224 (OS_REG_READ(ah, AR_PHY(17)) & 0xFFFFC07F) | 225 ((ee->ee_antenna >> 1) & 0x3F80)); 226 OS_REG_WRITE(ah, AR_PHY(18), 227 (OS_REG_READ(ah, AR_PHY(18)) & 0xFFFC0FFF) | 228 ((ee->ee_antenna << 10) & 0x3F000)); 229 OS_REG_WRITE(ah, AR_PHY(25), 230 (OS_REG_READ(ah, AR_PHY(25)) & 0xFFF80FFF) | 231 ((ee->ee_thresh62 << 12) & 0x7F000)); 232 OS_REG_WRITE(ah, AR_PHY(68), 233 (OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) | 234 (ee->ee_antenna & 0x3)); 235 236 if (!ar5210SetChannel(ah, chan)) { 237 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n", 238 __func__); 239 FAIL(HAL_EIO); 240 } 241 if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan)) 242 chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT; 243 244 /* Activate the PHY */ 245 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ENABLE); 246 247 OS_DELAY(1000); /* Wait a bit (1 msec) */ 248 249 /* calibrate the HW and poll the bit going to 0 for completion */ 250 OS_REG_WRITE(ah, AR_PHY_AGCCTL, 251 OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL); 252 (void) ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0); 253 254 /* Perform noise floor calibration and set status */ 255 if (!ar5210CalNoiseFloor(ah, ichan)) { 256 chan->ic_state |= IEEE80211_CHANSTATE_CWINT; 257 HALDEBUG(ah, HAL_DEBUG_ANY, 258 "%s: noise floor calibration failed\n", __func__); 259 FAIL(HAL_EIO); 260 } 261 262 for (q = 0; q < HAL_NUM_TX_QUEUES; q++) 263 ar5210ResetTxQueue(ah, q); 264 265 if (AH_PRIVATE(ah)->ah_rfkillEnabled) 266 ar5210EnableRfKill(ah); 267 268 /* 269 * Writing to AR_BEACON will start timers. Hence it should be 270 * the last register to be written. Do not reset tsf, do not 271 * enable beacons at this point, but preserve other values 272 * like beaconInterval. 273 */ 274 OS_REG_WRITE(ah, AR_BEACON, 275 (OS_REG_READ(ah, AR_BEACON) & 276 ~(AR_BEACON_EN | AR_BEACON_RESET_TSF))); 277 278 /* Restore user-specified slot time and timeouts */ 279 if (ahp->ah_sifstime != (u_int) -1) 280 ar5210SetSifsTime(ah, ahp->ah_sifstime); 281 if (ahp->ah_slottime != (u_int) -1) 282 ar5210SetSlotTime(ah, ahp->ah_slottime); 283 if (ahp->ah_acktimeout != (u_int) -1) 284 ar5210SetAckTimeout(ah, ahp->ah_acktimeout); 285 if (ahp->ah_ctstimeout != (u_int) -1) 286 ar5210SetCTSTimeout(ah, ahp->ah_ctstimeout); 287 if (AH_PRIVATE(ah)->ah_diagreg != 0) 288 ar5210UpdateDiagReg(ah, AH_PRIVATE(ah)->ah_diagreg); 289 290 AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */ 291 292 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__); 293 294 return AH_TRUE; 295 bad: 296 if (status != AH_NULL) 297 *status = ecode; 298 return AH_FALSE; 299 #undef FAIL 300 #undef N 301 } 302 303 static void 304 ar5210SetOperatingMode(struct ath_hal *ah, int opmode) 305 { 306 struct ath_hal_5210 *ahp = AH5210(ah); 307 uint32_t val; 308 309 val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff; 310 switch (opmode) { 311 case HAL_M_HOSTAP: 312 OS_REG_WRITE(ah, AR_STA_ID1, val 313 | AR_STA_ID1_AP 