xref: /freebsd/sys/dev/ath/ath_hal/ah_regdomain.c (revision 7e474656a64be272ad26be7548187f62f4ad6876)
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2005-2006 Atheros Communications, Inc.
4  * All rights reserved.
5  *
6  * Permission to use, copy, modify, and/or distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  * $FreeBSD$
19  */
20 #include "opt_ah.h"
21 
22 #include "ah.h"
23 
24 #include <net80211/_ieee80211.h>
25 #include <net80211/ieee80211_regdomain.h>
26 
27 #include "ah_internal.h"
28 #include "ah_eeprom.h"
29 #include "ah_devid.h"
30 
31 /*
32  * XXX this code needs a audit+review
33  */
34 
35 /* used throughout this file... */
36 #define	N(a)	(sizeof (a) / sizeof (a[0]))
37 
38 #define HAL_MODE_11A_TURBO	HAL_MODE_108A
39 #define HAL_MODE_11G_TURBO	HAL_MODE_108G
40 
41 /*
42  * BMLEN defines the size of the bitmask used to hold frequency
43  * band specifications.  Note this must agree with the BM macro
44  * definition that's used to setup initializers.  See also further
45  * comments below.
46  */
47 #define BMLEN 2		/* 2 x 64 bits in each channel bitmask */
48 typedef uint64_t chanbmask_t[BMLEN];
49 
50 #define	W0(_a) \
51 	(((_a) >= 0 && (_a) < 64 ? (((uint64_t) 1)<<(_a)) : (uint64_t) 0))
52 #define	W1(_a) \
53 	(((_a) > 63 && (_a) < 128 ? (((uint64_t) 1)<<((_a)-64)) : (uint64_t) 0))
54 #define BM1(_fa)	{ W0(_fa), W1(_fa) }
55 #define BM2(_fa, _fb)	{ W0(_fa) | W0(_fb), W1(_fa) | W1(_fb) }
56 #define BM3(_fa, _fb, _fc) \
57 	{ W0(_fa) | W0(_fb) | W0(_fc), W1(_fa) | W1(_fb) | W1(_fc) }
58 #define BM4(_fa, _fb, _fc, _fd)						\
59 	{ W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd),			\
60 	  W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) }
61 #define BM5(_fa, _fb, _fc, _fd, _fe)					\
62 	{ W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd) | W0(_fe),		\
63 	  W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) | W1(_fe) }
64 #define BM6(_fa, _fb, _fc, _fd, _fe, _ff)				\
65 	{ W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd) | W0(_fe) | W0(_ff),	\
66 	  W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) | W1(_fe) | W1(_ff) }
67 #define BM7(_fa, _fb, _fc, _fd, _fe, _ff, _fg)	\
68 	{ W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd) | W0(_fe) | W0(_ff) |	\
69 	  W0(_fg),\
70 	  W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) | W1(_fe) | W1(_ff) |	\
71 	  W1(_fg) }
72 #define BM8(_fa, _fb, _fc, _fd, _fe, _ff, _fg, _fh)	\
73 	{ W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd) | W0(_fe) | W0(_ff) |	\
74 	  W0(_fg) | W0(_fh) ,	\
75 	  W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) | W1(_fe) | W1(_ff) |	\
76 	  W1(_fg) | W1(_fh) }
77 
78 /*
79  * Mask to check whether a domain is a multidomain or a single domain
80  */
81 #define MULTI_DOMAIN_MASK 0xFF00
82 
83 /*
84  * Enumerated Regulatory Domain Information 8 bit values indicate that
85  * the regdomain is really a pair of unitary regdomains.  12 bit values
86  * are the real unitary regdomains and are the only ones which have the
87  * frequency bitmasks and flags set.
88  */
89 enum {
90 	/*
91 	 * The following regulatory domain definitions are
92 	 * found in the EEPROM. Each regulatory domain
93 	 * can operate in either a 5GHz or 2.4GHz wireless mode or
94 	 * both 5GHz and 2.4GHz wireless modes.
95 	 * In general, the value holds no special
96 	 * meaning and is used to decode into either specific
97 	 * 2.4GHz or 5GHz wireless mode for that particular
98 	 * regulatory domain.
99 	 */
100 	NO_ENUMRD	= 0x00,
101 	NULL1_WORLD	= 0x03,		/* For 11b-only countries (no 11a allowed) */
102 	NULL1_ETSIB	= 0x07,		/* Israel */
103 	NULL1_ETSIC	= 0x08,
104 	FCC1_FCCA	= 0x10,		/* USA */
105 	FCC1_WORLD	= 0x11,		/* Hong Kong */
106 	FCC4_FCCA	= 0x12,		/* USA - Public Safety */
107 	FCC5_FCCB	= 0x13,		/* USA w/ 1/2 and 1/4 width channels */
108 
109 	FCC2_FCCA	= 0x20,		/* Canada */
110 	FCC2_WORLD	= 0x21,		/* Australia & HK */
111 	FCC2_ETSIC	= 0x22,
112 	FRANCE_RES	= 0x31,		/* Legacy France for OEM */
113 	FCC3_FCCA	= 0x3A,		/* USA & Canada w/5470 band, 11h, DFS enabled */
114 	FCC3_WORLD	= 0x3B,		/* USA & Canada w/5470 band, 11h, DFS enabled */
115 
116 	ETSI1_WORLD	= 0x37,
117 	ETSI3_ETSIA	= 0x32,		/* France (optional) */
118 	ETSI2_WORLD	= 0x35,		/* Hungary & others */
119 	ETSI3_WORLD	= 0x36,		/* France & others */
120 	ETSI4_WORLD	= 0x30,
121 	ETSI4_ETSIC	= 0x38,
122 	ETSI5_WORLD	= 0x39,
123 	ETSI6_WORLD	= 0x34,		/* Bulgaria */
124 	ETSI_RESERVED	= 0x33,		/* Reserved (Do not used) */
125 
126 	MKK1_MKKA	= 0x40,		/* Japan (JP1) */
127 	MKK1_MKKB	= 0x41,		/* Japan (JP0) */
128 	APL4_WORLD	= 0x42,		/* Singapore */
129 	MKK2_MKKA	= 0x43,		/* Japan with 4.9G channels */
130 	APL_RESERVED	= 0x44,		/* Reserved (Do not used)  */
131 	APL2_WORLD	= 0x45,		/* Korea */
132 	APL2_APLC	= 0x46,
133 	APL3_WORLD	= 0x47,
134 	MKK1_FCCA	= 0x48,		/* Japan (JP1-1) */
135 	APL2_APLD	= 0x49,		/* Korea with 2.3G channels */
136 	MKK1_MKKA1	= 0x4A,		/* Japan (JE1) */
137 	MKK1_MKKA2	= 0x4B,		/* Japan (JE2) */
138 	MKK1_MKKC	= 0x4C,		/* Japan (MKK1_MKKA,except Ch14) */
139 
140 	APL3_FCCA       = 0x50,
141 	APL1_WORLD	= 0x52,		/* Latin America */
142 	APL1_FCCA	= 0x53,
143 	APL1_APLA	= 0x54,
144 	APL1_ETSIC	= 0x55,
145 	APL2_ETSIC	= 0x56,		/* Venezuela */
146 	APL5_WORLD	= 0x58,		/* Chile */
147 	APL6_WORLD	= 0x5B,		/* Singapore */
148 	APL7_FCCA   	= 0x5C,     	/* Taiwan 5.47 Band */
149 	APL8_WORLD  	= 0x5D,     	/* Malaysia 5GHz */
150 	APL9_WORLD  	= 0x5E,     	/* Korea 5GHz */
151 
152 	/*
153 	 * World mode SKUs
154 	 */
155 	WOR0_WORLD	= 0x60,		/* World0 (WO0 SKU) */
156 	WOR1_WORLD	= 0x61,		/* World1 (WO1 SKU) */
157 	WOR2_WORLD	= 0x62,		/* World2 (WO2 SKU) */
158 	WOR3_WORLD	= 0x63,		/* World3 (WO3 SKU) */
159 	WOR4_WORLD	= 0x64,		/* World4 (WO4 SKU) */
160 	WOR5_ETSIC	= 0x65,		/* World5 (WO5 SKU) */
161 
162 	WOR01_WORLD	= 0x66,		/* World0-1 (WW0-1 SKU) */
163 	WOR02_WORLD	= 0x67,		/* World0-2 (WW0-2 SKU) */
164 	EU1_WORLD	= 0x68,		/* Same as World0-2 (WW0-2 SKU), except active scan ch1-13. No ch14 */
165 
166 	WOR9_WORLD	= 0x69,		/* World9 (WO9 SKU) */
167 	WORA_WORLD	= 0x6A,		/* WorldA (WOA SKU) */
168 
169 	MKK3_MKKB	= 0x80,		/* Japan UNI-1 even + MKKB */
170 	MKK3_MKKA2	= 0x81,		/* Japan UNI-1 even + MKKA2 */
171 	MKK3_MKKC	= 0x82,		/* Japan UNI-1 even + MKKC */
172 
173 	MKK4_MKKB	= 0x83,		/* Japan UNI-1 even + UNI-2 + MKKB */
174 	MKK4_MKKA2	= 0x84,		/* Japan UNI-1 even + UNI-2 + MKKA2 */
175 	MKK4_MKKC	= 0x85,		/* Japan UNI-1 even + UNI-2 + MKKC */
176 
177 	MKK5_MKKB	= 0x86,		/* Japan UNI-1 even + UNI-2 + mid-band + MKKB */
178 	MKK5_MKKA2	= 0x87,		/* Japan UNI-1 even + UNI-2 + mid-band + MKKA2 */
179 	MKK5_MKKC	= 0x88,		/* Japan UNI-1 even + UNI-2 + mid-band + MKKC */
180 
181 	MKK6_MKKB	= 0x89,		/* Japan UNI-1 even + UNI-1 odd MKKB */
182 	MKK6_MKKA2	= 0x8A,		/* Japan UNI-1 even + UNI-1 odd + MKKA2 */
183 	MKK6_MKKC	= 0x8B,		/* Japan UNI-1 even + UNI-1 odd + MKKC */
184 
185 	MKK7_MKKB	= 0x8C,		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + MKKB */
186 	MKK7_MKKA2	= 0x8D,		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + MKKA2 */
187 	MKK7_MKKC	= 0x8E,		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + MKKC */
188 
189 	MKK8_MKKB	= 0x8F,		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + mid-band + MKKB */
190 	MKK8_MKKA2	= 0x90,		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + mid-band + MKKA2 */
191 	MKK8_MKKC	= 0x91,		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + mid-band + MKKC */
192 
193 	/* Following definitions are used only by s/w to map old
194  	 * Japan SKUs.
195 	 */
196 	MKK3_MKKA       = 0xF0,         /* Japan UNI-1 even + MKKA */
197 	MKK3_MKKA1      = 0xF1,         /* Japan UNI-1 even + MKKA1 */
198 	MKK3_FCCA       = 0xF2,         /* Japan UNI-1 even + FCCA */
199 	MKK4_MKKA       = 0xF3,         /* Japan UNI-1 even + UNI-2 + MKKA */
200 	MKK4_MKKA1      = 0xF4,         /* Japan UNI-1 even + UNI-2 + MKKA1 */
201 	MKK4_FCCA       = 0xF5,         /* Japan UNI-1 even + UNI-2 + FCCA */
202 	MKK9_MKKA       = 0xF6,         /* Japan UNI-1 even + 4.9GHz */
203 	MKK10_MKKA      = 0xF7,         /* Japan UNI-1 even + UNI-2 + 4.9GHz */
204 
205 	/*
206 	 * Regulator domains ending in a number (e.g. APL1,
207 	 * MK1, ETSI4, etc) apply to 5GHz channel and power
208 	 * information.  Regulator domains ending in a letter
209 	 * (e.g. APLA, FCCA, etc) apply to 2.4GHz channel and
210 	 * power information.
211 	 */
212 	APL1		= 0x0150,	/* LAT & Asia */
213 	APL2		= 0x0250,	/* LAT & Asia */
214 	APL3		= 0x0350,	/* Taiwan */
215 	APL4		= 0x0450,	/* Jordan */
216 	APL5		= 0x0550,	/* Chile */
217 	APL6		= 0x0650,	/* Singapore */
218 	APL8		= 0x0850,	/* Malaysia */
219 	APL9		= 0x0950,	/* Korea (South) ROC 3 */
220 
221 	ETSI1		= 0x0130,	/* Europe & others */
222 	ETSI2		= 0x0230,	/* Europe & others */
223 	ETSI3		= 0x0330,	/* Europe & others */
224 	ETSI4		= 0x0430,	/* Europe & others */
225 	ETSI5		= 0x0530,	/* Europe & others */
226 	ETSI6		= 0x0630,	/* Europe & others */
227 	ETSIA		= 0x0A30,	/* France */
228 	ETSIB		= 0x0B30,	/* Israel */
229 	ETSIC		= 0x0C30,	/* Latin America */
230 
231 	FCC1		= 0x0110,	/* US & others */
232 	FCC2		= 0x0120,	/* Canada, Australia & New Zealand */
233 	FCC3		= 0x0160,	/* US w/new middle band & DFS */
234 	FCC4          	= 0x0165,     	/* US Public Safety */
235 	FCC5          	= 0x0166,     	/* US w/ 1/2 and 1/4 width channels */
236 	FCCA		= 0x0A10,
237 	FCCB		= 0x0A11,	/* US w/ 1/2 and 1/4 width channels */
238 
239 	APLD		= 0x0D50,	/* South Korea */
240 
241 	MKK1		= 0x0140,	/* Japan (UNI-1 odd)*/
242 	MKK2		= 0x0240,	/* Japan (4.9 GHz + UNI-1 odd) */
243 	MKK3		= 0x0340,	/* Japan (UNI-1 even) */
244 	MKK4		= 0x0440,	/* Japan (UNI-1 even + UNI-2) */
245 	MKK5		= 0x0540,	/* Japan (UNI-1 even + UNI-2 + mid-band) */
246 	MKK6		= 0x0640,	/* Japan (UNI-1 odd + UNI-1 even) */
247 	MKK7		= 0x0740,	/* Japan (UNI-1 odd + UNI-1 even + UNI-2 */
248 	MKK8		= 0x0840,	/* Japan (UNI-1 odd + UNI-1 even + UNI-2 + mid-band) */
249 	MKK9            = 0x0940,       /* Japan (UNI-1 even + 4.9 GHZ) */
250 	MKK10           = 0x0B40,       /* Japan (UNI-1 even + UNI-2 + 4.9 GHZ) */
251 	MKKA		= 0x0A40,	/* Japan */
252 	MKKC		= 0x0A50,
253 
254 	NULL1		= 0x0198,
255 	WORLD		= 0x0199,
256 	DEBUG_REG_DMN	= 0x01ff,
257 };
258 
259 #define	WORLD_SKU_MASK		0x00F0
260 #define	WORLD_SKU_PREFIX	0x0060
261 
262 enum {					/* conformance test limits */
263 	FCC	= 0x10,
264 	MKK	= 0x40,
265 	ETSI	= 0x30,
266 };
267 
268 /*
269  * The following are flags for different requirements per reg domain.
270  * These requirements are either inhereted from the reg domain pair or
271  * from the unitary reg domain if the reg domain pair flags value is 0
272  */
273 enum {
274 	NO_REQ			= 0x00000000,	/* NB: must be zero */
275 	DISALLOW_ADHOC_11A	= 0x00000001,	/* adhoc not allowed in 5GHz */
276 	DISALLOW_ADHOC_11A_TURB	= 0x00000002,	/* not allowed w/ 5GHz turbo */
277 	NEED_NFC		= 0x00000004,	/* need noise floor check */
278 	ADHOC_PER_11D		= 0x00000008,	/* must receive 11d beacon */
279 	LIMIT_FRAME_4MS 	= 0x00000020,	/* 4msec tx burst limit */
280 	NO_HOSTAP		= 0x00000040,	/* No HOSTAP mode opereation */
281 };
282 
283 /*
284  * The following describe the bit masks for different passive scan
285  * capability/requirements per regdomain.
