xref: /freebsd/sys/dev/ath/ath_hal/ar5210/ar5210_misc.c (revision 1c05a6ea6b849ff95e539c31adea887c644a6a01)
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2004 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 
24 #include "ar5210/ar5210.h"
25 #include "ar5210/ar5210reg.h"
26 #include "ar5210/ar5210phy.h"
27 
28 #include "ah_eeprom_v1.h"
29 
30 #define	AR_NUM_GPIO	6		/* 6 GPIO bits */
31 #define	AR_GPIOD_MASK	0x2f		/* 6-bit mask */
32 
33 void
34 ar5210GetMacAddress(struct ath_hal *ah, uint8_t *mac)
35 {
36 	struct ath_hal_5210 *ahp = AH5210(ah);
37 
38 	OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
39 }
40 
41 HAL_BOOL
42 ar5210SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
43 {
44 	struct ath_hal_5210 *ahp = AH5210(ah);
45 
46 	OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
47 	return AH_TRUE;
48 }
49 
50 void
51 ar5210GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
52 {
53 	static const uint8_t ones[IEEE80211_ADDR_LEN] =
54 		{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
55 	OS_MEMCPY(mask, ones, IEEE80211_ADDR_LEN);
56 }
57 
58 HAL_BOOL
59 ar5210SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
60 {
61 	return AH_FALSE;
62 }
63 
64 /*
65  * Read 16 bits of data from the specified EEPROM offset.
66  */
67 HAL_BOOL
68 ar5210EepromRead(struct ath_hal *ah, u_int off, uint16_t *data)
69 {
70 	(void) OS_REG_READ(ah, AR_EP_AIR(off));	/* activate read op */
71 	if (!ath_hal_wait(ah, AR_EP_STA,
72 	    AR_EP_STA_RDCMPLT | AR_EP_STA_RDERR, AR_EP_STA_RDCMPLT)) {
73 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: read failed for entry 0x%x\n",
74 		    __func__, AR_EP_AIR(off));
75 		return AH_FALSE;
76 	}
77 	*data = OS_REG_READ(ah, AR_EP_RDATA) & 0xffff;
78 	return AH_TRUE;
79 }
80 
81 #ifdef AH_SUPPORT_WRITE_EEPROM
82 /*
83  * Write 16 bits of data to the specified EEPROM offset.
84  */
85 HAL_BOOL
86 ar5210EepromWrite(struct ath_hal *ah, u_int off, uint16_t data)
87 {
88 	return AH_FALSE;
89 }
90 #endif /* AH_SUPPORT_WRITE_EEPROM */
91 
92 /*
93  * Attempt to change the cards operating regulatory domain to the given value
94  */
95 HAL_BOOL
96 ar5210SetRegulatoryDomain(struct ath_hal *ah,
97 	uint16_t regDomain, HAL_STATUS *status)
98 {
99 	HAL_STATUS ecode;
100 
101 	if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
102 		ecode = HAL_EINVAL;
103 		goto bad;
104 	}
105 	/*
106 	 * Check if EEPROM is configured to allow this; must
107 	 * be a proper version and the protection bits must
108 	 * permit re-writing that segment of the EEPROM.
109 	 */
110 	if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
111 		ecode = HAL_EEWRITE;
112 		goto bad;
113 	}
114 	ecode = HAL_EIO;		/* disallow all writes */
115 bad:
116 	if (status)
117 		*status = ecode;
118 	return AH_FALSE;
119 }
120 
121 /*
122  * Return the wireless modes (a,b,g,t) supported by hardware.
123  *
124  * This value is what is actually supported by the hardware
125  * and is unaffected by regulatory/country code settings.
126  *
127  */
128 u_int
129 ar5210GetWirelessModes(struct ath_hal *ah)
130 {
131 	/* XXX could enable turbo mode but can't do all rates */
132 	return HAL_MODE_11A;
133 }
134 
135 /*
136  * Called if RfKill is supported (according to EEPROM).  Set the interrupt and
137  * GPIO values so the ISR and can disable RF on a switch signal
138  */
139 void
140 ar5210EnableRfKill(struct ath_hal *ah)
141 {
142 	uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
143 	int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
144 	int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
145 
146 	/*
147 	 * If radio disable switch connection to GPIO bit 0 is enabled
148 	 * program GPIO interrupt.
149 	 * If rfkill bit on eeprom is 1, setupeeprommap routine has already
150 	 * verified that it is a later version of eeprom, it has a place for
151 	 * rfkill bit and it is set to 1, indicating that GPIO bit 0 hardware
152 	 * connection is present.