314 | AR_STA_ID1_NO_PSPOLL 315 | AR_STA_ID1_DESC_ANTENNA 316 | ahp->ah_staId1Defaults); 317 break; 318 case HAL_M_IBSS: 319 OS_REG_WRITE(ah, AR_STA_ID1, val 320 | AR_STA_ID1_ADHOC 321 | AR_STA_ID1_NO_PSPOLL 322 | AR_STA_ID1_DESC_ANTENNA 323 | ahp->ah_staId1Defaults); 324 break; 325 case HAL_M_STA: 326 OS_REG_WRITE(ah, AR_STA_ID1, val 327 | AR_STA_ID1_NO_PSPOLL 328 | AR_STA_ID1_PWR_SV 329 | ahp->ah_staId1Defaults); 330 break; 331 case HAL_M_MONITOR: 332 OS_REG_WRITE(ah, AR_STA_ID1, val 333 | AR_STA_ID1_NO_PSPOLL 334 | ahp->ah_staId1Defaults); 335 break; 336 } 337 } 338 339 void 340 ar5210SetPCUConfig(struct ath_hal *ah) 341 { 342 ar5210SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode); 343 } 344 345 /* 346 * Places the PHY and Radio chips into reset. A full reset 347 * must be called to leave this state. The PCI/MAC/PCU are 348 * not placed into reset as we must receive interrupt to 349 * re-enable the hardware. 350 */ 351 HAL_BOOL 352 ar5210PhyDisable(struct ath_hal *ah) 353 { 354 return ar5210SetResetReg(ah, AR_RC_RPHY, 10); 355 } 356 357 /* 358 * Places all of hardware into reset 359 */ 360 HAL_BOOL 361 ar5210Disable(struct ath_hal *ah) 362 { 363 #define AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC) 364 if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) 365 return AH_FALSE; 366 367 /* 368 * Reset the HW - PCI must be reset after the rest of the 369 * device has been reset 370 */ 371 if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME)) 372 return AH_FALSE; 373 OS_DELAY(1000); 374 (void) ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME); 375 OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */ 376 377 return AH_TRUE; 378 #undef AR_RC_HW 379 } 380 381 /* 382 * Places the hardware into reset and then pulls it out of reset 383 */ 384 HAL_BOOL 385 ar5210ChipReset(struct ath_hal *ah, struct ieee80211_channel *chan) 386 { 387 #define AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC) 388 389 HALDEBUG(ah, HAL_DEBUG_RESET, "%s turbo %s\n", __func__, 390 chan && IEEE80211_IS_CHAN_TURBO(chan) ? 391 "enabled" : "disabled"); 392 393 if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) 394 return AH_FALSE; 395 396 /* Place chip in turbo before reset to cleanly reset clocks */ 397 OS_REG_WRITE(ah, AR_PHY_FRCTL, 398 chan && IEEE80211_IS_CHAN_TURBO(chan) ? AR_PHY_TURBO_MODE : 0); 399 400 /* 401 * Reset the HW. 402 * PCI must be reset after the rest of the device has been reset. 403 */ 404 if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME)) 405 return AH_FALSE; 406 OS_DELAY(1000); 407 if (!ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME)) 408 return AH_FALSE; 409 OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */ 410 411 /* 412 * Bring out of sleep mode (AGAIN) 413 * 414 * WARNING WARNING WARNING 415 * 416 * There is a problem with the chip where it doesn't always indicate 417 * that it's awake, so initializePowerUp() will fail. 418 */ 419 if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) 420 return AH_FALSE; 421 422 /* Clear warm reset reg */ 423 return ar5210SetResetReg(ah, 0, 10); 424 #undef AR_RC_HW 425 } 426 427 enum { 428 FIRPWR_M = 0x03fc0000, 429 FIRPWR_S = 18, 430 KCOARSEHIGH_M = 0x003f8000, 431 KCOARSEHIGH_S = 15, 432 KCOARSELOW_M = 0x00007f80, 433 KCOARSELOW_S = 7, 434 ADCSAT_ICOUNT_M = 0x0001f800, 435 ADCSAT_ICOUNT_S = 11, 436 ADCSAT_THRESH_M = 0x000007e0, 437 ADCSAT_THRESH_S = 5 438 }; 439 440 /* 441 * Recalibrate the lower PHY chips to account for temperature/environment 442 * changes. 443 */ 444 HAL_BOOL 445 ar5210PerCalibrationN(struct ath_hal *ah, 446 struct ieee80211_channel *chan, u_int chainMask, 447 HAL_BOOL longCal, HAL_BOOL *isCalDone) 448 { 449 uint32_t regBeacon; 450 uint32_t reg9858, reg985c, reg9868; 451 HAL_CHANNEL_INTERNAL *ichan; 452 453 ichan = ath_hal_checkchannel(ah, chan); 454 if (ichan == AH_NULL) 455 return AH_FALSE; 456 /* Disable tx and rx */ 457 ar5210UpdateDiagReg(ah, 458 OS_REG_READ(ah, AR_DIAG_SW) | (AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX)); 459 460 /* Disable Beacon Enable */ 461 regBeacon = OS_REG_READ(ah, AR_BEACON); 462 OS_REG_WRITE(ah, AR_BEACON, regBeacon & ~AR_BEACON_EN); 463 464 /* Delay 4ms to ensure that all tx and rx activity has ceased */ 465 OS_DELAY(4000); 466 467 /* Disable AGC to radio traffic */ 468 OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000); 469 /* Wait for the AGC traffic to cease. */ 470 OS_DELAY(10); 471 472 /* Change Channel to relock synth */ 473 if (!ar5210SetChannel(ah, chan)) 474 return AH_FALSE; 475 476 /* wait for the synthesizer lock to stabilize */ 477 OS_DELAY(1000); 478 479 /* Re-enable AGC to radio traffic */ 480 OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000)); 481 482 /* 483 * Configure the AGC so that it is highly unlikely (if not 484 * impossible) for it to send any gain changes to the analog 485 * chip. We store off the current values so that they can 486 * be rewritten below. Setting the following values: 487 * firpwr = -1 488 * Kcoursehigh = -1 489 * Kcourselow = -127 490 * ADCsat_icount = 2 491 * ADCsat_thresh = 12 492 */ 493 reg9858 = OS_REG_READ(ah, 0x9858); 494 reg985c = OS_REG_READ(ah, 0x985c); 495 reg9868 = OS_REG_READ(ah, 0x9868); 496 497 OS_REG_WRITE(ah, 0x9858, (reg9858 & ~FIRPWR_M) | 498 ((-1 << FIRPWR_S) & FIRPWR_M)); 499 OS_REG_WRITE(ah, 0x985c, 500 (reg985c & ~(KCOARSEHIGH_M | KCOARSELOW_M)) | 501 ((-1 << KCOARSEHIGH_S) & KCOARSEHIGH_M) | 502 ((-127 << KCOARSELOW_S) & KCOARSELOW_M)); 503 OS_REG_WRITE(ah, 0x9868, 504 (reg9868 & ~(ADCSAT_ICOUNT_M | ADCSAT_THRESH_M)) | 505 ((2 << ADCSAT_ICOUNT_S) & ADCSAT_ICOUNT_M) | 506 ((12 << ADCSAT_THRESH_S) & ADCSAT_THRESH_M)); 507 508 /* Wait for AGC changes to be enacted */ 509 OS_DELAY(20); 510 511 /* 512 * We disable RF mix/gain stages for the PGA to avoid a 513 * race condition that will occur with receiving a frame 514 * and performing the AGC calibration. This will be 515 * re-enabled at the end of