286  */
287 #define	NO_PSCAN	0x0ULL			/* NB: must be zero */
288 #define	PSCAN_FCC	0x0000000000000001ULL
289 #define	PSCAN_FCC_T	0x0000000000000002ULL
290 #define	PSCAN_ETSI	0x0000000000000004ULL
291 #define	PSCAN_MKK1	0x0000000000000008ULL
292 #define	PSCAN_MKK2	0x0000000000000010ULL
293 #define	PSCAN_MKKA	0x0000000000000020ULL
294 #define	PSCAN_MKKA_G	0x0000000000000040ULL
295 #define	PSCAN_ETSIA	0x0000000000000080ULL
296 #define	PSCAN_ETSIB	0x0000000000000100ULL
297 #define	PSCAN_ETSIC	0x0000000000000200ULL
298 #define	PSCAN_WWR	0x0000000000000400ULL
299 #define	PSCAN_MKKA1	0x0000000000000800ULL
300 #define	PSCAN_MKKA1_G	0x0000000000001000ULL
301 #define	PSCAN_MKKA2	0x0000000000002000ULL
302 #define	PSCAN_MKKA2_G	0x0000000000004000ULL
303 #define	PSCAN_MKK3	0x0000000000008000ULL
304 #define	PSCAN_DEFER	0x7FFFFFFFFFFFFFFFULL
305 #define	IS_ECM_CHAN	0x8000000000000000ULL
306 
307 /*
308  * THE following table is the mapping of regdomain pairs specified by
309  * an 8 bit regdomain value to the individual unitary reg domains
310  */
311 typedef struct regDomainPair {
312 	HAL_REG_DOMAIN regDmnEnum;	/* 16 bit reg domain pair */
313 	HAL_REG_DOMAIN regDmn5GHz;	/* 5GHz reg domain */
314 	HAL_REG_DOMAIN regDmn2GHz;	/* 2GHz reg domain */
315 	uint32_t flags5GHz;		/* Requirements flags (AdHoc
316 					   disallow, noise floor cal needed,
317 					   etc) */
318 	uint32_t flags2GHz;		/* Requirements flags (AdHoc
319 					   disallow, noise floor cal needed,
320 					   etc) */
321 	uint64_t pscanMask;		/* Passive Scan flags which
322 					   can override unitary domain
323 					   passive scan flags.  This
324 					   value is used as a mask on
325 					   the unitary flags*/
326 	uint16_t singleCC;		/* Country code of single country if
327 					   a one-on-one mapping exists */
328 }  REG_DMN_PAIR_MAPPING;
329 
330 static REG_DMN_PAIR_MAPPING regDomainPairs[] = {
331 	{NO_ENUMRD,	DEBUG_REG_DMN,	DEBUG_REG_DMN, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
332 	{NULL1_WORLD,	NULL1,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
333 	{NULL1_ETSIB,	NULL1,		ETSIB,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
334 	{NULL1_ETSIC,	NULL1,		ETSIC,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
335 
336 	{FCC2_FCCA,	FCC2,		FCCA,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
337 	{FCC2_WORLD,	FCC2,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
338 	{FCC2_ETSIC,	FCC2,		ETSIC,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
339 	{FCC3_FCCA,	FCC3,		FCCA,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
340 	{FCC3_WORLD,	FCC3,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
341 	{FCC4_FCCA,	FCC4,		FCCA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
342 	{FCC5_FCCB,	FCC5,		FCCB,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
343 
344 	{ETSI1_WORLD,	ETSI1,		WORLD,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
345 	{ETSI2_WORLD,	ETSI2,		WORLD,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
346 	{ETSI3_WORLD,	ETSI3,		WORLD,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
347 	{ETSI4_WORLD,	ETSI4,		WORLD,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
348 	{ETSI5_WORLD,	ETSI5,		WORLD,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
349 	{ETSI6_WORLD,	ETSI6,		WORLD,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
350 
351 	{ETSI3_ETSIA,	ETSI3,		WORLD,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
352 	{FRANCE_RES,	ETSI3,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
353 
354 	{FCC1_WORLD,	FCC1,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
355 	{FCC1_FCCA,	FCC1,		FCCA,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
356 	{APL1_WORLD,	APL1,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
357 	{APL2_WORLD,	APL2,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
358 	{APL3_WORLD,	APL3,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
359 	{APL4_WORLD,	APL4,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
360 	{APL5_WORLD,	APL5,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
361 	{APL6_WORLD,	APL6,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
362 	{APL8_WORLD,	APL8,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
363 	{APL9_WORLD,	APL9,		WORLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
364 
365 	{APL3_FCCA,	APL3,		FCCA,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
366 	{APL1_ETSIC,	APL1,		ETSIC,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
367 	{APL2_ETSIC,	APL2,		ETSIC,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
368 	{APL2_APLD,	APL2,		APLD,		NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
369 
370 	{MKK1_MKKA,	MKK1,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA, CTRY_JAPAN },
371 	{MKK1_MKKB,	MKK1,		MKKA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN1 },
372 	{MKK1_FCCA,	MKK1,		FCCA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1, CTRY_JAPAN2 },
373 	{MKK1_MKKA1,	MKK1,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA1 | PSCAN_MKKA1_G, CTRY_JAPAN4 },
374 	{MKK1_MKKA2,	MKK1,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN5 },
375 	{MKK1_MKKC,	MKK1,		MKKC,		DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1, CTRY_JAPAN6 },
376 
377 	/* MKK2 */
378 	{MKK2_MKKA,	MKK2,		MKKA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK2 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN3 },
379 
380 	/* MKK3 */
381 	{MKK3_MKKA,	MKK3,	MKKA,	DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC , PSCAN_MKKA, CTRY_DEFAULT },
382 	{MKK3_MKKB,	MKK3,		MKKA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN7 },
383 	{MKK3_MKKA1,	MKK3,	MKKA,	DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKKA1 | PSCAN_MKKA1_G, CTRY_DEFAULT },
384 	{MKK3_MKKA2,MKK3,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN8 },
385 	{MKK3_MKKC,	MKK3,		MKKC,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, NO_PSCAN, CTRY_JAPAN9 },
386 	{MKK3_FCCA,	MKK3,	FCCA,	DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, NO_PSCAN, CTRY_DEFAULT },
387 
388 	/* MKK4 */
389 	{MKK4_MKKB,	MKK4,		MKKA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN10 },
390 	{MKK4_MKKA1,	MKK4,	MKKA,	DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA1 | PSCAN_MKKA1_G, CTRY_DEFAULT },
391 	{MKK4_MKKA2,	MKK4,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 |PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN11 },
392 	{MKK4_MKKC,	MKK4,		MKKC,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3, CTRY_JAPAN12 },
393 	{MKK4_FCCA,	MKK4,	FCCA,	DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3, CTRY_DEFAULT },
394 
395 	/* MKK5 */
396 	{MKK5_MKKB,	MKK5,		MKKA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN13 },
397 	{MKK5_MKKA2,MKK5,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN14 },
398 	{MKK5_MKKC,	MKK5,		MKKC,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3, CTRY_JAPAN15 },
399 
400 	/* MKK6 */
401 	{MKK6_MKKB,	MKK6,		MKKA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN16 },
402 	{MKK6_MKKA2,	MKK6,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN17 },
403 	{MKK6_MKKC,	MKK6,		MKKC,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1, CTRY_JAPAN18 },
404 
405 	/* MKK7 */
406 	{MKK7_MKKB,	MKK7,		MKKA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN19 },
407 	{MKK7_MKKA2, MKK7,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN20 },
408 	{MKK7_MKKC,	MKK7,		MKKC,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3, CTRY_JAPAN21 },
409 
410 	/* MKK8 */
411 	{MKK8_MKKB,	MKK8,		MKKA,		DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN22 },
412 	{MKK8_MKKA2,MKK8,		MKKA,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN23 },
413 	{MKK8_MKKC,	MKK8,		MKKC,		DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 , CTRY_JAPAN24 },
414 
415 	{MKK9_MKKA,	MKK9,	MKKA,	DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_DEFAULT },
416 	{MKK10_MKKA,	MKK10,	MKKA,	DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_DEFAULT },
417 
418 		/* These are super domains */
419 	{WOR0_WORLD,	WOR0_WORLD,	WOR0_WORLD,	NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
420 	{WOR1_WORLD,	WOR1_WORLD,	WOR1_WORLD,	DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
421 	{WOR2_WORLD,	WOR2_WORLD,	WOR2_WORLD,	DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
422 	{WOR3_WORLD,	WOR3_WORLD,	WOR3_WORLD,	NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
423 	{WOR4_WORLD,	WOR4_WORLD,	WOR4_WORLD,	DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
424 	{WOR5_ETSIC,	WOR5_ETSIC,	WOR5_ETSIC,	DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
425 	{WOR01_WORLD,	WOR01_WORLD,	WOR01_WORLD,	NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
426 	{WOR02_WORLD,	WOR02_WORLD,	WOR02_WORLD,	NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
427 	{EU1_WORLD,	EU1_WORLD,	EU1_WORLD,	NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
428 	{WOR9_WORLD,	WOR9_WORLD,	WOR9_WORLD,	DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
429 	{WORA_WORLD,	WORA_WORLD,	WORA_WORLD,	DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
430 };
431 
432 /*
433  * The following tables are the master list for all different freqeuncy
434  * bands with the complete matrix of all possible flags and settings
435  * for each band if it is used in ANY reg domain.
436  */
437 
438 #define DEF_REGDMN		FCC1_FCCA
439 #define	COUNTRY_ERD_FLAG        0x8000
440 #define WORLDWIDE_ROAMING_FLAG  0x4000
441 
442 typedef struct {
443 	HAL_CTRY_CODE		countryCode;
444 	HAL_REG_DOMAIN		regDmnEnum;
445 } COUNTRY_CODE_TO_ENUM_RD;
446 
447 static COUNTRY_CODE_TO_ENUM_RD allCountries[] = {
448 	{ CTRY_DEBUG,       NO_ENUMRD },
449 	{ CTRY_DEFAULT,     DEF_REGDMN },
450 	{ CTRY_ALBANIA,     NULL1_WORLD },
451 	{ CTRY_ALGERIA,     NULL1_WORLD },
452 	{ CTRY_ARGENTINA,   APL3_WORLD },
453 	{ CTRY_ARMENIA,     ETSI4_WORLD },
454 	{ CTRY_AUSTRALIA,   FCC2_WORLD },
455 	{ CTRY_AUSTRIA,     ETSI1_WORLD },
456 	{ CTRY_AZERBAIJAN,  ETSI4_WORLD },
457 	{ CTRY_BAHRAIN,     APL6_WORLD },
458 	{ CTRY_BELARUS,     NULL1_WORLD },
459 	{ CTRY_BELGIUM,     ETSI1_WORLD },
460 	{ CTRY_BELIZE,      APL1_ETSIC },
461 	{ CTRY_BOLIVIA,     APL1_ETSIC },
462 	{ CTRY_BRAZIL,      FCC3_WORLD },
463 	{ CTRY_BRUNEI_DARUSSALAM,APL1_WORLD },
464 	{ CTRY_BULGARIA,    ETSI6_WORLD },
465 	{ CTRY_CANADA,      FCC2_FCCA },
466 	{ CTRY_CHILE,       APL6_WORLD },
467 	{ CTRY_CHINA,       APL1_WORLD },
468 	{ CTRY_COLOMBIA,    FCC1_FCCA },
469 	{ CTRY_COSTA_RICA,  NULL1_WORLD },
470 	{ CTRY_CROATIA,     ETSI3_WORLD },
471 	{ CTRY_CYPRUS,      ETSI1_WORLD },
472 	{ CTRY_CZECH,       ETSI1_WORLD },
473 	{ CTRY_DENMARK,     ETSI1_WORLD },
474 	{ CTRY_DOMINICAN_REPUBLIC,FCC1_FCCA },
475 	{ CTRY_ECUADOR,     NULL1_WORLD },
476 	{ CTRY_EGYPT,       ETSI3_WORLD },
477 	{ CTRY_EL_SALVADOR, NULL1_WORLD },
478 	{ CTRY_ESTONIA,     ETSI1_WORLD },
479 	{ CTRY_FINLAND,     ETSI1_WORLD },
480 	{ CTRY_FRANCE,      ETSI1_WORLD },
481 	{ CTRY_FRANCE2,     ETSI3_WORLD },
482 	{ CTRY_GEORGIA,     ETSI4_WORLD },
483 	{ CTRY_GERMANY,     ETSI1_WORLD },
484 	{ CTRY_GREECE,      ETSI1_WORLD },
485 	{ CTRY_GUATEMALA,   FCC1_FCCA },
486 	{ CTRY_HONDURAS,    NULL1_WORLD },
487 	{ CTRY_HONG_KONG,   FCC2_WORLD },
488 	{ CTRY_HUNGARY,     ETSI1_WORLD },
489 	{ CTRY_ICELAND,     ETSI1_WORLD },
490 	{ CTRY_INDIA,       APL6_WORLD },
491 	{ CTRY_INDONESIA,   APL1_WORLD },
492 	{ CTRY_IRAN,        APL1_WORLD },
493 	{ CTRY_IRELAND,     ETSI1_WORLD },
494 	{ CTRY_ISRAEL,      NULL1_WORLD },
495 	{ CTRY_ITALY,       ETSI1_WORLD },
496 	{ CTRY_JAPAN,       MKK1_MKKA },
497 	{ CTRY_JAPAN1,      MKK1_MKKB },
498 	{ CTRY_JAPAN2,      MKK1_FCCA },
499 	{ CTRY_JAPAN3,      MKK2_MKKA },
500 	{ CTRY_JAPAN4,      MKK1_MKKA1 },
501 	{ CTRY_JAPAN5,      MKK1_MKKA2 },
502 	{ CTRY_JAPAN6,      MKK1_MKKC },
503 
504 	{ CTRY_JAPAN7,      MKK3_MKKB },
505 	{ CTRY_JAPAN8,      MKK3_MKKA2 },
506 	{ CTRY_JAPAN9,      MKK3_MKKC },
507 
508 	{ CTRY_JAPAN10,     MKK4_MKKB },
509 	{ CTRY_JAPAN11,     MKK4_MKKA2 },
510 	{ CTRY_JAPAN12,     MKK4_MKKC },
511 
512 	{ CTRY_JAPAN13,     MKK5_MKKB },
513 	{ CTRY_JAPAN14,     MKK5_MKKA2 },
514 	{ CTRY_JAPAN15,     MKK5_MKKC },
515 
516 	{ CTRY_JAPAN16,     MKK6_MKKB },
517 	{ CTRY_JAPAN17,     MKK6_MKKA2 },
518 	{ CTRY_JAPAN18,     MKK6_MKKC },
519 
520 	{ CTRY_JAPAN19,     MKK7_MKKB },
521 	{ CTRY_JAPAN20,     MKK7_MKKA2 },
522 	{ CTRY_JAPAN21,     MKK7_MKKC },
523 
524 	{ CTRY_JAPAN22,     MKK8_MKKB },
525 	{ CTRY_JAPAN23,     MKK8_MKKA2 },
526 	{ CTRY_JAPAN24,     MKK8_MKKC },
527 
528 	{ CTRY_JORDAN,      APL4_WORLD },
529 	{ CTRY_KAZAKHSTAN,  NULL1_WORLD },
530 	{ CTRY_KOREA_NORTH, APL2_WORLD },
531 	{ CTRY_KOREA_ROC,   APL2_WORLD },
532 	{ CTRY_KOREA_ROC2,  APL2_WORLD },
533 	{ CTRY_KOREA_ROC3,  APL9_WORLD },
534 	{ CTRY_KUWAIT,      NULL1_WORLD },
535 	{ CTRY_LATVIA,      ETSI1_WORLD },
536 	{ CTRY_LEBANON,     NULL1_WORLD },
537 	{ CTRY_LIECHTENSTEIN,ETSI1_WORLD },
538 	{ CTRY_LITHUANIA,   ETSI1_WORLD },
539 	{ CTRY_LUXEMBOURG,  ETSI1_WORLD },
540 	{ CTRY_MACAU,       FCC2_WORLD },
541 	{ CTRY_MACEDONIA,   NULL1_WORLD },
542 	{ CTRY_MALAYSIA,    APL8_WORLD },
543 	{ CTRY_MALTA,       ETSI1_WORLD },
544 	{ CTRY_MEXICO,      FCC1_FCCA },
545 	{ CTRY_MONACO,      ETSI4_WORLD },
546 	{ CTRY_MOROCCO,     NULL1_WORLD },
547 	{ CTRY_NETHERLANDS, ETSI1_WORLD },
548 	{ CTRY_NEW_ZEALAND, FCC2_ETSIC },
549 	{ CTRY_NORWAY,      ETSI1_WORLD },
550 	{ CTRY_OMAN,        APL6_WORLD },
551 	{ CTRY_PAKISTAN,    NULL1_WORLD },
552 	{ CTRY_PANAMA,      FCC1_FCCA },
553 	{ CTRY_PERU,        APL1_WORLD },
554 	{ CTRY_PHILIPPINES, FCC3_WORLD },
555 	{ CTRY_POLAND,      ETSI1_WORLD },
556 	{ CTRY_PORTUGAL,    ETSI1_WORLD },
557 	{ CTRY_PUERTO_RICO, FCC1_FCCA },
558 	{ CTRY_QATAR,       NULL1_WORLD },
559 	{ CTRY_ROMANIA,     NULL1_WORLD },
560 	{ CTRY_RUSSIA,      NULL1_WORLD },
561 	{ CTRY_SAUDI_ARABIA,FCC2_WORLD },
562 	{ CTRY_SINGAPORE,   APL6_WORLD },
563 	{ CTRY_SLOVAKIA,    ETSI1_WORLD },
564 	{ CTRY_SLOVENIA,    ETSI1_WORLD },
565 	{ CTRY_SOUTH_AFRICA,FCC3_WORLD },
566 	{ CTRY_SPAIN,       ETSI1_WORLD },
567 	{ CTRY_SWEDEN,      ETSI1_WORLD },
568 	{ CTRY_SWITZERLAND, ETSI1_WORLD },
569 	{ CTRY_SYRIA,       NULL1_WORLD },
570 	{ CTRY_TAIWAN,      APL3_FCCA },
571 	{ CTRY_THAILAND,    NULL1_WORLD },
572 	{ CTRY_TRINIDAD_Y_TOBAGO,ETSI4_WORLD },
573 	{ CTRY_TUNISIA,     ETSI3_WORLD },
574 	{ CTRY_TURKEY,      ETSI3_WORLD },
575 	{ CTRY_UKRAINE,     NULL1_WORLD },
576 	{ CTRY_UAE,         NULL1_WORLD },
577 	{ CTRY_UNITED_KINGDOM, ETSI1_WORLD },
578 	{ CTRY_UNITED_STATES, FCC1_FCCA },
579 	{ CTRY_UNITED_STATES_FCC49,FCC4_FCCA },
580 	{ CTRY_URUGUAY,     FCC1_WORLD },
581 	{ CTRY_UZBEKISTAN,  FCC3_FCCA },
582 	{ CTRY_VENEZUELA,   APL2_ETSIC },
583 	{ CTRY_VIET_NAM,    NULL1_WORLD },
584 	{ CTRY_ZIMBABWE,    NULL1_WORLD }
585 };
586 
587 /* Bit masks for DFS per regdomain */
588 enum {
589 	NO_DFS   = 0x0000000000000000ULL,	/* NB: must be zero */
590 	DFS_FCC3 = 0x0000000000000001ULL,
591 	DFS_ETSI = 0x0000000000000002ULL,
592 	DFS_MKK4 = 0x0000000000000004ULL,
593 };
594 
595 #define	AFTER(x)	((x)+1)
596 
597 /*
598  * Frequency band collections are defined using bitmasks.  Each bit
599  * in a mask is the index of an entry in one of the following tables.
