1 /* 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * Copyright (c) 2002-2004 Atheros Communications, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 * 17 * $FreeBSD$ 18 */ 19 #include "opt_ah.h" 20 21 #include "ah.h" 22 #include "ah_internal.h" 23 24 #include "ar5210/ar5210.h" 25 #include "ar5210/ar5210reg.h" 26 #include "ar5210/ar5210phy.h" 27 28 #include "ah_eeprom_v1.h" 29 30 #define AR_NUM_GPIO 6 /* 6 GPIO bits */ 31 #define AR_GPIOD_MASK 0x2f /* 6-bit mask */ 32 33 void 34 ar5210GetMacAddress(struct ath_hal *ah, uint8_t *mac) 35 { 36 struct ath_hal_5210 *ahp = AH5210(ah); 37 38 OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN); 39 } 40 41 HAL_BOOL 42 ar5210SetMacAddress(struct ath_hal *ah, const uint8_t *mac) 43 { 44 struct ath_hal_5210 *ahp = AH5210(ah); 45 46 OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN); 47 return AH_TRUE; 48 } 49 50 void 51 ar5210GetBssIdMask(struct ath_hal *ah, uint8_t *mask) 52 { 53 static const uint8_t ones[IEEE80211_ADDR_LEN] = 54 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 55 OS_MEMCPY(mask, ones, IEEE80211_ADDR_LEN); 56 } 57 58 HAL_BOOL 59 ar5210SetBssIdMask(struct ath_hal *ah, const uint8_t *mask) 60 { 61 return AH_FALSE; 62 } 63 64 /* 65 * Read 16 bits of data from the specified EEPROM offset. 66 */ 67 HAL_BOOL 68 ar5210EepromRead(struct ath_hal *ah, u_int off, uint16_t *data) 69 { 70 (void) OS_REG_READ(ah, AR_EP_AIR(off)); /* activate read op */ 71 if (!ath_hal_wait(ah, AR_EP_STA, 72 AR_EP_STA_RDCMPLT | AR_EP_STA_RDERR, AR_EP_STA_RDCMPLT)) { 73 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: read failed for entry 0x%x\n", 74 __func__, AR_EP_AIR(off)); 75 return AH_FALSE; 76 } 77 *data = OS_REG_READ(ah, AR_EP_RDATA) & 0xffff; 78 return AH_TRUE; 79 } 80 81 #ifdef AH_SUPPORT_WRITE_EEPROM 82 /* 83 * Write 16 bits of data to the specified EEPROM offset. 84 */ 85 HAL_BOOL 86 ar5210EepromWrite(struct ath_hal *ah, u_int off, uint16_t data) 87 { 88 return AH_FALSE; 89 } 90 #endif /* AH_SUPPORT_WRITE_EEPROM */ 91 92 /* 93 * Attempt to change the cards operating regulatory domain to the given value 94 */ 95 HAL_BOOL 96 ar5210SetRegulatoryDomain(struct ath_hal *ah, 97 uint16_t regDomain, HAL_STATUS *status) 98 { 99 HAL_STATUS ecode; 100 101 if (AH_PRIVATE(ah)->ah_currentRD == regDomain) { 102 ecode = HAL_EINVAL; 103 goto bad; 104 } 105 /* 106 * Check if EEPROM is configured to allow this; must 107 * be a proper version and the protection bits must 108 * permit re-writing that segment of the EEPROM. 109 */ 110 if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) { 111 ecode = HAL_EEWRITE; 112 goto bad; 113 } 114 ecode = HAL_EIO; /* disallow all writes */ 115 bad: 116 if (status) 117 *status = ecode; 118 return AH_FALSE; 119 } 120 121 /* 122 * Return the wireless modes (a,b,g,t) supported by hardware. 123 * 124 * This value is what is actually supported by the hardware 125 * and is unaffected by regulatory/country code settings. 126 * 127 */ 128 u_int 129 ar5210GetWirelessModes(struct ath_hal *ah) 130 { 131 /* XXX could enable turbo mode but can't do all rates */ 132 return HAL_MODE_11A; 133 } 134 135 /* 136 * Called if RfKill is supported (according to EEPROM). Set the interrupt and 137 * GPIO values so the ISR and can disable RF on a switch signal 138 */ 139 void 140 ar5210EnableRfKill(struct ath_hal *ah) 141 { 142 uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent; 143 int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL); 144 int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY); 145 146 /* 147 * If radio disable switch connection to GPIO bit 0 is enabled 148 * program GPIO interrupt. 