xref: /freebsd/sys/dev/ath/ath_hal/ah.c (revision f4dc9bf43457515e5c88d1400d4f5ff70a82d9c7)
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 #include "ah_devid.h"
24 #include "ah_eeprom.h"			/* for 5ghz fast clock flag */
25 
26 #include "ar5416/ar5416reg.h"		/* NB: includes ar5212reg.h */
27 #include "ar9003/ar9300_devid.h"
28 
29 /* linker set of registered chips */
30 OS_SET_DECLARE(ah_chips, struct ath_hal_chip);
31 
32 /*
33  * Check the set of registered chips to see if any recognize
34  * the device as one they can support.
35  */
36 const char*
37 ath_hal_probe(uint16_t vendorid, uint16_t devid)
38 {
39 	struct ath_hal_chip * const *pchip;
40 
41 	OS_SET_FOREACH(pchip, ah_chips) {
42 		const char *name = (*pchip)->probe(vendorid, devid);
43 		if (name != AH_NULL)
44 			return name;
45 	}
46 	return AH_NULL;
47 }
48 
49 /*
50  * Attach detects device chip revisions, initializes the hwLayer
51  * function list, reads EEPROM information,
52  * selects reset vectors, and performs a short self test.
53  * Any failures will return an error that should cause a hardware
54  * disable.
55  */
56 struct ath_hal*
57 ath_hal_attach(uint16_t devid, HAL_SOFTC sc,
58 	HAL_BUS_TAG st, HAL_BUS_HANDLE sh, uint16_t *eepromdata,
59 	HAL_OPS_CONFIG *ah_config,
60 	HAL_STATUS *error)
61 {
62 	struct ath_hal_chip * const *pchip;
63 
64 	OS_SET_FOREACH(pchip, ah_chips) {
65 		struct ath_hal_chip *chip = *pchip;
66 		struct ath_hal *ah;
67 
68 		/* XXX don't have vendorid, assume atheros one works */
69 		if (chip->probe(ATHEROS_VENDOR_ID, devid) == AH_NULL)
70 			continue;
71 		ah = chip->attach(devid, sc, st, sh, eepromdata, ah_config,
72 		    error);
73 		if (ah != AH_NULL) {
74 			/* copy back private state to public area */
75 			ah->ah_devid = AH_PRIVATE(ah)->ah_devid;
76 			ah->ah_subvendorid = AH_PRIVATE(ah)->ah_subvendorid;
77 			ah->ah_macVersion = AH_PRIVATE(ah)->ah_macVersion;
78 			ah->ah_macRev = AH_PRIVATE(ah)->ah_macRev;
79 			ah->ah_phyRev = AH_PRIVATE(ah)->ah_phyRev;
80 			ah->ah_analog5GhzRev = AH_PRIVATE(ah)->ah_analog5GhzRev;
81 			ah->ah_analog2GhzRev = AH_PRIVATE(ah)->ah_analog2GhzRev;
82 			return ah;
83 		}
84 	}
85 	return AH_NULL;
86 }
87 
88 const char *
89 ath_hal_mac_name(struct ath_hal *ah)
90 {
91 	switch (ah->ah_macVersion) {
92 	case AR_SREV_VERSION_CRETE:
93 	case AR_SREV_VERSION_MAUI_1:
94 		return "AR5210";
95 	case AR_SREV_VERSION_MAUI_2:
96 	case AR_SREV_VERSION_OAHU:
97 		return "AR5211";
98 	case AR_SREV_VERSION_VENICE:
99 		return "AR5212";
100 	case AR_SREV_VERSION_GRIFFIN:
101 		return "AR2413";
102 	case AR_SREV_VERSION_CONDOR:
103 		return "AR5424";
104 	case AR_SREV_VERSION_EAGLE:
105 		return "AR5413";
106 	case AR_SREV_VERSION_COBRA:
107 		return "AR2415";
108 	case AR_SREV_2425:	/* Swan */
109 		return "AR2425";
110 	case AR_SREV_2417:	/* Nala */
111 		return "AR2417";
112 	case AR_XSREV_VERSION_OWL_PCI:
113 		return "AR5416";
114 	case AR_XSREV_VERSION_OWL_PCIE:
115 		return "AR5418";
116 	case AR_XSREV_VERSION_HOWL:
117 		return "AR9130";
118 	case AR_XSREV_VERSION_SOWL:
119 		return "AR9160";
120 	case AR_XSREV_VERSION_MERLIN:
121 		if (AH_PRIVATE(ah)->ah_ispcie)
122 			return "AR9280";
123 		return "AR9220";
124 	case AR_XSREV_VERSION_KITE:
125 		return "AR9285";
126 	case AR_XSREV_VERSION_KIWI:
127 		if (AH_PRIVATE(ah)->ah_ispcie)
128 			return "AR9287";
129 		return "AR9227";
130 	case AR_SREV_VERSION_AR9380:
131 		if (ah->ah_macRev >= AR_SREV_REVISION_AR9580_10)
132 			return "AR9580";
133 		return "AR9380";
134 	case AR_SREV_VERSION_AR9460:
135 		return "AR9460";
136 	case AR_SREV_VERSION_AR9330:
137 		return "AR9330";
138 	case AR_SREV_VERSION_AR9340:
139 		return "AR9340";
140 	case AR_SREV_VERSION_QCA9550:
141 		return "QCA9550";
142 	case AR_SREV_VERSION_AR9485:
143 		return "AR9485";
144 	case AR_SREV_VERSION_QCA9565:
145 		return "QCA9565";
146 	case AR_SREV_VERSION_QCA9530:
147 		return "QCA9530";
148 	}
149 	return "????";
150 }
151 
152 /*
153  * Return the mask of available modes based on the hardware capabilities.
154  */
155 u_int
156 ath_hal_getwirelessmodes(struct ath_hal*ah)
157 {
158 	return ath_hal_getWirelessModes(ah);
159 }
160 
161 /* linker set of registered RF backends */
162 OS_SET_DECLARE(ah_rfs, struct ath_hal_rf);
163 
164 /*
165  * Check the set of registered RF backends to see if
166  * any recognize the device as one they can support.
167  */
168 struct ath_hal_rf *
169 ath_hal_rfprobe(struct ath_hal *ah, HAL_STATUS *ecode)
170 {
171 	struct ath_hal_rf * const *prf;
172 
173 	OS_SET_FOREACH(prf, ah_rfs) {
174 		struct ath_hal_rf *rf = *prf;
175 		if (rf->probe(ah))
176 			return rf;
177 	}
178 	*ecode = HAL_ENOTSUPP;
179 	return AH_NULL;
180 }
181 
182 const char *
183 ath_hal_rf_name(struct ath_hal *ah)
184 {
185 	switch (ah->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR) {
186 	case 0:			/* 5210 */
187 		return "5110";	/* NB: made up */
188 	case AR_RAD5111_SREV_MAJOR:
189 	case AR_RAD5111_SREV_PROD:
190 		return "5111";
191 	case AR_RAD2111_SREV_MAJOR:
192 		return "2111";
193 	case AR_RAD5112_SREV_MAJOR:
194 	case AR_RAD5112_SREV_2_0:
195 	case AR_RAD5112_SREV_2_1:
196 		return "5112";
197 	case AR_RAD2112_SREV_MAJOR:
198 	case AR_RAD2112_SREV_2_0:
199 	case AR_RAD2112_SREV_2_1:
200 		return "2112";
201 	case AR_RAD2413_SREV_MAJOR:
202 		return "2413";
203 	case AR_RAD5413_SREV_MAJOR:
204 		return "5413";
205 	case AR_RAD2316_SREV_MAJOR:
206 		return "2316";
207 	case AR_RAD2317_SREV_MAJOR:
208 		return "2317";
209 	case AR_RAD5424_SREV_MAJOR:
210 		return "5424";
211 
212 	case AR_RAD5133_SREV_MAJOR:
213 		return "5133";
214 	case AR_RAD2133_SREV_MAJOR:
215 		return "2133";
216 	case AR_RAD5122_SREV_MAJOR:
217 		return "5122";
218 	case AR_RAD2122_SREV_MAJOR:
219 		return "2122";
220 	}
221 	return "????";
222 }
223 
224 /*
225  * Poll the register looking for a specific value.