offset cal. We turn off AGC 516 * writes during this write as it will go over the analog bus. 517 */ 518 OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000); 519 OS_DELAY(10); /* wait for the AGC traffic to cease */ 520 OS_REG_WRITE(ah, 0x98D4, 0x21); 521 OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000)); 522 523 /* wait to make sure that additional AGC traffic has quiesced */ 524 OS_DELAY(1000); 525 526 /* AGC calibration (this was added to make the NF threshold check work) */ 527 OS_REG_WRITE(ah, AR_PHY_AGCCTL, 528 OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL); 529 if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0)) { 530 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: AGC calibration timeout\n", 531 __func__); 532 } 533 534 /* Rewrite our AGC values we stored off earlier (return AGC to normal operation) */ 535 OS_REG_WRITE(ah, 0x9858, reg9858); 536 OS_REG_WRITE(ah, 0x985c, reg985c); 537 OS_REG_WRITE(ah, 0x9868, reg9868); 538 539 /* Perform noise floor and set status */ 540 if (!ar5210CalNoiseFloor(ah, ichan)) { 541 /* 542 * Delay 5ms before retrying the noise floor - 543 * just to make sure. We're in an error 544 * condition here 545 */ 546 HALDEBUG(ah, HAL_DEBUG_NFCAL | HAL_DEBUG_PERCAL, 547 "%s: Performing 2nd Noise Cal\n", __func__); 548 OS_DELAY(5000); 549 if (!ar5210CalNoiseFloor(ah, ichan)) 550 chan->ic_state |= IEEE80211_CHANSTATE_CWINT; 551 } 552 553 /* Clear tx and rx disable bit */ 554 ar5210UpdateDiagReg(ah, 555 OS_REG_READ(ah, AR_DIAG_SW) & ~(AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX)); 556 557 /* Re-enable Beacons */ 558 OS_REG_WRITE(ah, AR_BEACON, regBeacon); 559 560 *isCalDone = AH_TRUE; 561 562 return AH_TRUE; 563 } 564 565 HAL_BOOL 566 ar5210PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan, 567 HAL_BOOL *isIQdone) 568 { 569 return ar5210PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone); 570 } 571 572 HAL_BOOL 573 ar5210ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan) 574 { 575 return AH_TRUE; 576 } 577 578 /* 579 * Writes the given reset bit mask into the reset register 580 */ 581 static HAL_BOOL 582 ar5210SetResetReg(struct ath_hal *ah, uint32_t resetMask, u_int delay) 583 { 584 uint32_t mask = resetMask ? resetMask : ~0; 585 HAL_BOOL rt; 586 587 OS_REG_WRITE(ah, AR_RC, resetMask); 588 /* need to wait at least 128 clocks when reseting PCI before read */ 589 OS_DELAY(delay); 590 591 resetMask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC; 592 mask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC; 593 rt = ath_hal_wait(ah, AR_RC, mask, resetMask); 594 if ((resetMask & AR_RC_RMAC) == 0) { 595 if (isBigEndian()) { 596 /* 597 * Set CFG, little-endian for descriptor accesses. 