xref: /freebsd/sys/dev/ath/ath_hal/ah.c (revision 718cf2ccb9956613756ab15d7a0e28f2c8e91cab)
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 #include "ah_devid.h"
24 #include "ah_eeprom.h"			/* for 5ghz fast clock flag */
25 
26 #include "ar5416/ar5416reg.h"		/* NB: includes ar5212reg.h */
27 #include "ar9003/ar9300_devid.h"
28 
29 /* linker set of registered chips */
30 OS_SET_DECLARE(ah_chips, struct ath_hal_chip);
31 TAILQ_HEAD(, ath_hal_chip) ah_chip_list = TAILQ_HEAD_INITIALIZER(ah_chip_list);
32 
33 int
34 ath_hal_add_chip(struct ath_hal_chip *ahc)
35 {
36 
37 	TAILQ_INSERT_TAIL(&ah_chip_list, ahc, node);
38 	return (0);
39 }
40 
41 int
42 ath_hal_remove_chip(struct ath_hal_chip *ahc)
43 {
44 
45 	TAILQ_REMOVE(&ah_chip_list, ahc, node);
46 	return (0);
47 }
48 
49 /*
50  * Check the set of registered chips to see if any recognize
51  * the device as one they can support.
52  */
53 const char*
54 ath_hal_probe(uint16_t vendorid, uint16_t devid)
55 {
56 	struct ath_hal_chip * const *pchip;
57 	struct ath_hal_chip *pc;
58 
59 	/* Linker set */
60 	OS_SET_FOREACH(pchip, ah_chips) {
61 		const char *name = (*pchip)->probe(vendorid, devid);
62 		if (name != AH_NULL)
63 			return name;
64 	}
65 
66 	/* List */
67 	TAILQ_FOREACH(pc, &ah_chip_list, node) {
68 		const char *name = pc->probe(vendorid, devid);
69 		if (name != AH_NULL)
70 			return name;
71 	}
72 
73 	return AH_NULL;
74 }
75 
76 /*
77  * Attach detects device chip revisions, initializes the hwLayer
78  * function list, reads EEPROM information,
79  * selects reset vectors, and performs a short self test.
80  * Any failures will return an error that should cause a hardware
81  * disable.
82  */
83 struct ath_hal*
84 ath_hal_attach(uint16_t devid, HAL_SOFTC sc,
85 	HAL_BUS_TAG st, HAL_BUS_HANDLE sh, uint16_t *eepromdata,
86 	HAL_OPS_CONFIG *ah_config,
87 	HAL_STATUS *error)
88 {
89 	struct ath_hal_chip * const *pchip;
90 	struct ath_hal_chip *pc;
91 
92 	OS_SET_FOREACH(pchip, ah_chips) {
93 		struct ath_hal_chip *chip = *pchip;
94 		struct ath_hal *ah;
95 
96 		/* XXX don't have vendorid, assume atheros one works */
97 		if (chip->probe(ATHEROS_VENDOR_ID, devid) == AH_NULL)
98 			continue;
99 		ah = chip->attach(devid, sc, st, sh, eepromdata, ah_config,
100 		    error);
101 		if (ah != AH_NULL) {
102 			/* copy back private state to public area */
103 			ah->ah_devid = AH_PRIVATE(ah)->ah_devid;
104 			ah->ah_subvendorid = AH_PRIVATE(ah)->ah_subvendorid;
105 			ah->ah_macVersion = AH_PRIVATE(ah)->ah_macVersion;
106 			ah->ah_macRev = AH_PRIVATE(ah)->ah_macRev;
107 			ah->ah_phyRev = AH_PRIVATE(ah)->ah_phyRev;
108 			ah->ah_analog5GhzRev = AH_PRIVATE(ah)->ah_analog5GhzRev;
109 			ah->ah_analog2GhzRev = AH_PRIVATE(ah)->ah_analog2GhzRev;
110 			return ah;
111 		}
112 	}
113 
114 	/* List */
115 	TAILQ_FOREACH(pc, &ah_chip_list, node) {
116 		struct ath_hal_chip *chip = pc;
117 		struct ath_hal *ah;
118 
119 		/* XXX don't have vendorid, assume atheros one works */
120 		if (chip->probe(ATHEROS_VENDOR_ID, devid) == AH_NULL)
121 			continue;
122 		ah = chip->attach(devid, sc, st, sh, eepromdata, ah_config,
123 		    error);
124 		if (ah != AH_NULL) {
125 			/* copy back private state to public area */
126 			ah->ah_devid = AH_PRIVATE(ah)->ah_devid;
127 			ah->ah_subvendorid = AH_PRIVATE(ah)->ah_subvendorid;
128 			ah->ah_macVersion = AH_PRIVATE(ah)->ah_macVersion;
129 			ah->ah_macRev = AH_PRIVATE(ah)->ah_macRev;
130 			ah->ah_phyRev = AH_PRIVATE(ah)->ah_phyRev;
131 			ah->ah_analog5GhzRev = AH_PRIVATE(ah)->ah_analog5GhzRev;
132 			ah->ah_analog2GhzRev = AH_PRIVATE(ah)->ah_analog2GhzRev;
133 			return ah;
134 		}
135 	}
136 
137 	return AH_NULL;
138 }
139 
140 const char *
141 ath_hal_mac_name(struct ath_hal *ah)
142 {
143 	switch (ah->ah_macVersion) {
144 	case AR_SREV_VERSION_CRETE:
145 	case AR_SREV_VERSION_MAUI_1:
146 		return "AR5210";
147 	case AR_SREV_VERSION_MAUI_2:
148 	case AR_SREV_VERSION_OAHU:
149 		return "AR5211";
150 	case AR_SREV_VERSION_VENICE:
151 		return "AR5212";
152 	case AR_SREV_VERSION_GRIFFIN:
153 		return "AR2413";
154 	case AR_SREV_VERSION_CONDOR:
155 		return "AR5424";
156 	case AR_SREV_VERSION_EAGLE:
157 		return "AR5413";
158 	case AR_SREV_VERSION_COBRA:
159 		return "AR2415";
160 	case AR_SREV_2425:	/* Swan */
161 		return "AR2425";
162 	case AR_SREV_2417:	/* Nala */
163 		return "AR2417";
164 	case AR_XSREV_VERSION_OWL_PCI:
165 		return "AR5416";
166 	case AR_XSREV_VERSION_OWL_PCIE:
167 		return "AR5418";
168 	case AR_XSREV_VERSION_HOWL:
169 		return "AR9130";
170 	case AR_XSREV_VERSION_SOWL:
171 		return "AR9160";
172 	case AR_XSREV_VERSION_MERLIN:
173 		if (AH_PRIVATE(ah)->ah_ispcie)
174 			return "AR9280";
175 		return "AR9220";
176 	case AR_XSREV_VERSION_KITE:
177 		return "AR9285";
178 	case AR_XSREV_VERSION_KIWI:
179 		if (AH_PRIVATE(ah)->ah_ispcie)
180 			return "AR9287";
181 		return "AR9227";
182 	case AR_SREV_VERSION_AR9380:
183 		if (ah->ah_macRev >= AR_SREV_REVISION_AR9580_10)
184 			return "AR9580";
185 		return "AR9380";
186 	case AR_SREV_VERSION_AR9460:
187 		return "AR9460";
188 	case AR_SREV_VERSION_AR9330:
189 		return "AR9330";
190 	case AR_SREV_VERSION_AR9340:
191 		return "AR9340";
192 	case AR_SREV_VERSION_QCA9550:
193 		return "QCA9550";
194 	case AR_SREV_VERSION_AR9485:
195 		return "AR9485";
196 	case AR_SREV_VERSION_QCA9565:
197 		return "QCA9565";
198 	case AR_SREV_VERSION_QCA9530:
199 		return "QCA9530";
200 	}
201 	return "????";
202 }
203 
204 /*
205  * Return the mask of available modes based on the hardware capabilities.
206  */
207 u_int
208 ath_hal_getwirelessmodes(struct ath_hal*ah)
209 {
210 	return ath_hal_getWirelessModes(ah);
211 }
212 
213 /* linker set of registered RF backends */
214 OS_SET_DECLARE(ah_rfs, struct ath_hal_rf);
215 TAILQ_HEAD(, ath_hal_rf) ah_rf_list = TAILQ_HEAD_INITIALIZER(ah_rf_list);
216 
217 int
218 ath_hal_add_rf(struct ath_hal_rf *arf)
219 {
220 
221 	TAILQ_INSERT_TAIL(&ah_rf_list, arf, node);
222 	return (0);
223 }
224 
225 int
226 ath_hal_remove_rf(struct ath_hal_rf *arf)
227 {
228 
229 	TAILQ_REMOVE(&ah_rf_list, arf, node);
230 	return (0);
231 }
232 
233 /*
234  * Check the set of registered RF backends to see if
235  * any recognize the device as one they can support.
236  */
237 struct ath_hal_rf *
238 ath_hal_rfprobe(struct ath_hal *ah, HAL_STATUS *ecode)
239 {
240 	struct ath_hal_rf * const *prf;
241 	struct ath_hal_rf * rf;
242 
243 	OS_SET_FOREACH(prf, ah_rfs) {
244 		struct ath_hal_rf *rf = *prf;
245 		if (rf->probe(ah))
246 			return rf;
247 	}
248 
249 	TAILQ_FOREACH(rf, &ah_rf_list, node) {
250 		if (rf->probe(ah))
251 			return rf;
252 	}
253 	*ecode = HAL_ENOTSUPP;
254 	return AH_NULL;
255 }
256 
257 const char *
258 ath_hal_rf_name(struct ath_hal *ah)
259 {
260 	switch (ah->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR) {
261 	case 0:			/* 5210 */
262 		return "5110";	/* NB: made up */
263 	case AR_RAD5111_SREV_MAJOR:
264 	case AR_RAD5111_SREV_PROD:
265 		return "5111";
266 	case AR_RAD2111_SREV_MAJOR:
267 		return "2111";
268 	case AR_RAD5112_SREV_MAJOR:
269 	case AR_RAD5112_SREV_2_0:
270 	case AR_RAD5112_SREV_2_1:
271 		return "5112";
272 	case AR_RAD2112_SREV_MAJOR:
273 	case AR_RAD2112_SREV_2_0:
274 	case AR_RAD2112_SREV_2_1:
275 		return "2112";
276 	case AR_RAD2413_SREV_MAJOR:
277 		return "2413";
278 	case AR_RAD5413_SREV_MAJOR:
279 		return "5413";
280 	case AR_RAD2316_SREV_MAJOR:
281 		return "2316";
282 	case AR_RAD2317_SREV_MAJOR:
283 		return "2317";
284 	case AR_RAD5424_SREV_MAJOR:
285 		return "5424";
286 
287 	case AR_RAD5133_SREV_MAJOR:
288 		return "5133";
289 	case AR_RAD2133_SREV_MAJOR:
290 		return "2133";
291 	case AR_RAD5122_SREV_MAJOR:
292 		return "5122";
293 	case AR_RAD2122_SREV_MAJOR:
294 		return "2122";
295 	}
296 	return "????";
297 }
298 
299 /*
300  * Poll the register looking for a specific value.