600  * Bitmasks are BMLEN*64 bits so if a table grows beyond that the bit
601  * vectors must be enlarged or the tables split somehow (e.g. split
602  * 1/2 and 1/4 rate channels into a separate table).
603  *
604  * Beware of ordering; the indices are defined relative to the preceding
605  * entry so if things get off there will be confusion.  A good way to
606  * check the indices is to collect them in a switch statement in a stub
607  * function so the compiler checks for duplicates.
608  */
609 
610 typedef struct {
611 	uint16_t	lowChannel;	/* Low channel center in MHz */
612 	uint16_t	highChannel;	/* High Channel center in MHz */
613 	uint8_t		powerDfs;	/* Max power (dBm) for channel
614 					   range when using DFS */
615 	uint8_t		antennaMax;	/* Max allowed antenna gain */
616 	uint8_t		channelBW;	/* Bandwidth of the channel */
617 	uint8_t		channelSep;	/* Channel separation within
618 					   the band */
619 	uint64_t	useDfs;		/* Use DFS in the RegDomain
620 					   if corresponding bit is set */
621 	uint64_t	usePassScan;	/* Use Passive Scan in the RegDomain
622 					   if corresponding bit is set */
623 } REG_DMN_FREQ_BAND;
624 
625 /*
626  * 5GHz 11A channel tags
627  */
628 static REG_DMN_FREQ_BAND regDmn5GhzFreq[] = {
629 	{ 4915, 4925, 23, 0, 10,  5, NO_DFS, PSCAN_MKK2 },
630 #define	F1_4915_4925	0
631 	{ 4935, 4945, 23, 0, 10,  5, NO_DFS, PSCAN_MKK2 },
632 #define	F1_4935_4945	AFTER(F1_4915_4925)
633 	{ 4920, 4980, 23, 0, 20, 20, NO_DFS, PSCAN_MKK2 },
634 #define	F1_4920_4980	AFTER(F1_4935_4945)
635 	{ 4942, 4987, 27, 6,  5,  5, NO_DFS, PSCAN_FCC },
636 #define	F1_4942_4987	AFTER(F1_4920_4980)
637 	{ 4945, 4985, 30, 6, 10,  5, NO_DFS, PSCAN_FCC },
638 #define	F1_4945_4985	AFTER(F1_4942_4987)
639 	{ 4950, 4980, 33, 6, 20,  5, NO_DFS, PSCAN_FCC },
640 #define	F1_4950_4980	AFTER(F1_4945_4985)
641 	{ 5035, 5040, 23, 0, 10,  5, NO_DFS, PSCAN_MKK2 },
642 #define	F1_5035_5040	AFTER(F1_4950_4980)
643 	{ 5040, 5080, 23, 0, 20, 20, NO_DFS, PSCAN_MKK2 },
644 #define	F1_5040_5080	AFTER(F1_5035_5040)
645 	{ 5055, 5055, 23, 0, 10,  5, NO_DFS, PSCAN_MKK2 },
646 #define	F1_5055_5055	AFTER(F1_5040_5080)
647 
648 	{ 5120, 5240, 5,  6, 20, 20, NO_DFS, NO_PSCAN },
649 #define	F1_5120_5240	AFTER(F1_5055_5055)
650 	{ 5120, 5240, 5,  6, 10, 10, NO_DFS, NO_PSCAN },
651 #define	F2_5120_5240	AFTER(F1_5120_5240)
652 	{ 5120, 5240, 5,  6,  5,  5, NO_DFS, NO_PSCAN },
653 #define	F3_5120_5240	AFTER(F2_5120_5240)
654 
655 	{ 5170, 5230, 23, 0, 20, 20, NO_DFS, PSCAN_MKK1 | PSCAN_MKK2 },
656 #define	F1_5170_5230	AFTER(F3_5120_5240)
657 	{ 5170, 5230, 20, 0, 20, 20, NO_DFS, PSCAN_MKK1 | PSCAN_MKK2 },
658 #define	F2_5170_5230	AFTER(F1_5170_5230)
659 
660 	{ 5180, 5240, 15, 0, 20, 20, NO_DFS, PSCAN_FCC | PSCAN_ETSI },
661 #define	F1_5180_5240	AFTER(F2_5170_5230)
662 	{ 5180, 5240, 17, 6, 20, 20, NO_DFS, PSCAN_FCC },
663 #define	F2_5180_5240	AFTER(F1_5180_5240)
664 	{ 5180, 5240, 18, 0, 20, 20, NO_DFS, PSCAN_FCC | PSCAN_ETSI },
665 #define	F3_5180_5240	AFTER(F2_5180_5240)
666 	{ 5180, 5240, 20, 0, 20, 20, NO_DFS, PSCAN_FCC | PSCAN_ETSI },
667 #define	F4_5180_5240	AFTER(F3_5180_5240)
668 	{ 5180, 5240, 23, 0, 20, 20, NO_DFS, PSCAN_FCC | PSCAN_ETSI },
669 #define	F5_5180_5240	AFTER(F4_5180_5240)
670 	{ 5180, 5240, 23, 6, 20, 20, NO_DFS, PSCAN_FCC },
671 #define	F6_5180_5240	AFTER(F5_5180_5240)
672 	{ 5180, 5240, 17, 6, 20, 10, NO_DFS, PSCAN_FCC },
673 #define	F7_5180_5240	AFTER(F6_5180_5240)
674 	{ 5180, 5240, 17, 6, 20,  5, NO_DFS, PSCAN_FCC },
675 #define	F8_5180_5240	AFTER(F7_5180_5240)
676 	{ 5180, 5320, 20, 6, 20, 20, DFS_ETSI, PSCAN_ETSI },
677 
678 #define	F1_5180_5320	AFTER(F8_5180_5240)
679 	{ 5240, 5280, 23, 0, 20, 20, DFS_FCC3, PSCAN_FCC | PSCAN_ETSI },
680 
681 #define	F1_5240_5280	AFTER(F1_5180_5320)
682 	{ 5260, 5280, 23, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC | PSCAN_ETSI },
683 
684 #define	F1_5260_5280	AFTER(F1_5240_5280)
685 	{ 5260, 5320, 18, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC | PSCAN_ETSI },
686 
687 #define	F1_5260_5320	AFTER(F1_5260_5280)
688 	{ 5260, 5320, 20, 0, 20, 20, DFS_FCC3 | DFS_ETSI | DFS_MKK4, PSCAN_FCC | PSCAN_ETSI | PSCAN_MKK3  },
689 #define	F2_5260_5320	AFTER(F1_5260_5320)
690 
691 	{ 5260, 5320, 20, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
692 #define	F3_5260_5320	AFTER(F2_5260_5320)
693 	{ 5260, 5320, 23, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
694 #define	F4_5260_5320	AFTER(F3_5260_5320)
695 	{ 5260, 5320, 23, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
696 #define	F5_5260_5320	AFTER(F4_5260_5320)
697 	{ 5260, 5320, 30, 0, 20, 20, NO_DFS, NO_PSCAN },
698 #define	F6_5260_5320	AFTER(F5_5260_5320)
699 	{ 5260, 5320, 23, 6, 20, 10, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
700 #define	F7_5260_5320	AFTER(F6_5260_5320)
701 	{ 5260, 5320, 23, 6, 20,  5, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
702 #define	F8_5260_5320	AFTER(F7_5260_5320)
703 
704 	{ 5260, 5700, 5,  6, 20, 20, DFS_FCC3 | DFS_ETSI, NO_PSCAN },
705 #define	F1_5260_5700	AFTER(F8_5260_5320)
706 	{ 5260, 5700, 5,  6, 10, 10, DFS_FCC3 | DFS_ETSI, NO_PSCAN },
707 #define	F2_5260_5700	AFTER(F1_5260_5700)
708 	{ 5260, 5700, 5,  6,  5,  5, DFS_FCC3 | DFS_ETSI, NO_PSCAN },
709 #define	F3_5260_5700	AFTER(F2_5260_5700)
710 
711 	{ 5280, 5320, 17, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
712 #define	F1_5280_5320	AFTER(F3_5260_5700)
713 
714 	{ 5500, 5620, 30, 6, 20, 20, DFS_ETSI, PSCAN_ETSI },
715 #define	F1_5500_5620	AFTER(F1_5280_5320)
716 
717 	{ 5500, 5700, 20, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
718 #define	F1_5500_5700	AFTER(F1_5500_5620)
719 	{ 5500, 5700, 27, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC | PSCAN_ETSI },
720 #define	F2_5500_5700	AFTER(F1_5500_5700)
721 	{ 5500, 5700, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC | PSCAN_ETSI },
722 #define	F3_5500_5700	AFTER(F2_5500_5700)
723 	{ 5500, 5700, 23, 0, 20, 20, DFS_FCC3 | DFS_ETSI | DFS_MKK4, PSCAN_MKK3 | PSCAN_FCC },
724 #define	F4_5500_5700	AFTER(F3_5500_5700)
725 
726 	{ 5745, 5805, 23, 0, 20, 20, NO_DFS, NO_PSCAN },
727 #define	F1_5745_5805	AFTER(F4_5500_5700)
728 	{ 5745, 5805, 30, 6, 20, 20, NO_DFS, NO_PSCAN },
729 #define	F2_5745_5805	AFTER(F1_5745_5805)
730 	{ 5745, 5805, 30, 6, 20, 20, DFS_ETSI, PSCAN_ETSI },
731 #define	F3_5745_5805	AFTER(F2_5745_5805)
732 	{ 5745, 5825, 5,  6, 20, 20, NO_DFS, NO_PSCAN },
733 #define	F1_5745_5825	AFTER(F3_5745_5805)
734 	{ 5745, 5825, 17, 0, 20, 20, NO_DFS, NO_PSCAN },
735 #define	F2_5745_5825	AFTER(F1_5745_5825)
736 	{ 5745, 5825, 20, 0, 20, 20, NO_DFS, NO_PSCAN },
737 #define	F3_5745_5825	AFTER(F2_5745_5825)
738 	{ 5745, 5825, 30, 0, 20, 20, NO_DFS, NO_PSCAN },
739 #define	F4_5745_5825	AFTER(F3_5745_5825)
740 	{ 5745, 5825, 30, 6, 20, 20, NO_DFS, NO_PSCAN },
741 #define	F5_5745_5825	AFTER(F4_5745_5825)
742 	{ 5745, 5825, 30, 6, 20, 20, NO_DFS, NO_PSCAN },
743 #define	F6_5745_5825	AFTER(F5_5745_5825)
744 	{ 5745, 5825, 5,  6, 10, 10, NO_DFS, NO_PSCAN },
745 #define	F7_5745_5825	AFTER(F6_5745_5825)
746 	{ 5745, 5825, 5,  6,  5,  5, NO_DFS, NO_PSCAN },
747 #define	F8_5745_5825	AFTER(F7_5745_5825)
748 	{ 5745, 5825, 30, 6, 20, 10, NO_DFS, NO_PSCAN },
749 #define	F9_5745_5825	AFTER(F8_5745_5825)
750 	{ 5745, 5825, 30, 6, 20,  5, NO_DFS, NO_PSCAN },
751 #define	F10_5745_5825	AFTER(F9_5745_5825)
752 
753 	/*
754 	 * Below are the world roaming channels
755 	 * All WWR domains have no power limit, instead use the card's CTL
756 	 * or max power settings.
