xref: /freebsd/sys/dev/ath/ath_hal/ah.c (revision f5f7c05209ca2c3748fd8b27c5e80ffad49120eb)
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 #include "ah_devid.h"
24 #include "ah_eeprom.h"			/* for 5ghz fast clock flag */
25 
26 #include "ar5416/ar5416reg.h"		/* NB: includes ar5212reg.h */
27 #include "ar9003/ar9300_devid.h"
28 
29 /* linker set of registered chips */
30 OS_SET_DECLARE(ah_chips, struct ath_hal_chip);
31 
32 /*
33  * Check the set of registered chips to see if any recognize
34  * the device as one they can support.
35  */
36 const char*
37 ath_hal_probe(uint16_t vendorid, uint16_t devid)
38 {
39 	struct ath_hal_chip * const *pchip;
40 
41 	OS_SET_FOREACH(pchip, ah_chips) {
42 		const char *name = (*pchip)->probe(vendorid, devid);
43 		if (name != AH_NULL)
44 			return name;
45 	}
46 	return AH_NULL;
47 }
48 
49 /*
50  * Attach detects device chip revisions, initializes the hwLayer
51  * function list, reads EEPROM information,
52  * selects reset vectors, and performs a short self test.
53  * Any failures will return an error that should cause a hardware
54  * disable.
55  */
56 struct ath_hal*
57 ath_hal_attach(uint16_t devid, HAL_SOFTC sc,
58 	HAL_BUS_TAG st, HAL_BUS_HANDLE sh, uint16_t *eepromdata, HAL_STATUS *error)
59 {
60 	struct ath_hal_chip * const *pchip;
61 
62 	OS_SET_FOREACH(pchip, ah_chips) {
63 		struct ath_hal_chip *chip = *pchip;
64 		struct ath_hal *ah;
65 
66 		/* XXX don't have vendorid, assume atheros one works */
67 		if (chip->probe(ATHEROS_VENDOR_ID, devid) == AH_NULL)
68 			continue;
69 		ah = chip->attach(devid, sc, st, sh, eepromdata, error);
70 		if (ah != AH_NULL) {
71 			/* copy back private state to public area */
72 			ah->ah_devid = AH_PRIVATE(ah)->ah_devid;
73 			ah->ah_subvendorid = AH_PRIVATE(ah)->ah_subvendorid;
74 			ah->ah_macVersion = AH_PRIVATE(ah)->ah_macVersion;
75 			ah->ah_macRev = AH_PRIVATE(ah)->ah_macRev;
76 			ah->ah_phyRev = AH_PRIVATE(ah)->ah_phyRev;
77 			ah->ah_analog5GhzRev = AH_PRIVATE(ah)->ah_analog5GhzRev;
78 			ah->ah_analog2GhzRev = AH_PRIVATE(ah)->ah_analog2GhzRev;
79 			return ah;
80 		}
81 	}
82 	return AH_NULL;
83 }
84 
85 const char *
86 ath_hal_mac_name(struct ath_hal *ah)
87 {
88 	switch (ah->ah_macVersion) {
89 	case AR_SREV_VERSION_CRETE:
90 	case AR_SREV_VERSION_MAUI_1:
91 		return "5210";
92 	case AR_SREV_VERSION_MAUI_2:
93 	case AR_SREV_VERSION_OAHU:
94 		return "5211";
95 	case AR_SREV_VERSION_VENICE:
96 		return "5212";
97 	case AR_SREV_VERSION_GRIFFIN:
98 		return "2413";
99 	case AR_SREV_VERSION_CONDOR:
100 		return "5424";
101 	case AR_SREV_VERSION_EAGLE:
102 		return "5413";
103 	case AR_SREV_VERSION_COBRA:
104 		return "2415";
105 	case AR_SREV_2425:	/* Swan */
106 		return "2425";
107 	case AR_SREV_2417:	/* Nala */
108 		return "2417";
109 	case AR_XSREV_VERSION_OWL_PCI:
110 		return "5416";
111 	case AR_XSREV_VERSION_OWL_PCIE:
112 		return "5418";
113 	case AR_XSREV_VERSION_HOWL:
114 		return "9130";
115 	case AR_XSREV_VERSION_SOWL:
116 		return "9160";
117 	case AR_XSREV_VERSION_MERLIN:
118 		if (AH_PRIVATE(ah)->ah_ispcie)
119 			return "9280";
120 		return "9220";
121 	case AR_XSREV_VERSION_KITE:
122 		return "9285";
123 	case AR_XSREV_VERSION_KIWI:
124 		if (AH_PRIVATE(ah)->ah_ispcie)
125 			return "9287";
126 		return "9227";
127 	case AR_SREV_VERSION_AR9380:
128 		if (ah->ah_macRev >= AR_SREV_REVISION_AR9580_10)
129 			return "9580";
130 		return "9380";
131 	case AR_SREV_VERSION_AR9460:
132 		return "9460";
133 	case AR_SREV_VERSION_AR9330:
134 		return "9330";
135 	case AR_SREV_VERSION_AR9340:
136 		return "9340";
137 	case AR_SREV_VERSION_QCA9550:
138 		/* XXX should say QCA, not AR */
139 		return "9550";
140 	case AR_SREV_VERSION_AR9485:
141 		return "9485";
142 	}
143 	return "????";
144 }
145 
146 /*
147  * Return the mask of available modes based on the hardware capabilities.
148  */
149 u_int
150 ath_hal_getwirelessmodes(struct ath_hal*ah)
151 {
152 	return ath_hal_getWirelessModes(ah);
153 }
154 
155 /* linker set of registered RF backends */
156 OS_SET_DECLARE(ah_rfs, struct ath_hal_rf);
157 
158 /*
159  * Check the set of registered RF backends to see if
160  * any recognize the device as one they can support.
161  */
162 struct ath_hal_rf *
163 ath_hal_rfprobe(struct ath_hal *ah, HAL_STATUS *ecode)
164 {
165 	struct ath_hal_rf * const *prf;
166 
167 	OS_SET_FOREACH(prf, ah_rfs) {
168 		struct ath_hal_rf *rf = *prf;
169 		if (rf->probe(ah))
170 			return rf;
171 	}
172 	*ecode = HAL_ENOTSUPP;
173 	return AH_NULL;
174 }
175 
176 const char *
177 ath_hal_rf_name(struct ath_hal *ah)
178 {
179 	switch (ah->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR) {
180 	case 0:			/* 5210 */
181 		return "5110";	/* NB: made up */
182 	case AR_RAD5111_SREV_MAJOR:
183 	case AR_RAD5111_SREV_PROD:
184 		return "5111";
185 	case AR_RAD2111_SREV_MAJOR:
186 		return "2111";
187 	case AR_RAD5112_SREV_MAJOR:
188 	case AR_RAD5112_SREV_2_0:
189 	case AR_RAD5112_SREV_2_1:
190 		return "5112";
191 	case AR_RAD2112_SREV_MAJOR:
192 	case AR_RAD2112_SREV_2_0:
193 	case AR_RAD2112_SREV_2_1:
194 		return "2112";
195 	case AR_RAD2413_SREV_MAJOR:
196 		return "2413";
197 	case AR_RAD5413_SREV_MAJOR:
198 		return "5413";
199 	case AR_RAD2316_SREV_MAJOR:
200 		return "2316";
201 	case AR_RAD2317_SREV_MAJOR:
202 		return "2317";
203 	case AR_RAD5424_SREV_MAJOR:
204 		return "5424";
205 
206 	case AR_RAD5133_SREV_MAJOR:
207 		return "5133";
208 	case AR_RAD2133_SREV_MAJOR:
209 		return "2133";
210 	case AR_RAD5122_SREV_MAJOR:
211 		return "5122";
212 	case AR_RAD2122_SREV_MAJOR:
213 		return "2122";
214 	}
215 	return "????";
216 }
217 
218 /*
219  * Poll the register looking for a specific value.