301  */
302 HAL_BOOL
303 ath_hal_wait(struct ath_hal *ah, u_int reg, uint32_t mask, uint32_t val)
304 {
305 #define	AH_TIMEOUT	5000
306 	return ath_hal_waitfor(ah, reg, mask, val, AH_TIMEOUT);
307 #undef AH_TIMEOUT
308 }
309 
310 HAL_BOOL
311 ath_hal_waitfor(struct ath_hal *ah, u_int reg, uint32_t mask, uint32_t val, uint32_t timeout)
312 {
313 	int i;
314 
315 	for (i = 0; i < timeout; i++) {
316 		if ((OS_REG_READ(ah, reg) & mask) == val)
317 			return AH_TRUE;
318 		OS_DELAY(10);
319 	}
320 	HALDEBUG(ah, HAL_DEBUG_REGIO | HAL_DEBUG_PHYIO,
321 	    "%s: timeout on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
322 	    __func__, reg, OS_REG_READ(ah, reg), mask, val);
323 	return AH_FALSE;
324 }
325 
326 /*
327  * Reverse the bits starting at the low bit for a value of
328  * bit_count in size
329  */
330 uint32_t
331 ath_hal_reverseBits(uint32_t val, uint32_t n)
332 {
333 	uint32_t retval;
334 	int i;
335 
336 	for (i = 0, retval = 0; i < n; i++) {
337 		retval = (retval << 1) | (val & 1);
338 		val >>= 1;
339 	}
340 	return retval;
341 }
342 
343 /* 802.11n related timing definitions */
344 
345 #define	OFDM_PLCP_BITS	22
346 #define	HT_L_STF	8
347 #define	HT_L_LTF	8
348 #define	HT_L_SIG	4
349 #define	HT_SIG		8
350 #define	HT_STF		4
351 #define	HT_LTF(n)	((n) * 4)
352 
353 #define	HT_RC_2_MCS(_rc)	((_rc) & 0x1f)
354 #define	HT_RC_2_STREAMS(_rc)	((((_rc) & 0x78) >> 3) + 1)
355 #define	IS_HT_RATE(_rc)		( (_rc) & IEEE80211_RATE_MCS)
356 
357 /*
358  * Calculate the duration of a packet whether it is 11n or legacy.
359  */
360 uint32_t
361 ath_hal_pkt_txtime(struct ath_hal *ah, const HAL_RATE_TABLE *rates, uint32_t frameLen,
362     uint16_t rateix, HAL_BOOL isht40, HAL_BOOL shortPreamble,
363     HAL_BOOL includeSifs)
364 {
365 	uint8_t rc;
366 	int numStreams;
367 
368 	rc = rates->info[rateix].rateCode;
369 
370 	/* Legacy rate? Return the old way */
371 	if (! IS_HT_RATE(rc))
372 		return ath_hal_computetxtime(ah, rates, frameLen, rateix,
373 		    shortPreamble, includeSifs);
374 
375 	/* 11n frame - extract out the number of spatial streams */
376 	numStreams = HT_RC_2_STREAMS(rc);
377 	KASSERT(numStreams > 0 && numStreams <= 4,
378 	    ("number of spatial streams needs to be 1..3: MCS rate 0x%x!",
379 	    rateix));
380 
381 	/* XXX TODO: Add SIFS */
382 	return ath_computedur_ht(frameLen, rc, numStreams, isht40,
383 	    shortPreamble);
384 }
385 
386 static const uint16_t ht20_bps[32] = {
387     26, 52, 78, 104, 156, 208, 234, 260,
388     52, 104, 156, 208, 312, 416, 468, 520,
389     78, 156, 234, 312, 468, 624, 702, 780,
390     104, 208, 312, 416, 624, 832, 936, 1040
391 };
392 static const uint16_t ht40_bps[32] = {
393     54, 108, 162, 216, 324, 432, 486, 540,
394     108, 216, 324, 432, 648, 864, 972, 1080,
395     162, 324, 486, 648, 972, 1296, 1458, 1620,
396     216, 432, 648, 864, 1296, 1728, 1944, 2160
397 };
398 
399 /*
400  * Calculate the transmit duration of an 11n frame.
401  */
402 uint32_t
403 ath_computedur_ht(uint32_t frameLen, uint16_t rate, int streams,
404     HAL_BOOL isht40, HAL_BOOL isShortGI)
405 {
406 	uint32_t bitsPerSymbol, numBits, numSymbols, txTime;
407 
408 	KASSERT(rate & IEEE80211_RATE_MCS, ("not mcs %d", rate));
409 	KASSERT((rate &~ IEEE80211_RATE_MCS) < 31, ("bad mcs 0x%x", rate));
410 
411 	if (isht40)
412 		bitsPerSymbol = ht40_bps[HT_RC_2_MCS(rate)];
413 	else
414 		bitsPerSymbol = ht20_bps[HT_RC_2_MCS(rate)];
415 	numBits = OFDM_PLCP_BITS + (frameLen << 3);
416 	numSymbols = howmany(numBits, bitsPerSymbol);
417 	if (isShortGI)
418 		txTime = ((numSymbols * 18) + 4) / 5;   /* 3.6us */
419 	else
420 		txTime = numSymbols * 4;                /* 4us */
421 	return txTime + HT_L_STF + HT_L_LTF +
422 	    HT_L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
423 }
424 
425 /*
426  * Compute the time to transmit a frame of length frameLen bytes
427  * using the specified rate, phy, and short preamble setting.
428  */
429 uint16_t
430 ath_hal_computetxtime(struct ath_hal *ah,
431 	const HAL_RATE_TABLE *rates, uint32_t frameLen, uint16_t rateix,
432 	HAL_BOOL shortPreamble, HAL_BOOL includeSifs)
433 {
434 	uint32_t bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
435 	uint32_t kbps;
436 
437 	/* Warn if this function is called for 11n rates; it should not be! */
438 	if (IS_HT_RATE(rates->info[rateix].rateCode))
439 		ath_hal_printf(ah, "%s: MCS rate? (index %d; hwrate 0x%x)\n",
440 		    __func__, rateix, rates->info[rateix].rateCode);
441 
442 	kbps = rates->info[rateix].rateKbps;
443 	/*
444 	 * index can be invalid during dynamic Turbo transitions.