226  */
227 HAL_BOOL
228 ath_hal_wait(struct ath_hal *ah, u_int reg, uint32_t mask, uint32_t val)
229 {
230 #define	AH_TIMEOUT	1000
231 	return ath_hal_waitfor(ah, reg, mask, val, AH_TIMEOUT);
232 #undef AH_TIMEOUT
233 }
234 
235 HAL_BOOL
236 ath_hal_waitfor(struct ath_hal *ah, u_int reg, uint32_t mask, uint32_t val, uint32_t timeout)
237 {
238 	int i;
239 
240 	for (i = 0; i < timeout; i++) {
241 		if ((OS_REG_READ(ah, reg) & mask) == val)
242 			return AH_TRUE;
243 		OS_DELAY(10);
244 	}
245 	HALDEBUG(ah, HAL_DEBUG_REGIO | HAL_DEBUG_PHYIO,
246 	    "%s: timeout on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
247 	    __func__, reg, OS_REG_READ(ah, reg), mask, val);
248 	return AH_FALSE;
249 }
250 
251 /*
252  * Reverse the bits starting at the low bit for a value of
253  * bit_count in size
254  */
255 uint32_t
256 ath_hal_reverseBits(uint32_t val, uint32_t n)
257 {
258 	uint32_t retval;
259 	int i;
260 
261 	for (i = 0, retval = 0; i < n; i++) {
262 		retval = (retval << 1) | (val & 1);
263 		val >>= 1;
264 	}
265 	return retval;
266 }
267 
268 /* 802.11n related timing definitions */
269 
270 #define	OFDM_PLCP_BITS	22
271 #define	HT_L_STF	8
272 #define	HT_L_LTF	8
273 #define	HT_L_SIG	4
274 #define	HT_SIG		8
275 #define	HT_STF		4
276 #define	HT_LTF(n)	((n) * 4)
277 
278 #define	HT_RC_2_MCS(_rc)	((_rc) & 0xf)
279 #define	HT_RC_2_STREAMS(_rc)	((((_rc) & 0x78) >> 3) + 1)
280 #define	IS_HT_RATE(_rc)		( (_rc) & IEEE80211_RATE_MCS)
281 
282 /*
283  * Calculate the duration of a packet whether it is 11n or legacy.
284  */
285 uint32_t
286 ath_hal_pkt_txtime(struct ath_hal *ah, const HAL_RATE_TABLE *rates, uint32_t frameLen,
287     uint16_t rateix, HAL_BOOL isht40, HAL_BOOL shortPreamble)
288 {
289 	uint8_t rc;
290 	int numStreams;
291 
292 	rc = rates->info[rateix].rateCode;
293 
294 	/* Legacy rate? Return the old way */
295 	if (! IS_HT_RATE(rc))
296 		return ath_hal_computetxtime(ah, rates, frameLen, rateix, shortPreamble);
297 
298 	/* 11n frame - extract out the number of spatial streams */
299 	numStreams = HT_RC_2_STREAMS(rc);
300 	KASSERT(numStreams > 0 && numStreams <= 4,
301 	    ("number of spatial streams needs to be 1..3: MCS rate 0x%x!",
302 	    rateix));
303 
304 	return ath_computedur_ht(frameLen, rc, numStreams, isht40, shortPreamble);
305 }
306 
307 static const uint16_t ht20_bps[32] = {
308     26, 52, 78, 104, 156, 208, 234, 260,
309     52, 104, 156, 208, 312, 416, 468, 520,
310     78, 156, 234, 312, 468, 624, 702, 780,
311     104, 208, 312, 416, 624, 832, 936, 1040
312 };
313 static const uint16_t ht40_bps[32] = {
314     54, 108, 162, 216, 324, 432, 486, 540,
315     108, 216, 324, 432, 648, 864, 972, 1080,
316     162, 324, 486, 648, 972, 1296, 1458, 1620,
317     216, 432, 648, 864, 1296, 1728, 1944, 2160
318 };
319 
320 /*
321  * Calculate the transmit duration of an 11n frame.
322  */
323 uint32_t
324 ath_computedur_ht(uint32_t frameLen, uint16_t rate, int streams,
325     HAL_BOOL isht40, HAL_BOOL isShortGI)
326 {
327 	uint32_t bitsPerSymbol, numBits, numSymbols, txTime;
328 
329 	KASSERT(rate & IEEE80211_RATE_MCS, ("not mcs %d", rate));
330 	KASSERT((rate &~ IEEE80211_RATE_MCS) < 31, ("bad mcs 0x%x", rate));
331 
332 	if (isht40)
333 		bitsPerSymbol = ht40_bps[rate & 0x1f];
334 	else
335 		bitsPerSymbol = ht20_bps[rate & 0x1f];
336 	numBits = OFDM_PLCP_BITS + (frameLen << 3);
337 	numSymbols = howmany(numBits, bitsPerSymbol);
338 	if (isShortGI)
339 		txTime = ((numSymbols * 18) + 4) / 5;   /* 3.6us */
340 	else
341 		txTime = numSymbols * 4;                /* 4us */
342 	return txTime + HT_L_STF + HT_L_LTF +
343 	    HT_L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
344 }
345 
346 /*
347  * Compute the time to transmit a frame of length frameLen bytes
348  * using the specified rate, phy, and short preamble setting.
349  */
350 uint16_t
351 ath_hal_computetxtime(struct ath_hal *ah,
352 	const HAL_RATE_TABLE *rates, uint32_t frameLen, uint16_t rateix,
353 	HAL_BOOL shortPreamble)
354 {
355 	uint32_t bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
356 	uint32_t kbps;
357 
358 	/* Warn if this function is called for 11n rates; it should not be! */
359 	if (IS_HT_RATE(rates->info[rateix].rateCode))
360 		ath_hal_printf(ah, "%s: MCS rate? (index %d; hwrate 0x%x)\n",
361 		    __func__, rateix, rates->info[rateix].rateCode);
362 
363 	kbps = rates->info[rateix].rateKbps;
364 	/*
365 	 * index can be invalid during dynamic Turbo transitions.
366 	 * XXX
367 	 */
368 	if (kbps == 0)
369 		return 0;
370 	switch (rates->info[rateix].phy) {
371 	case IEEE80211_T_CCK:
372 		phyTime		= CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
373 		if (shortPreamble && rates->info[rateix].shortPreamble)
374 			phyTime >>= 1;
375 		numBits		= frameLen << 3;
376 		txTime		= CCK_SIFS_TIME + phyTime
377 				+ ((numBits * 1000)/kbps);
378 		break;
379 	case IEEE80211_T_OFDM:
380 		bitsPerSymbol	= (kbps * OFDM_SYMBOL_TIME) / 1000;
381 		HALASSERT(bitsPerSymbol != 0);
382 
383 		numBits		= OFDM_PLCP_BITS + (frameLen << 3);
384 		numSymbols	= howmany(numBits, bitsPerSymbol);
385 		txTime		= OFDM_SIFS_TIME
386 				+ OFDM_PREAMBLE_TIME
387 				+ (numSymbols * OFDM_SYMBOL_TIME);
388 		break;
389 	case IEEE80211_T_OFDM_HALF:
390 		bitsPerSymbol	= (kbps * OFDM_HALF_SYMBOL_TIME) / 1000;
391 		HALASSERT(bitsPerSymbol != 0);
392 
393 		numBits		= OFDM_HALF_PLCP_BITS + (frameLen << 3);
394 		numSymbols	= howmany(numBits, bitsPerSymbol);
395 		txTime		= OFDM_HALF_SIFS_TIME
396 				+ OFDM_HALF_PREAMBLE_TIME
397 				+ (numSymbols * OFDM_HALF_SYMBOL_TIME);
398 		break;
399 	case IEEE80211_T_OFDM_QUARTER:
400 		bitsPerSymbol	= (kbps * OFDM_QUARTER_SYMBOL_TIME) / 1000;
401 		HALASSERT(bitsPerSymbol != 0);
402 
403 		numBits		= OFDM_QUARTER_PLCP_BITS + (frameLen << 3);
404 		numSymbols	= howmany(numBits, bitsPerSymbol);
405 		txTime		= OFDM_QUARTER_SIFS_TIME
406 				+ OFDM_QUARTER_PREAMBLE_TIME
407 				+ (numSymbols * OFDM_QUARTER_SYMBOL_TIME);
408 		break;
409 	case IEEE80211_T_TURBO:
410 		bitsPerSymbol	= (kbps * TURBO_SYMBOL_TIME) / 1000;
411 		HALASSERT(bitsPerSymbol != 0);
412 
413 		numBits		= TURBO_PLCP_BITS + (frameLen << 3);
414 		numSymbols	= howmany(numBits, bitsPerSymbol);
415 		txTime		= TURBO_SIFS_TIME
416 				+ TURBO_PREAMBLE_TIME
417 				+ (numSymbols * TURBO_SYMBOL_TIME);
418 		break;
419 	default:
420 		HALDEBUG(ah, HAL_DEBUG_PHYIO,
421 		    "%s: unknown phy %u (rate ix %u)\n",
422 		    __func__, rates->info[rateix].phy, rateix);
423 		txTime = 0;
424 		break;
425 	}
426 	return txTime;
427 }
428 
429 int
430 ath_hal_get_curmode(struct ath_hal *ah, const struct ieee80211_channel *chan)
431 {
432 	/*
433 	 * Pick a default mode at bootup. A channel change is inevitable.