220  */
221 HAL_BOOL
222 ath_hal_wait(struct ath_hal *ah, u_int reg, uint32_t mask, uint32_t val)
223 {
224 #define	AH_TIMEOUT	1000
225 	return ath_hal_waitfor(ah, reg, mask, val, AH_TIMEOUT);
226 #undef AH_TIMEOUT
227 }
228 
229 HAL_BOOL
230 ath_hal_waitfor(struct ath_hal *ah, u_int reg, uint32_t mask, uint32_t val, uint32_t timeout)
231 {
232 	int i;
233 
234 	for (i = 0; i < timeout; i++) {
235 		if ((OS_REG_READ(ah, reg) & mask) == val)
236 			return AH_TRUE;
237 		OS_DELAY(10);
238 	}
239 	HALDEBUG(ah, HAL_DEBUG_REGIO | HAL_DEBUG_PHYIO,
240 	    "%s: timeout on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
241 	    __func__, reg, OS_REG_READ(ah, reg), mask, val);
242 	return AH_FALSE;
243 }
244 
245 /*
246  * Reverse the bits starting at the low bit for a value of
247  * bit_count in size
248  */
249 uint32_t
250 ath_hal_reverseBits(uint32_t val, uint32_t n)
251 {
252 	uint32_t retval;
253 	int i;
254 
255 	for (i = 0, retval = 0; i < n; i++) {
256 		retval = (retval << 1) | (val & 1);
257 		val >>= 1;
258 	}
259 	return retval;
260 }
261 
262 /* 802.11n related timing definitions */
263 
264 #define	OFDM_PLCP_BITS	22
265 #define	HT_L_STF	8
266 #define	HT_L_LTF	8
267 #define	HT_L_SIG	4
268 #define	HT_SIG		8
269 #define	HT_STF		4
270 #define	HT_LTF(n)	((n) * 4)
271 
272 #define	HT_RC_2_MCS(_rc)	((_rc) & 0xf)
273 #define	HT_RC_2_STREAMS(_rc)	((((_rc) & 0x78) >> 3) + 1)
274 #define	IS_HT_RATE(_rc)		( (_rc) & IEEE80211_RATE_MCS)
275 
276 /*
277  * Calculate the duration of a packet whether it is 11n or legacy.
278  */
279 uint32_t
280 ath_hal_pkt_txtime(struct ath_hal *ah, const HAL_RATE_TABLE *rates, uint32_t frameLen,
281     uint16_t rateix, HAL_BOOL isht40, HAL_BOOL shortPreamble)
282 {
283 	uint8_t rc;
284 	int numStreams;
285 
286 	rc = rates->info[rateix].rateCode;
287 
288 	/* Legacy rate? Return the old way */
289 	if (! IS_HT_RATE(rc))
290 		return ath_hal_computetxtime(ah, rates, frameLen, rateix, shortPreamble);
291 
292 	/* 11n frame - extract out the number of spatial streams */
293 	numStreams = HT_RC_2_STREAMS(rc);
294 	KASSERT(numStreams > 0 && numStreams <= 4,
295 	    ("number of spatial streams needs to be 1..3: MCS rate 0x%x!",
296 	    rateix));
297 
298 	return ath_computedur_ht(frameLen, rc, numStreams, isht40, shortPreamble);
299 }
300 
301 static const uint16_t ht20_bps[32] = {
302     26, 52, 78, 104, 156, 208, 234, 260,
303     52, 104, 156, 208, 312, 416, 468, 520,
304     78, 156, 234, 312, 468, 624, 702, 780,
305     104, 208, 312, 416, 624, 832, 936, 1040
306 };
307 static const uint16_t ht40_bps[32] = {
308     54, 108, 162, 216, 324, 432, 486, 540,
309     108, 216, 324, 432, 648, 864, 972, 1080,
310     162, 324, 486, 648, 972, 1296, 1458, 1620,
311     216, 432, 648, 864, 1296, 1728, 1944, 2160
312 };
313 
314 /*
315  * Calculate the transmit duration of an 11n frame.
316  */
317 uint32_t
318 ath_computedur_ht(uint32_t frameLen, uint16_t rate, int streams,
319     HAL_BOOL isht40, HAL_BOOL isShortGI)
320 {
321 	uint32_t bitsPerSymbol, numBits, numSymbols, txTime;
322 
323 	KASSERT(rate & IEEE80211_RATE_MCS, ("not mcs %d", rate));
324 	KASSERT((rate &~ IEEE80211_RATE_MCS) < 31, ("bad mcs 0x%x", rate));
325 
326 	if (isht40)
327 		bitsPerSymbol = ht40_bps[rate & 0xf];
328 	else
329 		bitsPerSymbol = ht20_bps[rate & 0xf];
330 	numBits = OFDM_PLCP_BITS + (frameLen << 3);
331 	numSymbols = howmany(numBits, bitsPerSymbol);
332 	if (isShortGI)
333 		txTime = ((numSymbols * 18) + 4) / 5;   /* 3.6us */
334 	else
335 		txTime = numSymbols * 4;                /* 4us */
336 	return txTime + HT_L_STF + HT_L_LTF +
337 	    HT_L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
338 }
339 
340 /*
341  * Compute the time to transmit a frame of length frameLen bytes
342  * using the specified rate, phy, and short preamble setting.
343  */
344 uint16_t
345 ath_hal_computetxtime(struct ath_hal *ah,
346 	const HAL_RATE_TABLE *rates, uint32_t frameLen, uint16_t rateix,
347 	HAL_BOOL shortPreamble)
348 {
349 	uint32_t bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
350 	uint32_t kbps;
351 
352 	/* Warn if this function is called for 11n rates; it should not be! */
353 	if (IS_HT_RATE(rates->info[rateix].rateCode))
354 		ath_hal_printf(ah, "%s: MCS rate? (index %d; hwrate 0x%x)\n",
355 		    __func__, rateix, rates->info[rateix].rateCode);
356 
357 	kbps = rates->info[rateix].rateKbps;
358 	/*
359 	 * index can be invalid duting dynamic Turbo transitions.
360 	 * XXX
361 	 */
362 	if (kbps == 0)
363 		return 0;
364 	switch (rates->info[rateix].phy) {
365 	case IEEE80211_T_CCK:
366 		phyTime		= CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
367 		if (shortPreamble && rates->info[rateix].shortPreamble)
368 			phyTime >>= 1;
369 		numBits		= frameLen << 3;
370 		txTime		= CCK_SIFS_TIME + phyTime
371 				+ ((numBits * 1000)/kbps);
372 		break;
373 	case IEEE80211_T_OFDM:
374 		bitsPerSymbol	= (kbps * OFDM_SYMBOL_TIME) / 1000;
375 		HALASSERT(bitsPerSymbol != 0);
376 
377 		numBits		= OFDM_PLCP_BITS + (frameLen << 3);
378 		numSymbols	= howmany(numBits, bitsPerSymbol);
379 		txTime		= OFDM_SIFS_TIME
380 				+ OFDM_PREAMBLE_TIME
381 				+ (numSymbols * OFDM_SYMBOL_TIME);
382 		break;
383 	case IEEE80211_T_OFDM_HALF:
384 		bitsPerSymbol	= (kbps * OFDM_HALF_SYMBOL_TIME) / 1000;
385 		HALASSERT(bitsPerSymbol != 0);
386 
387 		numBits		= OFDM_HALF_PLCP_BITS + (frameLen << 3);
388 		numSymbols	= howmany(numBits, bitsPerSymbol);
389 		txTime		= OFDM_HALF_SIFS_TIME
390 				+ OFDM_HALF_PREAMBLE_TIME
391 				+ (numSymbols * OFDM_HALF_SYMBOL_TIME);
392 		break;
393 	case IEEE80211_T_OFDM_QUARTER:
394 		bitsPerSymbol	= (kbps * OFDM_QUARTER_SYMBOL_TIME) / 1000;
395 		HALASSERT(bitsPerSymbol != 0);
396 
397 		numBits		= OFDM_QUARTER_PLCP_BITS + (frameLen << 3);
398 		numSymbols	= howmany(numBits, bitsPerSymbol);
399 		txTime		= OFDM_QUARTER_SIFS_TIME
400 				+ OFDM_QUARTER_PREAMBLE_TIME
401 				+ (numSymbols * OFDM_QUARTER_SYMBOL_TIME);
402 		break;
403 	case IEEE80211_T_TURBO:
404 		bitsPerSymbol	= (kbps * TURBO_SYMBOL_TIME) / 1000;
405 		HALASSERT(bitsPerSymbol != 0);
406 
407 		numBits		= TURBO_PLCP_BITS + (frameLen << 3);
408 		numSymbols	= howmany(numBits, bitsPerSymbol);
409 		txTime		= TURBO_SIFS_TIME
410 				+ TURBO_PREAMBLE_TIME
411 				+ (numSymbols * TURBO_SYMBOL_TIME);
412 		break;
413 	default:
414 		HALDEBUG(ah, HAL_DEBUG_PHYIO,
415 		    "%s: unknown phy %u (rate ix %u)\n",
416 		    __func__, rates->info[rateix].phy, rateix);
417 		txTime = 0;
418 		break;
419 	}
420 	return txTime;
421 }
422 
423 int
424 ath_hal_get_curmode(struct ath_hal *ah, const struct ieee80211_channel *chan)
425 {
426 	/*
427 	 * Pick a default mode at bootup. A channel change is inevitable.