445 	 * XXX
446 	 */
447 	if (kbps == 0)
448 		return 0;
449 	switch (rates->info[rateix].phy) {
450 	case IEEE80211_T_CCK:
451 		phyTime		= CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
452 		if (shortPreamble && rates->info[rateix].shortPreamble)
453 			phyTime >>= 1;
454 		numBits		= frameLen << 3;
455 		txTime		= phyTime
456 				+ ((numBits * 1000)/kbps);
457 		if (includeSifs)
458 			txTime	+= CCK_SIFS_TIME;
459 		break;
460 	case IEEE80211_T_OFDM:
461 		bitsPerSymbol	= (kbps * OFDM_SYMBOL_TIME) / 1000;
462 		HALASSERT(bitsPerSymbol != 0);
463 
464 		numBits		= OFDM_PLCP_BITS + (frameLen << 3);
465 		numSymbols	= howmany(numBits, bitsPerSymbol);
466 		txTime		= OFDM_PREAMBLE_TIME
467 				+ (numSymbols * OFDM_SYMBOL_TIME);
468 		if (includeSifs)
469 			txTime	+= OFDM_SIFS_TIME;
470 		break;
471 	case IEEE80211_T_OFDM_HALF:
472 		bitsPerSymbol	= (kbps * OFDM_HALF_SYMBOL_TIME) / 1000;
473 		HALASSERT(bitsPerSymbol != 0);
474 
475 		numBits		= OFDM_HALF_PLCP_BITS + (frameLen << 3);
476 		numSymbols	= howmany(numBits, bitsPerSymbol);
477 		txTime		= OFDM_HALF_PREAMBLE_TIME
478 				+ (numSymbols * OFDM_HALF_SYMBOL_TIME);
479 		if (includeSifs)
480 			txTime	+= OFDM_HALF_SIFS_TIME;
481 		break;
482 	case IEEE80211_T_OFDM_QUARTER:
483 		bitsPerSymbol	= (kbps * OFDM_QUARTER_SYMBOL_TIME) / 1000;
484 		HALASSERT(bitsPerSymbol != 0);
485 
486 		numBits		= OFDM_QUARTER_PLCP_BITS + (frameLen << 3);
487 		numSymbols	= howmany(numBits, bitsPerSymbol);
488 		txTime		= OFDM_QUARTER_PREAMBLE_TIME
489 				+ (numSymbols * OFDM_QUARTER_SYMBOL_TIME);
490 		if (includeSifs)
491 			txTime	+= OFDM_QUARTER_SIFS_TIME;
492 		break;
493 	case IEEE80211_T_TURBO:
494 		bitsPerSymbol	= (kbps * TURBO_SYMBOL_TIME) / 1000;
495 		HALASSERT(bitsPerSymbol != 0);
496 
497 		numBits		= TURBO_PLCP_BITS + (frameLen << 3);
498 		numSymbols	= howmany(numBits, bitsPerSymbol);
499 		txTime		= TURBO_PREAMBLE_TIME
500 				+ (numSymbols * TURBO_SYMBOL_TIME);
501 		if (includeSifs)
502 			txTime	+= TURBO_SIFS_TIME;
503 		break;
504 	default:
505 		HALDEBUG(ah, HAL_DEBUG_PHYIO,
506 		    "%s: unknown phy %u (rate ix %u)\n",
507 		    __func__, rates->info[rateix].phy, rateix);
508 		txTime = 0;
509 		break;
510 	}
511 	return txTime;
512 }
513 
514 int
515 ath_hal_get_curmode(struct ath_hal *ah, const struct ieee80211_channel *chan)
516 {
517 	/*
518 	 * Pick a default mode at bootup. A channel change is inevitable.
519 	 */
520 	if (!chan)
521 		return HAL_MODE_11NG_HT20;
522 
523 	if (IEEE80211_IS_CHAN_TURBO(chan))
524 		return HAL_MODE_TURBO;
525 
526 	/* check for NA_HT before plain A, since IS_CHAN_A includes NA_HT */
527 	if (IEEE80211_IS_CHAN_5GHZ(chan) && IEEE80211_IS_CHAN_HT20(chan))
528 		return HAL_MODE_11NA_HT20;
529 	if (IEEE80211_IS_CHAN_5GHZ(chan) && IEEE80211_IS_CHAN_HT40U(chan))
530 		return HAL_MODE_11NA_HT40PLUS;
531 	if (IEEE80211_IS_CHAN_5GHZ(chan) && IEEE80211_IS_CHAN_HT40D(chan))
532 		return HAL_MODE_11NA_HT40MINUS;
533 	if (IEEE80211_IS_CHAN_A(chan))
534 		return HAL_MODE_11A;
535 
536 	/* check for NG_HT before plain G, since IS_CHAN_G includes NG_HT */
537 	if (IEEE80211_IS_CHAN_2GHZ(chan) && IEEE80211_IS_CHAN_HT20(chan))
538 		return HAL_MODE_11NG_HT20;
539 	if (IEEE80211_IS_CHAN_2GHZ(chan) && IEEE80211_IS_CHAN_HT40U(chan))
540 		return HAL_MODE_11NG_HT40PLUS;
541 	if (IEEE80211_IS_CHAN_2GHZ(chan) && IEEE80211_IS_CHAN_HT40D(chan))
542 		return HAL_MODE_11NG_HT40MINUS;
543 
544 	/*
545 	 * XXX For FreeBSD, will this work correctly given the DYN
546 	 * chan mode (OFDM+CCK dynamic) ? We have pure-G versions DYN-BG..