757 	 */
758 	{ 4920, 4980, 30, 0, 20, 20, NO_DFS, PSCAN_WWR },
759 #define	W1_4920_4980	AFTER(F10_5745_5825)
760 	{ 5040, 5080, 30, 0, 20, 20, NO_DFS, PSCAN_WWR },
761 #define	W1_5040_5080	AFTER(W1_4920_4980)
762 	{ 5170, 5230, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
763 #define	W1_5170_5230	AFTER(W1_5040_5080)
764 	{ 5180, 5240, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
765 #define	W1_5180_5240	AFTER(W1_5170_5230)
766 	{ 5260, 5320, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
767 #define	W1_5260_5320	AFTER(W1_5180_5240)
768 	{ 5745, 5825, 30, 0, 20, 20, NO_DFS, PSCAN_WWR },
769 #define	W1_5745_5825	AFTER(W1_5260_5320)
770 	{ 5500, 5700, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
771 #define	W1_5500_5700	AFTER(W1_5745_5825)
772 	{ 5260, 5320, 30, 0, 20, 20, NO_DFS, NO_PSCAN },
773 #define	W2_5260_5320	AFTER(W1_5500_5700)
774 	{ 5180, 5240, 30, 0, 20, 20, NO_DFS, NO_PSCAN },
775 #define	W2_5180_5240	AFTER(W2_5260_5320)
776 	{ 5825, 5825, 30, 0, 20, 20, NO_DFS, PSCAN_WWR },
777 #define	W2_5825_5825	AFTER(W2_5180_5240)
778 };
779 
780 /*
781  * 5GHz Turbo (dynamic & static) tags
782  */
783 static REG_DMN_FREQ_BAND regDmn5GhzTurboFreq[] = {
784 	{ 5130, 5210, 5,  6, 40, 40, NO_DFS, NO_PSCAN },
785 #define	T1_5130_5210	0
786 	{ 5250, 5330, 5,  6, 40, 40, DFS_FCC3, NO_PSCAN },
787 #define	T1_5250_5330	AFTER(T1_5130_5210)
788 	{ 5370, 5490, 5,  6, 40, 40, NO_DFS, NO_PSCAN },
789 #define	T1_5370_5490	AFTER(T1_5250_5330)
790 	{ 5530, 5650, 5,  6, 40, 40, DFS_FCC3, NO_PSCAN },
791 #define	T1_5530_5650	AFTER(T1_5370_5490)
792 
793 	{ 5150, 5190, 5,  6, 40, 40, NO_DFS, NO_PSCAN },
794 #define	T1_5150_5190	AFTER(T1_5530_5650)
795 	{ 5230, 5310, 5,  6, 40, 40, DFS_FCC3, NO_PSCAN },
796 #define	T1_5230_5310	AFTER(T1_5150_5190)
797 	{ 5350, 5470, 5,  6, 40, 40, NO_DFS, NO_PSCAN },
798 #define	T1_5350_5470	AFTER(T1_5230_5310)
799 	{ 5510, 5670, 5,  6, 40, 40, DFS_FCC3, NO_PSCAN },
800 #define	T1_5510_5670	AFTER(T1_5350_5470)
801 
802 	{ 5200, 5240, 17, 6, 40, 40, NO_DFS, NO_PSCAN },
803 #define	T1_5200_5240	AFTER(T1_5510_5670)
804 	{ 5200, 5240, 23, 6, 40, 40, NO_DFS, NO_PSCAN },
805 #define	T2_5200_5240	AFTER(T1_5200_5240)
806 	{ 5210, 5210, 17, 6, 40, 40, NO_DFS, NO_PSCAN },
807 #define	T1_5210_5210	AFTER(T2_5200_5240)
808 	{ 5210, 5210, 23, 0, 40, 40, NO_DFS, NO_PSCAN },
809 #define	T2_5210_5210	AFTER(T1_5210_5210)
810 
811 	{ 5280, 5280, 23, 6, 40, 40, DFS_FCC3, PSCAN_FCC_T },
812 #define	T1_5280_5280	AFTER(T2_5210_5210)
813 	{ 5280, 5280, 20, 6, 40, 40, DFS_FCC3, PSCAN_FCC_T },
814 #define	T2_5280_5280	AFTER(T1_5280_5280)
815 	{ 5250, 5250, 17, 0, 40, 40, DFS_FCC3, PSCAN_FCC_T },
816 #define	T1_5250_5250	AFTER(T2_5280_5280)
817 	{ 5290, 5290, 20, 0, 40, 40, DFS_FCC3, PSCAN_FCC_T },
818 #define	T1_5290_5290	AFTER(T1_5250_5250)
819 	{ 5250, 5290, 20, 0, 40, 40, DFS_FCC3, PSCAN_FCC_T },
820 #define	T1_5250_5290	AFTER(T1_5290_5290)
821 	{ 5250, 5290, 23, 6, 40, 40, DFS_FCC3, PSCAN_FCC_T },
822 #define	T2_5250_5290	AFTER(T1_5250_5290)
823 
824 	{ 5540, 5660, 20, 6, 40, 40, DFS_FCC3, PSCAN_FCC_T },
825 #define	T1_5540_5660	AFTER(T2_5250_5290)
826 	{ 5760, 5800, 20, 0, 40, 40, NO_DFS, NO_PSCAN },
827 #define	T1_5760_5800	AFTER(T1_5540_5660)
828 	{ 5760, 5800, 30, 6, 40, 40, NO_DFS, NO_PSCAN },
829 #define	T2_5760_5800	AFTER(T1_5760_5800)
830 
831 	{ 5765, 5805, 30, 6, 40, 40, NO_DFS, NO_PSCAN },
832 #define	T1_5765_5805	AFTER(T2_5760_5800)
833 
834 	/*
835 	 * Below are the WWR frequencies
836 	 */
837 	{ 5210, 5250, 15, 0, 40, 40, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
838 #define	WT1_5210_5250	AFTER(T1_5765_5805)
839 	{ 5290, 5290, 18, 0, 40, 40, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
840 #define	WT1_5290_5290	AFTER(WT1_5210_5250)
841 	{ 5540, 5660, 20, 0, 40, 40, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
842 #define	WT1_5540_5660	AFTER(WT1_5290_5290)
843 	{ 5760, 5800, 20, 0, 40, 40, NO_DFS, PSCAN_WWR },
844 #define	WT1_5760_5800	AFTER(WT1_5540_5660)
845 };
846 
847 /*
848  * 2GHz 11b channel tags
849  */
850 static REG_DMN_FREQ_BAND regDmn2GhzFreq[] = {
851 	{ 2312, 2372, 5,  6, 20, 5, NO_DFS, NO_PSCAN },
852 #define	F1_2312_2372	0
853 	{ 2312, 2372, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
854 #define	F2_2312_2372	AFTER(F1_2312_2372)
855 
856 	{ 2412, 2472, 5,  6, 20, 5, NO_DFS, NO_PSCAN },
857 #define	F1_2412_2472	AFTER(F2_2312_2372)
858 	{ 2412, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA },
859 #define	F2_2412_2472	AFTER(F1_2412_2472)
860 	{ 2412, 2472, 30, 0, 20, 5, NO_DFS, NO_PSCAN },
861 #define	F3_2412_2472	AFTER(F2_2412_2472)
862 
863 	{ 2412, 2462, 27, 6, 20, 5, NO_DFS, NO_PSCAN },
864 #define	F1_2412_2462	AFTER(F3_2412_2472)
865 	{ 2412, 2462, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA },
866 #define	F2_2412_2462	AFTER(F1_2412_2462)
867 
868 	{ 2432, 2442, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
869 #define	F1_2432_2442	AFTER(F2_2412_2462)
870 
871 	{ 2457, 2472, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
872 #define	F1_2457_2472	AFTER(F1_2432_2442)
873 
874 	{ 2467, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA2 | PSCAN_MKKA },
875 #define	F1_2467_2472	AFTER(F1_2457_2472)
876 
877 	{ 2484, 2484, 5,  6, 20, 5, NO_DFS, NO_PSCAN },
878 #define	F1_2484_2484	AFTER(F1_2467_2472)
879 	{ 2484, 2484, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA | PSCAN_MKKA1 | PSCAN_MKKA2 },
880 #define	F2_2484_2484	AFTER(F1_2484_2484)
881 
882 	{ 2512, 2732, 5,  6, 20, 5, NO_DFS, NO_PSCAN },
883 #define	F1_2512_2732	AFTER(F2_2484_2484)
884 
885 	/*
886 	 * WWR have powers opened up to 20dBm.
887 	 * Limits should often come from CTL/Max powers
888 	 */
889 	{ 2312, 2372, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
890 #define	W1_2312_2372	AFTER(F1_2512_2732)
891 	{ 2412, 2412, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
892 #define	W1_2412_2412	AFTER(W1_2312_2372)
893 	{ 2417, 2432, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
894 #define	W1_2417_2432	AFTER(W1_2412_2412)
895 	{ 2437, 2442, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
896 #define	W1_2437_2442	AFTER(W1_2417_2432)
897 	{ 2447, 2457, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
898 #define	W1_2447_2457	AFTER(W1_2437_2442)
899 	{ 2462, 2462, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
900 #define	W1_2462_2462	AFTER(W1_2447_2457)
901 	{ 2467, 2467, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN },
902 #define	W1_2467_2467	AFTER(W1_2462_2462)
903 	{ 2467, 2467, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN },
904 #define	W2_2467_2467	AFTER(W1_2467_2467)
905 	{ 2472, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN },
906 #define	W1_2472_2472	AFTER(W2_2467_2467)
907 	{ 2472, 2472, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN },
908 #define	W2_2472_2472	AFTER(W1_2472_2472)
909 	{ 2484, 2484, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN },
910 #define	W1_2484_2484	AFTER(W2_2472_2472)
911 	{ 2484, 2484, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN },
912 #define	W2_2484_2484	AFTER(W1_2484_2484)
913 };
914 
915 /*
916  * 2GHz 11g channel tags
917  */
918 static REG_DMN_FREQ_BAND regDmn2Ghz11gFreq[] = {
919 	{ 2312, 2372, 5,  6, 20, 5, NO_DFS, NO_PSCAN },
920 #define	G1_2312_2372	0
921 	{ 2312, 2372, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
922 #define	G2_2312_2372	AFTER(G1_2312_2372)
923 	{ 2312, 2372, 5,  6, 10, 5, NO_DFS, NO_PSCAN },
924 #define	G3_2312_2372	AFTER(G2_2312_2372)
925 	{ 2312, 2372, 5,  6,  5, 5, NO_DFS, NO_PSCAN },
926 #define	G4_2312_2372	AFTER(G3_2312_2372)
927 
928 	{ 2412, 2472, 5,  6, 20, 5, NO_DFS, NO_PSCAN },
929 #define	G1_2412_2472	AFTER(G4_2312_2372)
930 	{ 2412, 2472, 20, 0, 20, 5,  NO_DFS, PSCAN_MKKA_G },
931 #define	G2_2412_2472	AFTER(G1_2412_2472)
932 	{ 2412, 2472, 30, 0, 20, 5, NO_DFS, NO_PSCAN },
933 #define	G3_2412_2472	AFTER(G2_2412_2472)
934 	{ 2412, 2472, 5,  6, 10, 5, NO_DFS, NO_PSCAN },
935 #define	G4_2412_2472	AFTER(G3_2412_2472)
936 	{ 2412, 2472, 5,  6,  5, 5, NO_DFS, NO_PSCAN },
937 #define	G5_2412_2472	AFTER(G4_2412_2472)
938 
939 	{ 2412, 2462, 27, 6, 20, 5, NO_DFS, NO_PSCAN },
940 #define	G1_2412_2462	AFTER(G5_2412_2472)
941 	{ 2412, 2462, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA_G },
942 #define	G2_2412_2462	AFTER(G1_2412_2462)
943 	{ 2412, 2462, 27, 6, 10, 5, NO_DFS, NO_PSCAN },
944 #define	G3_2412_2462	AFTER(G2_2412_2462)
945 	{ 2412, 2462, 27, 6,  5, 5, NO_DFS, NO_PSCAN },
946 #define	G4_2412_2462	AFTER(G3_2412_2462)
947 
948 	{ 2432, 2442, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
949 #define	G1_2432_2442	AFTER(G4_2412_2462)
950 
951 	{ 2457, 2472, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
952 #define	G1_2457_2472	AFTER(G1_2432_2442)
953 
954 	{ 2512, 2732, 5,  6, 20, 5, NO_DFS, NO_PSCAN },
955 #define	G1_2512_2732	AFTER(G1_2457_2472)
956 	{ 2512, 2732, 5,  6, 10, 5, NO_DFS, NO_PSCAN },
957 #define	G2_2512_2732	AFTER(G1_2512_2732)
958 	{ 2512, 2732, 5,  6,  5, 5, NO_DFS, NO_PSCAN },
959 #define	G3_2512_2732	AFTER(G2_2512_2732)
960 
961 	{ 2467, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA2 | PSCAN_MKKA },
962 #define	G1_2467_2472	AFTER(G3_2512_2732)
963 
964 	/*
965 	 * WWR open up the power to 20dBm
966 	 */
967 	{ 2312, 2372, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
968 #define	WG1_2312_2372	AFTER(G1_2467_2472)
969 	{ 2412, 2412, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
970 #define	WG1_2412_2412	AFTER(WG1_2312_2372)
971 	{ 2417, 2432, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
972 #define	WG1_2417_2432	AFTER(WG1_2412_2412)
973 	{ 2437, 2442, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
974 #define	WG1_2437_2442	AFTER(WG1_2417_2432)
975 	{ 2447, 2457, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
976 #define	WG1_2447_2457	AFTER(WG1_2437_2442)
977 	{ 2462, 2462, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
978 #define	WG1_2462_2462	AFTER(WG1_2447_2457)
979 	{ 2467, 2467, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN },
980 #define	WG1_2467_2467	AFTER(WG1_2462_2462)
981 	{ 2467, 2467, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN },
982 #define	WG2_2467_2467	AFTER(WG1_2467_2467)
983 	{ 2472, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN },
984 #define	WG1_2472_2472	AFTER(WG2_2467_2467)
985 	{ 2472, 2472, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN },
986 #define	WG2_2472_2472	AFTER(WG1_2472_2472)
987 };
988 
989 /*
990  * 2GHz Dynamic turbo tags
991  */
992 static REG_DMN_FREQ_BAND regDmn2Ghz11gTurboFreq[] = {
993 	{ 2312, 2372, 5,  6, 40, 40, NO_DFS, NO_PSCAN },
994 #define	T1_2312_2372	0
995 	{ 2437, 2437, 5,  6, 40, 40, NO_DFS, NO_PSCAN },
996 #define	T1_2437_2437	AFTER(T1_2312_2372)
997 	{ 2437, 2437, 20, 6, 40, 40, NO_DFS, NO_PSCAN },
998 #define	T2_2437_2437	AFTER(T1_2437_2437)
999 	{ 2437, 2437, 18, 6, 40, 40, NO_DFS, PSCAN_WWR },
1000 #define	T3_2437_2437	AFTER(T2_2437_2437)
1001 	{ 2512, 2732, 5,  6, 40, 40, NO_DFS, NO_PSCAN },
1002 #define	T1_2512_2732	AFTER(T3_2437_2437)
1003 };
1004 
1005 typedef struct regDomain {
1006 	uint16_t regDmnEnum;		/* value from EnumRd table */
1007 	uint8_t conformanceTestLimit;
1008 	uint32_t flags;			/* Requirement flags (AdHoc disallow,
1009 					   noise floor cal needed, etc) */
1010 	uint64_t dfsMask;		/* DFS bitmask for 5Ghz tables */
1011 	uint64_t pscan;			/* Bitmask for passive scan */
1012 	chanbmask_t chan11a;		/* 11a channels */
1013 	chanbmask_t chan11a_turbo;	/* 11a static turbo channels */
1014 	chanbmask_t chan11a_dyn_turbo;	/* 11a dynamic turbo channels */
1015 	chanbmask_t chan11a_half;	/* 11a 1/2 width channels */