153 	 */
154 	ar5210Gpio0SetIntr(ah, select, (ar5210GpioGet(ah, select) == polarity));
155 }
156 
157 /*
158  * Configure GPIO Output lines
159  */
160 HAL_BOOL
161 ar5210GpioCfgOutput(struct ath_hal *ah, uint32_t gpio, HAL_GPIO_MUX_TYPE type)
162 {
163 	HALASSERT(gpio < AR_NUM_GPIO);
164 
165 	OS_REG_WRITE(ah, AR_GPIOCR,
166 		  (OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio))
167 		| AR_GPIOCR_OUT1(gpio));
168 
169 	return AH_TRUE;
170 }
171 
172 /*
173  * Configure GPIO Input lines
174  */
175 HAL_BOOL
176 ar5210GpioCfgInput(struct ath_hal *ah, uint32_t gpio)
177 {
178 	HALASSERT(gpio < AR_NUM_GPIO);
179 
180 	OS_REG_WRITE(ah, AR_GPIOCR,
181 		  (OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio))
182 		| AR_GPIOCR_IN(gpio));
183 
184 	return AH_TRUE;
185 }
186 
187 /*
188  * Once configured for I/O - set output lines
189  */
190 HAL_BOOL
191 ar5210GpioSet(struct ath_hal *ah, uint32_t gpio, uint32_t val)
192 {
193 	uint32_t reg;
194 
195 	HALASSERT(gpio < AR_NUM_GPIO);
196 
197 	reg =  OS_REG_READ(ah, AR_GPIODO);
198 	reg &= ~(1 << gpio);
199 	reg |= (val&1) << gpio;
200 
201 	OS_REG_WRITE(ah, AR_GPIODO, reg);
202 	return AH_TRUE;
203 }
204 
205 /*
206  * Once configured for I/O - get input lines
207  */
208 uint32_t
209 ar5210GpioGet(struct ath_hal *ah, uint32_t gpio)
210 {
211 	if (gpio < AR_NUM_GPIO) {
212 		uint32_t val = OS_REG_READ(ah, AR_GPIODI);
213 		val = ((val & AR_GPIOD_MASK) >> gpio) & 0x1;
214 		return val;
215 	} else  {
216 		return 0xffffffff;
217 	}
218 }
219 
220 /*
221  * Set the GPIO 0 Interrupt
222  */
223 void
224 ar5210Gpio0SetIntr(struct ath_hal *ah, u_int gpio, uint32_t ilevel)
225 {
226 	uint32_t val = OS_REG_READ(ah, AR_GPIOCR);
227 
228 	/* Clear the bits that we will modify. */
229 	val &= ~(AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_SELH | AR_GPIOCR_INT_ENA |
230 			AR_GPIOCR_ALL(gpio));
231 
232 	val |= AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_ENA;
233 	if (ilevel)
234 		val |= AR_GPIOCR_INT_SELH;
235 
236 	/* Don't need to change anything for low level interrupt. */
237 	OS_REG_WRITE(ah, AR_GPIOCR, val);
238 
239 	/* Change the interrupt mask. */
240 	ar5210SetInterrupts(ah, AH5210(ah)->ah_maskReg | HAL_INT_GPIO);
241 }
242 
243 /*
244  * Change the LED blinking pattern to correspond to the connectivity
245  */
246 void
247 ar5210SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
248 {
249 	uint32_t val;
250 
251 	val = OS_REG_READ(ah, AR_PCICFG);
252 	switch (state) {
253 	case HAL_LED_INIT:
254 		val &= ~(AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT);
255 		break;
256 	case HAL_LED_RUN:
257 		/* normal blink when connected */
258 		val &= ~AR_PCICFG_LED_PEND;
259 		val |= AR_PCICFG_LED_ACT;
260 		break;
261 	default:
262 		val |= AR_PCICFG_LED_PEND;
263 		val &= ~AR_PCICFG_LED_ACT;
264 		break;
265 	}
266 	OS_REG_WRITE(ah, AR_PCICFG, val);
267 }
268 
269 /*
270  * Return 1 or 2 for the corresponding antenna that is in use
271  */
272 u_int
273 ar5210GetDefAntenna(struct ath_hal *ah)
274 {
275 	uint32_t val = OS_REG_READ(ah, AR_STA_ID1);
276 	return (val & AR_STA_ID1_DEFAULT_ANTENNA ?  2 : 1);
277 }
278 
279 void
280 ar5210SetDefAntenna(struct ath_hal *ah, u_int antenna)
281 {
282 	uint32_t val = OS_REG_READ(ah, AR_STA_ID1);
283 
284 	if (antenna != (val & AR_STA_ID1_DEFAULT_ANTENNA ?  2 : 1)) {
285 		/*
286 		 * Antenna change requested, force a toggle of the default.