547 	 */
548 	if (IEEE80211_IS_CHAN_G(chan))
549 		return HAL_MODE_11G;
550 	if (IEEE80211_IS_CHAN_B(chan))
551 		return HAL_MODE_11B;
552 
553 	HALASSERT(0);
554 	return HAL_MODE_11NG_HT20;
555 }
556 
557 
558 typedef enum {
559 	WIRELESS_MODE_11a   = 0,
560 	WIRELESS_MODE_TURBO = 1,
561 	WIRELESS_MODE_11b   = 2,
562 	WIRELESS_MODE_11g   = 3,
563 	WIRELESS_MODE_108g  = 4,
564 
565 	WIRELESS_MODE_MAX
566 } WIRELESS_MODE;
567 
568 /*
569  * XXX TODO: for some (?) chips, an 11b mode still runs at 11bg.
570  * Maybe AR5211 has separate 11b and 11g only modes, so 11b is 22MHz
571  * and 11g is 44MHz, but AR5416 and later run 11b in 11bg mode, right?
572  */
573 static WIRELESS_MODE
574 ath_hal_chan2wmode(struct ath_hal *ah, const struct ieee80211_channel *chan)
575 {
576 	if (IEEE80211_IS_CHAN_B(chan))
577 		return WIRELESS_MODE_11b;
578 	if (IEEE80211_IS_CHAN_G(chan))
579 		return WIRELESS_MODE_11g;
580 	if (IEEE80211_IS_CHAN_108G(chan))
581 		return WIRELESS_MODE_108g;
582 	if (IEEE80211_IS_CHAN_TURBO(chan))
583 		return WIRELESS_MODE_TURBO;
584 	return WIRELESS_MODE_11a;
585 }
586 
587 /*
588  * Convert between microseconds and core system clocks.
589  */
590                                      /* 11a Turbo  11b  11g  108g */
591 static const uint8_t CLOCK_RATE[]  = { 40,  80,   22,  44,   88  };
592 
593 #define	CLOCK_FAST_RATE_5GHZ_OFDM	44
594 
595 u_int
596 ath_hal_mac_clks(struct ath_hal *ah, u_int usecs)
597 {
598 	const struct ieee80211_channel *c = AH_PRIVATE(ah)->ah_curchan;
599 	u_int clks;
600 
601 	/* NB: ah_curchan may be null when called attach time */
602 	/* XXX merlin and later specific workaround - 5ghz fast clock is 44 */
603 	if (c != AH_NULL && IS_5GHZ_FAST_CLOCK_EN(ah, c)) {
604 		clks = usecs * CLOCK_FAST_RATE_5GHZ_OFDM;
605 		if (IEEE80211_IS_CHAN_HT40(c))
606 			clks <<= 1;
607 	} else if (c != AH_NULL) {
608 		clks = usecs * CLOCK_RATE[ath_hal_chan2wmode(ah, c)];
609 		if (IEEE80211_IS_CHAN_HT40(c))
610 			clks <<= 1;
611 	} else
612 		clks = usecs * CLOCK_RATE[WIRELESS_MODE_11b];
613 
614 	/* Compensate for half/quarter rate */
615 	if (c != AH_NULL && IEEE80211_IS_CHAN_HALF(c))
616 		clks = clks / 2;
617 	else if (c != AH_NULL && IEEE80211_IS_CHAN_QUARTER(c))
618 		clks = clks / 4;
619 
620 	return clks;
621 }
622 
623 u_int
624 ath_hal_mac_usec(struct ath_hal *ah, u_int clks)
625 {
626 	uint64_t psec;
627 
628 	psec = ath_hal_mac_psec(ah, clks);
629 	return (psec / 1000000);
630 }
631 
632 /*
633  * XXX TODO: half, quarter rates.
634  */
635 uint64_t
636 ath_hal_mac_psec(struct ath_hal *ah, u_int clks)
637 {
638 	const struct ieee80211_channel *c = AH_PRIVATE(ah)->ah_curchan;
639 	uint64_t psec;
640 
641 	/* NB: ah_curchan may be null when called attach time */
642 	/* XXX merlin and later specific workaround - 5ghz fast clock is 44 */
643 	if (c != AH_NULL && IS_5GHZ_FAST_CLOCK_EN(ah, c)) {
644 		psec = (clks * 1000000ULL) / CLOCK_FAST_RATE_5GHZ_OFDM;
645 		if (IEEE80211_IS_CHAN_HT40(c))
646 			psec >>= 1;
647 	} else if (c != AH_NULL) {
648 		psec = (clks * 1000000ULL) / CLOCK_RATE[ath_hal_chan2wmode(ah, c)];
649 		if (IEEE80211_IS_CHAN_HT40(c))
650 			psec >>= 1;
651 	} else
652 		psec = (clks * 1000000ULL) / CLOCK_RATE[WIRELESS_MODE_11b];
653 	return psec;
654 }
655 
656 /*
657  * Setup a h/w rate table's reverse lookup table and
658  * fill in ack durations.  This routine is called for
659  * each rate table returned through the ah_getRateTable
660  * method.  The reverse lookup tables are assumed to be
661  * initialized to zero (or at least the first entry).
662  * We use this as a key that indicates whether or not
663  * we've previously setup the reverse lookup table.