149 * If rfkill bit on eeprom is 1, setupeeprommap routine has already 150 * verified that it is a later version of eeprom, it has a place for 151 * rfkill bit and it is set to 1, indicating that GPIO bit 0 hardware 152 * connection is present. 153 */ 154 ar5210Gpio0SetIntr(ah, select, (ar5210GpioGet(ah, select) == polarity)); 155 } 156 157 /* 158 * Configure GPIO Output lines 159 */ 160 HAL_BOOL 161 ar5210GpioCfgOutput(struct ath_hal *ah, uint32_t gpio, HAL_GPIO_MUX_TYPE type) 162 { 163 HALASSERT(gpio < AR_NUM_GPIO); 164 165 OS_REG_WRITE(ah, AR_GPIOCR, 166 (OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio)) 167 | AR_GPIOCR_OUT1(gpio)); 168 169 return AH_TRUE; 170 } 171 172 /* 173 * Configure GPIO Input lines 174 */ 175 HAL_BOOL 176 ar5210GpioCfgInput(struct ath_hal *ah, uint32_t gpio) 177 { 178 HALASSERT(gpio < AR_NUM_GPIO); 179 180 OS_REG_WRITE(ah, AR_GPIOCR, 181 (OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio)) 182 | AR_GPIOCR_IN(gpio)); 183 184 return AH_TRUE; 185 } 186 187 /* 188 * Once configured for I/O - set output lines 189 */ 190 HAL_BOOL 191 ar5210GpioSet(struct ath_hal *ah, uint32_t gpio, uint32_t val) 192 { 193 uint32_t reg; 194 195 HALASSERT(gpio < AR_NUM_GPIO); 196 197 reg = OS_REG_READ(ah, AR_GPIODO); 198 reg &= ~(1 << gpio); 199 reg |= (val&1) << gpio; 200 201 OS_REG_WRITE(ah, AR_GPIODO, reg); 202 return AH_TRUE; 203 } 204 205 /* 206 * Once configured for I/O - get input lines 207 */ 208 uint32_t 209 ar5210GpioGet(struct ath_hal *ah, uint32_t gpio) 210 { 211 if (gpio < AR_NUM_GPIO) { 212 uint32_t val = OS_REG_READ(ah, AR_GPIODI); 213 val = ((val & AR_GPIOD_MASK) >> gpio) & 0x1; 214 return val; 215 } else { 216 return 0xffffffff; 217 } 218 } 219 220 /* 221 * Set the GPIO 0 Interrupt 222 */ 223 void 224 ar5210Gpio0SetIntr(struct ath_hal *ah, u_int gpio, uint32_t ilevel) 225 { 226 uint32_t val = OS_REG_READ(ah, AR_GPIOCR); 227 228 /* Clear the bits that we will modify. */ 229 val &= ~(AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_SELH | AR_GPIOCR_INT_ENA | 230 AR_GPIOCR_ALL(gpio)); 231 232 val |= AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_ENA; 233 if (ilevel) 234 val |= AR_GPIOCR_INT_SELH; 235 236 /* Don't need to change anything for low level interrupt. */ 237 OS_REG_WRITE(ah, AR_GPIOCR, val); 238 239 /* Change the interrupt mask. */ 240 ar5210SetInterrupts(ah, AH5210(ah)->ah_maskReg | HAL_INT_GPIO); 241 } 242 243 /* 244 * Change the LED blinking pattern to correspond to the connectivity 245 */ 246 void 247 ar5210SetLedState(struct ath_hal *ah, HAL_LED_STATE state) 248 { 249 uint32_t val; 250 251 val = OS_REG_READ(ah, AR_PCICFG); 252 switch (state) { 253 case HAL_LED_INIT: 254 val &= ~(AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT); 255 break; 256 case HAL_LED_RUN: 257 /* normal blink when connected */ 258 val &= ~AR_PCICFG_LED_PEND; 259 val |= AR_PCICFG_LED_ACT; 260 break; 261 default: 262 val |= AR_PCICFG_LED_PEND; 263 val &= ~AR_PCICFG_LED_ACT; 264 break; 265 } 266 OS_REG_WRITE(ah, AR_PCICFG, val); 267 } 268 269 /* 270 * Return 1 or 2 for the corresponding antenna that is in use 271 */ 272 u_int 273 ar5210GetDefAntenna(struct ath_hal *ah) 274 { 275 uint32_t val = OS_REG_READ(ah, AR_STA_ID1); 276 return (val & AR_STA_ID1_DEFAULT_ANTENNA ? 