287 		 */
288 		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_DEFAULT_ANTENNA);
289 	}
290 }
291 
292 HAL_ANT_SETTING
293 ar5210GetAntennaSwitch(struct ath_hal *ah)
294 {
295 	return HAL_ANT_VARIABLE;
296 }
297 
298 HAL_BOOL
299 ar5210SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings)
300 {
301 	/* XXX not sure how to fix antenna */
302 	return (settings == HAL_ANT_VARIABLE);
303 }
304 
305 /*
306  * Change association related fields programmed into the hardware.
307  * Writing a valid BSSID to the hardware effectively enables the hardware
308  * to synchronize its TSF to the correct beacons and receive frames coming
309  * from that BSSID. It is called by the SME JOIN operation.
310  */
311 void
312 ar5210WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
313 {
314 	struct ath_hal_5210 *ahp = AH5210(ah);
315 
316 	/* XXX save bssid for possible re-use on reset */
317 	OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
318 	ahp->ah_associd = assocId;
319 	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
320 	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
321 				     ((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
322 	if (assocId == 0)
323 		OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL);
324 	else
325 		OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL);
326 }
327 
328 /*
329  * Get the current hardware tsf for stamlme.
330  */
331 uint64_t
332 ar5210GetTsf64(struct ath_hal *ah)
333 {
334 	uint32_t low1, low2, u32;
335 
336 	/* sync multi-word read */
337 	low1 = OS_REG_READ(ah, AR_TSF_L32);
338 	u32 = OS_REG_READ(ah, AR_TSF_U32);
339 	low2 = OS_REG_READ(ah, AR_TSF_L32);
340 	if (low2 < low1) {	/* roll over */
341 		/*
342 		 * If we are not preempted this will work.  If we are
343 		 * then we re-reading AR_TSF_U32 does no good as the
344 		 * low bits will be meaningless.  Likewise reading
345 		 * L32, U32, U32, then comparing the last two reads
346 		 * to check for rollover doesn't help if preempted--so
347 		 * we take this approach as it costs one less PCI
348 		 * read which can be noticeable when doing things
349 		 * like timestamping packets in monitor mode.
350 		 */
351 		u32++;
352 	}
353 	return (((uint64_t) u32) << 32) | ((uint64_t) low2);
354 }
355 
356 /*
357  * Get the current hardware tsf for stamlme.
358  */
359 uint32_t
360 ar5210GetTsf32(struct ath_hal *ah)
361 {
362 	return OS_REG_READ(ah, AR_TSF_L32);
363 }
364 
365 /*
366  * Reset the current hardware tsf for stamlme
367  */
368 void
369 ar5210ResetTsf(struct ath_hal *ah)
370 {
371 	uint32_t val = OS_REG_READ(ah, AR_BEACON);
372 
373 	OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
374 }
375 
376 /*
377  * Grab a semi-random value from hardware registers - may not
378  * change often
379  */
380 uint32_t
381 ar5210GetRandomSeed(struct ath_hal *ah)
382 {
383 	uint32_t nf;
384 
385 	nf = (OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) >> 19) & 0x1ff;
386 	if (nf & 0x100)
387 		nf = 0 - ((nf ^ 0x1ff) + 1);
388 	return (OS_REG_READ(ah, AR_TSF_U32) ^
389 		OS_REG_READ(ah, AR_TSF_L32) ^ nf);
390 }
391 
392 /*
393  * Detect if our card is present
394  */
395 HAL_BOOL
396 ar5210DetectCardPresent(struct ath_hal *ah)
397 {
398 	/*
399 	 * Read the Silicon Revision register and compare that
400 	 * to what we read at attach time.  If the same, we say
401 	 * a card/device is present.