598 */ 599 mask = INIT_CONFIG_STATUS | AR_CFG_SWTD | AR_CFG_SWRD; 600 OS_REG_WRITE(ah, AR_CFG, mask); 601 } else 602 OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS); 603 } 604 return rt; 605 } 606 607 608 /* 609 * Returns: the pcdac value 610 */ 611 static uint8_t 612 getPcdac(struct ath_hal *ah, const struct tpcMap *pRD, uint8_t dBm) 613 { 614 int32_t i; 615 int useNextEntry = AH_FALSE; 616 uint32_t interp; 617 618 for (i = AR_TP_SCALING_ENTRIES - 1; i >= 0; i--) { 619 /* Check for exact entry */ 620 if (dBm == AR_I2DBM(i)) { 621 if (pRD->pcdac[i] != 63) 622 return pRD->pcdac[i]; 623 useNextEntry = AH_TRUE; 624 } else if (dBm + 1 == AR_I2DBM(i) && i > 0) { 625 /* Interpolate for between entry with a logish scale */ 626 if (pRD->pcdac[i] != 63 && pRD->pcdac[i-1] != 63) { 627 interp = (350 * (pRD->pcdac[i] - pRD->pcdac[i-1])) + 999; 628 interp = (interp / 1000) + pRD->pcdac[i-1]; 629 return interp; 630 } 631 useNextEntry = AH_TRUE; 632 } else if (useNextEntry == AH_TRUE) { 633 /* Grab the next lowest */ 634 if (pRD->pcdac[i] != 63) 635 return pRD->pcdac[i]; 636 } 637 } 638 639 /* Return the lowest Entry if we haven't returned */ 640 for (i = 0; i < AR_TP_SCALING_ENTRIES; i++) 641 if (pRD->pcdac[i] != 63) 642 return pRD->pcdac[i]; 643 644 /* No value to return from table */ 645 #ifdef AH_DEBUG 646 ath_hal_printf(ah, "%s: empty transmit power table?\n", __func__); 647 #endif 648 return 1; 649 } 650 651 /* 652 * Find or interpolates the gainF value from the table ptr. 653 */ 654 static uint8_t 655 getGainF(struct ath_hal *ah, const struct tpcMap *pRD, 656 uint8_t pcdac, uint8_t *dBm) 657 { 658 uint32_t interp; 659 int low, high, i; 660 661 low = high = -1; 662 663 for (i = 0; i < AR_TP_SCALING_ENTRIES; i++) { 664 if(pRD->pcdac[i] == 63) 665 continue; 666 if (pcdac == pRD->pcdac[i]) { 667 *dBm = AR_I2DBM(i); 668 return pRD->gainF[i]; /* Exact Match */ 669 } 670 if (pcdac > pRD->pcdac[i]) 671 low = i; 672 if (pcdac < pRD->pcdac[i]) { 673 high = i; 674 if (low == -1) { 675 *dBm = AR_I2DBM(i); 676 /* PCDAC is lower than lowest setting */ 677 return pRD->gainF[i]; 678 } 679 break; 680 } 681 } 682 if (i >= AR_TP_SCALING_ENTRIES && low == -1) { 683 /* No settings were found */ 684 #ifdef AH_DEBUG 685 ath_hal_printf(ah, 686 "%s: no valid entries in the pcdac table: %d\n", 687 __func__, pcdac); 688 #endif 689 return 63; 690 } 691 if (i >= AR_TP_SCALING_ENTRIES) { 692 /* PCDAC setting was above the max setting in the table */ 693 *dBm = AR_I2DBM(low); 694 return pRD->gainF[low]; 695 } 696 /* Only exact if table has no missing entries */ 697 *dBm = (low + high) + 3; 698 699 /* 700 * Perform interpolation between low and high values to find gainF 701 * linearly scale the pcdac between low and high 702 */ 703 interp = ((pcdac - pRD->pcdac[low]) * 1000) / 704 (pRD->pcdac[high] - pRD->pcdac[low]); 705 /* 706 * Multiply the scale ratio by the gainF difference 707 * (plus a rnd up factor) 708 */ 709 interp = ((interp * (pRD->gainF[high] - pRD->gainF[low])) + 999) / 1000; 710 711 /* Add ratioed gain_f to low gain_f value */ 712 return interp + pRD->gainF[low]; 713 } 714 715 HAL_BOOL 716 ar5210SetTxPowerLimit(struct ath_hal *ah, uint32_t limit) 717 { 718 AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, AR5210_MAX_RATE_POWER); 719 /* XXX flush to h/w */ 720 return AH_TRUE; 721 } 722 723 /* 724 * Get TXPower values and set them in the radio 725 */ 726 static HAL_BOOL 727 setupPowerSettings(struct ath_hal *ah, const struct ieee80211_channel *chan, 728 uint8_t cp[17]) 729 { 730 uint16_t freq = ath_hal_gethwchannel(ah, chan); 731 const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom; 732 uint8_t gainFRD, gainF36, gainF48, gainF54; 733 uint8_t dBmRD, dBm36, dBm48, dBm54, dontcare; 734 uint32_t rd, group; 735 const struct tpcMap *pRD; 736 737 /* Set OB/DB Values regardless of channel */ 738 cp[15] = (ee->ee_biasCurrents >> 4) & 0x7; 739 cp[16] = ee->ee_biasCurrents & 0x7; 740 741 if (freq < 5170 || freq > 5320) { 742 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u\n", 743 __func__, freq); 744 return AH_FALSE; 745 } 746 747 HALASSERT(ee->ee_version >= AR_EEPROM_VER1 && 748 ee->ee_version < AR_EEPROM_VER3); 749 750 /* Match regulatory domain */ 751 for (rd = 0; rd < AR_REG_DOMAINS_MAX; rd++) 752 if (AH_PRIVATE(ah)->ah_currentRD == ee->ee_regDomain[rd]) 753 break; 754 if (rd == AR_REG_DOMAINS_MAX) { 755 #ifdef AH_DEBUG 756 ath_hal_printf(ah, 757 "%s: no calibrated regulatory domain matches the " 758 "current regularly domain (0x%0x)\n", __func__, 759 AH_PRIVATE(ah)->ah_currentRD); 760 #endif 761 return AH_FALSE; 762 } 763 group = ((freq - 5170) / 10); 764 765 if (group > 11) { 766 /* Pull 5.29 into the 5.27 group */ 767 group--; 768 } 769 770 /* Integer divide will set group from 0 to 4 */ 771 group = group / 3; 772 pRD = &ee->ee_tpc[group]; 773 774 /* Set PC DAC Values */ 775 cp[14] = pRD->regdmn[rd]; 776 cp[9] = AH_MIN(pRD->regdmn[rd], pRD->rate36); 777 cp[8] = AH_MIN(pRD->regdmn[rd], pRD->rate48); 778 cp[7] = AH_MIN(pRD->regdmn[rd], pRD->rate54); 779 780 /* Find Corresponding gainF values for RD, 36, 48, 54 */ 781 gainFRD = getGainF(ah, pRD, pRD->regdmn[rd], &dBmRD); 782 gainF36 = getGainF(ah, pRD, cp[9], &dBm36); 783 gainF48 = getGainF(ah, pRD, cp[8], &dBm48); 784 gainF54 = getGainF(ah, pRD, cp[7], &dBm54); 785 786 /* Power Scale if requested */ 787 if (AH_PRIVATE(ah)->ah_tpScale != HAL_TP_SCALE_MAX) { 788 static const uint16_t tpcScaleReductionTable[5] = 789 { 0, 3, 6, 9, AR5210_MAX_RATE_POWER }; 790 uint16_t tpScale; 791 792 tpScale = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale]; 793 if (dBmRD < tpScale+3) 794 dBmRD = 3; /* min */ 795 else 796 dBmRD -= tpScale; 797 cp[14] = getPcdac(ah, pRD, dBmRD); 798 gainFRD = getGainF(ah, pRD, cp[14], &dontcare); 799 dBm36 = AH_MIN(dBm36, dBmRD); 800 cp[9] = getPcdac(ah, pRD, dBm36); 801 gainF36 = getGainF(ah, pRD, cp[9], &dontcare); 802 dBm48 = AH_MIN(dBm48, dBmRD); 803 cp[8] = getPcdac(ah, pRD, dBm48); 804 gainF48 = getGainF(ah, pRD, cp[8], &dontcare); 805 dBm54 = AH_MIN(dBm54, dBmRD); 806 cp[7] = getPcdac(ah, pRD, dBm54); 807 gainF54 = getGainF(ah, pRD, cp[7], &dontcare); 808 } 809 /* Record current dBm at rate 6 */ 810 