428 	 */
429 	if (!chan)
430 		return HAL_MODE_11NG_HT20;
431 
432 	if (IEEE80211_IS_CHAN_TURBO(chan))
433 		return HAL_MODE_TURBO;
434 
435 	/* check for NA_HT before plain A, since IS_CHAN_A includes NA_HT */
436 	if (IEEE80211_IS_CHAN_5GHZ(chan) && IEEE80211_IS_CHAN_HT20(chan))
437 		return HAL_MODE_11NA_HT20;
438 	if (IEEE80211_IS_CHAN_5GHZ(chan) && IEEE80211_IS_CHAN_HT40U(chan))
439 		return HAL_MODE_11NA_HT40PLUS;
440 	if (IEEE80211_IS_CHAN_5GHZ(chan) && IEEE80211_IS_CHAN_HT40D(chan))
441 		return HAL_MODE_11NA_HT40MINUS;
442 	if (IEEE80211_IS_CHAN_A(chan))
443 		return HAL_MODE_11A;
444 
445 	/* check for NG_HT before plain G, since IS_CHAN_G includes NG_HT */
446 	if (IEEE80211_IS_CHAN_2GHZ(chan) && IEEE80211_IS_CHAN_HT20(chan))
447 		return HAL_MODE_11NG_HT20;
448 	if (IEEE80211_IS_CHAN_2GHZ(chan) && IEEE80211_IS_CHAN_HT40U(chan))
449 		return HAL_MODE_11NG_HT40PLUS;
450 	if (IEEE80211_IS_CHAN_2GHZ(chan) && IEEE80211_IS_CHAN_HT40D(chan))
451 		return HAL_MODE_11NG_HT40MINUS;
452 
453 	/*
454 	 * XXX For FreeBSD, will this work correctly given the DYN
455 	 * chan mode (OFDM+CCK dynamic) ? We have pure-G versions DYN-BG..
456 	 */
457 	if (IEEE80211_IS_CHAN_G(chan))
458 		return HAL_MODE_11G;
459 	if (IEEE80211_IS_CHAN_B(chan))
460 		return HAL_MODE_11B;
461 
462 	HALASSERT(0);
463 	return HAL_MODE_11NG_HT20;
464 }
465 
466 
467 typedef enum {
468 	WIRELESS_MODE_11a   = 0,
469 	WIRELESS_MODE_TURBO = 1,
470 	WIRELESS_MODE_11b   = 2,
471 	WIRELESS_MODE_11g   = 3,
472 	WIRELESS_MODE_108g  = 4,
473 
474 	WIRELESS_MODE_MAX
475 } WIRELESS_MODE;
476 
477 static WIRELESS_MODE
478 ath_hal_chan2wmode(struct ath_hal *ah, const struct ieee80211_channel *chan)
479 {
480 	if (IEEE80211_IS_CHAN_B(chan))
481 		return WIRELESS_MODE_11b;
482 	if (IEEE80211_IS_CHAN_G(chan))
483 		return WIRELESS_MODE_11g;
484 	if (IEEE80211_IS_CHAN_108G(chan))
485 		return WIRELESS_MODE_108g;
486 	if (IEEE80211_IS_CHAN_TURBO(chan))
487 		return WIRELESS_MODE_TURBO;
488 	return WIRELESS_MODE_11a;
489 }
490 
491 /*
492  * Convert between microseconds and core system clocks.
493  */
494                                      /* 11a Turbo  11b  11g  108g */
495 static const uint8_t CLOCK_RATE[]  = { 40,  80,   22,  44,   88  };
496 
497 #define	CLOCK_FAST_RATE_5GHZ_OFDM	44
498 
499 u_int
500 ath_hal_mac_clks(struct ath_hal *ah, u_int usecs)
501 {
502 	const struct ieee80211_channel *c = AH_PRIVATE(ah)->ah_curchan;
503 	u_int clks;
504 
505 	/* NB: ah_curchan may be null when called attach time */
506 	/* XXX merlin and later specific workaround - 5ghz fast clock is 44 */
507 	if (c != AH_NULL && IS_5GHZ_FAST_CLOCK_EN(ah, c)) {
508 		clks = usecs * CLOCK_FAST_RATE_5GHZ_OFDM;
509 		if (IEEE80211_IS_CHAN_HT40(c))
510 			clks <<= 1;
511 	} else if (c != AH_NULL) {
512 		clks = usecs * CLOCK_RATE[ath_hal_chan2wmode(ah, c)];
513 		if (IEEE80211_IS_CHAN_HT40(c))
514 			clks <<= 1;
515 	} else
516 		clks = usecs * CLOCK_RATE[WIRELESS_MODE_11b];
517 
518 	/* Compensate for half/quarter rate */
519 	if (c != AH_NULL && IEEE80211_IS_CHAN_HALF(c))
520 		clks = clks / 2;
521 	else if (c != AH_NULL && IEEE80211_IS_CHAN_QUARTER(c))
522 		clks = clks / 4;
523 
524 	return clks;
525 }
526 
527 u_int
528 ath_hal_mac_usec(struct ath_hal *ah, u_int clks)
529 {
530 	const struct ieee80211_channel *c = AH_PRIVATE(ah)->ah_curchan;
531 	u_int usec;
532 
533 	/* NB: ah_curchan may be null when called attach time */
534 	/* XXX merlin and later specific workaround - 5ghz fast clock is 44 */
535 	if (c != AH_NULL && IS_5GHZ_FAST_CLOCK_EN(ah, c)) {
536 		usec = clks / CLOCK_FAST_RATE_5GHZ_OFDM;
537 		if (IEEE80211_IS_CHAN_HT40(c))
538 			usec >>= 1;
539 	} else if (c != AH_NULL) {
540 		usec = clks / CLOCK_RATE[ath_hal_chan2wmode(ah, c)];
541 		if (IEEE80211_IS_CHAN_HT40(c))
542 			usec >>= 1;
543 	} else
544 		usec = clks / CLOCK_RATE[WIRELESS_MODE_11b];
545 	return usec;
546 }
547 
548 /*
549  * Setup a h/w rate table's reverse lookup table and
550  * fill in ack durations.  This routine is called for
551  * each rate table returned through the ah_getRateTable
552  * method.  The reverse lookup tables are assumed to be
553  * initialized to zero (or at least the first entry).