402 	 */
403 	return (AH_PRIVATE(ah)->ah_macRev == (OS_REG_READ(ah, AR_SREV) & 0xff));
404 }
405 
406 /*
407  * Update MIB Counters
408  */
409 void
410 ar5210UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS *stats)
411 {
412 	stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
413 	stats->rts_bad	  += OS_REG_READ(ah, AR_RTS_FAIL);
414 	stats->fcs_bad	  += OS_REG_READ(ah, AR_FCS_FAIL);
415 	stats->rts_good	  += OS_REG_READ(ah, AR_RTS_OK);
416 	stats->beacons	  += OS_REG_READ(ah, AR_BEACON_CNT);
417 }
418 
419 HAL_BOOL
420 ar5210SetSifsTime(struct ath_hal *ah, u_int us)
421 {
422 	struct ath_hal_5210 *ahp = AH5210(ah);
423 
424 	if (us > ath_hal_mac_usec(ah, 0x7ff)) {
425 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
426 		    __func__, us);
427 		ahp->ah_sifstime = (u_int) -1;	/* restore default handling */
428 		return AH_FALSE;
429 	} else {
430 		/* convert to system clocks */
431 		OS_REG_RMW_FIELD(ah, AR_IFS0, AR_IFS0_SIFS,
432 		    ath_hal_mac_clks(ah, us));
433 		ahp->ah_sifstime = us;
434 		return AH_TRUE;
435 	}
436 }
437 
438 u_int
439 ar5210GetSifsTime(struct ath_hal *ah)
440 {
441 	u_int clks = OS_REG_READ(ah, AR_IFS0) & 0x7ff;
442 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
443 }
444 
445 HAL_BOOL
446 ar5210SetSlotTime(struct ath_hal *ah, u_int us)
447 {
448 	struct ath_hal_5210 *ahp = AH5210(ah);
449 
450 	if (us < HAL_SLOT_TIME_9 || us > ath_hal_mac_usec(ah, 0xffff)) {
451 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
452 		    __func__, us);
453 		ahp->ah_slottime = (u_int) -1;	/* restore default handling */
454 		return AH_FALSE;
455 	} else {
456 		/* convert to system clocks */
457 		OS_REG_WRITE(ah, AR_SLOT_TIME, ath_hal_mac_clks(ah, us));
458 		ahp->ah_slottime = us;
459 		return AH_TRUE;
460 	}
461 }
462 
463 u_int
464 ar5210GetSlotTime(struct ath_hal *ah)
465 {
466 	u_int clks = OS_REG_READ(ah, AR_SLOT_TIME) & 0xffff;
467 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
468 }
469 
470 HAL_BOOL
471 ar5210SetAckTimeout(struct ath_hal *ah, u_int us)
472 {
473 	struct ath_hal_5210 *ahp = AH5210(ah);
474 
475 	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
476 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
477 		    __func__, us);
478 		ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
479 		return AH_FALSE;
480 	} else {
481 		/* convert to system clocks */
482 		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
483 			AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
484 		ahp->ah_acktimeout = us;
485 		return AH_TRUE;
486 	}
487 }
488 
489 u_int
490 ar5210GetAckTimeout(struct ath_hal *ah)
491 {
492 	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
493 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
494 }
495 
496 u_int
497 ar5210GetAckCTSRate(struct ath_hal *ah)
498 {
499 	return ((AH5210(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
500 }
501 
502 HAL_BOOL
503 ar5210SetAckCTSRate(struct ath_hal *ah, u_int high)
504 {
505 	struct ath_hal_5210 *ahp = AH5210(ah);
506 
507 	if (high) {
508 		OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
509 		ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
510 	} else {
511 		OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
512 		ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
513 	}
514 	return AH_TRUE;
515 }
516 
517 HAL_BOOL
518 ar5210SetCTSTimeout(struct ath_hal *ah, u_int us)
519 {
520 	struct ath_hal_5210 *ahp = AH5210(ah);
521 
522 	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
523 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
524 		    __func__, us);
525 		ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
526 		return AH_FALSE;
527 	} else {
528 		/* convert to system clocks */
529 		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
530 			AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
531 		ahp->ah_ctstimeout = us;
532 		return AH_TRUE;
533 	}
534 }
535 
536 u_int
537 ar5210GetCTSTimeout(struct ath_hal *ah)
538 {
539 	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
540 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
541 }
542 
543 HAL_BOOL
544 ar5210SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
545 {
546 	/* nothing to do */
547         return AH_TRUE;
548 }
549 
550 void
551 ar5210SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
552 {
553 }
554 
555 HAL_STATUS
556 ar5210SetQuiet(struct ath_hal *ah, uint32_t period, uint32_t duration,
557     uint32_t next_start, HAL_QUIET_FLAG flags)
558 {
559 	return HAL_OK;
560 }
561 
562 /*
563  * Control Adaptive Noise Immunity Parameters
564  */
565 HAL_BOOL
566 ar5210AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param)
567 {
568 	return AH_FALSE;
569 }
570 
571 void
572 ar5210RxMonitor(struct ath_hal *ah, const HAL_NODE_STATS *stats,
573 	const struct ieee80211_channel *chan)
574 {
575 }
576 
577 void
578 ar5210AniPoll(struct ath_hal *ah, const struct ieee80211_channel *chan)
579 {
580 }
581 
582 void
583 ar5210MibEvent(struct ath_hal *ah, const HAL_NODE_STATS *stats)
584 {
585 }
586 
587 HAL_STATUS
588 ar5210GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
589 	uint32_t capability, uint32_t *result)
590 {
591 
592 	switch (type) {
593 	case HAL_CAP_CIPHER:		/* cipher handled in hardware */
594 #if 0
595 		return (capability == HAL_CIPHER_WEP ? HAL_OK : HAL_ENOTSUPP);
596 #else
597 		return HAL_ENOTSUPP;
598 #endif
599 	default:
600 		return ath_hal_getcapability(ah, type, capability, result);
601 	}
602 }
603 
604 HAL_BOOL
605 ar5210SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
606 	uint32_t capability, uint32_t setting, HAL_STATUS *status)
607 {
608 
609 	switch (type) {
610 	case HAL_CAP_DIAG:		/* hardware diagnostic support */
611 		/*
612 		 * NB: could split this up into virtual capabilities,
613 		 *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
614 		 *     seems worth the additional complexity.