AH_PRIVATE(ah)->ah_maxPowerLevel = 2*dBmRD; 811 812 cp[13] = cp[12] = cp[11] = cp[10] = cp[14]; 813 814 /* Set GainF Values */ 815 cp[0] = gainFRD - gainF54; 816 cp[1] = gainFRD - gainF48; 817 cp[2] = gainFRD - gainF36; 818 /* 9, 12, 18, 24 have no gain_delta from 6 */ 819 cp[3] = cp[4] = cp[5] = cp[6] = 0; 820 return AH_TRUE; 821 } 822 823 /* 824 * Places the device in and out of reset and then places sane 825 * values in the registers based on EEPROM config, initialization 826 * vectors (as determined by the mode), and station configuration 827 */ 828 HAL_BOOL 829 ar5210SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan) 830 { 831 #define N(a) (sizeof (a) / sizeof (a[0])) 832 static const uint32_t pwr_regs_start[17] = { 833 0x00000000, 0x00000000, 0x00000000, 834 0x00000000, 0x00000000, 0xf0000000, 835 0xcc000000, 0x00000000, 0x00000000, 836 0x00000000, 0x0a000000, 0x000000e2, 837 0x0a000020, 0x01000002, 0x01000018, 838 0x40000000, 0x00000418 839 }; 840 uint16_t i; 841 uint8_t cp[sizeof(ar5k0007_pwrSettings)]; 842 uint32_t pwr_regs[17]; 843 844 OS_MEMCPY(pwr_regs, pwr_regs_start, sizeof(pwr_regs)); 845 OS_MEMCPY(cp, ar5k0007_pwrSettings, sizeof(cp)); 846 847 /* Check the EEPROM tx power calibration settings */ 848 if (!setupPowerSettings(ah, chan, cp)) { 849 #ifdef AH_DEBUG 850 ath_hal_printf(ah, "%s: unable to setup power settings\n", 851 __func__); 852 #endif 853 return AH_FALSE; 854 } 855 if (cp[15] < 1 || cp[15] > 5) { 856 #ifdef AH_DEBUG 857 ath_hal_printf(ah, "%s: OB out of range (%u)\n", 858 __func__, cp[15]); 859 #endif 860 return AH_FALSE; 861 } 862 if (cp[16] < 1 || cp[16] > 5) { 863 #ifdef AH_DEBUG 864 ath_hal_printf(ah, "%s: DB out of range (%u)\n", 865 __func__, cp[16]); 866 #endif 867 return AH_FALSE; 868 } 869 870 /* reverse bits of the transmit power array */ 871 for (i = 0; i < 7; i++) 872 cp[i] = ath_hal_reverseBits(cp[i], 5); 873 for (i = 7; i < 15; i++) 874 cp[i] = ath_hal_reverseBits(cp[i], 6); 875 876 /* merge transmit power values into the register - quite gross */ 877 pwr_regs[0] |= ((cp[1] << 5) & 0xE0) | (cp[0] & 0x1F); 878 pwr_regs[1] |= ((cp[3] << 7) & 0x80) | ((cp[2] << 2) & 0x7C) | 879 ((cp[1] >> 3) & 0x03); 880 pwr_regs[2] |= ((cp[4] << 4) & 0xF0) | ((cp[3] >> 1) & 0x0F); 881 pwr_regs[3] |= ((cp[6] << 6) & 0xC0) | ((cp[5] << 1) & 0x3E) | 882 ((cp[4] >> 4) & 0x01); 883 pwr_regs[4] |= ((cp[7] << 3) & 0xF8) | ((cp[6] >> 2) & 0x07); 884 pwr_regs[5] |= ((cp[9] << 7) & 0x80) | ((cp[8] << 1) & 0x7E) | 885 ((cp[7] >> 5) & 0x01); 886 pwr_regs[6] |= ((cp[10] << 5) & 0xE0) | ((cp[9] >> 1) & 0x1F); 887 pwr_regs[7] |= ((cp[11] << 3) & 0xF8) | ((cp[10] >> 3) & 0x07); 888 pwr_regs[8] |= ((cp[12] << 1) & 0x7E) | ((cp[11] >> 5) & 0x01); 889 pwr_regs[9] |= ((cp[13] << 5) & 0xE0); 890 pwr_regs[10] |= ((cp[14] << 3) & 0xF8) | ((cp[13] >> 3) & 0x07); 891 pwr_regs[11] |= ((cp[14] >> 5) & 0x01); 892 893 /* Set OB */ 894 pwr_regs[8] |= (ath_hal_reverseBits(cp[15], 3) << 7) & 0x80; 895 pwr_regs[9] |= (ath_hal_reverseBits(cp[15], 