2 : 1); 277 } 278 279 void 280 ar5210SetDefAntenna(struct ath_hal *ah, u_int antenna) 281 { 282 uint32_t val = OS_REG_READ(ah, AR_STA_ID1); 283 284 if (antenna != (val & AR_STA_ID1_DEFAULT_ANTENNA ? 2 : 1)) { 285 /* 286 * Antenna change requested, force a toggle of the default. 287 */ 288 OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_DEFAULT_ANTENNA); 289 } 290 } 291 292 HAL_ANT_SETTING 293 ar5210GetAntennaSwitch(struct ath_hal *ah) 294 { 295 return HAL_ANT_VARIABLE; 296 } 297 298 HAL_BOOL 299 ar5210SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings) 300 { 301 /* XXX not sure how to fix antenna */ 302 return (settings == HAL_ANT_VARIABLE); 303 } 304 305 /* 306 * Change association related fields programmed into the hardware. 307 * Writing a valid BSSID to the hardware effectively enables the hardware 308 * to synchronize its TSF to the correct beacons and receive frames coming 309 * from that BSSID. It is called by the SME JOIN operation. 310 */ 311 void 312 ar5210WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId) 313 { 314 struct ath_hal_5210 *ahp = AH5210(ah); 315 316 /* XXX save bssid for possible re-use on reset */ 317 OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN); 318 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid)); 319 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) | 320 ((assocId & 0x3fff)<<AR_BSS_ID1_AID_S)); 321 if (assocId == 0) 322 OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL); 323 else 324 OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL); 325 } 326 327 /* 328 * Get the current hardware tsf for stamlme. 329 */ 330 uint64_t 331 ar5210GetTsf64(struct ath_hal *ah) 332 { 333 uint32_t low1, low2, u32; 334 335 /* sync multi-word read */ 336 low1 = OS_REG_READ(ah, AR_TSF_L32); 337 u32 = OS_REG_READ(ah, AR_TSF_U32); 338 low2 = OS_REG_READ(ah, AR_TSF_L32); 339 if (low2 < low1) { /* roll over */ 340 /* 341 * If we are not preempted this will work. If we are 342 * then we re-reading AR_TSF_U32 does no good as the 343 * low bits will be meaningless. Likewise reading 344 * L32, U32, U32, then comparing the last two reads 345 * to check for rollover doesn't help if preempted--so 346 * we take this approach as it costs one less PCI 347 * read which can be noticeable when doing things 348 * like timestamping packets in monitor mode. 349 */ 350 u32++; 351 } 352 return (((uint64_t) u32) << 32) | ((uint64_t) low2); 353 } 354 355 /* 356 * Get the current hardware tsf for stamlme. 357 */ 358 uint32_t 359 ar5210GetTsf32(struct ath_hal *ah) 360 { 361 return OS_REG_READ(ah, AR_TSF_L32); 362 } 363 364 /* 365 * Reset the current hardware tsf for stamlme 366 */ 367 void 368 ar5210ResetTsf(struct ath_hal *ah) 369 { 370 uint32_t val = OS_REG_READ(ah, AR_BEACON); 371 372 OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF); 373 } 374 375 /* 376 * Grab a semi-random value from hardware registers - may not 377 * change often 378 */ 379 uint32_t 380 ar5210GetRandomSeed(struct ath_hal *ah) 381 { 382 uint32_t nf; 383 384 nf = (OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) >> 19) & 0x1ff; 385 if (nf & 0x100) 386 nf = 0 - ((nf ^ 0x1ff) + 1); 387 return (OS_REG_READ(ah, AR_TSF_U32) ^ 388 OS_REG_READ(ah, AR_TSF_L32) ^ nf); 389 } 390 391 /* 392 * Detect if our card is present 393 */ 394 HAL_BOOL 395 ar5210DetectCardPresent(struct ath_hal *ah) 396 { 397 /* 398 * Read the Silicon Revision register and compare that 399 * to what we read at attach time. If the same, we say 400 * a card/device is present. 