1016 	chanbmask_t chan11a_quarter;	/* 11a 1/4 width channels */
1017 	chanbmask_t chan11b;		/* 11b channels */
1018 	chanbmask_t chan11g;		/* 11g channels */
1019 	chanbmask_t chan11g_turbo;	/* 11g dynamic turbo channels */
1020 	chanbmask_t chan11g_half;	/* 11g 1/2 width channels */
1021 	chanbmask_t chan11g_quarter;	/* 11g 1/4 width channels */
1022 } REG_DOMAIN;
1023 
1024 static REG_DOMAIN regDomains[] = {
1025 
1026 	{.regDmnEnum		= DEBUG_REG_DMN,
1027 	 .conformanceTestLimit	= FCC,
1028 	 .dfsMask		= DFS_FCC3,
1029 	 .chan11a		= BM3(F1_5120_5240, F1_5260_5700, F1_5745_5825),
1030 	 .chan11a_half		= BM3(F2_5120_5240, F2_5260_5700, F7_5745_5825),
1031 	 .chan11a_quarter	= BM3(F3_5120_5240, F3_5260_5700, F8_5745_5825),
1032 	 .chan11a_turbo		= BM8(T1_5130_5210,
1033 				      T1_5250_5330,
1034 				      T1_5370_5490,
1035 				      T1_5530_5650,
1036 				      T1_5150_5190,
1037 				      T1_5230_5310,
1038 				      T1_5350_5470,
1039 				      T1_5510_5670),
1040 	 .chan11a_dyn_turbo	= BM4(T1_5200_5240,
1041 				      T1_5280_5280,
1042 				      T1_5540_5660,
1043 				      T1_5765_5805),
1044 	 .chan11b		= BM4(F1_2312_2372,
1045 				      F1_2412_2472,
1046 				      F1_2484_2484,
1047 				      F1_2512_2732),
1048 	 .chan11g		= BM3(G1_2312_2372, G1_2412_2472, G1_2512_2732),
1049 	 .chan11g_turbo		= BM3(T1_2312_2372, T1_2437_2437, T1_2512_2732),
1050 	 .chan11g_half		= BM3(G2_2312_2372, G4_2412_2472, G2_2512_2732),
1051 	 .chan11g_quarter	= BM3(G3_2312_2372, G5_2412_2472, G3_2512_2732),
1052 	},
1053 
1054 	{.regDmnEnum		= APL1,
1055 	 .conformanceTestLimit	= FCC,
1056 	 .chan11a		= BM1(F4_5745_5825),
1057 	},
1058 
1059 	{.regDmnEnum		= APL2,
1060 	 .conformanceTestLimit	= FCC,
1061 	 .chan11a		= BM1(F1_5745_5805),
1062 	},
1063 
1064 	{.regDmnEnum		= APL3,
1065 	 .conformanceTestLimit	= FCC,
1066 	 .chan11a		= BM2(F1_5280_5320, F2_5745_5805),
1067 	},
1068 
1069 	{.regDmnEnum		= APL4,
1070 	 .conformanceTestLimit	= FCC,
1071 	 .chan11a		= BM2(F4_5180_5240, F3_5745_5825),
1072 	},
1073 
1074 	{.regDmnEnum		= APL5,
1075 	 .conformanceTestLimit	= FCC,
1076 	 .chan11a		= BM1(F2_5745_5825),
1077 	},
1078 
1079 	{.regDmnEnum		= APL6,
1080 	 .conformanceTestLimit	= ETSI,
1081 	 .dfsMask		= DFS_ETSI,
1082 	 .pscan			= PSCAN_FCC_T | PSCAN_FCC,
1083 	 .chan11a		= BM3(F4_5180_5240, F2_5260_5320, F3_5745_5825),
1084 	 .chan11a_turbo		= BM3(T2_5210_5210, T1_5250_5290, T1_5760_5800),
1085 	},
1086 
1087 	{.regDmnEnum		= APL8,
1088 	 .conformanceTestLimit	= ETSI,
1089 	 .flags			= DISALLOW_ADHOC_11A|DISALLOW_ADHOC_11A_TURB,
1090 	 .chan11a		= BM2(F6_5260_5320, F4_5745_5825),
1091 	},
1092 
1093 	{.regDmnEnum		= APL9,
1094 	 .conformanceTestLimit	= ETSI,
1095 	 .dfsMask		= DFS_ETSI,
1096 	 .pscan			= PSCAN_ETSI,
1097 	 .flags			= DISALLOW_ADHOC_11A|DISALLOW_ADHOC_11A_TURB,
1098 	 .chan11a		= BM3(F1_5180_5320, F1_5500_5620, F3_5745_5805),
1099 	},
1100 
1101 	{.regDmnEnum		= ETSI1,
1102 	 .conformanceTestLimit	= ETSI,
1103 	 .dfsMask		= DFS_ETSI,
1104 	 .pscan			= PSCAN_ETSI,
1105 	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1106 	 .chan11a		= BM3(W2_5180_5240, F2_5260_5320, F2_5500_5700),
1107 	},
1108 
1109 	{.regDmnEnum		= ETSI2,
1110 	 .conformanceTestLimit	= ETSI,
1111 	 .dfsMask		= DFS_ETSI,
1112 	 .pscan			= PSCAN_ETSI,
1113 	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1114 	 .chan11a		= BM1(F3_5180_5240),
1115 	},
1116 
1117 	{.regDmnEnum		= ETSI3,
1118 	 .conformanceTestLimit	= ETSI,
1119 	 .dfsMask		= DFS_ETSI,
1120 	 .pscan			= PSCAN_ETSI,
1121 	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1122 	 .chan11a		= BM2(W2_5180_5240, F2_5260_5320),
1123 	},
1124 
1125 	{.regDmnEnum		= ETSI4,
1126 	 .conformanceTestLimit	= ETSI,
1127 	 .dfsMask		= DFS_ETSI,
1128 	 .pscan			= PSCAN_ETSI,
1129 	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1130 	 .chan11a		= BM2(F3_5180_5240, F1_5260_5320),
1131 	},
1132 
1133 	{.regDmnEnum		= ETSI5,
1134 	 .conformanceTestLimit	= ETSI,
1135 	 .dfsMask		= DFS_ETSI,
1136 	 .pscan			= PSCAN_ETSI,
1137 	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1138 	 .chan11a		= BM1(F1_5180_5240),
1139 	},
1140 
1141 	{.regDmnEnum		= ETSI6,
1142 	 .conformanceTestLimit	= ETSI,
1143 	 .dfsMask		= DFS_ETSI,
1144 	 .pscan			= PSCAN_ETSI,
1145 	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1146 	 .chan11a		= BM3(F5_5180_5240, F1_5260_5280, F3_5500_5700),
1147 	},
1148 
1149 	{.regDmnEnum		= FCC1,
1150 	 .conformanceTestLimit	= FCC,
1151 	 .chan11a		= BM3(F2_5180_5240, F4_5260_5320, F5_5745_5825),
1152 	 .chan11a_turbo		= BM3(T1_5210_5210, T2_5250_5290, T2_5760_5800),
1153 	 .chan11a_dyn_turbo	= BM3(T1_5200_5240, T1_5280_5280, T1_5765_5805),
1154 	},
1155 
1156 	{.regDmnEnum		= FCC2,
1157 	 .conformanceTestLimit	= FCC,
1158 	 .chan11a		= BM3(F6_5180_5240, F5_5260_5320, F6_5745_5825),
1159 	 .chan11a_dyn_turbo	= BM3(T2_5200_5240, T1_5280_5280, T1_5765_5805),
1160 	},
1161 
1162 	{.regDmnEnum		= FCC3,
1163 	 .conformanceTestLimit	= FCC,
1164 	 .dfsMask		= DFS_FCC3,
1165 	 .pscan			= PSCAN_FCC | PSCAN_FCC_T,
1166 	 .chan11a		= BM4(F2_5180_5240,
1167 				      F3_5260_5320,
1168 				      F1_5500_5700,
1169 				      F5_5745_5825),
1170 	 .chan11a_turbo		= BM4(T1_5210_5210,
1171 				      T1_5250_5250,
1172 				      T1_5290_5290,
1173 				      T2_5760_5800),
1174 	 .chan11a_dyn_turbo	= BM3(T1_5200_5240, T2_5280_5280, T1_5540_5660),
1175 	},
1176 
1177 	{.regDmnEnum		= FCC4,
1178 	 .conformanceTestLimit	= FCC,
1179 	 .dfsMask		= DFS_FCC3,
1180 	 .pscan			= PSCAN_FCC | PSCAN_FCC_T,
1181 	 .chan11a		= BM1(F1_4950_4980),
1182 	 .chan11a_half		= BM1(F1_4945_4985),
1183 	 .chan11a_quarter	= BM1(F1_4942_4987),
1184 	},
1185 
1186 	/* FCC1 w/ 1/2 and 1/4 width channels */
1187 	{.regDmnEnum		= FCC5,
1188 	 .conformanceTestLimit	= FCC,
1189 	 .chan11a		= BM3(F2_5180_5240, F4_5260_5320, F5_5745_5825),
1190 	 .chan11a_turbo		= BM3(T1_5210_5210, T2_5250_5290, T2_5760_5800),
1191 	 .chan11a_dyn_turbo	= BM3(T1_5200_5240, T1_5280_5280, T1_5765_5805),
1192 	 .chan11a_half		= BM3(F7_5180_5240, F7_5260_5320, F9_5745_5825),
1193 	 .chan11a_quarter	= BM3(F8_5180_5240, F8_5260_5320,F10_5745_5825),
1194 	},
1195 
1196 	{.regDmnEnum		= MKK1,
1197 	 .conformanceTestLimit	= MKK,
1198 	 .pscan			= PSCAN_MKK1,
1199 	 .flags			= DISALLOW_ADHOC_11A_TURB,
1200 	 .chan11a		= BM1(F1_5170_5230),
1201 	},
1202 
1203 	{.regDmnEnum		= MKK2,
1204 	 .conformanceTestLimit	= MKK,
1205 	 .pscan			= PSCAN_MKK2,
1206 	 .flags			= DISALLOW_ADHOC_11A_TURB,
1207 	 .chan11a		= BM3(F1_4920_4980, F1_5040_5080, F1_5170_5230),
1208 	 .chan11a_half		= BM4(F1_4915_4925,
1209 				      F1_4935_4945,
1210 				      F1_5035_5040,
1211 				      F1_5055_5055),
1212 	},
1213 
1214 	/* UNI-1 even */
1215 	{.regDmnEnum		= MKK3,
1216 	 .conformanceTestLimit	= MKK,
1217 	 .pscan			= PSCAN_MKK3,
1218 	 .flags			= DISALLOW_ADHOC_11A_TURB,
1219 	 .chan11a		= BM1(F4_5180_5240),
1220 	},
1221 
1222 	/* UNI-1 even + UNI-2 */
1223 	{.regDmnEnum		= MKK4,
1224 	 .conformanceTestLimit	= MKK,
1225 	 .dfsMask		= DFS_MKK4,
1226 	 .pscan			= PSCAN_MKK3,
1227 	 .flags			= DISALLOW_ADHOC_11A_TURB,
1228 	 .chan11a		= BM2(F4_5180_5240, F2_5260_5320),
1229 	},
1230 
1231 	/* UNI-1 even + UNI-2 + mid-band */
1232 	{.regDmnEnum		= MKK5,
1233 	 .conformanceTestLimit	= MKK,
1234 	 .dfsMask		= DFS_MKK4,
1235 	 .pscan			= PSCAN_MKK3,
1236 	 .flags			= DISALLOW_ADHOC_11A_TURB,
1237 	 .chan11a		= BM3(F4_5180_5240, F2_5260_5320, F4_5500_5700),
1238 	},
1239 
1240 	/* UNI-1 odd + even */
1241 	{.regDmnEnum		= MKK6,
1242 	 .conformanceTestLimit	= MKK,
1243 	 .pscan			= PSCAN_MKK1,
1244 	 .flags			= DISALLOW_ADHOC_11A_TURB,
1245 	 .chan11a		= BM2(F2_5170_5230, F4_5180_5240),
1246 	},
1247 
1248 	/* UNI-1 odd + UNI-1 even + UNI-2 */
1249 	{.regDmnEnum		= MKK7,
1250 	 .conformanceTestLimit	= MKK,
1251 	 .dfsMask		= DFS_MKK4,
1252 	 .pscan			= PSCAN_MKK1 | PSCAN_MKK3,
1253 	 .flags			= DISALLOW_ADHOC_11A_TURB,
1254 	 .chan11a		= BM3(F1_5170_5230, F4_5180_5240, F2_5260_5320),
1255 	},
1256 
1257 	/* UNI-1 odd + UNI-1 even + UNI-2 + mid-band */
1258 	{.regDmnEnum		= MKK8,
1259 	 .conformanceTestLimit	= MKK,
1260 	 .dfsMask		= DFS_MKK4,
1261 	 .pscan			= PSCAN_MKK1 | PSCAN_MKK3,
1262 	 .flags			= DISALLOW_ADHOC_11A_TURB,
1263 	 .chan11a		= BM4(F1_5170_5230,
1264 				      F4_5180_5240,
1265 				      F2_5260_5320,
1266 				      F4_5500_5700),
1267 	},
1268 
1269         /* UNI-1 even + 4.9 GHZ */
1270         {.regDmnEnum		= MKK9,
1271 	 .conformanceTestLimit	= MKK,
1272 	 .pscan			= PSCAN_MKK3,
1273 	 .flags			= DISALLOW_ADHOC_11A_TURB,
1274          .chan11a		= BM7(F1_4915_4925,
1275 				      F1_4935_4945,
1276 				      F1_4920_4980,
1277 				      F1_5035_5040,
1278 				      F1_5055_5055,
1279 				      F1_5040_5080,
1280 				      F4_5180_5240),
1281         },
1282 
1283         /* UNI-1 even + UNI-2 + 4.9 GHZ */
1284         {.regDmnEnum		= MKK10,
1285 	 .conformanceTestLimit	= MKK,
1286 	 .dfsMask		= DFS_MKK4,
1287 	 .pscan			= PSCAN_MKK3,
1288 	 .flags			= DISALLOW_ADHOC_11A_TURB,
1289          .chan11a		= BM8(F1_4915_4925,
1290 				      F1_4935_4945,
1291 				      F1_4920_4980,
1292 				      F1_5035_5040,
1293 				      F1_5055_5055,
1294 				      F1_5040_5080,
1295 				      F4_5180_5240,
1296 				      F2_5260_5320),
1297         },
1298 
1299 	/* Defined here to use when 2G channels are authorised for country K2 */
1300 	{.regDmnEnum		= APLD,
1301 	 .conformanceTestLimit	= NO_CTL,
1302 	 .chan11b		= BM2(F2_2312_2372,F2_2412_2472),
1303 	 .chan11g		= BM2(G2_2312_2372,G2_2412_2472),
1304 	},
1305 
1306 	{.regDmnEnum		= ETSIA,
1307 	 .conformanceTestLimit	= NO_CTL,
1308 	 .pscan			= PSCAN_ETSIA,
1309 	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1310 	 .chan11b		= BM1(F1_2457_2472),
1311 	 .chan11g		= BM1(G1_2457_2472),
1312 	 .chan11g_turbo		= BM1(T2_2437_2437)
1313 	},
1314 
1315 	{.regDmnEnum		= ETSIB,
1316 	 .conformanceTestLimit	= ETSI,
1317 	 .pscan			= PSCAN_ETSIB,
1318 	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1319 	 .chan11b		= BM1(F1_2432_2442),
1320 	 .chan11g		= BM1(G1_2432_2442),
1321 	 .chan11g_turbo		= BM1(T2_2437_2437)
1322 	},
1323 
1324 	{.regDmnEnum		= ETSIC,
1325 	 .conformanceTestLimit	= ETSI,
1326 	 .pscan			= PSCAN_ETSIC,
1327 	 .flags			= DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
1328 	 .chan11b		= BM1(F3_2412_2472),
1329 	 .chan11g		= BM1(G3_2412_2472),
1330 	 .chan11g_turbo		= BM1(T2_2437_2437)
1331 	},
1332 
1333 	{.regDmnEnum		= FCCA,
1334 	 .conformanceTestLimit	= FCC,
1335 	 .chan11b		= BM1(F1_2412_2462),
1336 	 .chan11g		= BM1(G1_2412_2462),
1337 	 .chan11g_turbo		= BM1(T2_2437_2437),
1338 	},
1339 
1340 	/* FCCA w/ 1/2 and 1/4 width channels */
1341 	{.regDmnEnum		= FCCB,
1342 	 .conformanceTestLimit	= FCC,
1343 	 .chan11b		= BM1(F1_2412_2462),
1344 	 .chan11g		= BM1(G1_2412_2462),
1345 	 .chan11g_turbo		= BM1(T2_2437_2437),
1346 	 .chan11g_half		= BM1(G3_2412_2462),
1347 	 .chan11g_quarter	= BM1(G4_2412_2462),
1348 	},
1349 
1350 	{.regDmnEnum		= MKKA,
1351 	 .conformanceTestLimit	= MKK,
1352 	 .pscan			= PSCAN_MKKA | PSCAN_MKKA_G
1353 				| PSCAN_MKKA1 | PSCAN_MKKA1_G
1354 				| PSCAN_MKKA2 | PSCAN_MKKA2_G,
1355 	 .flags			= DISALLOW_ADHOC_11A_TURB,
1356 	 .chan11b		= BM3(F2_2412_2462, F1_2467_2472, F2_2484_2484),
1357 	 .chan11g		= BM2(G2_2412_2462, G1_2467_2472),
1358 	 .chan11g_turbo		= BM1(T2_2437_2437)
1359 	},
1360 
1361 	{.regDmnEnum		= MKKC,
1362 	 .conformanceTestLimit	= MKK,
1363 	 .chan11b		= BM1(F2_2412_2472),
1364 	 .chan11g		= BM1(G2_2412_2472),
1365 	 .chan11g_turbo		= BM1(T2_2437_2437)
1366 	},
1367 
1368 	{.regDmnEnum		= WORLD,
1369 	 .conformanceTestLimit	= ETSI,
1370 	 .chan11b		= BM1(F2_2412_2472),