554  * We use this as a key that indicates whether or not
555  * we've previously setup the reverse lookup table.
556  *
557  * XXX not reentrant, but shouldn't matter
558  */
559 void
560 ath_hal_setupratetable(struct ath_hal *ah, HAL_RATE_TABLE *rt)
561 {
562 #define	N(a)	(sizeof(a)/sizeof(a[0]))
563 	int i;
564 
565 	if (rt->rateCodeToIndex[0] != 0)	/* already setup */
566 		return;
567 	for (i = 0; i < N(rt->rateCodeToIndex); i++)
568 		rt->rateCodeToIndex[i] = (uint8_t) -1;
569 	for (i = 0; i < rt->rateCount; i++) {
570 		uint8_t code = rt->info[i].rateCode;
571 		uint8_t cix = rt->info[i].controlRate;
572 
573 		HALASSERT(code < N(rt->rateCodeToIndex));
574 		rt->rateCodeToIndex[code] = i;
575 		HALASSERT((code | rt->info[i].shortPreamble) <
576 		    N(rt->rateCodeToIndex));
577 		rt->rateCodeToIndex[code | rt->info[i].shortPreamble] = i;
578 		/*
579 		 * XXX for 11g the control rate to use for 5.5 and 11 Mb/s
580 		 *     depends on whether they are marked as basic rates;
581 		 *     the static tables are setup with an 11b-compatible
582 		 *     2Mb/s rate which will work but is suboptimal
583 		 */
584 		rt->info[i].lpAckDuration = ath_hal_computetxtime(ah, rt,
585 			WLAN_CTRL_FRAME_SIZE, cix, AH_FALSE);
586 		rt->info[i].spAckDuration = ath_hal_computetxtime(ah, rt,
587 			WLAN_CTRL_FRAME_SIZE, cix, AH_TRUE);
588 	}
589 #undef N
590 }
591 
592 HAL_STATUS
593 ath_hal_getcapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
594 	uint32_t capability, uint32_t *result)
595 {
596 	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
597 
598 	switch (type) {
599 	case HAL_CAP_REG_DMN:		/* regulatory domain */
600 		*result = AH_PRIVATE(ah)->ah_currentRD;
601 		return HAL_OK;
602 	case HAL_CAP_DFS_DMN:		/* DFS Domain */
603 		*result = AH_PRIVATE(ah)->ah_dfsDomain;
604 		return HAL_OK;
605 	case HAL_CAP_CIPHER:		/* cipher handled in hardware */
606 	case HAL_CAP_TKIP_MIC:		/* handle TKIP MIC in hardware */
607 		return HAL_ENOTSUPP;
608 	case HAL_CAP_TKIP_SPLIT:	/* hardware TKIP uses split keys */
609 		return HAL_ENOTSUPP;
610 	case HAL_CAP_PHYCOUNTERS:	/* hardware PHY error counters */
611 		return pCap->halHwPhyCounterSupport ? HAL_OK : HAL_ENXIO;
612 	case HAL_CAP_WME_TKIPMIC:   /* hardware can do TKIP MIC when WMM is turned on */
613 		return HAL_ENOTSUPP;
614 	case HAL_CAP_DIVERSITY:		/* hardware supports fast diversity */
615 		return HAL_ENOTSUPP;
616 	case HAL_CAP_KEYCACHE_SIZE:	/* hardware key cache size */
617 		*result =  pCap->halKeyCacheSize;
618 		return HAL_OK;
619 	case HAL_CAP_NUM_TXQUEUES:	/* number of hardware tx queues */
620 		*result = pCap->halTotalQueues;
621 		return HAL_OK;
622 	case HAL_CAP_VEOL:		/* hardware supports virtual EOL */
623 		return pCap->halVEOLSupport ? HAL_OK : HAL_ENOTSUPP;
624 	case HAL_CAP_PSPOLL:		/* hardware PS-Poll support works */
625 		return pCap->halPSPollBroken ? HAL_ENOTSUPP : HAL_OK;
626 	case HAL_CAP_COMPRESSION:
627 		return pCap->halCompressSupport ? HAL_OK : HAL_ENOTSUPP;
628 	case HAL_CAP_BURST:
629 		return pCap->halBurstSupport ? HAL_OK : HAL_ENOTSUPP;
630 	case HAL_CAP_FASTFRAME:
631 		return pCap->halFastFramesSupport ? HAL_OK : HAL_ENOTSUPP;
632 	case HAL_CAP_DIAG:		/* hardware diagnostic support */
633 		*result = AH_PRIVATE(ah)->ah_diagreg;
634 		return HAL_OK;
635 	case HAL_CAP_TXPOW:		/* global tx power limit  */
636 		switch (capability) {
637 		case 0:			/* facility is supported */
638 			return HAL_OK;
639 		case 1:			/* current limit */
640 			*result = AH_PRIVATE(ah)->ah_powerLimit;
641 			return HAL_OK;
642 		case 2:			/* current max tx power */
643 			*result = AH_PRIVATE(ah)->ah_maxPowerLevel;
644 			return HAL_OK;
645 		case 3:			/* scale factor */
646 			*result = AH_PRIVATE(ah)->ah_tpScale;
647 			return HAL_OK;
648 		}
649 		return HAL_ENOTSUPP;
650 	case HAL_CAP_BSSIDMASK:		/* hardware supports bssid mask */
651 		return pCap->halBssIdMaskSupport ? HAL_OK : HAL_ENOTSUPP;
652 	case HAL_CAP_MCAST_KEYSRCH:	/* multicast frame keycache search */
653 		return pCap->halMcastKeySrchSupport ? HAL_OK : HAL_ENOTSUPP;
654 	case HAL_CAP_TSF_ADJUST:	/* hardware has beacon tsf adjust */
655 		return HAL_ENOTSUPP;
656 	case HAL_CAP_RFSILENT:		/* rfsilent support  */
657 		switch (capability) {
658 		case 0:			/* facility is supported */
659 			return pCap->halRfSilentSupport ? HAL_OK : HAL_ENOTSUPP;
660 		case 1:			/* current setting */
661 			return AH_PRIVATE(ah)->ah_rfkillEnabled ?