664  *
665  * XXX not reentrant, but shouldn't matter
666  */
667 void
668 ath_hal_setupratetable(struct ath_hal *ah, HAL_RATE_TABLE *rt)
669 {
670 #define	N(a)	(sizeof(a)/sizeof(a[0]))
671 	int i;
672 
673 	if (rt->rateCodeToIndex[0] != 0)	/* already setup */
674 		return;
675 	for (i = 0; i < N(rt->rateCodeToIndex); i++)
676 		rt->rateCodeToIndex[i] = (uint8_t) -1;
677 	for (i = 0; i < rt->rateCount; i++) {
678 		uint8_t code = rt->info[i].rateCode;
679 		uint8_t cix = rt->info[i].controlRate;
680 
681 		HALASSERT(code < N(rt->rateCodeToIndex));
682 		rt->rateCodeToIndex[code] = i;
683 		HALASSERT((code | rt->info[i].shortPreamble) <
684 		    N(rt->rateCodeToIndex));
685 		rt->rateCodeToIndex[code | rt->info[i].shortPreamble] = i;
686 		/*
687 		 * XXX for 11g the control rate to use for 5.5 and 11 Mb/s
688 		 *     depends on whether they are marked as basic rates;
689 		 *     the static tables are setup with an 11b-compatible
690 		 *     2Mb/s rate which will work but is suboptimal
691 		 */
692 		rt->info[i].lpAckDuration = ath_hal_computetxtime(ah, rt,
693 			WLAN_CTRL_FRAME_SIZE, cix, AH_FALSE, AH_TRUE);
694 		rt->info[i].spAckDuration = ath_hal_computetxtime(ah, rt,
695 			WLAN_CTRL_FRAME_SIZE, cix, AH_TRUE, AH_TRUE);
696 	}
697 #undef N
698 }
699 
700 HAL_STATUS
701 ath_hal_getcapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
702 	uint32_t capability, uint32_t *result)
703 {
704 	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
705 
706 	switch (type) {
707 	case HAL_CAP_REG_DMN:		/* regulatory domain */
708 		*result = AH_PRIVATE(ah)->ah_currentRD;
709 		return HAL_OK;
710 	case HAL_CAP_DFS_DMN:		/* DFS Domain */
711 		*result = AH_PRIVATE(ah)->ah_dfsDomain;
712 		return HAL_OK;
713 	case HAL_CAP_CIPHER:		/* cipher handled in hardware */
714 	case HAL_CAP_TKIP_MIC:		/* handle TKIP MIC in hardware */
715 		return HAL_ENOTSUPP;
716 	case HAL_CAP_TKIP_SPLIT:	/* hardware TKIP uses split keys */
717 		return HAL_ENOTSUPP;
718 	case HAL_CAP_PHYCOUNTERS:	/* hardware PHY error counters */
719 		return pCap->halHwPhyCounterSupport ? HAL_OK : HAL_ENXIO;
720 	case HAL_CAP_WME_TKIPMIC:   /* hardware can do TKIP MIC when WMM is turned on */
721 		return HAL_ENOTSUPP;
722 	case HAL_CAP_DIVERSITY:		/* hardware supports fast diversity */
723 		return HAL_ENOTSUPP;
724 	case HAL_CAP_KEYCACHE_SIZE:	/* hardware key cache size */
725 		*result =  pCap->halKeyCacheSize;
726 		return HAL_OK;
727 	case HAL_CAP_NUM_TXQUEUES:	/* number of hardware tx queues */
728 		*result = pCap->halTotalQueues;
729 		return HAL_OK;
730 	case HAL_CAP_VEOL:		/* hardware supports virtual EOL */
731 		return pCap->halVEOLSupport ? HAL_OK : HAL_ENOTSUPP;
732 	case HAL_CAP_PSPOLL:		/* hardware PS-Poll support works */
733 		return pCap->halPSPollBroken ? HAL_ENOTSUPP : HAL_OK;
734 	case HAL_CAP_COMPRESSION:
735 		return pCap->halCompressSupport ? HAL_OK : HAL_ENOTSUPP;
736 	case HAL_CAP_BURST:
737 		return pCap->halBurstSupport ? HAL_OK : HAL_ENOTSUPP;
738 	case HAL_CAP_FASTFRAME:
739 		return pCap->halFastFramesSupport ? HAL_OK : HAL_ENOTSUPP;
740 	case HAL_CAP_DIAG:		/* hardware diagnostic support */
741 		*result = AH_PRIVATE(ah)->ah_diagreg;
742 		return HAL_OK;
743 	case HAL_CAP_TXPOW:		/* global tx power limit  */
744 		switch (capability) {
745 		case 0:			/* facility is supported */
746 			return HAL_OK;
747 		case 1:			/* current limit */
748 			*result = AH_PRIVATE(ah)->ah_powerLimit;
749 			return HAL_OK;
750 		case 2:			/* current max tx power */
751 			*result = AH_PRIVATE(ah)->ah_maxPowerLevel;
752 			return HAL_OK;
753 		case 3:			/* scale factor */
754 			*result = AH_PRIVATE(ah)->ah_tpScale;
755 			return HAL_OK;
756 		}
757 		return HAL_ENOTSUPP;
758 	case HAL_CAP_BSSIDMASK:		/* hardware supports bssid mask */
759 		return pCap->halBssIdMaskSupport ? HAL_OK : HAL_ENOTSUPP;
760 	case HAL_CAP_MCAST_KEYSRCH:	/* multicast frame keycache search */
761 		return pCap->halMcastKeySrchSupport ? HAL_OK : HAL_ENOTSUPP;
762 	case HAL_CAP_TSF_ADJUST:	/* hardware has beacon tsf adjust */
763 		return HAL_ENOTSUPP;
764 	case HAL_CAP_RFSILENT:		/* rfsilent support  */
765 		switch (capability) {
766 		case 0:			/* facility is supported */
767 			return pCap->halRfSilentSupport ? HAL_OK : HAL_ENOTSUPP;
768 		case 1:			/* current setting */
769 			return AH_PRIVATE(ah)->ah_rfkillEnabled ?