1371 	 .chan11g		= BM1(G2_2412_2472),
1372 	 .chan11g_turbo		= BM1(T2_2437_2437)
1373 	},
1374 
1375 	{.regDmnEnum		= WOR0_WORLD,
1376 	 .conformanceTestLimit	= NO_CTL,
1377 	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1378 	 .pscan			= PSCAN_WWR,
1379 	 .flags			= ADHOC_PER_11D,
1380 	 .chan11a		= BM5(W1_5260_5320,
1381 				      W1_5180_5240,
1382 				      W1_5170_5230,
1383 				      W1_5745_5825,
1384 				      W1_5500_5700),
1385 	 .chan11a_turbo		= BM3(WT1_5210_5250,
1386 				      WT1_5290_5290,
1387 				      WT1_5760_5800),
1388 	 .chan11b		= BM8(W1_2412_2412,
1389 				      W1_2437_2442,
1390 				      W1_2462_2462,
1391 				      W1_2472_2472,
1392 				      W1_2417_2432,
1393 				      W1_2447_2457,
1394 				      W1_2467_2467,
1395 				      W1_2484_2484),
1396 	 .chan11g		= BM7(WG1_2412_2412,
1397 				      WG1_2437_2442,
1398 				      WG1_2462_2462,
1399 				      WG1_2472_2472,
1400 				      WG1_2417_2432,
1401 				      WG1_2447_2457,
1402 				      WG1_2467_2467),
1403 	 .chan11g_turbo		= BM1(T3_2437_2437)
1404 	},
1405 
1406 	{.regDmnEnum		= WOR01_WORLD,
1407 	 .conformanceTestLimit	= NO_CTL,
1408 	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1409 	 .pscan			= PSCAN_WWR,
1410 	 .flags			= ADHOC_PER_11D,
1411 	 .chan11a		= BM5(W1_5260_5320,
1412 				      W1_5180_5240,
1413 				      W1_5170_5230,
1414 				      W1_5745_5825,
1415 				      W1_5500_5700),
1416 	 .chan11a_turbo		= BM3(WT1_5210_5250,
1417 				      WT1_5290_5290,
1418 				      WT1_5760_5800),
1419 	 .chan11b		= BM5(W1_2412_2412,
1420 				      W1_2437_2442,
1421 				      W1_2462_2462,
1422 				      W1_2417_2432,
1423 				      W1_2447_2457),
1424 	 .chan11g		= BM5(WG1_2412_2412,
1425 				      WG1_2437_2442,
1426 				      WG1_2462_2462,
1427 				      WG1_2417_2432,
1428 				      WG1_2447_2457),
1429 	 .chan11g_turbo		= BM1(T3_2437_2437)},
1430 
1431 	{.regDmnEnum		= WOR02_WORLD,
1432 	 .conformanceTestLimit	= NO_CTL,
1433 	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1434 	 .pscan			= PSCAN_WWR,
1435 	 .flags			= ADHOC_PER_11D,
1436 	 .chan11a		= BM5(W1_5260_5320,
1437 				      W1_5180_5240,
1438 				      W1_5170_5230,
1439 				      W1_5745_5825,
1440 				      W1_5500_5700),
1441 	 .chan11a_turbo		= BM3(WT1_5210_5250,
1442 				      WT1_5290_5290,
1443 				      WT1_5760_5800),
1444 	 .chan11b		= BM7(W1_2412_2412,
1445 				      W1_2437_2442,
1446 				      W1_2462_2462,
1447 				      W1_2472_2472,
1448 				      W1_2417_2432,
1449 				      W1_2447_2457,
1450 				      W1_2467_2467),
1451 	 .chan11g		= BM7(WG1_2412_2412,
1452 				      WG1_2437_2442,
1453 				      WG1_2462_2462,
1454 				      WG1_2472_2472,
1455 				      WG1_2417_2432,
1456 				      WG1_2447_2457,
1457 				      WG1_2467_2467),
1458 	 .chan11g_turbo		= BM1(T3_2437_2437)},
1459 
1460 	{.regDmnEnum		= EU1_WORLD,
1461 	 .conformanceTestLimit	= NO_CTL,
1462 	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1463 	 .pscan			= PSCAN_WWR,
1464 	 .flags			= ADHOC_PER_11D,
1465 	 .chan11a		= BM5(W1_5260_5320,
1466 				      W1_5180_5240,
1467 				      W1_5170_5230,
1468 				      W1_5745_5825,
1469 				      W1_5500_5700),
1470 	 .chan11a_turbo		= BM3(WT1_5210_5250,
1471 				      WT1_5290_5290,
1472 				      WT1_5760_5800),
1473 	 .chan11b		= BM7(W1_2412_2412,
1474 				      W1_2437_2442,
1475 				      W1_2462_2462,
1476 				      W2_2472_2472,
1477 				      W1_2417_2432,
1478 				      W1_2447_2457,
1479 				      W2_2467_2467),
1480 	 .chan11g		= BM7(WG1_2412_2412,
1481 				      WG1_2437_2442,
1482 				      WG1_2462_2462,
1483 				      WG2_2472_2472,
1484 				      WG1_2417_2432,
1485 				      WG1_2447_2457,
1486 				      WG2_2467_2467),
1487 	 .chan11g_turbo		= BM1(T3_2437_2437)},
1488 
1489 	{.regDmnEnum		= WOR1_WORLD,
1490 	 .conformanceTestLimit	= NO_CTL,
1491 	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1492 	 .pscan			= PSCAN_WWR,
1493 	 .flags			= DISALLOW_ADHOC_11A,
1494 	 .chan11a		= BM5(W1_5260_5320,
1495 				      W1_5180_5240,
1496 				      W1_5170_5230,
1497 				      W1_5745_5825,
1498 				      W1_5500_5700),
1499 	 .chan11b		= BM8(W1_2412_2412,
1500 				      W1_2437_2442,
1501 				      W1_2462_2462,
1502 				      W1_2472_2472,
1503 				      W1_2417_2432,
1504 				      W1_2447_2457,
1505 				      W1_2467_2467,
1506 				      W1_2484_2484),
1507 	 .chan11g		= BM7(WG1_2412_2412,
1508 				      WG1_2437_2442,
1509 				      WG1_2462_2462,
1510 				      WG1_2472_2472,
1511 				      WG1_2417_2432,
1512 				      WG1_2447_2457,
1513 				      WG1_2467_2467),
1514 	 .chan11g_turbo		= BM1(T3_2437_2437)
1515 	},
1516 
1517 	{.regDmnEnum		= WOR2_WORLD,
1518 	 .conformanceTestLimit	= NO_CTL,
1519 	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1520 	 .pscan			= PSCAN_WWR,
1521 	 .flags			= DISALLOW_ADHOC_11A,
1522 	 .chan11a		= BM5(W1_5260_5320,
1523 				      W1_5180_5240,
1524 				      W1_5170_5230,
1525 				      W1_5745_5825,
1526 				      W1_5500_5700),
1527 	 .chan11a_turbo		= BM3(WT1_5210_5250,
1528 				      WT1_5290_5290,
1529 				      WT1_5760_5800),
1530 	 .chan11b		= BM8(W1_2412_2412,
1531 				      W1_2437_2442,
1532 				      W1_2462_2462,
1533 				      W1_2472_2472,
1534 				      W1_2417_2432,
1535 				      W1_2447_2457,
1536 				      W1_2467_2467,
1537 				      W1_2484_2484),
1538 	 .chan11g		= BM7(WG1_2412_2412,
1539 				      WG1_2437_2442,
1540 				      WG1_2462_2462,
1541 				      WG1_2472_2472,
1542 				      WG1_2417_2432,
1543 				      WG1_2447_2457,
1544 				      WG1_2467_2467),
1545 	 .chan11g_turbo		= BM1(T3_2437_2437)},
1546 
1547 	{.regDmnEnum		= WOR3_WORLD,
1548 	 .conformanceTestLimit	= NO_CTL,
1549 	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1550 	 .pscan			= PSCAN_WWR,
1551 	 .flags			= ADHOC_PER_11D,
1552 	 .chan11a		= BM4(W1_5260_5320,
1553 				      W1_5180_5240,
1554 				      W1_5170_5230,
1555 				      W1_5745_5825),
1556 	 .chan11a_turbo		= BM3(WT1_5210_5250,
1557 				      WT1_5290_5290,
1558 				      WT1_5760_5800),
1559 	 .chan11b		= BM7(W1_2412_2412,
1560 				      W1_2437_2442,
1561 				      W1_2462_2462,
1562 				      W1_2472_2472,
1563 				      W1_2417_2432,
1564 				      W1_2447_2457,
1565 				      W1_2467_2467),
1566 	 .chan11g		= BM7(WG1_2412_2412,
1567 				      WG1_2437_2442,
1568 				      WG1_2462_2462,
1569 				      WG1_2472_2472,
1570 				      WG1_2417_2432,
1571 				      WG1_2447_2457,
1572 				      WG1_2467_2467),
1573 	 .chan11g_turbo		= BM1(T3_2437_2437)},
1574 
1575 	{.regDmnEnum		= WOR4_WORLD,
1576 	 .conformanceTestLimit	= NO_CTL,
1577 	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1578 	 .pscan			= PSCAN_WWR,
1579 	 .flags			= DISALLOW_ADHOC_11A,
1580 	 .chan11a		= BM4(W2_5260_5320,
1581 				      W2_5180_5240,
1582 				      F2_5745_5805,
1583 				      W2_5825_5825),
1584 	 .chan11a_turbo		= BM3(WT1_5210_5250,
1585 				      WT1_5290_5290,
1586 				      WT1_5760_5800),
1587 	 .chan11b		= BM5(W1_2412_2412,
1588 				      W1_2437_2442,
1589 				      W1_2462_2462,
1590 				      W1_2417_2432,
1591 				      W1_2447_2457),
1592 	 .chan11g		= BM5(WG1_2412_2412,
1593 				      WG1_2437_2442,
1594 				      WG1_2462_2462,
1595 				      WG1_2417_2432,
1596 				      WG1_2447_2457),
1597 	 .chan11g_turbo		= BM1(T3_2437_2437)},
1598 
1599 	{.regDmnEnum		= WOR5_ETSIC,
1600 	 .conformanceTestLimit	= NO_CTL,
1601 	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1602 	 .pscan			= PSCAN_WWR,
1603 	 .flags			= DISALLOW_ADHOC_11A,
1604 	 .chan11a		= BM3(W1_5260_5320, W2_5180_5240, F6_5745_5825),
1605 	 .chan11b		= BM7(W1_2412_2412,
1606 				      W1_2437_2442,
1607 				      W1_2462_2462,
1608 				      W2_2472_2472,
1609 				      W1_2417_2432,
1610 				      W1_2447_2457,
1611 				      W2_2467_2467),
1612 	 .chan11g		= BM7(WG1_2412_2412,
1613 				      WG1_2437_2442,
1614 				      WG1_2462_2462,
1615 				      WG2_2472_2472,
1616 				      WG1_2417_2432,
1617 				      WG1_2447_2457,
1618 				      WG2_2467_2467),
1619 	 .chan11g_turbo		= BM1(T3_2437_2437)},
1620 
1621 	{.regDmnEnum		= WOR9_WORLD,
1622 	 .conformanceTestLimit	= NO_CTL,
1623 	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1624 	 .pscan			= PSCAN_WWR,
1625 	 .flags			= DISALLOW_ADHOC_11A,
1626 	 .chan11a		= BM4(W1_5260_5320,
1627 				      W1_5180_5240,
1628 				      W1_5745_5825,
1629 				      W1_5500_5700),
1630 	 .chan11a_turbo		= BM3(WT1_5210_5250,
1631 				      WT1_5290_5290,
1632 				      WT1_5760_5800),
1633 	 .chan11b		= BM5(W1_2412_2412,
1634 				      W1_2437_2442,
1635 				      W1_2462_2462,
1636 				      W1_2417_2432,
1637 				      W1_2447_2457),
1638 	 .chan11g		= BM5(WG1_2412_2412,
1639 				      WG1_2437_2442,
1640 				      WG1_2462_2462,
1641 				      WG1_2417_2432,
1642 				      WG1_2447_2457),
1643 	 .chan11g_turbo		= BM1(T3_2437_2437)},
1644 
1645 	{.regDmnEnum		= WORA_WORLD,
1646 	 .conformanceTestLimit	= NO_CTL,
1647 	 .dfsMask		= DFS_FCC3 | DFS_ETSI,
1648 	 .pscan			= PSCAN_WWR,
1649 	 .flags			= DISALLOW_ADHOC_11A,
1650 	 .chan11a		= BM4(W1_5260_5320,
1651 				      W1_5180_5240,
1652 				      W1_5745_5825,
1653 				      W1_5500_5700),
1654 	 .chan11b		= BM7(W1_2412_2412,
1655 				      W1_2437_2442,
1656 				      W1_2462_2462,
1657 				      W1_2472_2472,
1658 				      W1_2417_2432,
1659 				      W1_2447_2457,
1660 				      W1_2467_2467),
1661 	 .chan11g		= BM7(WG1_2412_2412,
1662 				      WG1_2437_2442,
1663 				      WG1_2462_2462,
1664 				      WG1_2472_2472,
1665 				      WG1_2417_2432,
1666 				      WG1_2447_2457,
1667 				      WG1_2467_2467),
1668 	 .chan11g_turbo		= BM1(T3_2437_2437)},
1669 
1670 	{.regDmnEnum		= NULL1,
1671 	 .conformanceTestLimit	= NO_CTL,
1672 	}
1673 };
1674 
1675 struct cmode {
1676 	u_int	mode;
1677 	u_int	flags;
1678 };
1679 
1680 static const struct cmode modes[] = {
1681 	{ HAL_MODE_TURBO,	IEEE80211_CHAN_ST },
1682 	{ HAL_MODE_11A,		IEEE80211_CHAN_A },
1683 	{ HAL_MODE_11B,		IEEE80211_CHAN_B },
1684 	{ HAL_MODE_11G,		IEEE80211_CHAN_G },
1685 	{ HAL_MODE_11G_TURBO,	IEEE80211_CHAN_108G },
1686 	{ HAL_MODE_11A_TURBO,	IEEE80211_CHAN_108A },
1687 	{ HAL_MODE_11A_QUARTER_RATE,
1688 	  IEEE80211_CHAN_A | IEEE80211_CHAN_QUARTER },
1689 	{ HAL_MODE_11A_HALF_RATE,
1690 	  IEEE80211_CHAN_A | IEEE80211_CHAN_HALF },
1691 	{ HAL_MODE_11G_QUARTER_RATE,
1692 	  IEEE80211_CHAN_G | IEEE80211_CHAN_QUARTER },
1693 	{ HAL_MODE_11G_HALF_RATE,
1694 	  IEEE80211_CHAN_G | IEEE80211_CHAN_HALF },
1695 	{ HAL_MODE_11NG_HT20,	IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_HT20 },
1696 	{ HAL_MODE_11NG_HT40PLUS,
1697 	  IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_HT40U },
1698 	{ HAL_MODE_11NG_HT40MINUS,
1699 	  IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_HT40D },
1700 	{ HAL_MODE_11NA_HT20,	IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_HT20 },
1701 	{ HAL_MODE_11NA_HT40PLUS,
1702 	  IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_HT40U },
1703 	{ HAL_MODE_11NA_HT40MINUS,
1704 	  IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_HT40D },
1705 };
1706 
1707 static OS_INLINE uint16_t
1708 getEepromRD(struct ath_hal *ah)
1709 {
1710 	return AH_PRIVATE(ah)->ah_currentRD &~ WORLDWIDE_ROAMING_FLAG;
1711 }
1712 
1713 /*
1714  * Test to see if the bitmask array is all zeros
1715  */
1716 static HAL_BOOL
1717 isChanBitMaskZero(const uint64_t *bitmask)
1718 {
1719 #if BMLEN > 2
1720 #error	"add more cases"
1721 #endif
1722 #if BMLEN > 1
1723 	if (bitmask[1] != 0)
1724 		return AH_FALSE;
1725 #endif
1726 	return (bitmask[0] == 0);
1727 }
1728 
1729 /*
1730  * Return whether or not the regulatory domain/country in EEPROM
1731  * is acceptable.