662 				HAL_OK : HAL_ENOTSUPP;
663 		case 2:			/* rfsilent config */
664 			*result = AH_PRIVATE(ah)->ah_rfsilent;
665 			return HAL_OK;
666 		}
667 		return HAL_ENOTSUPP;
668 	case HAL_CAP_11D:
669 		return HAL_OK;
670 
671 	case HAL_CAP_HT:
672 		return pCap->halHTSupport ? HAL_OK : HAL_ENOTSUPP;
673 	case HAL_CAP_GTXTO:
674 		return pCap->halGTTSupport ? HAL_OK : HAL_ENOTSUPP;
675 	case HAL_CAP_FAST_CC:
676 		return pCap->halFastCCSupport ? HAL_OK : HAL_ENOTSUPP;
677 	case HAL_CAP_TX_CHAINMASK:	/* mask of TX chains supported */
678 		*result = pCap->halTxChainMask;
679 		return HAL_OK;
680 	case HAL_CAP_RX_CHAINMASK:	/* mask of RX chains supported */
681 		*result = pCap->halRxChainMask;
682 		return HAL_OK;
683 	case HAL_CAP_NUM_GPIO_PINS:
684 		*result = pCap->halNumGpioPins;
685 		return HAL_OK;
686 	case HAL_CAP_CST:
687 		return pCap->halCSTSupport ? HAL_OK : HAL_ENOTSUPP;
688 	case HAL_CAP_RTS_AGGR_LIMIT:
689 		*result = pCap->halRtsAggrLimit;
690 		return HAL_OK;
691 	case HAL_CAP_4ADDR_AGGR:
692 		return pCap->hal4AddrAggrSupport ? HAL_OK : HAL_ENOTSUPP;
693 	case HAL_CAP_EXT_CHAN_DFS:
694 		return pCap->halExtChanDfsSupport ? HAL_OK : HAL_ENOTSUPP;
695 	case HAL_CAP_COMBINED_RADAR_RSSI:
696 		return pCap->halUseCombinedRadarRssi ? HAL_OK : HAL_ENOTSUPP;
697 	case HAL_CAP_AUTO_SLEEP:
698 		return pCap->halAutoSleepSupport ? HAL_OK : HAL_ENOTSUPP;
699 	case HAL_CAP_MBSSID_AGGR_SUPPORT:
700 		return pCap->halMbssidAggrSupport ? HAL_OK : HAL_ENOTSUPP;
701 	case HAL_CAP_SPLIT_4KB_TRANS:	/* hardware handles descriptors straddling 4k page boundary */
702 		return pCap->hal4kbSplitTransSupport ? HAL_OK : HAL_ENOTSUPP;
703 	case HAL_CAP_REG_FLAG:
704 		*result = AH_PRIVATE(ah)->ah_currentRDext;
705 		return HAL_OK;
706 	case HAL_CAP_ENHANCED_DMA_SUPPORT:
707 		return pCap->halEnhancedDmaSupport ? HAL_OK : HAL_ENOTSUPP;
708 	case HAL_CAP_NUM_TXMAPS:
709 		*result = pCap->halNumTxMaps;
710 		return HAL_OK;
711 	case HAL_CAP_TXDESCLEN:
712 		*result = pCap->halTxDescLen;
713 		return HAL_OK;
714 	case HAL_CAP_TXSTATUSLEN:
715 		*result = pCap->halTxStatusLen;
716 		return HAL_OK;
717 	case HAL_CAP_RXSTATUSLEN:
718 		*result = pCap->halRxStatusLen;
719 		return HAL_OK;
720 	case HAL_CAP_RXFIFODEPTH:
721 		switch (capability) {
722 		case HAL_RX_QUEUE_HP:
723 			*result = pCap->halRxHpFifoDepth;
724 			return HAL_OK;
725 		case HAL_RX_QUEUE_LP:
726 			*result = pCap->halRxLpFifoDepth;
727 			return HAL_OK;
728 		default:
729 			return HAL_ENOTSUPP;
730 	}
731 	case HAL_CAP_RXBUFSIZE:
732 	case HAL_CAP_NUM_MR_RETRIES:
733 		*result = pCap->halNumMRRetries;
734 		return HAL_OK;
735 	case HAL_CAP_BT_COEX:
736 		return pCap->halBtCoexSupport ? HAL_OK : HAL_ENOTSUPP;
737 	case HAL_CAP_SPECTRAL_SCAN:
738 		return pCap->halSpectralScanSupport ? HAL_OK : HAL_ENOTSUPP;
739 	case HAL_CAP_HT20_SGI:
740 		return pCap->halHTSGI20Support ? HAL_OK : HAL_ENOTSUPP;
741 	case HAL_CAP_RXTSTAMP_PREC:	/* rx desc tstamp precision (bits) */
742 		*result = pCap->halTstampPrecision;
743 		return HAL_OK;
744 	case HAL_CAP_ENHANCED_DFS_SUPPORT:
745 		return pCap->halEnhancedDfsSupport ? HAL_OK : HAL_ENOTSUPP;
746 
747 	/* FreeBSD-specific entries for now */
748 	case HAL_CAP_RXORN_FATAL:	/* HAL_INT_RXORN treated as fatal  */
749 		return AH_PRIVATE(ah)->ah_rxornIsFatal ? HAL_OK : HAL_ENOTSUPP;
750 	case HAL_CAP_INTRMASK:		/* mask of supported interrupts */
751 		*result = pCap->halIntrMask;
752 		return HAL_OK;
753 	case HAL_CAP_BSSIDMATCH:	/* hardware has disable bssid match */
754 		return pCap->halBssidMatchSupport ? HAL_OK : HAL_ENOTSUPP;
755 	case HAL_CAP_STREAMS:		/* number of 11n spatial streams */
756 		switch (capability) {
757 		case 0:			/* TX */
758 			*result = pCap->halTxStreams;
759 			return HAL_OK;
760 		case 1:			/* RX */
761 			*result = pCap->halRxStreams;
762 			return HAL_OK;
763 		default:
764 			return HAL_ENOTSUPP;
765 		}
766 	case HAL_CAP_RXDESC_SELFLINK:	/* hardware supports self-linked final RX descriptors correctly */
767 		return pCap->halHasRxSelfLinkedTail ? HAL_OK : HAL_ENOTSUPP;
768 	case HAL_CAP_LONG_RXDESC_TSF:		/* 32 bit TSF in RX descriptor? */
769 		return pCap->halHasLongRxDescTsf ? HAL_OK : HAL_ENOTSUPP;
770 	case HAL_CAP_BB_READ_WAR:		/* Baseband read WAR */
771 		return pCap->halHasBBReadWar? HAL_OK : HAL_ENOTSUPP;
772 	case HAL_CAP_SERIALISE_WAR:		/* PCI register serialisation */
773 		return pCap->halSerialiseRegWar ? HAL_OK : HAL_ENOTSUPP;
774 	case HAL_CAP_MFP:			/* Management frame protection setting */
775 		*result = pCap->halMfpSupport;
776 		return HAL_OK;
777 	default:
778 		return HAL_EINVAL;
779 	}
780 }
781 
782 HAL_BOOL
783 ath_hal_setcapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
784 	uint32_t capability, uint32_t setting, HAL_STATUS *status)
785 {
786 
787 	switch (type) {
788 	case HAL_CAP_TXPOW:
789 		switch (capability) {
790 		case 3:
791 			if (setting <= HAL_TP_SCALE_MIN) {
792 				AH_PRIVATE(ah)->ah_tpScale = setting;
793 				return AH_TRUE;
794 			}
795 			break;
796 		}
797 		break;
798 	case HAL_CAP_RFSILENT:		/* rfsilent support  */
799 		/*
800 		 * NB: allow even if halRfSilentSupport is false
801 		 *     in case the EEPROM is misprogrammed.
802 		 */
803 		switch (capability) {
804 		case 1:			/* current setting */
805 			AH_PRIVATE(ah)->ah_rfkillEnabled = (setting != 0);
806 			return AH_TRUE;
807 		case 2:			/* rfsilent config */
808 			/* XXX better done per-chip for validation? */
809 			AH_PRIVATE(ah)->ah_rfsilent = setting;
810 			return AH_TRUE;
811 		}
812 		break;
813 	case HAL_CAP_REG_DMN:		/* regulatory domain */
814 		AH_PRIVATE(ah)->ah_currentRD = setting;
815 		return AH_TRUE;
816 	case HAL_CAP_RXORN_FATAL:	/* HAL_INT_RXORN treated as fatal  */
817 		AH_PRIVATE(ah)->ah_rxornIsFatal = setting;
818 		return AH_TRUE;
819 	default:
820 		break;
821 	}
822 	if (status)
823 		*status = HAL_EINVAL;
824 	return AH_FALSE;
825 }
826 
827 /*
828  * Common support for getDiagState method.