434 	 */
435 	if (!chan)
436 		return HAL_MODE_11NG_HT20;
437 
438 	if (IEEE80211_IS_CHAN_TURBO(chan))
439 		return HAL_MODE_TURBO;
440 
441 	/* check for NA_HT before plain A, since IS_CHAN_A includes NA_HT */
442 	if (IEEE80211_IS_CHAN_5GHZ(chan) && IEEE80211_IS_CHAN_HT20(chan))
443 		return HAL_MODE_11NA_HT20;
444 	if (IEEE80211_IS_CHAN_5GHZ(chan) && IEEE80211_IS_CHAN_HT40U(chan))
445 		return HAL_MODE_11NA_HT40PLUS;
446 	if (IEEE80211_IS_CHAN_5GHZ(chan) && IEEE80211_IS_CHAN_HT40D(chan))
447 		return HAL_MODE_11NA_HT40MINUS;
448 	if (IEEE80211_IS_CHAN_A(chan))
449 		return HAL_MODE_11A;
450 
451 	/* check for NG_HT before plain G, since IS_CHAN_G includes NG_HT */
452 	if (IEEE80211_IS_CHAN_2GHZ(chan) && IEEE80211_IS_CHAN_HT20(chan))
453 		return HAL_MODE_11NG_HT20;
454 	if (IEEE80211_IS_CHAN_2GHZ(chan) && IEEE80211_IS_CHAN_HT40U(chan))
455 		return HAL_MODE_11NG_HT40PLUS;
456 	if (IEEE80211_IS_CHAN_2GHZ(chan) && IEEE80211_IS_CHAN_HT40D(chan))
457 		return HAL_MODE_11NG_HT40MINUS;
458 
459 	/*
460 	 * XXX For FreeBSD, will this work correctly given the DYN
461 	 * chan mode (OFDM+CCK dynamic) ? We have pure-G versions DYN-BG..
462 	 */
463 	if (IEEE80211_IS_CHAN_G(chan))
464 		return HAL_MODE_11G;
465 	if (IEEE80211_IS_CHAN_B(chan))
466 		return HAL_MODE_11B;
467 
468 	HALASSERT(0);
469 	return HAL_MODE_11NG_HT20;
470 }
471 
472 
473 typedef enum {
474 	WIRELESS_MODE_11a   = 0,
475 	WIRELESS_MODE_TURBO = 1,
476 	WIRELESS_MODE_11b   = 2,
477 	WIRELESS_MODE_11g   = 3,
478 	WIRELESS_MODE_108g  = 4,
479 
480 	WIRELESS_MODE_MAX
481 } WIRELESS_MODE;
482 
483 static WIRELESS_MODE
484 ath_hal_chan2wmode(struct ath_hal *ah, const struct ieee80211_channel *chan)
485 {
486 	if (IEEE80211_IS_CHAN_B(chan))
487 		return WIRELESS_MODE_11b;
488 	if (IEEE80211_IS_CHAN_G(chan))
489 		return WIRELESS_MODE_11g;
490 	if (IEEE80211_IS_CHAN_108G(chan))
491 		return WIRELESS_MODE_108g;
492 	if (IEEE80211_IS_CHAN_TURBO(chan))
493 		return WIRELESS_MODE_TURBO;
494 	return WIRELESS_MODE_11a;
495 }
496 
497 /*
498  * Convert between microseconds and core system clocks.
499  */
500                                      /* 11a Turbo  11b  11g  108g */
501 static const uint8_t CLOCK_RATE[]  = { 40,  80,   22,  44,   88  };
502 
503 #define	CLOCK_FAST_RATE_5GHZ_OFDM	44
504 
505 u_int
506 ath_hal_mac_clks(struct ath_hal *ah, u_int usecs)
507 {
508 	const struct ieee80211_channel *c = AH_PRIVATE(ah)->ah_curchan;
509 	u_int clks;
510 
511 	/* NB: ah_curchan may be null when called attach time */
512 	/* XXX merlin and later specific workaround - 5ghz fast clock is 44 */
513 	if (c != AH_NULL && IS_5GHZ_FAST_CLOCK_EN(ah, c)) {
514 		clks = usecs * CLOCK_FAST_RATE_5GHZ_OFDM;
515 		if (IEEE80211_IS_CHAN_HT40(c))
516 			clks <<= 1;
517 	} else if (c != AH_NULL) {
518 		clks = usecs * CLOCK_RATE[ath_hal_chan2wmode(ah, c)];
519 		if (IEEE80211_IS_CHAN_HT40(c))
520 			clks <<= 1;
521 	} else
522 		clks = usecs * CLOCK_RATE[WIRELESS_MODE_11b];
523 
524 	/* Compensate for half/quarter rate */
525 	if (c != AH_NULL && IEEE80211_IS_CHAN_HALF(c))
526 		clks = clks / 2;
527 	else if (c != AH_NULL && IEEE80211_IS_CHAN_QUARTER(c))
528 		clks = clks / 4;
529 
530 	return clks;
531 }
532 
533 u_int
534 ath_hal_mac_usec(struct ath_hal *ah, u_int clks)
535 {
536 	const struct ieee80211_channel *c = AH_PRIVATE(ah)->ah_curchan;
537 	u_int usec;
538 
539 	/* NB: ah_curchan may be null when called attach time */
540 	/* XXX merlin and later specific workaround - 5ghz fast clock is 44 */
541 	if (c != AH_NULL && IS_5GHZ_FAST_CLOCK_EN(ah, c)) {
542 		usec = clks / CLOCK_FAST_RATE_5GHZ_OFDM;
543 		if (IEEE80211_IS_CHAN_HT40(c))
544 			usec >>= 1;
545 	} else if (c != AH_NULL) {
546 		usec = clks / CLOCK_RATE[ath_hal_chan2wmode(ah, c)];
547 		if (IEEE80211_IS_CHAN_HT40(c))
548 			usec >>= 1;
549 	} else
550 		usec = clks / CLOCK_RATE[WIRELESS_MODE_11b];
551 	return usec;
552 }
553 
554 /*
555  * Setup a h/w rate table's reverse lookup table and
556  * fill in ack durations.  This routine is called for
557  * each rate table returned through the ah_getRateTable
558  * method.  The reverse lookup tables are assumed to be
559  * initialized to zero (or at least the first entry).
560  * We use this as a key that indicates whether or not
561  * we've previously setup the reverse lookup table.