770 				HAL_OK : HAL_ENOTSUPP;
771 		case 2:			/* rfsilent config */
772 			*result = AH_PRIVATE(ah)->ah_rfsilent;
773 			return HAL_OK;
774 		}
775 		return HAL_ENOTSUPP;
776 	case HAL_CAP_11D:
777 		return HAL_OK;
778 
779 	case HAL_CAP_HT:
780 		return pCap->halHTSupport ? HAL_OK : HAL_ENOTSUPP;
781 	case HAL_CAP_GTXTO:
782 		return pCap->halGTTSupport ? HAL_OK : HAL_ENOTSUPP;
783 	case HAL_CAP_FAST_CC:
784 		return pCap->halFastCCSupport ? HAL_OK : HAL_ENOTSUPP;
785 	case HAL_CAP_TX_CHAINMASK:	/* mask of TX chains supported */
786 		*result = pCap->halTxChainMask;
787 		return HAL_OK;
788 	case HAL_CAP_RX_CHAINMASK:	/* mask of RX chains supported */
789 		*result = pCap->halRxChainMask;
790 		return HAL_OK;
791 	case HAL_CAP_NUM_GPIO_PINS:
792 		*result = pCap->halNumGpioPins;
793 		return HAL_OK;
794 	case HAL_CAP_CST:
795 		return pCap->halCSTSupport ? HAL_OK : HAL_ENOTSUPP;
796 	case HAL_CAP_RTS_AGGR_LIMIT:
797 		*result = pCap->halRtsAggrLimit;
798 		return HAL_OK;
799 	case HAL_CAP_4ADDR_AGGR:
800 		return pCap->hal4AddrAggrSupport ? HAL_OK : HAL_ENOTSUPP;
801 	case HAL_CAP_EXT_CHAN_DFS:
802 		return pCap->halExtChanDfsSupport ? HAL_OK : HAL_ENOTSUPP;
803 	case HAL_CAP_RX_STBC:
804 		return pCap->halRxStbcSupport ? HAL_OK : HAL_ENOTSUPP;
805 	case HAL_CAP_TX_STBC:
806 		return pCap->halTxStbcSupport ? HAL_OK : HAL_ENOTSUPP;
807 	case HAL_CAP_COMBINED_RADAR_RSSI:
808 		return pCap->halUseCombinedRadarRssi ? HAL_OK : HAL_ENOTSUPP;
809 	case HAL_CAP_AUTO_SLEEP:
810 		return pCap->halAutoSleepSupport ? HAL_OK : HAL_ENOTSUPP;
811 	case HAL_CAP_MBSSID_AGGR_SUPPORT:
812 		return pCap->halMbssidAggrSupport ? HAL_OK : HAL_ENOTSUPP;
813 	case HAL_CAP_SPLIT_4KB_TRANS:	/* hardware handles descriptors straddling 4k page boundary */
814 		return pCap->hal4kbSplitTransSupport ? HAL_OK : HAL_ENOTSUPP;
815 	case HAL_CAP_REG_FLAG:
816 		*result = AH_PRIVATE(ah)->ah_currentRDext;
817 		return HAL_OK;
818 	case HAL_CAP_ENHANCED_DMA_SUPPORT:
819 		return pCap->halEnhancedDmaSupport ? HAL_OK : HAL_ENOTSUPP;
820 	case HAL_CAP_NUM_TXMAPS:
821 		*result = pCap->halNumTxMaps;
822 		return HAL_OK;
823 	case HAL_CAP_TXDESCLEN:
824 		*result = pCap->halTxDescLen;
825 		return HAL_OK;
826 	case HAL_CAP_TXSTATUSLEN:
827 		*result = pCap->halTxStatusLen;
828 		return HAL_OK;
829 	case HAL_CAP_RXSTATUSLEN:
830 		*result = pCap->halRxStatusLen;
831 		return HAL_OK;
832 	case HAL_CAP_RXFIFODEPTH:
833 		switch (capability) {
834 		case HAL_RX_QUEUE_HP:
835 			*result = pCap->halRxHpFifoDepth;
836 			return HAL_OK;
837 		case HAL_RX_QUEUE_LP:
838 			*result = pCap->halRxLpFifoDepth;
839 			return HAL_OK;
840 		default:
841 			return HAL_ENOTSUPP;
842 	}
843 	case HAL_CAP_RXBUFSIZE:
844 	case HAL_CAP_NUM_MR_RETRIES:
845 		*result = pCap->halNumMRRetries;
846 		return HAL_OK;
847 	case HAL_CAP_BT_COEX:
848 		return pCap->halBtCoexSupport ? HAL_OK : HAL_ENOTSUPP;
849 	case HAL_CAP_SPECTRAL_SCAN:
850 		return pCap->halSpectralScanSupport ? HAL_OK : HAL_ENOTSUPP;
851 	case HAL_CAP_HT20_SGI:
852 		return pCap->halHTSGI20Support ? HAL_OK : HAL_ENOTSUPP;
853 	case HAL_CAP_RXTSTAMP_PREC:	/* rx desc tstamp precision (bits) */
854 		*result = pCap->halRxTstampPrecision;
855 		return HAL_OK;
856 	case HAL_CAP_ANT_DIV_COMB:	/* AR9285/AR9485 LNA diversity */
857 		return pCap->halAntDivCombSupport ? HAL_OK  : HAL_ENOTSUPP;
858 
859 	case HAL_CAP_ENHANCED_DFS_SUPPORT:
860 		return pCap->halEnhancedDfsSupport ? HAL_OK : HAL_ENOTSUPP;
861 
862 	/* FreeBSD-specific entries for now */
863 	case HAL_CAP_RXORN_FATAL:	/* HAL_INT_RXORN treated as fatal  */
864 		return AH_PRIVATE(ah)->ah_rxornIsFatal ? HAL_OK : HAL_ENOTSUPP;
865 	case HAL_CAP_INTRMASK:		/* mask of supported interrupts */
866 		*result = pCap->halIntrMask;
867 		return HAL_OK;
868 	case HAL_CAP_BSSIDMATCH:	/* hardware has disable bssid match */
869 		return pCap->halBssidMatchSupport ? HAL_OK : HAL_ENOTSUPP;
870 	case HAL_CAP_STREAMS:		/* number of 11n spatial streams */