829  */
830 
831 static u_int
832 ath_hal_getregdump(struct ath_hal *ah, const HAL_REGRANGE *regs,
833 	void *dstbuf, int space)
834 {
835 	uint32_t *dp = dstbuf;
836 	int i;
837 
838 	for (i = 0; space >= 2*sizeof(uint32_t); i++) {
839 		u_int r = regs[i].start;
840 		u_int e = regs[i].end;
841 		*dp++ = (r<<16) | e;
842 		space -= sizeof(uint32_t);
843 		do {
844 			*dp++ = OS_REG_READ(ah, r);
845 			r += sizeof(uint32_t);
846 			space -= sizeof(uint32_t);
847 		} while (r <= e && space >= sizeof(uint32_t));
848 	}
849 	return (char *) dp - (char *) dstbuf;
850 }
851 
852 static void
853 ath_hal_setregs(struct ath_hal *ah, const HAL_REGWRITE *regs, int space)
854 {
855 	while (space >= sizeof(HAL_REGWRITE)) {
856 		OS_REG_WRITE(ah, regs->addr, regs->value);
857 		regs++, space -= sizeof(HAL_REGWRITE);
858 	}
859 }
860 
861 HAL_BOOL
862 ath_hal_getdiagstate(struct ath_hal *ah, int request,
863 	const void *args, uint32_t argsize,
864 	void **result, uint32_t *resultsize)
865 {
866 	switch (request) {
867 	case HAL_DIAG_REVS:
868 		*result = &AH_PRIVATE(ah)->ah_devid;
869 		*resultsize = sizeof(HAL_REVS);
870 		return AH_TRUE;
871 	case HAL_DIAG_REGS:
872 		*resultsize = ath_hal_getregdump(ah, args, *result,*resultsize);
873 		return AH_TRUE;
874 	case HAL_DIAG_SETREGS:
875 		ath_hal_setregs(ah, args, argsize);
876 		*resultsize = 0;
877 		return AH_TRUE;
878 	case HAL_DIAG_FATALERR:
879 		*result = &AH_PRIVATE(ah)->ah_fatalState[0];
880 		*resultsize = sizeof(AH_PRIVATE(ah)->ah_fatalState);
881 		return AH_TRUE;
882 	case HAL_DIAG_EEREAD:
883 		if (argsize != sizeof(uint16_t))
884 			return AH_FALSE;
885 		if (!ath_hal_eepromRead(ah, *(const uint16_t *)args, *result))
886 			return AH_FALSE;
887 		*resultsize = sizeof(uint16_t);
888 		return AH_TRUE;
889 #ifdef AH_PRIVATE_DIAG
890 	case HAL_DIAG_SETKEY: {
891 		const HAL_DIAG_KEYVAL *dk;
892 
893 		if (argsize != sizeof(HAL_DIAG_KEYVAL))
894 			return AH_FALSE;
895 		dk = (const HAL_DIAG_KEYVAL *)args;
896 		return ah->ah_setKeyCacheEntry(ah, dk->dk_keyix,
897 			&dk->dk_keyval, dk->dk_mac, dk->dk_xor);
898 	}
899 	case HAL_DIAG_RESETKEY:
900 		if (argsize != sizeof(uint16_t))
901 			return AH_FALSE;
902 		return ah->ah_resetKeyCacheEntry(ah, *(const uint16_t *)args);
903 #ifdef AH_SUPPORT_WRITE_EEPROM
904 	case HAL_DIAG_EEWRITE: {
905 		const HAL_DIAG_EEVAL *ee;
906 		if (argsize != sizeof(HAL_DIAG_EEVAL))
907 			return AH_FALSE;
908 		ee = (const HAL_DIAG_EEVAL *)args;
909 		return ath_hal_eepromWrite(ah, ee->ee_off, ee->ee_data);
910 	}
911 #endif /* AH_SUPPORT_WRITE_EEPROM */
912 #endif /* AH_PRIVATE_DIAG */
913 	case HAL_DIAG_11NCOMPAT:
914 		if (argsize == 0) {
915 			*resultsize = sizeof(uint32_t);
916 			*((uint32_t *)(*result)) =
917 				AH_PRIVATE(ah)->ah_11nCompat;
918 		} else if (argsize == sizeof(uint32_t)) {
919 			AH_PRIVATE(ah)->ah_11nCompat = *(const uint32_t *)args;
920 		} else
921 			return AH_FALSE;
922 		return AH_TRUE;
923 	}
924 	return AH_FALSE;
925 }
926 
927 /*
928  * Set the properties of the tx queue with the parameters
929  * from qInfo.
930  */
931 HAL_BOOL
932 ath_hal_setTxQProps(struct ath_hal *ah,
933 	HAL_TX_QUEUE_INFO *qi, const HAL_TXQ_INFO *qInfo)
934 {
935 	uint32_t cw;
936 
937 	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
938 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
939 		    "%s: inactive queue\n", __func__);
940 		return AH_FALSE;
941 	}
942 	/* XXX validate parameters */
943 	qi->tqi_ver = qInfo->tqi_ver;
944 	qi->tqi_subtype = qInfo->tqi_subtype;
945 	qi->tqi_qflags = qInfo->tqi_qflags;
946 	qi->tqi_priority = qInfo->tqi_priority;
947 	if (qInfo->tqi_aifs != HAL_TXQ_USEDEFAULT)
948 		qi->tqi_aifs = AH_MIN(qInfo->tqi_aifs, 255);
949 	else
950 		qi->tqi_aifs = INIT_AIFS;
951 	if (qInfo->tqi_cwmin != HAL_TXQ_USEDEFAULT) {
952 		cw = AH_MIN(qInfo->tqi_cwmin, 1024);
953 		/* make sure that the CWmin is of the form (2^n - 1) */
954 		qi->tqi_cwmin = 1;
955 		while (qi->tqi_cwmin < cw)
956 			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
957 	} else
958 		qi->tqi_cwmin = qInfo->tqi_cwmin;
959 	if (qInfo->tqi_cwmax != HAL_TXQ_USEDEFAULT) {
960 		cw = AH_MIN(qInfo->tqi_cwmax, 1024);
961 		/* make sure that the CWmax is of the form (2^n - 1) */
962 		qi->tqi_cwmax = 1;
963 		while (qi->tqi_cwmax < cw)
964 			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
965 	} else
966 		qi->tqi_cwmax = INIT_CWMAX;
967 	/* Set retry limit values */
968 	if (qInfo->tqi_shretry != 0)
969 		qi->tqi_shretry = AH_MIN(qInfo->tqi_shretry, 15);
970 	else
971 		qi->tqi_shretry = INIT_SH_RETRY;
972 	if (qInfo->tqi_lgretry != 0)
973 		qi->tqi_lgretry = AH_MIN(qInfo->tqi_lgretry, 15);
974 	else
975 		qi->tqi_lgretry = INIT_LG_RETRY;
976 	qi->tqi_cbrPeriod = qInfo->tqi_cbrPeriod;
977 	qi->tqi_cbrOverflowLimit = qInfo->tqi_cbrOverflowLimit;
978 	qi->tqi_burstTime = qInfo->tqi_burstTime;
979 	qi->tqi_readyTime = qInfo->tqi_readyTime;
980 
981 	switch (qInfo->tqi_subtype) {
982 	case HAL_WME_UPSD:
983 		if (qi->tqi_type == HAL_TX_QUEUE_DATA)
984 			qi->tqi_intFlags = HAL_TXQ_USE_LOCKOUT_BKOFF_DIS;
985 		break;
986 	default:
987 		break;		/* NB: silence compiler */
988 	}
989 	return AH_TRUE;
990 }
991 
992 HAL_BOOL
993 ath_hal_getTxQProps(struct ath_hal *ah,
994 	HAL_TXQ_INFO *qInfo, const HAL_TX_QUEUE_INFO *qi)
995 {
996 	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
997 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
998 		    "%s: inactive queue\n", __func__);
999 		return AH_FALSE;
1000 	}
1001 
1002 	qInfo->tqi_qflags = qi->tqi_qflags;
1003 	qInfo->tqi_ver = qi->tqi_ver;
1004 	qInfo->tqi_subtype = qi->tqi_subtype;
1005 	qInfo->tqi_qflags = qi->tqi_qflags;
1006 	qInfo->tqi_priority = qi->tqi_priority;
1007 	qInfo->tqi_aifs = qi->tqi_aifs;
1008 	qInfo->tqi_cwmin = qi->tqi_cwmin;
1009 	qInfo->tqi_cwmax = qi->tqi_cwmax;
1010 	qInfo->tqi_shretry = qi->tqi_shretry;
1011 	qInfo->tqi_lgretry = qi->tqi_lgretry;
1012 	qInfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
1013 	qInfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
1014 	qInfo->tqi_burstTime = qi->tqi_burstTime;
1015 	qInfo->tqi_readyTime = qi->tqi_readyTime;
1016 	return AH_TRUE;
1017 }
1018 
1019                                      /* 11a Turbo  11b  11g  108g */
1020 static const int16_t NOISE_FLOOR[] = { -96, -93,  -98, -96,  -93 };
1021 
1022 /*
1023  * Read the current channel noise floor and return.