562  *
563  * XXX not reentrant, but shouldn't matter
564  */
565 void
566 ath_hal_setupratetable(struct ath_hal *ah, HAL_RATE_TABLE *rt)
567 {
568 #define	N(a)	(sizeof(a)/sizeof(a[0]))
569 	int i;
570 
571 	if (rt->rateCodeToIndex[0] != 0)	/* already setup */
572 		return;
573 	for (i = 0; i < N(rt->rateCodeToIndex); i++)
574 		rt->rateCodeToIndex[i] = (uint8_t) -1;
575 	for (i = 0; i < rt->rateCount; i++) {
576 		uint8_t code = rt->info[i].rateCode;
577 		uint8_t cix = rt->info[i].controlRate;
578 
579 		HALASSERT(code < N(rt->rateCodeToIndex));
580 		rt->rateCodeToIndex[code] = i;
581 		HALASSERT((code | rt->info[i].shortPreamble) <
582 		    N(rt->rateCodeToIndex));
583 		rt->rateCodeToIndex[code | rt->info[i].shortPreamble] = i;
584 		/*
585 		 * XXX for 11g the control rate to use for 5.5 and 11 Mb/s
586 		 *     depends on whether they are marked as basic rates;
587 		 *     the static tables are setup with an 11b-compatible
588 		 *     2Mb/s rate which will work but is suboptimal
589 		 */
590 		rt->info[i].lpAckDuration = ath_hal_computetxtime(ah, rt,
591 			WLAN_CTRL_FRAME_SIZE, cix, AH_FALSE);
592 		rt->info[i].spAckDuration = ath_hal_computetxtime(ah, rt,
593 			WLAN_CTRL_FRAME_SIZE, cix, AH_TRUE);
594 	}
595 #undef N
596 }
597 
598 HAL_STATUS
599 ath_hal_getcapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
600 	uint32_t capability, uint32_t *result)
601 {
602 	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
603 
604 	switch (type) {
605 	case HAL_CAP_REG_DMN:		/* regulatory domain */
606 		*result = AH_PRIVATE(ah)->ah_currentRD;
607 		return HAL_OK;
608 	case HAL_CAP_DFS_DMN:		/* DFS Domain */
609 		*result = AH_PRIVATE(ah)->ah_dfsDomain;
610 		return HAL_OK;
611 	case HAL_CAP_CIPHER:		/* cipher handled in hardware */
612 	case HAL_CAP_TKIP_MIC:		/* handle TKIP MIC in hardware */
613 		return HAL_ENOTSUPP;
614 	case HAL_CAP_TKIP_SPLIT:	/* hardware TKIP uses split keys */
615 		return HAL_ENOTSUPP;
616 	case HAL_CAP_PHYCOUNTERS:	/* hardware PHY error counters */
617 		return pCap->halHwPhyCounterSupport ? HAL_OK : HAL_ENXIO;
618 	case HAL_CAP_WME_TKIPMIC:   /* hardware can do TKIP MIC when WMM is turned on */
619 		return HAL_ENOTSUPP;
620 	case HAL_CAP_DIVERSITY:		/* hardware supports fast diversity */
621 		return HAL_ENOTSUPP;
622 	case HAL_CAP_KEYCACHE_SIZE:	/* hardware key cache size */
623 		*result =  pCap->halKeyCacheSize;
624 		return HAL_OK;
625 	case HAL_CAP_NUM_TXQUEUES:	/* number of hardware tx queues */
626 		*result = pCap->halTotalQueues;
627 		return HAL_OK;
628 	case HAL_CAP_VEOL:		/* hardware supports virtual EOL */
629 		return pCap->halVEOLSupport ? HAL_OK : HAL_ENOTSUPP;
630 	case HAL_CAP_PSPOLL:		/* hardware PS-Poll support works */
631 		return pCap->halPSPollBroken ? HAL_ENOTSUPP : HAL_OK;
632 	case HAL_CAP_COMPRESSION:
633 		return pCap->halCompressSupport ? HAL_OK : HAL_ENOTSUPP;
634 	case HAL_CAP_BURST:
635 		return pCap->halBurstSupport ? HAL_OK : HAL_ENOTSUPP;
636 	case HAL_CAP_FASTFRAME:
637 		return pCap->halFastFramesSupport ? HAL_OK : HAL_ENOTSUPP;
638 	case HAL_CAP_DIAG:		/* hardware diagnostic support */
639 		*result = AH_PRIVATE(ah)->ah_diagreg;
640 		return HAL_OK;
641 	case HAL_CAP_TXPOW:		/* global tx power limit  */
642 		switch (capability) {
643 		case 0:			/* facility is supported */
644 			return HAL_OK;
645 		case 1:			/* current limit */
646 			*result = AH_PRIVATE(ah)->ah_powerLimit;
647 			return HAL_OK;
648 		case 2:			/* current max tx power */
649 			*result = AH_PRIVATE(ah)->ah_maxPowerLevel;
650 			return HAL_OK;
651 		case 3:			/* scale factor */
652 			*result = AH_PRIVATE(ah)->ah_tpScale;
653 			return HAL_OK;
654 		}
655 		return HAL_ENOTSUPP;
656 	case HAL_CAP_BSSIDMASK:		/* hardware supports bssid mask */
657 		return pCap->halBssIdMaskSupport ? HAL_OK : HAL_ENOTSUPP;
658 	case HAL_CAP_MCAST_KEYSRCH:	/* multicast frame keycache search */
659 		return pCap->halMcastKeySrchSupport ? HAL_OK : HAL_ENOTSUPP;
660 	case HAL_CAP_TSF_ADJUST:	/* hardware has beacon tsf adjust */
661 		return HAL_ENOTSUPP;
662 	case HAL_CAP_RFSILENT:		/* rfsilent support  */
663 		switch (capability) {
664 		case 0:			/* facility is supported */
665 			return pCap->halRfSilentSupport ? HAL_OK : HAL_ENOTSUPP;
666 		case 1:			/* current setting */
667 			return AH_PRIVATE(ah)->ah_rfkillEnabled ?
668 				HAL_OK : HAL_ENOTSUPP;
669 		case 2:			/* rfsilent config */
670 			*result = AH_PRIVATE(ah)->ah_rfsilent;
671 			return HAL_OK;
672 		}
673 		return HAL_ENOTSUPP;
674 	case HAL_CAP_11D:
675 		return HAL_OK;
676 
677 	case HAL_CAP_HT:
678 		return pCap->halHTSupport ? HAL_OK : HAL_ENOTSUPP;
679 	case HAL_CAP_GTXTO:
680 		return pCap->halGTTSupport ? HAL_OK : HAL_ENOTSUPP;
681 	case HAL_CAP_FAST_CC:
682 		return pCap->halFastCCSupport ? HAL_OK : HAL_ENOTSUPP;
683 	case HAL_CAP_TX_CHAINMASK:	/* mask of TX chains supported */
684 		*result = pCap->halTxChainMask;
685 		return HAL_OK;
686 	case HAL_CAP_RX_CHAINMASK:	/* mask of RX chains supported */
687 		*result = pCap->halRxChainMask;
688 		return HAL_OK;
689 	case HAL_CAP_NUM_GPIO_PINS:
690 		*result = pCap->halNumGpioPins;
691 		return HAL_OK;
692 	case HAL_CAP_CST:
693 		return pCap->halCSTSupport ? HAL_OK : HAL_ENOTSUPP;
694 	case HAL_CAP_RTS_AGGR_LIMIT:
695 		*result = pCap->halRtsAggrLimit;
696 		return HAL_OK;
697 	case HAL_CAP_4ADDR_AGGR:
698 		return pCap->hal4AddrAggrSupport ? HAL_OK : HAL_ENOTSUPP;
699 	case HAL_CAP_EXT_CHAN_DFS:
700 		return pCap->halExtChanDfsSupport ? HAL_OK : HAL_ENOTSUPP;
701 	case HAL_CAP_RX_STBC:
702 		return pCap->halRxStbcSupport ? HAL_OK : HAL_ENOTSUPP;
703 	case HAL_CAP_TX_STBC:
704 		return pCap->halTxStbcSupport ? HAL_OK : HAL_ENOTSUPP;
705 	case HAL_CAP_COMBINED_RADAR_RSSI:
706 		return pCap->halUseCombinedRadarRssi ? HAL_OK : HAL_ENOTSUPP;
707 	case HAL_CAP_AUTO_SLEEP:
708 		return pCap->halAutoSleepSupport ? HAL_OK : HAL_ENOTSUPP;
709 	case HAL_CAP_MBSSID_AGGR_SUPPORT:
710 		return pCap->halMbssidAggrSupport ? HAL_OK : HAL_ENOTSUPP;
711 	case HAL_CAP_SPLIT_4KB_TRANS:	/* hardware handles descriptors straddling 4k page boundary */
712 		return pCap->hal4kbSplitTransSupport ? HAL_OK : HAL_ENOTSUPP;
713 	case HAL_CAP_REG_FLAG:
714 		*result = AH_PRIVATE(ah)->ah_currentRDext;
715 		return HAL_OK;
716 	case HAL_CAP_ENHANCED_DMA_SUPPORT:
717 		return pCap->halEnhancedDmaSupport ? HAL_OK : HAL_ENOTSUPP;
718 	case HAL_CAP_NUM_TXMAPS:
719 		*result = pCap->halNumTxMaps;
720 		return HAL_OK;
721 	case HAL_CAP_TXDESCLEN:
722 		*result = pCap->halTxDescLen;
723 		return HAL_OK;
724 	case HAL_CAP_TXSTATUSLEN:
725 		*result = pCap->halTxStatusLen;
726 		return HAL_OK;
727 	case HAL_CAP_RXSTATUSLEN:
728 		*result = pCap->halRxStatusLen;
729 		return HAL_OK;
730 	case HAL_CAP_RXFIFODEPTH:
731 		switch (capability) {
732 		case HAL_RX_QUEUE_HP:
733 			*result = pCap->halRxHpFifoDepth;
734 			return HAL_OK;
735 		case HAL_RX_QUEUE_LP:
736 			*result = pCap->halRxLpFifoDepth;
737 			return HAL_OK;
738 		default:
739 			return HAL_ENOTSUPP;
740 	}
741 	case HAL_CAP_RXBUFSIZE:
742 	case HAL_CAP_NUM_MR_RETRIES:
743 		*result = pCap->halNumMRRetries;
744 		return HAL_OK;
745 	case HAL_CAP_BT_COEX:
746 		return pCap->halBtCoexSupport ? HAL_OK : HAL_ENOTSUPP;
747 	case HAL_CAP_SPECTRAL_SCAN:
748 		return pCap->halSpectralScanSupport ? HAL_OK : HAL_ENOTSUPP;
749 	case HAL_CAP_HT20_SGI:
750 		return pCap->halHTSGI20Support ? HAL_OK : HAL_ENOTSUPP;
751 	case HAL_CAP_RXTSTAMP_PREC:	/* rx desc tstamp precision (bits) */
752 		*result = pCap->halRxTstampPrecision;
753 		return HAL_OK;
754 	case HAL_CAP_ANT_DIV_COMB:	/* AR9285/AR9485 LNA diversity */
755 		return pCap->halAntDivCombSupport ? HAL_OK  : HAL_ENOTSUPP;
756 
757 	case HAL_CAP_ENHANCED_DFS_SUPPORT:
758 		return pCap->halEnhancedDfsSupport ? HAL_OK : HAL_ENOTSUPP;
759 
760 	/* FreeBSD-specific entries for now */
761 	case HAL_CAP_RXORN_FATAL:	/* HAL_INT_RXORN treated as fatal  */
762 		return AH_PRIVATE(ah)->ah_rxornIsFatal ? HAL_OK : HAL_ENOTSUPP;
763 	case HAL_CAP_INTRMASK:		/* mask of supported interrupts */
764 		*result = pCap->halIntrMask;
765 		return HAL_OK;
766 	case HAL_CAP_BSSIDMATCH:	/* hardware has disable bssid match */
767 		return pCap->halBssidMatchSupport ? HAL_OK : HAL_ENOTSUPP;
768 	case HAL_CAP_STREAMS:		/* number of 11n spatial streams */
769 		switch (capability) {
770 		case 0:			/* TX */
771 			*result = pCap->halTxStreams;
772 			return HAL_OK;
773 		case 1:			/* RX */
774 			*result = pCap->halRxStreams;
775 			return HAL_OK;
776 		default:
777 			return HAL_ENOTSUPP;
778 		}
779 	case HAL_CAP_RXDESC_SELFLINK:	/* hardware supports self-linked final RX descriptors correctly */
780 		return pCap->halHasRxSelfLinkedTail ? HAL_OK : HAL_ENOTSUPP;
781 	case HAL_CAP_BB_READ_WAR:		/* Baseband read WAR */
782 		return pCap->halHasBBReadWar? HAL_OK : HAL_ENOTSUPP;
783 	case HAL_CAP_SERIALISE_WAR:		/* PCI register serialisation */
784 		return pCap->halSerialiseRegWar ? HAL_OK : HAL_ENOTSUPP;
785 	case HAL_CAP_MFP:			/* Management frame protection setting */
786 		*result = pCap->halMfpSupport;
787 		return HAL_OK;
788 	case HAL_CAP_RX_LNA_MIXING:	/* Hardware uses an RX LNA mixer to map 2 antennas to a 1 stream receiver */
789 		return pCap->halRxUsingLnaMixing ? HAL_OK : HAL_ENOTSUPP;
790 	case HAL_CAP_DO_MYBEACON:	/* Hardware supports filtering my-beacons */
791 		return pCap->halRxDoMyBeacon ? HAL_OK : HAL_ENOTSUPP;
792 	case HAL_CAP_TXTSTAMP_PREC:	/* tx desc tstamp precision (bits) */
793 		*result = pCap->halTxTstampPrecision;
794 		return HAL_OK;
795 	default:
796 		return HAL_EINVAL;
797 	}
798 }
799 
800 HAL_BOOL
801 ath_hal_setcapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
802 	uint32_t capability, uint32_t setting, HAL_STATUS *status)
803 {
804 
805 	switch (type) {
806 	case HAL_CAP_TXPOW:
807 		switch (capability) {
808 		case 3:
809 			if (setting <= HAL_TP_SCALE_MIN) {
810 				AH_PRIVATE(ah)->ah_tpScale = setting;
811 				return AH_TRUE;
812 			}
813 			break;
814 		}
815 		break;
816 	case HAL_CAP_RFSILENT:		/* rfsilent support  */
817 		/*
818 		 * NB: allow even if halRfSilentSupport is false
819 		 *     in case the EEPROM is misprogrammed.
820 		 */
821 		switch (capability) {
822 		case 1:			/* current setting */
823 			AH_PRIVATE(ah)->ah_rfkillEnabled = (setting != 0);
824 			return AH_TRUE;
825 		case 2:			/* rfsilent config */
826 			/* XXX better done per-chip for validation? */
827 			AH_PRIVATE(ah)->ah_rfsilent = setting;
828 			return AH_TRUE;
829 		}
830 		break;
831 	case HAL_CAP_REG_DMN:		/* regulatory domain */
832 		AH_PRIVATE(ah)->ah_currentRD = setting;
833 		return AH_TRUE;
834 	case HAL_CAP_RXORN_FATAL:	/* HAL_INT_RXORN treated as fatal  */
835 		AH_PRIVATE(ah)->ah_rxornIsFatal = setting;
836 		return AH_TRUE;
837 	default:
838 		break;
839 	}
840 	if (status)
841 		*status = HAL_EINVAL;
842 	return AH_FALSE;
843 }
844 
845 /*
846  * Common support for getDiagState method.