615 		 */
616 #ifdef AH_DEBUG
617 		AH_PRIVATE(ah)->ah_diagreg = setting;
618 #else
619 		AH_PRIVATE(ah)->ah_diagreg = setting & 0x6;	/* ACK+CTS */
620 #endif
621 		ar5210UpdateDiagReg(ah, AH_PRIVATE(ah)->ah_diagreg);
622 		return AH_TRUE;
623 	case HAL_CAP_RXORN_FATAL:	/* HAL_INT_RXORN treated as fatal  */
624 		return AH_FALSE;	/* NB: disallow */
625 	default:
626 		return ath_hal_setcapability(ah, type, capability,
627 			setting, status);
628 	}
629 }
630 
631 HAL_BOOL
632 ar5210GetDiagState(struct ath_hal *ah, int request,
633 	const void *args, uint32_t argsize,
634 	void **result, uint32_t *resultsize)
635 {
636 #ifdef AH_PRIVATE_DIAG
637 	uint32_t pcicfg;
638 	HAL_BOOL ok;
639 
640 	switch (request) {
641 	case HAL_DIAG_EEPROM:
642 		/* XXX */
643 		break;
644 	case HAL_DIAG_EEREAD:
645 		if (argsize != sizeof(uint16_t))
646 			return AH_FALSE;
647 		pcicfg = OS_REG_READ(ah, AR_PCICFG);
648 		OS_REG_WRITE(ah, AR_PCICFG, pcicfg | AR_PCICFG_EEPROMSEL);
649 		ok = ath_hal_eepromRead(ah, *(const uint16_t *)args, *result);
650 		OS_REG_WRITE(ah, AR_PCICFG, pcicfg);
651 		if (ok)
652 			*resultsize = sizeof(uint16_t);
653 		return ok;
654 	}
655 #endif
656 	return ath_hal_getdiagstate(ah, request,
657 		args, argsize, result, resultsize);
658 }
659 
660 /*
661  * Return what percentage of the extension channel is busy.
662  * This is always disabled for AR5210 series NICs.
663  */
664 uint32_t
665 ar5210Get11nExtBusy(struct ath_hal *ah)
666 {
667 
668 	return (0);
669 }
670 
671 /*
672  * There's no channel survey support for the AR5210.
673  */
674 HAL_BOOL
675 ar5210GetMibCycleCounts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hsample)
676 {
677 
678 	return (AH_FALSE);
679 }
680 
681 void
682 ar5210SetChainMasks(struct ath_hal *ah, uint32_t txchainmask,
683     uint32_t rxchainmask)
684 {
685 }
686 
687 void
688 ar5210EnableDfs(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
689 {
690 }
691 
692 void
693 ar5210GetDfsThresh(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
694 {
695 }
696 
697 /*
698  * Update the diagnostic register.
699  *
700  * This merges in the diagnostic register setting with the default
701  * value, which may or may not involve disabling hardware encryption.
702  */
703 void
704 ar5210UpdateDiagReg(struct ath_hal *ah, uint32_t val)
705 {
706 
707 	/* Disable all hardware encryption */
708 	val |= AR_DIAG_SW_DIS_CRYPTO;
709 	OS_REG_WRITE(ah, AR_DIAG_SW, val);
710 }
711