1732  */
1733 static HAL_BOOL
1734 isEepromValid(struct ath_hal *ah)
1735 {
1736 	uint16_t rd = getEepromRD(ah);
1737 	int i;
1738 
1739 	if (rd & COUNTRY_ERD_FLAG) {
1740 		uint16_t cc = rd &~ COUNTRY_ERD_FLAG;
1741 		for (i = 0; i < N(allCountries); i++)
1742 			if (allCountries[i].countryCode == cc)
1743 				return AH_TRUE;
1744 	} else {
1745 		for (i = 0; i < N(regDomainPairs); i++)
1746 			if (regDomainPairs[i].regDmnEnum == rd)
1747 				return AH_TRUE;
1748 	}
1749 	HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1750 	    "%s: invalid regulatory domain/country code 0x%x\n", __func__, rd);
1751 	return AH_FALSE;
1752 }
1753 
1754 /*
1755  * Find the pointer to the country element in the country table
1756  * corresponding to the country code
1757  */
1758 static COUNTRY_CODE_TO_ENUM_RD*
1759 findCountry(HAL_CTRY_CODE countryCode)
1760 {
1761 	int i;
1762 
1763 	for (i = 0; i < N(allCountries); i++) {
1764 		if (allCountries[i].countryCode == countryCode)
1765 			return &allCountries[i];
1766 	}
1767 	return AH_NULL;
1768 }
1769 
1770 static REG_DOMAIN *
1771 findRegDmn(int regDmn)
1772 {
1773 	int i;
1774 
1775 	for (i = 0; i < N(regDomains); i++) {
1776 		if (regDomains[i].regDmnEnum == regDmn)
1777 			return &regDomains[i];
1778 	}
1779 	return AH_NULL;
1780 }
1781 
1782 static REG_DMN_PAIR_MAPPING *
1783 findRegDmnPair(int regDmnPair)
1784 {
1785 	int i;
1786 
1787 	if (regDmnPair != NO_ENUMRD) {
1788 		for (i = 0; i < N(regDomainPairs); i++) {
1789 			if (regDomainPairs[i].regDmnEnum == regDmnPair)
1790 				return &regDomainPairs[i];
1791 		}
1792 	}
1793 	return AH_NULL;
1794 }
1795 
1796 /*
1797  * Calculate a default country based on the EEPROM setting.
1798  */
1799 static HAL_CTRY_CODE
1800 getDefaultCountry(struct ath_hal *ah)
1801 {
1802 	REG_DMN_PAIR_MAPPING *regpair;
1803 	uint16_t rd;
1804 
1805 	rd = getEepromRD(ah);
1806 	if (rd & COUNTRY_ERD_FLAG) {
1807 		COUNTRY_CODE_TO_ENUM_RD *country;
1808 		uint16_t cc = rd & ~COUNTRY_ERD_FLAG;
1809 		country = findCountry(cc);
1810 		if (country != AH_NULL)
1811 			return cc;
1812 	}
1813 	/*
1814 	 * Check reg domains that have only one country
1815 	 */
1816 	regpair = findRegDmnPair(rd);
1817 	return (regpair != AH_NULL) ? regpair->singleCC : CTRY_DEFAULT;
1818 }
1819 
1820 static HAL_BOOL
1821 IS_BIT_SET(int bit, const uint64_t bitmask[])
1822 {
1823 	int byteOffset, bitnum;
1824 	uint64_t val;
1825 
1826 	byteOffset = bit/64;
1827 	bitnum = bit - byteOffset*64;
1828 	val = ((uint64_t) 1) << bitnum;
1829 	return (bitmask[byteOffset] & val) != 0;
1830 }
1831 
1832 static HAL_STATUS
1833 getregstate(struct ath_hal *ah, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn,
1834     COUNTRY_CODE_TO_ENUM_RD **pcountry,
1835     REG_DOMAIN **prd2GHz, REG_DOMAIN **prd5GHz)
1836 {
1837 	COUNTRY_CODE_TO_ENUM_RD *country;
1838 	REG_DOMAIN *rd5GHz, *rd2GHz;
1839 
1840 	if (cc == CTRY_DEFAULT && regDmn == SKU_NONE) {
1841 		/*
1842 		 * Validate the EEPROM setting and setup defaults
1843 		 */
1844 		if (!isEepromValid(ah)) {
1845 			/*
1846 			 * Don't return any channels if the EEPROM has an
1847 			 * invalid regulatory domain/country code setting.
1848 			 */
1849 			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1850 			    "%s: invalid EEPROM contents\n",__func__);
1851 			return HAL_EEBADREG;
1852 		}
1853 
1854 		cc = getDefaultCountry(ah);
1855 		country = findCountry(cc);
1856 		if (country == AH_NULL) {
1857 			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1858 			    "NULL Country!, cc %d\n", cc);
1859 			return HAL_EEBADCC;
1860 		}
1861 		regDmn = country->regDmnEnum;
1862 		HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: EEPROM cc %u rd 0x%x\n",
1863 		    __func__, cc, regDmn);
1864 
1865 		if (country->countryCode == CTRY_DEFAULT) {
1866 			/*
1867 			 * Check EEPROM; SKU may be for a country, single
1868 			 * domain, or multiple domains (WWR).
1869 			 */
1870 			uint16_t rdnum = getEepromRD(ah);
1871 			if ((rdnum & COUNTRY_ERD_FLAG) == 0 &&
1872 			    (findRegDmn(rdnum) != AH_NULL ||
1873 			     findRegDmnPair(rdnum) != AH_NULL)) {
1874 				regDmn = rdnum;
1875 				HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1876 				    "%s: EEPROM rd 0x%x\n", __func__, rdnum);
1877 			}
1878 		}
1879 	} else {
1880 		country = findCountry(cc);
1881 		if (country == AH_NULL) {
1882 			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1883 			    "unknown country, cc %d\n", cc);
1884 			return HAL_EINVAL;
1885 		}
1886 		if (regDmn == SKU_NONE)
1887 			regDmn = country->regDmnEnum;
1888 		HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: cc %u rd 0x%x\n",
1889 		    __func__, cc, regDmn);
1890 	}
1891 
1892 	/*
1893 	 * Setup per-band state.
1894 	 */
1895 	if ((regDmn & MULTI_DOMAIN_MASK) == 0) {
1896 		REG_DMN_PAIR_MAPPING *regpair = findRegDmnPair(regDmn);
1897 		if (regpair == AH_NULL) {
1898 			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1899 			    "%s: no reg domain pair %u for country %u\n",
1900 			    __func__, regDmn, country->countryCode);
1901 			return HAL_EINVAL;
1902 		}
1903 		rd5GHz = findRegDmn(regpair->regDmn5GHz);
1904 		if (rd5GHz == AH_NULL) {
1905 			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1906 			    "%s: no 5GHz reg domain %u for country %u\n",
1907 			    __func__, regpair->regDmn5GHz, country->countryCode);
1908 			return HAL_EINVAL;
1909 		}
1910 		rd2GHz = findRegDmn(regpair->regDmn2GHz);
1911 		if (rd2GHz == AH_NULL) {
1912 			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1913 			    "%s: no 2GHz reg domain %u for country %u\n",
1914 			    __func__, regpair->regDmn2GHz, country->countryCode);
1915 			return HAL_EINVAL;
1916 		}
1917 	} else {
1918 		rd5GHz = rd2GHz = findRegDmn(regDmn);
1919 		if (rd2GHz == AH_NULL) {
1920 			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1921 			    "%s: no unitary reg domain %u for country %u\n",
1922 			    __func__, regDmn, country->countryCode);
1923 			return HAL_EINVAL;
1924 		}
1925 	}
1926 	if (pcountry != AH_NULL)
1927 		*pcountry = country;
1928 	*prd2GHz = rd2GHz;
1929 	*prd5GHz = rd5GHz;
1930 	return HAL_OK;
1931 }
1932 
1933 /*
1934  * Construct the channel list for the specified regulatory config.
1935  */
1936 static HAL_STATUS
1937 getchannels(struct ath_hal *ah,
1938     struct ieee80211_channel chans[], u_int maxchans, int *nchans,
1939     u_int modeSelect, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn,
1940     HAL_BOOL enableExtendedChannels,
1941     COUNTRY_CODE_TO_ENUM_RD **pcountry,
1942     REG_DOMAIN **prd2GHz, REG_DOMAIN **prd5GHz)
1943 {
1944 #define CHANNEL_HALF_BW		10
1945 #define CHANNEL_QUARTER_BW	5
1946 #define	HAL_MODE_11A_ALL \
1947 	(HAL_MODE_11A | HAL_MODE_11A_TURBO | HAL_MODE_TURBO | \
1948 	 HAL_MODE_11A_QUARTER_RATE | HAL_MODE_11A_HALF_RATE)
1949 	REG_DOMAIN *rd5GHz, *rd2GHz;
1950 	u_int modesAvail;
1951 	const struct cmode *cm;
1952 	struct ieee80211_channel *ic;
1953 	int next, b;
1954 	HAL_STATUS status;
1955 
1956 	HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: cc %u regDmn 0x%x mode 0x%x%s\n",
1957 	    __func__, cc, regDmn, modeSelect,
1958 	    enableExtendedChannels ? " ecm" : "");
1959 
1960 	status = getregstate(ah, cc, regDmn, pcountry, &rd2GHz, &rd5GHz);
1961 	if (status != HAL_OK)
1962 		return status;
1963 
1964 	/* get modes that HW is capable of */
1965 	modesAvail = ath_hal_getWirelessModes(ah);
1966 	/* optimize work below if no 11a channels */
1967 	if (isChanBitMaskZero(rd5GHz->chan11a) &&
1968 	    (modesAvail & HAL_MODE_11A_ALL)) {
1969 		HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1970 		    "%s: disallow all 11a\n", __func__);
1971 		modesAvail &= ~HAL_MODE_11A_ALL;
1972 	}
1973 
1974 	next = 0;
1975 	ic = &chans[0];
1976 	for (cm = modes; cm < &modes[N(modes)]; cm++) {
1977 		uint16_t c, c_hi, c_lo;
1978 		uint64_t *channelBM = AH_NULL;
1979 		REG_DMN_FREQ_BAND *fband = AH_NULL,*freqs;
1980 		int low_adj, hi_adj, channelSep, lastc;
1981 		uint32_t rdflags;
1982 		uint64_t dfsMask;
1983 		uint64_t pscan;
1984 
1985 		if ((cm->mode & modeSelect) == 0) {
1986 			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1987 			    "%s: skip mode 0x%x flags 0x%x\n",
1988 			    __func__, cm->mode, cm->flags);
1989 			continue;
1990 		}
1991 		if ((cm->mode & modesAvail) == 0) {
1992 			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
1993 			    "%s: !avail mode 0x%x (0x%x) flags 0x%x\n",
1994 			    __func__, modesAvail, cm->mode, cm->flags);
1995 			continue;
1996 		}
1997 		if (!ath_hal_getChannelEdges(ah, cm->flags, &c_lo, &c_hi)) {
1998 			/* channel not supported by hardware, skip it */
1999 			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2000 			    "%s: channels 0x%x not supported by hardware\n",
2001 			    __func__,cm->flags);
2002 			continue;
2003 		}
2004 		switch (cm->mode) {
2005 		case HAL_MODE_TURBO:
2006 		case HAL_MODE_11A_TURBO:
2007 			rdflags = rd5GHz->flags;
2008 			dfsMask = rd5GHz->dfsMask;
2009 			pscan = rd5GHz->pscan;
2010 			if (cm->mode == HAL_MODE_TURBO)
2011 				channelBM = rd5GHz->chan11a_turbo;
2012 			else
2013 				channelBM = rd5GHz->chan11a_dyn_turbo;
2014 			freqs = &regDmn5GhzTurboFreq[0];
2015 			break;
2016 		case HAL_MODE_11G_TURBO:
2017 			rdflags = rd2GHz->flags;
2018 			dfsMask = rd2GHz->dfsMask;
2019 			pscan = rd2GHz->pscan;
2020 			channelBM = rd2GHz->chan11g_turbo;
2021 			freqs = &regDmn2Ghz11gTurboFreq[0];
2022 			break;
2023 		case HAL_MODE_11A:
2024 		case HAL_MODE_11A_HALF_RATE:
2025 		case HAL_MODE_11A_QUARTER_RATE:
2026 		case HAL_MODE_11NA_HT20:
2027 		case HAL_MODE_11NA_HT40PLUS:
2028 		case HAL_MODE_11NA_HT40MINUS:
2029 			rdflags = rd5GHz->flags;
2030 			dfsMask = rd5GHz->dfsMask;
2031 			pscan = rd5GHz->pscan;
2032 			if (cm->mode == HAL_MODE_11A_HALF_RATE)
2033 				channelBM = rd5GHz->chan11a_half;
2034 			else if (cm->mode == HAL_MODE_11A_QUARTER_RATE)
2035 				channelBM = rd5GHz->chan11a_quarter;
2036 			else
2037 				channelBM = rd5GHz->chan11a;
2038 			freqs = &regDmn5GhzFreq[0];
2039 			break;
2040 		case HAL_MODE_11B:
2041 		case HAL_MODE_11G:
2042 		case HAL_MODE_11G_HALF_RATE:
2043 		case HAL_MODE_11G_QUARTER_RATE:
2044 		case HAL_MODE_11NG_HT20:
2045 		case HAL_MODE_11NG_HT40PLUS:
2046 		case HAL_MODE_11NG_HT40MINUS:
2047 			rdflags = rd2GHz->flags;
2048 			dfsMask = rd2GHz->dfsMask;
2049 			pscan = rd2GHz->pscan;
2050 			if (cm->mode == HAL_MODE_11G_HALF_RATE)
2051 				channelBM = rd2GHz->chan11g_half;
2052 			else if (cm->mode == HAL_MODE_11G_QUARTER_RATE)
2053 				channelBM = rd2GHz->chan11g_quarter;
2054 			else if (cm->mode == HAL_MODE_11B)
2055 				channelBM = rd2GHz->chan11b;
2056 			else
2057 				channelBM = rd2GHz->chan11g;
2058 			if (cm->mode == HAL_MODE_11B)
2059 				freqs = &regDmn2GhzFreq[0];
2060 			else
2061 				freqs = &regDmn2Ghz11gFreq[0];
2062 			break;
2063 		default:
2064 			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2065 			    "%s: Unkonwn HAL mode 0x%x\n", __func__, cm->mode);
2066 			continue;
2067 		}
2068 		if (isChanBitMaskZero(channelBM))
2069 			continue;
2070 		/*
2071 		 * Setup special handling for HT40 channels; e.g.