847  */
848 
849 static u_int
850 ath_hal_getregdump(struct ath_hal *ah, const HAL_REGRANGE *regs,
851 	void *dstbuf, int space)
852 {
853 	uint32_t *dp = dstbuf;
854 	int i;
855 
856 	for (i = 0; space >= 2*sizeof(uint32_t); i++) {
857 		uint32_t r = regs[i].start;
858 		uint32_t e = regs[i].end;
859 		*dp++ = r;
860 		*dp++ = e;
861 		space -= 2*sizeof(uint32_t);
862 		do {
863 			*dp++ = OS_REG_READ(ah, r);
864 			r += sizeof(uint32_t);
865 			space -= sizeof(uint32_t);
866 		} while (r <= e && space >= sizeof(uint32_t));
867 	}
868 	return (char *) dp - (char *) dstbuf;
869 }
870 
871 static void
872 ath_hal_setregs(struct ath_hal *ah, const HAL_REGWRITE *regs, int space)
873 {
874 	while (space >= sizeof(HAL_REGWRITE)) {
875 		OS_REG_WRITE(ah, regs->addr, regs->value);
876 		regs++, space -= sizeof(HAL_REGWRITE);
877 	}
878 }
879 
880 HAL_BOOL
881 ath_hal_getdiagstate(struct ath_hal *ah, int request,
882 	const void *args, uint32_t argsize,
883 	void **result, uint32_t *resultsize)
884 {
885 
886 	switch (request) {
887 	case HAL_DIAG_REVS:
888 		*result = &AH_PRIVATE(ah)->ah_devid;
889 		*resultsize = sizeof(HAL_REVS);
890 		return AH_TRUE;
891 	case HAL_DIAG_REGS:
892 		*resultsize = ath_hal_getregdump(ah, args, *result,*resultsize);
893 		return AH_TRUE;
894 	case HAL_DIAG_SETREGS:
895 		ath_hal_setregs(ah, args, argsize);
896 		*resultsize = 0;
897 		return AH_TRUE;
898 	case HAL_DIAG_FATALERR:
899 		*result = &AH_PRIVATE(ah)->ah_fatalState[0];
900 		*resultsize = sizeof(AH_PRIVATE(ah)->ah_fatalState);
901 		return AH_TRUE;
902 	case HAL_DIAG_EEREAD:
903 		if (argsize != sizeof(uint16_t))
904 			return AH_FALSE;
905 		if (!ath_hal_eepromRead(ah, *(const uint16_t *)args, *result))
906 			return AH_FALSE;
907 		*resultsize = sizeof(uint16_t);
908 		return AH_TRUE;
909 #ifdef AH_PRIVATE_DIAG
910 	case HAL_DIAG_SETKEY: {
911 		const HAL_DIAG_KEYVAL *dk;
912 
913 		if (argsize != sizeof(HAL_DIAG_KEYVAL))
914 			return AH_FALSE;
915 		dk = (const HAL_DIAG_KEYVAL *)args;
916 		return ah->ah_setKeyCacheEntry(ah, dk->dk_keyix,
917 			&dk->dk_keyval, dk->dk_mac, dk->dk_xor);
918 	}
919 	case HAL_DIAG_RESETKEY:
920 		if (argsize != sizeof(uint16_t))
921 			return AH_FALSE;
922 		return ah->ah_resetKeyCacheEntry(ah, *(const uint16_t *)args);
923 #ifdef AH_SUPPORT_WRITE_EEPROM
924 	case HAL_DIAG_EEWRITE: {
925 		const HAL_DIAG_EEVAL *ee;
926 		if (argsize != sizeof(HAL_DIAG_EEVAL))
927 			return AH_FALSE;
928 		ee = (const HAL_DIAG_EEVAL *)args;
929 		return ath_hal_eepromWrite(ah, ee->ee_off, ee->ee_data);
930 	}
931 #endif /* AH_SUPPORT_WRITE_EEPROM */
932 #endif /* AH_PRIVATE_DIAG */
933 	case HAL_DIAG_11NCOMPAT:
934 		if (argsize == 0) {
935 			*resultsize = sizeof(uint32_t);
936 			*((uint32_t *)(*result)) =
937 				AH_PRIVATE(ah)->ah_11nCompat;
938 		} else if (argsize == sizeof(uint32_t)) {
939 			AH_PRIVATE(ah)->ah_11nCompat = *(const uint32_t *)args;
940 		} else
941 			return AH_FALSE;
942 		return AH_TRUE;
943 	case HAL_DIAG_CHANSURVEY:
944 		*result = &AH_PRIVATE(ah)->ah_chansurvey;
945 		*resultsize = sizeof(HAL_CHANNEL_SURVEY);
946 		return AH_TRUE;
947 	}
948 	return AH_FALSE;
949 }
950 
951 /*
952  * Set the properties of the tx queue with the parameters
953  * from qInfo.
954  */
955 HAL_BOOL
956 ath_hal_setTxQProps(struct ath_hal *ah,
957 	HAL_TX_QUEUE_INFO *qi, const HAL_TXQ_INFO *qInfo)
958 {
959 	uint32_t cw;
960 
961 	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
962 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
963 		    "%s: inactive queue\n", __func__);
964 		return AH_FALSE;
965 	}
966 	/* XXX validate parameters */
967 	qi->tqi_ver = qInfo->tqi_ver;
968 	qi->tqi_subtype = qInfo->tqi_subtype;
969 	qi->tqi_qflags = qInfo->tqi_qflags;
970 	qi->tqi_priority = qInfo->tqi_priority;
971 	if (qInfo->tqi_aifs != HAL_TXQ_USEDEFAULT)
972 		qi->tqi_aifs = AH_MIN(qInfo->tqi_aifs, 255);
973 	else
974 		qi->tqi_aifs = INIT_AIFS;
975 	if (qInfo->tqi_cwmin != HAL_TXQ_USEDEFAULT) {
976 		cw = AH_MIN(qInfo->tqi_cwmin, 1024);
977 		/* make sure that the CWmin is of the form (2^n - 1) */
978 		qi->tqi_cwmin = 1;
979 		while (qi->tqi_cwmin < cw)
980 			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
981 	} else
982 		qi->tqi_cwmin = qInfo->tqi_cwmin;
983 	if (qInfo->tqi_cwmax != HAL_TXQ_USEDEFAULT) {
984 		cw = AH_MIN(qInfo->tqi_cwmax, 1024);
985 		/* make sure that the CWmax is of the form (2^n - 1) */
986 		qi->tqi_cwmax = 1;
987 		while (qi->tqi_cwmax < cw)
988 			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
989 	} else
990 		qi->tqi_cwmax = INIT_CWMAX;
991 	/* Set retry limit values */
992 	if (qInfo->tqi_shretry != 0)
993 		qi->tqi_shretry = AH_MIN(qInfo->tqi_shretry, 15);
994 	else
995 		qi->tqi_shretry = INIT_SH_RETRY;
996 	if (qInfo->tqi_lgretry != 0)
997 		qi->tqi_lgretry = AH_MIN(qInfo->tqi_lgretry, 15);
998 	else
999 		qi->tqi_lgretry = INIT_LG_RETRY;
1000 	qi->tqi_cbrPeriod = qInfo->tqi_cbrPeriod;
1001 	qi->tqi_cbrOverflowLimit = qInfo->tqi_cbrOverflowLimit;
1002 	qi->tqi_burstTime = qInfo->tqi_burstTime;
1003 	qi->tqi_readyTime = qInfo->tqi_readyTime;
1004 
1005 	switch (qInfo->tqi_subtype) {
1006 	case HAL_WME_UPSD:
1007 		if (qi->tqi_type == HAL_TX_QUEUE_DATA)
1008 			qi->tqi_intFlags = HAL_TXQ_USE_LOCKOUT_BKOFF_DIS;
1009 		break;
1010 	default:
1011 		break;		/* NB: silence compiler */
1012 	}
1013 	return AH_TRUE;
1014 }
1015 
1016 HAL_BOOL
1017 ath_hal_getTxQProps(struct ath_hal *ah,
1018 	HAL_TXQ_INFO *qInfo, const HAL_TX_QUEUE_INFO *qi)
1019 {
1020 	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
1021 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
1022 		    "%s: inactive queue\n", __func__);
1023 		return AH_FALSE;
1024 	}
1025 
1026 	qInfo->tqi_qflags = qi->tqi_qflags;
1027 	qInfo->tqi_ver = qi->tqi_ver;
1028 	qInfo->tqi_subtype = qi->tqi_subtype;
1029 	qInfo->tqi_qflags = qi->tqi_qflags;
1030 	qInfo->tqi_priority = qi->tqi_priority;
1031 	qInfo->tqi_aifs = qi->tqi_aifs;
1032 	qInfo->tqi_cwmin = qi->tqi_cwmin;
1033 	qInfo->tqi_cwmax = qi->tqi_cwmax;
1034 	qInfo->tqi_shretry = qi->tqi_shretry;
1035 	qInfo->tqi_lgretry = qi->tqi_lgretry;
1036 	qInfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
1037 	qInfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
1038 	qInfo->tqi_burstTime = qi->tqi_burstTime;
1039 	qInfo->tqi_readyTime = qi->tqi_readyTime;
1040 	return AH_TRUE;
1041 }
1042 
1043                                      /* 11a Turbo  11b  11g  108g */
1044 static const int16_t NOISE_FLOOR[] = { -96, -93,  -98, -96,  -93 };
1045 
1046 /*
1047  * Read the current channel noise floor and return.
1048  * If nf cal hasn't finished, channel noise floor should be 0
1049  * and we return a nominal value based on band and frequency.