401 */ 402 return (AH_PRIVATE(ah)->ah_macRev == (OS_REG_READ(ah, AR_SREV) & 0xff)); 403 } 404 405 /* 406 * Update MIB Counters 407 */ 408 void 409 ar5210UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS *stats) 410 { 411 stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL); 412 stats->rts_bad += OS_REG_READ(ah, AR_RTS_FAIL); 413 stats->fcs_bad += OS_REG_READ(ah, AR_FCS_FAIL); 414 stats->rts_good += OS_REG_READ(ah, AR_RTS_OK); 415 stats->beacons += OS_REG_READ(ah, AR_BEACON_CNT); 416 } 417 418 HAL_BOOL 419 ar5210SetSifsTime(struct ath_hal *ah, u_int us) 420 { 421 struct ath_hal_5210 *ahp = AH5210(ah); 422 423 if (us > ath_hal_mac_usec(ah, 0x7ff)) { 424 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n", 425 __func__, us); 426 ahp->ah_sifstime = (u_int) -1; /* restore default handling */ 427 return AH_FALSE; 428 } else { 429 /* convert to system clocks */ 430 OS_REG_RMW_FIELD(ah, AR_IFS0, AR_IFS0_SIFS, 431 ath_hal_mac_clks(ah, us)); 432 ahp->ah_sifstime = us; 433 return AH_TRUE; 434 } 435 } 436 437 u_int 438 ar5210GetSifsTime(struct ath_hal *ah) 439 { 440 u_int clks = OS_REG_READ(ah, AR_IFS0) & 0x7ff; 441 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */ 442 } 443 444 HAL_BOOL 445 ar5210SetSlotTime(struct ath_hal *ah, u_int us) 446 { 447 struct ath_hal_5210 *ahp = AH5210(ah); 448 449 if (us < HAL_SLOT_TIME_9 || us > ath_hal_mac_usec(ah, 0xffff)) { 450 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n", 451 __func__, us); 452 ahp->ah_slottime = (u_int) -1; /* restore default handling */ 453 return AH_FALSE; 454 } else { 455 /* convert to system clocks */ 456 OS_REG_WRITE(ah, AR_SLOT_TIME, ath_hal_mac_clks(ah, us)); 457 ahp->ah_slottime = us; 458 return AH_TRUE; 459 } 460 } 461 462 u_int 463 ar5210GetSlotTime(struct ath_hal *ah) 464 { 465 u_int clks = OS_REG_READ(ah, AR_SLOT_TIME) & 0xffff; 466 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */ 467 } 468 469 HAL_BOOL 470 ar5210SetAckTimeout(struct ath_hal *ah, u_int us) 471 { 472 struct ath_hal_5210 *ahp = AH5210(ah); 473 474 if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) { 475 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n", 476 __func__, us); 477 ahp->ah_acktimeout = (u_int) -1; /* restore default handling */ 478 return AH_FALSE; 479 } else { 480 /* convert to system clocks */ 481 OS_REG_RMW_FIELD(ah, AR_TIME_OUT, 482 AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us)); 483 ahp->ah_acktimeout = us; 484 return AH_TRUE; 485 } 486 } 487 488 u_int 489 ar5210GetAckTimeout(struct ath_hal *ah) 490 { 491 u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK); 492 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */ 493 } 494 495 u_int 496 ar5210GetAckCTSRate(struct ath_hal *ah) 497 { 498 return ((AH5210(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0); 499 } 500 501 HAL_BOOL 502 ar5210SetAckCTSRate(struct ath_hal *ah, u_int high) 503 { 504 struct ath_hal_5210 *ahp = AH5210(ah); 505 506 if (high) { 507 OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB); 508 ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB; 509 } else { 510 OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB); 511 ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB; 512 } 513 return AH_TRUE; 514 } 515 516 HAL_BOOL 517 ar5210SetCTSTimeout(struct ath_hal *ah, u_int us) 518 { 519 struct ath_hal_5210 *ahp = AH5210(ah); 520 521 