3) >> 1) & 0x03; 896 897 /* Set DB */ 898 pwr_regs[9] |= (ath_hal_reverseBits(cp[16], 3) << 2) & 0x1C; 899 900 /* Write the registers */ 901 for (i = 0; i < N(pwr_regs)-1; i++) 902 OS_REG_WRITE(ah, 0x0000989c, pwr_regs[i]); 903 /* last write is a flush */ 904 OS_REG_WRITE(ah, 0x000098d4, pwr_regs[i]); 905 906 return AH_TRUE; 907 #undef N 908 } 909 910 /* 911 * Takes the MHz channel value and sets the Channel value 912 * 913 * ASSUMES: Writes enabled to analog bus before AGC is active 914 * or by disabling the AGC. 915 */ 916 static HAL_BOOL 917 ar5210SetChannel(struct ath_hal *ah, struct ieee80211_channel *chan) 918 { 919 uint16_t freq = ath_hal_gethwchannel(ah, chan); 920 uint32_t data; 921 922 /* Set the Channel */ 923 data = ath_hal_reverseBits((freq - 5120)/10, 5); 924 data = (data << 1) | 0x41; 925 OS_REG_WRITE(ah, AR_PHY(0x27), data); 926 OS_REG_WRITE(ah, AR_PHY(0x30), 0); 927 AH_PRIVATE(ah)->ah_curchan = chan; 928 return AH_TRUE; 929 } 930 931 int16_t 932 ar5210GetNoiseFloor(struct ath_hal *ah) 933 { 934 int16_t nf; 935 936 nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff; 937 if (nf & 0x100) 938 nf = 0 - ((nf ^ 0x1ff) + 1); 939 return nf; 940 } 941 942 #define NORMAL_NF_THRESH (-72) 943 /* 944 * Peform the noisefloor calibration and check for 945 * any constant channel interference 946 * 947 * Returns: TRUE for a successful noise floor calibration; else FALSE 948 */ 949 HAL_BOOL 950 ar5210CalNoiseFloor(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan) 951 { 952 int32_t nf, nfLoops; 953 954 /* Calibrate the noise floor */ 955 OS_REG_WRITE(ah, AR_PHY_AGCCTL, 956 OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_NF); 957 958 /* Do not read noise floor until it has done the first update */ 959 if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_NF, 0)) { 960 #ifdef ATH_HAL_DEBUG 961 ath_hal_printf(ah, " -PHY NF Reg state: 0x%x\n", 962 OS_REG_READ(ah, AR_PHY_AGCCTL)); 963 ath_hal_printf(ah, " -MAC Reset Reg state: 0x%x\n", 964 OS_REG_READ(ah, AR_RC)); 965 ath_hal_printf(ah, " -PHY Active Reg state: 0x%x\n", 966 OS_REG_READ(ah, AR_PHY_ACTIVE)); 967 #endif /* ATH_HAL_DEBUG */ 968 return AH_FALSE; 969 } 970 971 nf = 0; 972 /* Keep checking until the floor is below the threshold or the nf is done */ 973 for (nfLoops = 0; ((nfLoops < 21) && (nf > NORMAL_NF_THRESH)); nfLoops++) { 974 OS_DELAY(1000); /* Sleep for 1 ms */ 975 nf = ar5210GetNoiseFloor(ah); 976 } 977 978 if (nf > NORMAL_NF_THRESH) { 979 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: Bad noise cal %d\n", 980 __func__, nf); 981 ichan->rawNoiseFloor = 0; 982 return AH_FALSE; 983 } 984 ichan->rawNoiseFloor = nf; 985 return AH_TRUE; 986 } 987 988 /* 989 * Adjust NF based on statistical values for 5GHz frequencies. 990 */ 991 int16_t 992 ar5210GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c) 993 { 994 return 0; 995 } 996 997 HAL_RFGAIN 998 ar5210GetRfgain(struct ath_hal *ah) 999 { 1000 return HAL_RFGAIN_INACTIVE; 1001 } 1002