1050  *
1051  * NB: This is a private routine used by per-chip code to
1052  *     implement the ah_getChanNoise method.
1053  */
1054 int16_t
1055 ath_hal_getChanNoise(struct ath_hal *ah, const struct ieee80211_channel *chan)
1056 {
1057 	HAL_CHANNEL_INTERNAL *ichan;
1058 
1059 	ichan = ath_hal_checkchannel(ah, chan);
1060 	if (ichan == AH_NULL) {
1061 		HALDEBUG(ah, HAL_DEBUG_NFCAL,
1062 		    "%s: invalid channel %u/0x%x; no mapping\n",
1063 		    __func__, chan->ic_freq, chan->ic_flags);
1064 		return 0;
1065 	}
1066 	if (ichan->rawNoiseFloor == 0) {
1067 		WIRELESS_MODE mode = ath_hal_chan2wmode(ah, chan);
1068 
1069 		HALASSERT(mode < WIRELESS_MODE_MAX);
1070 		return NOISE_FLOOR[mode] + ath_hal_getNfAdjust(ah, ichan);
1071 	} else
1072 		return ichan->rawNoiseFloor + ichan->noiseFloorAdjust;
1073 }
1074 
1075 /*
1076  * Fetch the current setup of ctl/ext noise floor values.
1077  *
1078  * If the CHANNEL_MIMO_NF_VALID flag isn't set, the array is simply
1079  * populated with values from NOISE_FLOOR[] + ath_hal_getNfAdjust().
1080  *
1081  * The caller must supply ctl/ext NF arrays which are at least
1082  * AH_MAX_CHAINS entries long.
1083  */
1084 int
1085 ath_hal_get_mimo_chan_noise(struct ath_hal *ah,
1086     const struct ieee80211_channel *chan, int16_t *nf_ctl,
1087     int16_t *nf_ext)
1088 {
1089 #ifdef	AH_SUPPORT_AR5416
1090 	HAL_CHANNEL_INTERNAL *ichan;
1091 	int i;
1092 
1093 	ichan = ath_hal_checkchannel(ah, chan);
1094 	if (ichan == AH_NULL) {
1095 		HALDEBUG(ah, HAL_DEBUG_NFCAL,
1096 		    "%s: invalid channel %u/0x%x; no mapping\n",
1097 		    __func__, chan->ic_freq, chan->ic_flags);
1098 		for (i = 0; i < AH_MAX_CHAINS; i++) {
1099 			nf_ctl[i] = nf_ext[i] = 0;
1100 		}
1101 		return 0;
1102 	}
1103 
1104 	/* Return 0 if there's no valid MIMO values (yet) */
1105 	if (! (ichan->privFlags & CHANNEL_MIMO_NF_VALID)) {
1106 		for (i = 0; i < AH_MAX_CHAINS; i++) {
1107 			nf_ctl[i] = nf_ext[i] = 0;
1108 		}
1109 		return 0;
1110 	}
1111 	if (ichan->rawNoiseFloor == 0) {
1112 		WIRELESS_MODE mode = ath_hal_chan2wmode(ah, chan);
1113 		HALASSERT(mode < WIRELESS_MODE_MAX);
1114 		/*
1115 		 * See the comment below - this could cause issues for
1116 		 * stations which have a very low RSSI, below the
1117 		 * 'normalised' NF values in NOISE_FLOOR[].
1118 		 */
1119 		for (i = 0; i < AH_MAX_CHAINS; i++) {
1120 			nf_ctl[i] = nf_ext[i] = NOISE_FLOOR[mode] +
1121 			    ath_hal_getNfAdjust(ah, ichan);
1122 		}
1123 		return 1;
1124 	} else {
1125 		/*
1126 		 * The value returned here from a MIMO radio is presumed to be
1127 		 * "good enough" as a NF calculation. As RSSI values are calculated
1128 		 * against this, an adjusted NF may be higher than the RSSI value
1129 		 * returned from a vary weak station, resulting in an obscenely
1130 		 * high signal strength calculation being returned.
1131 		 *
1132 		 * This should be re-evaluated at a later date, along with any
1133 		 * signal strength calculations which are made. Quite likely the
1134 		 * RSSI values will need to be adjusted to ensure the calculations
1135 		 * don't "wrap" when RSSI is less than the "adjusted" NF value.
1136 		 * ("Adjust" here is via ichan->noiseFloorAdjust.)
1137 		 */
1138 		for (i = 0; i < AH_MAX_CHAINS; i++) {
1139 			nf_ctl[i] = ichan->noiseFloorCtl[i] + ath_hal_getNfAdjust(ah, ichan);
1140 			nf_ext[i] = ichan->noiseFloorExt[i] + ath_hal_getNfAdjust(ah, ichan);
1141 		}
1142 		return 1;
1143 	}
1144 #else
1145 	return 0;
1146 #endif	/* AH_SUPPORT_AR5416 */
1147 }
1148 
1149 /*
1150  * Process all valid raw noise floors into the dBm noise floor values.
1151  * Though our device has no reference for a dBm noise floor, we perform
1152  * a relative minimization of NF's based on the lowest NF found across a
1153  * channel scan.
1154  */
1155 void
1156 ath_hal_process_noisefloor(struct ath_hal *ah)
1157 {
1158 	HAL_CHANNEL_INTERNAL *c;
1159 	int16_t correct2, correct5;
1160 	int16_t lowest2, lowest5;
1161 	int i;
1162 
1163 	/*
1164 	 * Find the lowest 2GHz and 5GHz noise floor values after adjusting
1165 	 * for statistically recorded NF/channel deviation.
1166 	 */
1167 	correct2 = lowest2 = 0;
1168 	correct5 = lowest5 = 0;
1169 	for (i = 0; i < AH_PRIVATE(ah)->ah_nchan; i++) {
1170 		WIRELESS_MODE mode;
1171 		int16_t nf;
1172 
1173 		c = &AH_PRIVATE(ah)->ah_channels[i];
1174 		if (c->rawNoiseFloor >= 0)
1175 			continue;
1176 		/* XXX can't identify proper mode */
1177 		mode = IS_CHAN_5GHZ(c) ? WIRELESS_MODE_11a : WIRELESS_MODE_11g;
1178 		nf = c->rawNoiseFloor + NOISE_FLOOR[mode] +
1179 			ath_hal_getNfAdjust(ah, c);
1180 		if (IS_CHAN_5GHZ(c)) {
1181 			if (nf < lowest5) {
1182 				lowest5 = nf;
1183 				correct5 = NOISE_FLOOR[mode] -
1184 				    (c->rawNoiseFloor + ath_hal_getNfAdjust(ah, c));
1185 			}
1186 		} else {
1187 			if (nf < lowest2) {
1188 				lowest2 = nf;
1189 				correct2 = NOISE_FLOOR[mode] -
1190 				    (c->rawNoiseFloor + ath_hal_getNfAdjust(ah, c));
1191 			}
1192 		}
1193 	}
1194 
1195 	/* Correct the channels to reach the expected NF value */
1196 	for (i = 0; i < AH_PRIVATE(ah)->ah_nchan; i++) {
1197 		c = &AH_PRIVATE(ah)->ah_channels[i];
1198 		if (c->rawNoiseFloor >= 0)
1199 			continue;
1200 		/* Apply correction factor */
1201 		c->noiseFloorAdjust = ath_hal_getNfAdjust(ah, c) +
1202 			(IS_CHAN_5GHZ(c) ? correct5 : correct2);
1203 		HALDEBUG(ah, HAL_DEBUG_NFCAL, "%u raw nf %d adjust %d\n",
1204 		    c->channel, c->rawNoiseFloor, c->noiseFloorAdjust);
1205 	}
1206 }
1207 
1208 /*
1209  * INI support routines.