if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) { 522 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n", 523 __func__, us); 524 ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */ 525 return AH_FALSE; 526 } else { 527 /* convert to system clocks */ 528 OS_REG_RMW_FIELD(ah, AR_TIME_OUT, 529 AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us)); 530 ahp->ah_ctstimeout = us; 531 return AH_TRUE; 532 } 533 } 534 535 u_int 536 ar5210GetCTSTimeout(struct ath_hal *ah) 537 { 538 u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS); 539 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */ 540 } 541 542 HAL_BOOL 543 ar5210SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en) 544 { 545 /* nothing to do */ 546 return AH_TRUE; 547 } 548 549 void 550 ar5210SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now) 551 { 552 } 553 554 /* 555 * Control Adaptive Noise Immunity Parameters 556 */ 557 HAL_BOOL 558 ar5210AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param) 559 { 560 return AH_FALSE; 561 } 562 563 void 564 ar5210RxMonitor(struct ath_hal *ah, const HAL_NODE_STATS *stats, 565 const struct ieee80211_channel *chan) 566 { 567 } 568 569 void 570 ar5210AniPoll(struct ath_hal *ah, const struct ieee80211_channel *chan) 571 { 572 } 573 574 void 575 ar5210MibEvent(struct ath_hal *ah, const HAL_NODE_STATS *stats) 576 { 577 } 578 579 #define AR_DIAG_SW_DIS_CRYPTO (AR_DIAG_SW_DIS_ENC | AR_DIAG_SW_DIS_DEC) 580 581 HAL_STATUS 582 ar5210GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type, 583 uint32_t capability, uint32_t *result) 584 { 585 586 switch (type) { 587 case HAL_CAP_CIPHER: /* cipher handled in hardware */ 588 return (capability == HAL_CIPHER_WEP ? HAL_OK : HAL_ENOTSUPP); 589 default: 590 return ath_hal_getcapability(ah, type, capability, result); 591 } 592 } 593 594 HAL_BOOL 595 ar5210SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type, 596 uint32_t capability, uint32_t setting, HAL_STATUS *status) 597 { 598 599 switch (type) { 600 case HAL_CAP_DIAG: /* hardware diagnostic support */ 601 /* 602 * NB: could split this up into virtual capabilities, 603 * (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly 604 * seems worth the additional complexity. 605 */ 606 #ifdef AH_DEBUG 607 AH_PRIVATE(ah)->ah_diagreg = setting; 608 #else 609 AH_PRIVATE(ah)->ah_diagreg = setting & 0x6; /* ACK+CTS */ 610 #endif 611 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg); 612 return AH_TRUE; 613 case HAL_CAP_RXORN_FATAL: /* HAL_INT_RXORN treated as fatal */ 614 return AH_FALSE; /* NB: disallow */ 615 default: 616 return ath_hal_setcapability(ah, type, capability, 617 setting, status); 618 } 619 } 620 621 HAL_BOOL 622 ar5210GetDiagState(struct ath_hal *ah, int request, 623 const void *args, uint32_t argsize, 624 void **result, uint32_t *resultsize) 625 { 626 #ifdef AH_PRIVATE_DIAG 627 uint32_t pcicfg; 628 HAL_BOOL ok; 629 630 switch (request) { 631 case HAL_DIAG_EEPROM: 632 /* XXX */ 633 break; 634 case HAL_DIAG_EEREAD: 635 if (argsize != sizeof(uint16_t)) 636 return AH_FALSE; 637 pcicfg = OS_REG_READ(ah, AR_PCICFG); 638 OS_REG_WRITE(ah, AR_PCICFG, pcicfg | AR_PCICFG_EEPROMSEL); 639 ok = ath_hal_eepromRead(ah, *(const uint16_t *)args, *result); 640 OS_REG_WRITE(ah, AR_PCICFG, pcicfg); 641 if (ok) 642 *resultsize = sizeof(uint16_t); 643 return ok; 644 } 645 #endif 646 return ath_hal_getdiagstate(ah, request, 647 args, argsize, result, resultsize); 648 } 649