2072 		 * 5G HT40 channels require 40Mhz channel separation.
2073 		 */
2074 		hi_adj = (cm->mode == HAL_MODE_11NA_HT40PLUS ||
2075 		    cm->mode == HAL_MODE_11NG_HT40PLUS) ? -20 : 0;
2076 		low_adj = (cm->mode == HAL_MODE_11NA_HT40MINUS ||
2077 		    cm->mode == HAL_MODE_11NG_HT40MINUS) ? 20 : 0;
2078 		channelSep = (cm->mode == HAL_MODE_11NA_HT40PLUS ||
2079 		    cm->mode == HAL_MODE_11NA_HT40MINUS) ? 40 : 0;
2080 
2081 		for (b = 0; b < 64*BMLEN; b++) {
2082 			if (!IS_BIT_SET(b, channelBM))
2083 				continue;
2084 			fband = &freqs[b];
2085 			lastc = 0;
2086 
2087 			for (c = fband->lowChannel + low_adj;
2088 			     c <= fband->highChannel + hi_adj;
2089 			     c += fband->channelSep) {
2090 				if (!(c_lo <= c && c <= c_hi)) {
2091 					HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2092 					    "%s: c %u out of range [%u..%u]\n",
2093 					    __func__, c, c_lo, c_hi);
2094 					continue;
2095 				}
2096 				if (next >= maxchans){
2097 					HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2098 					    "%s: too many channels for channel table\n",
2099 					    __func__);
2100 					goto done;
2101 				}
2102 				if ((fband->usePassScan & IS_ECM_CHAN) &&
2103 				    !enableExtendedChannels) {
2104 					HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2105 					    "skip ecm channel\n");
2106 					continue;
2107 				}
2108 				if ((fband->useDfs & dfsMask) &&
2109 				    (cm->flags & IEEE80211_CHAN_HT40)) {
2110 					/* NB: DFS and HT40 don't mix */
2111 					HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2112 					    "skip HT40 chan, DFS required\n");
2113 					continue;
2114 				}
2115 				/*
2116 				 * Make sure that channel separation
2117 				 * meets the requirement.
2118 				 */
2119 				if (lastc && channelSep &&
2120 				    (c-lastc) < channelSep)
2121 					continue;
2122 				lastc = c;
2123 
2124 				OS_MEMZERO(ic, sizeof(*ic));
2125 				ic->ic_freq = c;
2126 				ic->ic_flags = cm->flags;
2127 				ic->ic_maxregpower = fband->powerDfs;
2128 				ath_hal_getpowerlimits(ah, ic);
2129 				ic->ic_maxantgain = fband->antennaMax;
2130 				if (fband->usePassScan & pscan)
2131 					ic->ic_flags |= IEEE80211_CHAN_PASSIVE;
2132 				if (fband->useDfs & dfsMask)
2133 					ic->ic_flags |= IEEE80211_CHAN_DFS;
2134 				if (IEEE80211_IS_CHAN_5GHZ(ic) &&
2135 				    (rdflags & DISALLOW_ADHOC_11A))
2136 					ic->ic_flags |= IEEE80211_CHAN_NOADHOC;
2137 				if (IEEE80211_IS_CHAN_TURBO(ic) &&
2138 				    (rdflags & DISALLOW_ADHOC_11A_TURB))
2139 					ic->ic_flags |= IEEE80211_CHAN_NOADHOC;
2140 				if (rdflags & NO_HOSTAP)
2141 					ic->ic_flags |= IEEE80211_CHAN_NOHOSTAP;
2142 				if (rdflags & LIMIT_FRAME_4MS)
2143 					ic->ic_flags |= IEEE80211_CHAN_4MSXMIT;
2144 				if (rdflags & NEED_NFC)
2145 					ic->ic_flags |= CHANNEL_NFCREQUIRED;
2146 
2147 				ic++, next++;
2148 			}
2149 		}
2150 	}
2151 done:
2152 	*nchans = next;
2153 	/* NB: pcountry set above by getregstate */
2154 	if (prd2GHz != AH_NULL)
2155 		*prd2GHz = rd2GHz;
2156 	if (prd5GHz != AH_NULL)
2157 		*prd5GHz = rd5GHz;
2158 	return HAL_OK;
2159 #undef HAL_MODE_11A_ALL
2160 #undef CHANNEL_HALF_BW
2161 #undef CHANNEL_QUARTER_BW
2162 }
2163 
2164 /*
2165  * Retrieve a channel list without affecting runtime state.
2166  */
2167 HAL_STATUS
2168 ath_hal_getchannels(struct ath_hal *ah,
2169     struct ieee80211_channel chans[], u_int maxchans, int *nchans,
2170     u_int modeSelect, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn,
2171     HAL_BOOL enableExtendedChannels)
2172 {
2173 	return getchannels(ah, chans, maxchans, nchans, modeSelect,
2174 	    cc, regDmn, enableExtendedChannels, AH_NULL, AH_NULL, AH_NULL);
2175 }
2176 
2177 /*
2178  * Handle frequency mapping from 900Mhz range to 2.4GHz range
2179  * for GSM radios.  This is done when we need the h/w frequency
2180  * and the channel is marked IEEE80211_CHAN_GSM.
2181  */
2182 static int
2183 ath_hal_mapgsm(int sku, int freq)
2184 {
2185 	if (sku == SKU_XR9)
2186 		return 1520 + freq;
2187 	if (sku == SKU_GZ901)
2188 		return 1544 + freq;
2189 	if (sku == SKU_SR9)
2190 		return 3344 - freq;
2191 	HALDEBUG(AH_NULL, HAL_DEBUG_ANY,
2192 	    "%s: cannot map freq %u unknown gsm sku %u\n",
2193 	    __func__, freq, sku);
2194 	return freq;
2195 }
2196 
2197 /*
2198  * Setup the internal/private channel state given a table of
2199  * net80211 channels.  We collapse entries for the same frequency
2200  * and record the frequency for doing noise floor processing
2201  * where we don't have net80211 channel context.
2202  */
2203 static HAL_BOOL
2204 assignPrivateChannels(struct ath_hal *ah,
2205 	struct ieee80211_channel chans[], int nchans, int sku)
2206 {
2207 	HAL_CHANNEL_INTERNAL *ic;
2208 	int i, j, next, freq;
2209 
2210 	next = 0;
2211 	for (i = 0; i < nchans; i++) {
2212 		struct ieee80211_channel *c = &chans[i];
2213 		for (j = i-1; j >= 0; j--)
2214 			if (chans[j].ic_freq == c->ic_freq) {
2215 				c->ic_devdata = chans[j].ic_devdata;
2216 				break;
2217 			}
2218 		if (j < 0) {
2219 			/* new entry, assign a private channel entry */
2220 			if (next >= N(AH_PRIVATE(ah)->ah_channels)) {
2221 				HALDEBUG(ah, HAL_DEBUG_ANY,
2222 				    "%s: too many channels, max %u\n",
2223 				    __func__, N(AH_PRIVATE(ah)->ah_channels));
2224 				return AH_FALSE;
2225 			}
2226 			/*
2227 			 * Handle frequency mapping for 900MHz devices.
2228 			 * The hardware uses 2.4GHz frequencies that are
2229 			 * down-converted.  The 802.11 layer uses the
2230 			 * true frequencies.
2231 			 */
2232 			freq = IEEE80211_IS_CHAN_GSM(c) ?
2233 			    ath_hal_mapgsm(sku, c->ic_freq) : c->ic_freq;
2234 
2235 			HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
2236 			    "%s: private[%3u] %u/0x%x -> channel %u\n",
2237 			    __func__, next, c->ic_freq, c->ic_flags, freq);
2238 
2239 			ic = &AH_PRIVATE(ah)->ah_channels[next];
2240 			/*
2241 			 * NB: This clears privFlags which means ancillary
2242 			 *     code like ANI and IQ calibration will be
2243 			 *     restarted and re-setup any per-channel state.
2244 			 */
2245 			OS_MEMZERO(ic, sizeof(*ic));
2246 			ic->channel = freq;
2247 			c->ic_devdata = next;
2248 			next++;
2249 		}
2250 	}
2251 	AH_PRIVATE(ah)->ah_nchan = next;
2252 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: %u public, %u private channels\n",
2253 	    __func__, nchans, next);
2254 	return AH_TRUE;
2255 }
2256 
2257 /*
2258  * Setup the channel list based on the information in the EEPROM.
2259  */
2260 HAL_STATUS
2261 ath_hal_init_channels(struct ath_hal *ah,
2262     struct ieee80211_channel chans[], u_int maxchans, int *nchans,
2263     u_int modeSelect, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn,
2264     HAL_BOOL enableExtendedChannels)
2265 {
2266 	COUNTRY_CODE_TO_ENUM_RD *country;
2267 	REG_DOMAIN *rd5GHz, *rd2GHz;
2268 	HAL_STATUS status;
2269 
2270 	status = getchannels(ah, chans, maxchans, nchans, modeSelect,
2271 	    cc, regDmn, enableExtendedChannels, &country, &rd2GHz, &rd5GHz);
2272 	if (status == HAL_OK &&
2273 	    assignPrivateChannels(ah, chans, *nchans, AH_PRIVATE(ah)->ah_currentRD)) {
2274 		AH_PRIVATE(ah)->ah_rd2GHz = rd2GHz;
2275 		AH_PRIVATE(ah)->ah_rd5GHz = rd5GHz;
2276 
2277 		ah->ah_countryCode = country->countryCode;
2278 		HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: cc %u\n",
2279 		    __func__, ah->ah_countryCode);
2280 	} else
2281 		status = HAL_EINVAL;
2282 	return status;
2283 }
2284 
2285 /*
2286  * Set the channel list.
2287  */
2288 HAL_STATUS
2289 ath_hal_set_channels(struct ath_hal *ah,
2290     struct ieee80211_channel chans[], int nchans,
2291     HAL_CTRY_CODE cc, HAL_REG_DOMAIN rd)
2292 {
2293 	COUNTRY_CODE_TO_ENUM_RD *country;
2294 	REG_DOMAIN *rd5GHz, *rd2GHz;
2295 	HAL_STATUS status;
2296 
2297 	switch (rd) {
2298 	case SKU_SR9:
2299 	case SKU_XR9:
2300 	case SKU_GZ901:
2301 		/*
2302 		 * Map 900MHz sku's.  The frequencies will be mapped
2303 		 * according to the sku to compensate for the down-converter.
2304 		 * We use the FCC for these sku's as the mapped channel
2305 		 * list is known compatible (will need to change if/when
2306 		 * vendors do different mapping in different locales).
2307 		 */
2308 		status = getregstate(ah, CTRY_DEFAULT, SKU_FCC,
2309 		    &country, &rd2GHz, &rd5GHz);
2310 		break;
2311 	default:
2312 		status = getregstate(ah, cc, rd,
2313 		    &country, &rd2GHz, &rd5GHz);
2314 		rd = AH_PRIVATE(ah)->ah_currentRD;
2315 		break;
2316 	}
2317 	if (status == HAL_OK && assignPrivateChannels(ah, chans, nchans, rd)) {
2318 		AH_PRIVATE(ah)->ah_rd2GHz = rd2GHz;
2319 		AH_PRIVATE(ah)->ah_rd5GHz = rd5GHz;
2320 
2321 		ah->ah_countryCode = country->countryCode;
2322 		HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: cc %u\n",
2323 		    __func__, ah->ah_countryCode);
2324 	} else
2325 		status = HAL_EINVAL;
2326 	return status;
2327 }
2328 
2329 #ifdef AH_DEBUG
2330 /*
2331  * Return the internal channel corresponding to a public channel.
2332  * NB: normally this routine is inline'd (see ah_internal.h)
2333  */
2334 HAL_CHANNEL_INTERNAL *
2335 ath_hal_checkchannel(struct ath_hal *ah, const struct ieee80211_channel *c)
2336 {
2337 	HAL_CHANNEL_INTERNAL *cc = &AH_PRIVATE(ah)->ah_channels[c->ic_devdata];
2338 
2339 	if (c->ic_devdata < AH_PRIVATE(ah)->ah_nchan &&
2340 	    (c->ic_freq == cc->channel || IEEE80211_IS_CHAN_GSM(c)))
2341 		return cc;
2342 	if (c->ic_devdata >= AH_PRIVATE(ah)->ah_nchan) {
2343 		HALDEBUG(ah, HAL_DEBUG_ANY,
2344 		    "%s: bad mapping, devdata %u nchans %u\n",
2345 		   __func__, c->ic_devdata, AH_PRIVATE(ah)->ah_nchan);
2346 		HALASSERT(c->ic_devdata < AH_PRIVATE(ah)->ah_nchan);
2347 	} else {
2348 		HALDEBUG(ah, HAL_DEBUG_ANY,
2349 		    "%s: no match for %u/0x%x devdata %u channel %u\n",
2350 		   __func__, c->ic_freq, c->ic_flags, c->ic_devdata,
2351 		   cc->channel);
2352 		HALASSERT(c->ic_freq == cc->channel || IEEE80211_IS_CHAN_GSM(c));
2353 	}
2354 	return AH_NULL;
2355 }
2356 #endif /* AH_DEBUG */
2357 
2358 #define isWwrSKU(_ah) \
2359 	((getEepromRD((_ah)) & WORLD_SKU_MASK) == WORLD_SKU_PREFIX || \
2360 	  getEepromRD(_ah) == WORLD)
2361 
2362 /*
2363  * Return the test group for the specific channel based on
2364  * the current regulatory setup.
2365  */
2366 u_int
2367 ath_hal_getctl(struct ath_hal *ah, const struct ieee80211_channel *c)
2368 {
2369 	u_int ctl;
2370 
2371 	if (AH_PRIVATE(ah)->ah_rd2GHz == AH_PRIVATE(ah)->ah_rd5GHz ||
2372 	    (ah->ah_countryCode == CTRY_DEFAULT && isWwrSKU(ah)))
2373 		ctl = SD_NO_CTL;
2374 	else if (IEEE80211_IS_CHAN_2GHZ(c))
2375 		ctl = AH_PRIVATE(ah)->ah_rd2GHz->conformanceTestLimit;
2376 	else
2377 		ctl = AH_PRIVATE(ah)->ah_rd5GHz->conformanceTestLimit;
2378 	if (IEEE80211_IS_CHAN_B(c))
2379 		return ctl | CTL_11B;
2380 	if (IEEE80211_IS_CHAN_G(c))
2381 		return ctl | CTL_11G;
2382 	if (IEEE80211_IS_CHAN_108G(c))
2383 		return ctl | CTL_108G;
2384 	if (IEEE80211_IS_CHAN_TURBO(c))
2385 		return ctl | CTL_TURBO;
2386 	if (IEEE80211_IS_CHAN_A(c))
2387 		return ctl | CTL_11A;
2388 	return ctl;
2389 }
2390 
2391 /*
2392  * Return the max allowed antenna gain and apply any regulatory
2393  * domain specific changes.
2394  *
2395  * NOTE: a negative reduction is possible in RD's that only
2396  * measure radiated power (e.g., ETSI) which would increase
2397  * that actual conducted output power (though never beyond
2398  * the calibrated target power).
2399  */
2400 u_int
2401 ath_hal_getantennareduction(struct ath_hal *ah,
2402     const struct ieee80211_channel *chan, u_int twiceGain)
2403 {
2404 	int8_t antennaMax = twiceGain - chan->ic_maxantgain*2;
2405 	return (antennaMax < 0) ? 0 : antennaMax;
2406 }
2407