1210  */
1211 
1212 int
1213 ath_hal_ini_write(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
1214 	int col, int regWr)
1215 {
1216 	int r;
1217 
1218 	HALASSERT(col < ia->cols);
1219 	for (r = 0; r < ia->rows; r++) {
1220 		OS_REG_WRITE(ah, HAL_INI_VAL(ia, r, 0),
1221 		    HAL_INI_VAL(ia, r, col));
1222 
1223 		/* Analog shift register delay seems needed for Merlin - PR kern/154220 */
1224 		if (HAL_INI_VAL(ia, r, 0) >= 0x7800 && HAL_INI_VAL(ia, r, 0) < 0x7900)
1225 			OS_DELAY(100);
1226 
1227 		DMA_YIELD(regWr);
1228 	}
1229 	return regWr;
1230 }
1231 
1232 void
1233 ath_hal_ini_bank_setup(uint32_t data[], const HAL_INI_ARRAY *ia, int col)
1234 {
1235 	int r;
1236 
1237 	HALASSERT(col < ia->cols);
1238 	for (r = 0; r < ia->rows; r++)
1239 		data[r] = HAL_INI_VAL(ia, r, col);
1240 }
1241 
1242 int
1243 ath_hal_ini_bank_write(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
1244 	const uint32_t data[], int regWr)
1245 {
1246 	int r;
1247 
1248 	for (r = 0; r < ia->rows; r++) {
1249 		OS_REG_WRITE(ah, HAL_INI_VAL(ia, r, 0), data[r]);
1250 		DMA_YIELD(regWr);
1251 	}
1252 	return regWr;
1253 }
1254 
1255 /*
1256  * These are EEPROM board related routines which should likely live in
1257  * a helper library of some sort.
1258  */
1259 
1260 /**************************************************************
1261  * ath_ee_getLowerUppderIndex
1262  *
1263  * Return indices surrounding the value in sorted integer lists.
1264  * Requirement: the input list must be monotonically increasing
1265  *     and populated up to the list size
1266  * Returns: match is set if an index in the array matches exactly
1267  *     or a the target is before or after the range of the array.
1268  */
1269 HAL_BOOL
1270 ath_ee_getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
1271                    uint16_t *indexL, uint16_t *indexR)
1272 {
1273     uint16_t i;
1274 
1275     /*
1276      * Check first and last elements for beyond ordered array cases.
1277      */
1278     if (target <= pList[0]) {
1279         *indexL = *indexR = 0;
1280         return AH_TRUE;
1281     }
1282     if (target >= pList[listSize-1]) {
1283         *indexL = *indexR = (uint16_t)(listSize - 1);
1284         return AH_TRUE;
1285     }
1286 
1287     /* look for value being near or between 2 values in list */
1288     for (i = 0; i < listSize - 1; i++) {
1289         /*
1290          * If value is close to the current value of the list
1291          * then target is not between values, it is one of the values
1292          */
1293         if (pList[i] == target) {
1294             *indexL = *indexR = i;
1295             return AH_TRUE;
1296         }
1297         /*
1298          * Look for value being between current value and next value
1299          * if so return these 2 values
1300          */
1301         if (target < pList[i + 1]) {
1302             *indexL = i;
1303             *indexR = (uint16_t)(i + 1);
1304             return AH_FALSE;
1305         }
1306     }
1307     HALASSERT(0);
1308     *indexL = *indexR = 0;
1309     return AH_FALSE;
1310 }
1311 
1312 /**************************************************************
1313  * ath_ee_FillVpdTable
1314  *
1315  * Fill the Vpdlist for indices Pmax-Pmin
1316  * Note: pwrMin, pwrMax and Vpdlist are all in dBm * 4
1317  */
1318 HAL_BOOL
1319 ath_ee_FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
1320                    uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
1321 {
1322     uint16_t  i, k;
1323     uint8_t   currPwr = pwrMin;
1324     uint16_t  idxL, idxR;
1325 
1326     HALASSERT(pwrMax > pwrMin);
1327     for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
1328         ath_ee_getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
1329                            &(idxL), &(idxR));
1330         if (idxR < 1)
1331             idxR = 1;           /* extrapolate below */
1332         if (idxL == numIntercepts - 1)
1333             idxL = (uint16_t)(numIntercepts - 2);   /* extrapolate above */
1334         if (pPwrList[idxL] == pPwrList[idxR])
1335             k = pVpdList[idxL];
1336         else
1337             k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
1338                   (pPwrList[idxR] - pPwrList[idxL]) );
1339         HALASSERT(k < 256);
1340         pRetVpdList[i] = (uint8_t)k;
1341         currPwr += 2;               /* half dB steps */
1342     }
1343 
1344     return AH_TRUE;
1345 }
1346 
1347 /**************************************************************************
1348  * ath_ee_interpolate
1349  *
1350  * Returns signed interpolated or the scaled up interpolated value
1351  */
1352 int16_t
1353 ath_ee_interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
1354             int16_t targetLeft, int16_t targetRight)
1355 {
1356     int16_t rv;
1357 
1358     if (srcRight == srcLeft) {
1359         rv = targetLeft;
1360     } else {
1361         rv = (int16_t)( ((target - srcLeft) * targetRight +
1362               (srcRight - target) * targetLeft) / (srcRight - srcLeft) );
1363     }
1364     return rv;
1365 }
1366 
1367 /*
1368  * Adjust the TSF.
1369  */
1370 void
1371 ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
1372 {
1373 	/* XXX handle wrap/overflow */
1374 	OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
1375 }
1376 
1377 /*
1378  * Enable or disable CCA.
1379  */
1380 void
1381 ath_hal_setcca(struct ath_hal *ah, int ena)
1382 {
1383 	/*
1384 	 * NB: fill me in; this is not provided by default because disabling
1385 	 *     CCA in most locales violates regulatory.
1386 	 */
1387 }
1388 
1389 /*
1390  * Get CCA setting.
1391  */
1392 int
1393 ath_hal_getcca(struct ath_hal *ah)
1394 {
1395 	u_int32_t diag;
1396 	if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
1397 		return 1;
1398 	return ((diag & 0x500000) == 0);
1399 }
1400 
1401 /*
1402  * This routine is only needed when supporting EEPROM-in-RAM setups
1403  * (eg embedded SoCs and on-board PCI/PCIe devices.)
1404  */
1405 /* NB: This is in 16 bit words; not bytes */
1406 /* XXX This doesn't belong here!  */
1407 #define ATH_DATA_EEPROM_SIZE    2048
1408 
1409 HAL_BOOL
1410 ath_hal_EepromDataRead(struct ath_hal *ah, u_int off, uint16_t *data)
1411 {
1412 	if (ah->ah_eepromdata == AH_NULL) {
1413 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: no eeprom data!\n", __func__);
1414 		return AH_FALSE;
1415 	}
1416 	if (off > ATH_DATA_EEPROM_SIZE) {
1417 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: offset %x > %x\n",
1418 		    __func__, off, ATH_DATA_EEPROM_SIZE);
1419 		return AH_FALSE;
1420 	}
1421 	(*data) = ah->ah_eepromdata[off];
1422 	return AH_TRUE;
1423 }
1424 
1425 /*
1426  * Do a 2GHz specific MHz->IEEE based on the hardware
1427  * frequency.
1428  *
1429  * This is the unmapped frequency which is programmed into the hardware.
1430  */
1431 int
1432 ath_hal_mhz2ieee_2ghz(struct ath_hal *ah, int freq)
1433 {
1434 
1435 	if (freq == 2484)
1436 		return 14;
1437 	if (freq < 2484)
1438 		return ((int) freq - 2407) / 5;
1439 	else
1440 		return 15 + ((freq - 2512) / 20);
1441 }
1442 
1443 /*
1444  * Clear the current survey data.
1445  *
1446  * This should be done during a channel change.
1447  */
1448 void
1449 ath_hal_survey_clear(struct ath_hal *ah)
1450 {
1451 
1452 	OS_MEMZERO(&AH_PRIVATE(ah)->ah_chansurvey,
1453 	    sizeof(AH_PRIVATE(ah)->ah_chansurvey));
1454 }
1455 
1456 /*
1457  * Add a sample to the channel survey.
1458  */
1459 void
1460 ath_hal_survey_add_sample(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hs)
1461 {
1462 	HAL_CHANNEL_SURVEY *cs;
1463 
1464 	cs = &AH_PRIVATE(ah)->ah_chansurvey;
1465 
1466 	OS_MEMCPY(&cs->samples[cs->cur_sample], hs, sizeof(*hs));
1467 	cs->samples[cs->cur_sample].seq_num = cs->cur_seq;
1468 	cs->cur_sample = (cs->cur_sample + 1) % CHANNEL_SURVEY_SAMPLE_COUNT;
1469 	cs->cur_seq++;
1470 }
1471