1024  * If nf cal hasn't finished, channel noise floor should be 0
1025  * and we return a nominal value based on band and frequency.
1026  *
1027  * NB: This is a private routine used by per-chip code to
1028  *     implement the ah_getChanNoise method.
1029  */
1030 int16_t
1031 ath_hal_getChanNoise(struct ath_hal *ah, const struct ieee80211_channel *chan)
1032 {
1033 	HAL_CHANNEL_INTERNAL *ichan;
1034 
1035 	ichan = ath_hal_checkchannel(ah, chan);
1036 	if (ichan == AH_NULL) {
1037 		HALDEBUG(ah, HAL_DEBUG_NFCAL,
1038 		    "%s: invalid channel %u/0x%x; no mapping\n",
1039 		    __func__, chan->ic_freq, chan->ic_flags);
1040 		return 0;
1041 	}
1042 	if (ichan->rawNoiseFloor == 0) {
1043 		WIRELESS_MODE mode = ath_hal_chan2wmode(ah, chan);
1044 
1045 		HALASSERT(mode < WIRELESS_MODE_MAX);
1046 		return NOISE_FLOOR[mode] + ath_hal_getNfAdjust(ah, ichan);
1047 	} else
1048 		return ichan->rawNoiseFloor + ichan->noiseFloorAdjust;
1049 }
1050 
1051 /*
1052  * Fetch the current setup of ctl/ext noise floor values.
1053  *
1054  * If the CHANNEL_MIMO_NF_VALID flag isn't set, the array is simply
1055  * populated with values from NOISE_FLOOR[] + ath_hal_getNfAdjust().
1056  *
1057  * The caller must supply ctl/ext NF arrays which are at least
1058  * AH_MAX_CHAINS entries long.
1059  */
1060 int
1061 ath_hal_get_mimo_chan_noise(struct ath_hal *ah,
1062     const struct ieee80211_channel *chan, int16_t *nf_ctl,
1063     int16_t *nf_ext)
1064 {
1065 #ifdef	AH_SUPPORT_AR5416
1066 	HAL_CHANNEL_INTERNAL *ichan;
1067 	int i;
1068 
1069 	ichan = ath_hal_checkchannel(ah, chan);
1070 	if (ichan == AH_NULL) {
1071 		HALDEBUG(ah, HAL_DEBUG_NFCAL,
1072 		    "%s: invalid channel %u/0x%x; no mapping\n",
1073 		    __func__, chan->ic_freq, chan->ic_flags);
1074 		for (i = 0; i < AH_MAX_CHAINS; i++) {
1075 			nf_ctl[i] = nf_ext[i] = 0;
1076 		}
1077 		return 0;
1078 	}
1079 
1080 	/* Return 0 if there's no valid MIMO values (yet) */
1081 	if (! (ichan->privFlags & CHANNEL_MIMO_NF_VALID)) {
1082 		for (i = 0; i < AH_MAX_CHAINS; i++) {
1083 			nf_ctl[i] = nf_ext[i] = 0;
1084 		}
1085 		return 0;
1086 	}
1087 	if (ichan->rawNoiseFloor == 0) {
1088 		WIRELESS_MODE mode = ath_hal_chan2wmode(ah, chan);
1089 		HALASSERT(mode < WIRELESS_MODE_MAX);
1090 		/*
1091 		 * See the comment below - this could cause issues for
1092 		 * stations which have a very low RSSI, below the
1093 		 * 'normalised' NF values in NOISE_FLOOR[].
1094 		 */
1095 		for (i = 0; i < AH_MAX_CHAINS; i++) {
1096 			nf_ctl[i] = nf_ext[i] = NOISE_FLOOR[mode] +
1097 			    ath_hal_getNfAdjust(ah, ichan);
1098 		}
1099 		return 1;
1100 	} else {
1101 		/*
1102 		 * The value returned here from a MIMO radio is presumed to be
1103 		 * "good enough" as a NF calculation. As RSSI values are calculated
1104 		 * against this, an adjusted NF may be higher than the RSSI value
1105 		 * returned from a vary weak station, resulting in an obscenely
1106 		 * high signal strength calculation being returned.
1107 		 *
1108 		 * This should be re-evaluated at a later date, along with any
1109 		 * signal strength calculations which are made. Quite likely the
1110 		 * RSSI values will need to be adjusted to ensure the calculations
1111 		 * don't "wrap" when RSSI is less than the "adjusted" NF value.
1112 		 * ("Adjust" here is via ichan->noiseFloorAdjust.)
1113 		 */
1114 		for (i = 0; i < AH_MAX_CHAINS; i++) {
1115 			nf_ctl[i] = ichan->noiseFloorCtl[i] + ath_hal_getNfAdjust(ah, ichan);
1116 			nf_ext[i] = ichan->noiseFloorExt[i] + ath_hal_getNfAdjust(ah, ichan);
1117 		}
1118 		return 1;
1119 	}
1120 #else
1121 	return 0;
1122 #endif	/* AH_SUPPORT_AR5416 */
1123 }
1124 
1125 /*
1126  * Process all valid raw noise floors into the dBm noise floor values.
1127  * Though our device has no reference for a dBm noise floor, we perform
1128  * a relative minimization of NF's based on the lowest NF found across a
1129  * channel scan.
1130  */
1131 void
1132 ath_hal_process_noisefloor(struct ath_hal *ah)
1133 {
1134 	HAL_CHANNEL_INTERNAL *c;
1135 	int16_t correct2, correct5;
1136 	int16_t lowest2, lowest5;
1137 	int i;
1138 
1139 	/*
1140 	 * Find the lowest 2GHz and 5GHz noise floor values after adjusting
1141 	 * for statistically recorded NF/channel deviation.
1142 	 */
1143 	correct2 = lowest2 = 0;
1144 	correct5 = lowest5 = 0;
1145 	for (i = 0; i < AH_PRIVATE(ah)->ah_nchan; i++) {
1146 		WIRELESS_MODE mode;
1147 		int16_t nf;
1148 
1149 		c = &AH_PRIVATE(ah)->ah_channels[i];
1150 		if (c->rawNoiseFloor >= 0)
1151 			continue;
1152 		/* XXX can't identify proper mode */
1153 		mode = IS_CHAN_5GHZ(c) ? WIRELESS_MODE_11a : WIRELESS_MODE_11g;
1154 		nf = c->rawNoiseFloor + NOISE_FLOOR[mode] +
1155 			ath_hal_getNfAdjust(ah, c);
1156 		if (IS_CHAN_5GHZ(c)) {
1157 			if (nf < lowest5) {
1158 				lowest5 = nf;
1159 				correct5 = NOISE_FLOOR[mode] -
1160 				    (c->rawNoiseFloor + ath_hal_getNfAdjust(ah, c));
1161 			}
1162 		} else {
1163 			if (nf < lowest2) {
1164 				lowest2 = nf;
1165 				correct2 = NOISE_FLOOR[mode] -
1166 				    (c->rawNoiseFloor + ath_hal_getNfAdjust(ah, c));
1167 			}
1168 		}
1169 	}
1170 
1171 	/* Correct the channels to reach the expected NF value */
1172 	for (i = 0; i < AH_PRIVATE(ah)->ah_nchan; i++) {
1173 		c = &AH_PRIVATE(ah)->ah_channels[i];
1174 		if (c->rawNoiseFloor >= 0)
1175 			continue;
1176 		/* Apply correction factor */
1177 		c->noiseFloorAdjust = ath_hal_getNfAdjust(ah, c) +
1178 			(IS_CHAN_5GHZ(c) ? correct5 : correct2);
1179 		HALDEBUG(ah, HAL_DEBUG_NFCAL, "%u raw nf %d adjust %d\n",
1180 		    c->channel, c->rawNoiseFloor, c->noiseFloorAdjust);
1181 	}
1182 }
1183 
1184 /*
1185  * INI support routines.
1186  */
1187 
1188 int
1189 ath_hal_ini_write(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
1190 	int col, int regWr)
1191 {
1192 	int r;
1193 
1194 	HALASSERT(col < ia->cols);
1195 	for (r = 0; r < ia->rows; r++) {
1196 		OS_REG_WRITE(ah, HAL_INI_VAL(ia, r, 0),
1197 		    HAL_INI_VAL(ia, r, col));
1198 
1199 		/* Analog shift register delay seems needed for Merlin - PR kern/154220 */
1200 		if (HAL_INI_VAL(ia, r, 0) >= 0x7800 && HAL_INI_VAL(ia, r, 0) < 0x7900)
1201 			OS_DELAY(100);
1202 
1203 		DMA_YIELD(regWr);
1204 	}
1205 	return regWr;
1206 }
1207 
1208 void
1209 ath_hal_ini_bank_setup(uint32_t data[], const HAL_INI_ARRAY *ia, int col)
1210 {
1211 	int r;
1212 
1213 	HALASSERT(col < ia->cols);
1214 	for (r = 0; r < ia->rows; r++)
1215 		data[r] = HAL_INI_VAL(ia, r, col);
1216 }
1217 
1218 int
1219 ath_hal_ini_bank_write(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
1220 	const uint32_t data[], int regWr)
1221 {
1222 	int r;
1223 
1224 	for (r = 0; r < ia->rows; r++) {
1225 		OS_REG_WRITE(ah, HAL_INI_VAL(ia, r, 0), data[r]);
1226 		DMA_YIELD(regWr);
1227 	}
1228 	return regWr;
1229 }
1230 
1231 /*
1232  * These are EEPROM board related routines which should likely live in
1233  * a helper library of some sort.
1234  */
1235 
1236 /**************************************************************
1237  * ath_ee_getLowerUppderIndex
1238  *
1239  * Return indices surrounding the value in sorted integer lists.
1240  * Requirement: the input list must be monotonically increasing
1241  *     and populated up to the list size
1242  * Returns: match is set if an index in the array matches exactly
1243  *     or a the target is before or after the range of the array.
1244  */
1245 HAL_BOOL
1246 ath_ee_getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
1247                    uint16_t *indexL, uint16_t *indexR)
1248 {
1249     uint16_t i;
1250 
1251     /*
1252      * Check first and last elements for beyond ordered array cases.
1253      */
1254     if (target <= pList[0]) {
1255         *indexL = *indexR = 0;
1256         return AH_TRUE;
1257     }
1258     if (target >= pList[listSize-1]) {
1259         *indexL = *indexR = (uint16_t)(listSize - 1);
1260         return AH_TRUE;
1261     }
1262 
1263     /* look for value being near or between 2 values in list */
1264     for (i = 0; i < listSize - 1; i++) {
1265         /*
1266          * If value is close to the current value of the list
1267          * then target is not between values, it is one of the values
1268          */
1269         if (pList[i] == target) {
1270             *indexL = *indexR = i;
1271             return AH_TRUE;
1272         }
1273         /*
1274          * Look for value being between current value and next value
1275          * if so return these 2 values
1276          */
1277         if (target < pList[i + 1]) {
1278             *indexL = i;
1279             *indexR = (uint16_t)(i + 1);
1280             return AH_FALSE;
1281         }
1282     }
1283     HALASSERT(0);
1284     *indexL = *indexR = 0;
1285     return AH_FALSE;
1286 }
1287 
1288 /**************************************************************
1289  * ath_ee_FillVpdTable
1290  *
1291  * Fill the Vpdlist for indices Pmax-Pmin
1292  * Note: pwrMin, pwrMax and Vpdlist are all in dBm * 4
1293  */
1294 HAL_BOOL
1295 ath_ee_FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
1296                    uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
1297 {
1298     uint16_t  i, k;
1299     uint8_t   currPwr = pwrMin;
1300     uint16_t  idxL, idxR;
1301 
1302     HALASSERT(pwrMax > pwrMin);
1303     for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
1304         ath_ee_getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
1305                            &(idxL), &(idxR));
1306         if (idxR < 1)
1307             idxR = 1;           /* extrapolate below */
1308         if (idxL == numIntercepts - 1)
1309             idxL = (uint16_t)(numIntercepts - 2);   /* extrapolate above */
1310         if (pPwrList[idxL] == pPwrList[idxR])
1311             k = pVpdList[idxL];
1312         else
1313             k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
1314                   (pPwrList[idxR] - pPwrList[idxL]) );
1315         HALASSERT(k < 256);
1316         pRetVpdList[i] = (uint8_t)k;
1317         currPwr += 2;               /* half dB steps */
1318     }
1319 
1320     return AH_TRUE;
1321 }
1322 
1323 /**************************************************************************
1324  * ath_ee_interpolate
1325  *
1326  * Returns signed interpolated or the scaled up interpolated value
1327  */
1328 int16_t
1329 ath_ee_interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
1330             int16_t targetLeft, int16_t targetRight)
1331 {
1332     int16_t rv;
1333 
1334     if (srcRight == srcLeft) {
1335         rv = targetLeft;
1336     } else {
1337         rv = (int16_t)( ((target - srcLeft) * targetRight +
1338               (srcRight - target) * targetLeft) / (srcRight - srcLeft) );
1339     }
1340     return rv;
1341 }
1342 
1343 /*
1344  * Adjust the TSF.
1345  */
1346 void
1347 ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
1348 {
1349 	/* XXX handle wrap/overflow */
1350 	OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
1351 }
1352 
1353 /*
1354  * Enable or disable CCA.
1355  */
1356 void
1357 ath_hal_setcca(struct ath_hal *ah, int ena)
1358 {
1359 	/*
1360 	 * NB: fill me in; this is not provided by default because disabling
1361 	 *     CCA in most locales violates regulatory.
1362 	 */
1363 }
1364 
1365 /*
1366  * Get CCA setting.
1367  */
1368 int
1369 ath_hal_getcca(struct ath_hal *ah)
1370 {
1371 	u_int32_t diag;
1372 	if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
1373 		return 1;
1374 	return ((diag & 0x500000) == 0);
1375 }
1376 
1377 /*
1378  * This routine is only needed when supporting EEPROM-in-RAM setups
1379  * (eg embedded SoCs and on-board PCI/PCIe devices.)
1380  */
1381 /* NB: This is in 16 bit words; not bytes */
1382 /* XXX This doesn't belong here!  */
1383 #define ATH_DATA_EEPROM_SIZE    2048
1384 
1385 HAL_BOOL
1386 ath_hal_EepromDataRead(struct ath_hal *ah, u_int off, uint16_t *data)
1387 {
1388 	if (ah->ah_eepromdata == AH_NULL) {
1389 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: no eeprom data!\n", __func__);
1390 		return AH_FALSE;
1391 	}
1392 	if (off > ATH_DATA_EEPROM_SIZE) {
1393 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: offset %x > %x\n",
1394 		    __func__, off, ATH_DATA_EEPROM_SIZE);
1395 		return AH_FALSE;
1396 	}
1397 	(*data) = ah->ah_eepromdata[off];
1398 	return AH_TRUE;
1399 }
1400