871 		switch (capability) {
872 		case 0:			/* TX */
873 			*result = pCap->halTxStreams;
874 			return HAL_OK;
875 		case 1:			/* RX */
876 			*result = pCap->halRxStreams;
877 			return HAL_OK;
878 		default:
879 			return HAL_ENOTSUPP;
880 		}
881 	case HAL_CAP_RXDESC_SELFLINK:	/* hardware supports self-linked final RX descriptors correctly */
882 		return pCap->halHasRxSelfLinkedTail ? HAL_OK : HAL_ENOTSUPP;
883 	case HAL_CAP_BB_READ_WAR:		/* Baseband read WAR */
884 		return pCap->halHasBBReadWar? HAL_OK : HAL_ENOTSUPP;
885 	case HAL_CAP_SERIALISE_WAR:		/* PCI register serialisation */
886 		return pCap->halSerialiseRegWar ? HAL_OK : HAL_ENOTSUPP;
887 	case HAL_CAP_MFP:			/* Management frame protection setting */
888 		*result = pCap->halMfpSupport;
889 		return HAL_OK;
890 	case HAL_CAP_RX_LNA_MIXING:	/* Hardware uses an RX LNA mixer to map 2 antennas to a 1 stream receiver */
891 		return pCap->halRxUsingLnaMixing ? HAL_OK : HAL_ENOTSUPP;
892 	case HAL_CAP_DO_MYBEACON:	/* Hardware supports filtering my-beacons */
893 		return pCap->halRxDoMyBeacon ? HAL_OK : HAL_ENOTSUPP;
894 	case HAL_CAP_TXTSTAMP_PREC:	/* tx desc tstamp precision (bits) */
895 		*result = pCap->halTxTstampPrecision;
896 		return HAL_OK;
897 	default:
898 		return HAL_EINVAL;
899 	}
900 }
901 
902 HAL_BOOL
903 ath_hal_setcapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
904 	uint32_t capability, uint32_t setting, HAL_STATUS *status)
905 {
906 
907 	switch (type) {
908 	case HAL_CAP_TXPOW:
909 		switch (capability) {
910 		case 3:
911 			if (setting <= HAL_TP_SCALE_MIN) {
912 				AH_PRIVATE(ah)->ah_tpScale = setting;
913 				return AH_TRUE;
914 			}
915 			break;
916 		}
917 		break;
918 	case HAL_CAP_RFSILENT:		/* rfsilent support  */
919 		/*
920 		 * NB: allow even if halRfSilentSupport is false
921 		 *     in case the EEPROM is misprogrammed.
922 		 */
923 		switch (capability) {
924 		case 1:			/* current setting */
925 			AH_PRIVATE(ah)->ah_rfkillEnabled = (setting != 0);
926 			return AH_TRUE;
927 		case 2:			/* rfsilent config */
928 			/* XXX better done per-chip for validation? */
929 			AH_PRIVATE(ah)->ah_rfsilent = setting;
930 			return AH_TRUE;
931 		}
932 		break;
933 	case HAL_CAP_REG_DMN:		/* regulatory domain */
934 		AH_PRIVATE(ah)->ah_currentRD = setting;
935 		return AH_TRUE;
936 	case HAL_CAP_RXORN_FATAL:	/* HAL_INT_RXORN treated as fatal  */
937 		AH_PRIVATE(ah)->ah_rxornIsFatal = setting;
938 		return AH_TRUE;
939 	default:
940 		break;
941 	}
942 	if (status)
943 		*status = HAL_EINVAL;
944 	return AH_FALSE;
945 }
946 
947 /*
948  * Common support for getDiagState method.
949  */
950 
951 static u_int
952 ath_hal_getregdump(struct ath_hal *ah, const HAL_REGRANGE *regs,
953 	void *dstbuf, int space)
954 {
955 	uint32_t *dp = dstbuf;
956 	int i;
957 
958 	for (i = 0; space >= 2*sizeof(uint32_t); i++) {
959 		uint32_t r = regs[i].start;
960 		uint32_t e = regs[i].end;
961 		*dp++ = r;
962 		*dp++ = e;
963 		space -= 2*sizeof(uint32_t);
964 		do {
965 			*dp++ = OS_REG_READ(ah, r);
966 			r += sizeof(uint32_t);
967 			space -= sizeof(uint32_t);
968 		} while (r <= e && space >= sizeof(uint32_t));
969 	}
970 	return (char *) dp - (char *) dstbuf;
971 }
972 
973 static void
974 ath_hal_setregs(struct ath_hal *ah, const HAL_REGWRITE *regs, int space)
975 {
976 	while (space >= sizeof(HAL_REGWRITE)) {
977 		OS_REG_WRITE(ah, regs->addr, regs->value);
978 		regs++, space -= sizeof(HAL_REGWRITE);
979 	}
980 }
981 
982 HAL_BOOL
983 ath_hal_getdiagstate(struct ath_hal *ah, int request,
984 	const void *args, uint32_t argsize,
985 	void **result, uint32_t *resultsize)
986 {
987 
988 	switch (request) {
989 	case HAL_DIAG_REVS:
990 		*result = &AH_PRIVATE(ah)->ah_devid;
991 		*resultsize = sizeof(HAL_REVS);
992 		return AH_TRUE;
993 	case HAL_DIAG_REGS:
994 		*resultsize = ath_hal_getregdump(ah, args, *result,*resultsize);
995 		return AH_TRUE;
996 	case HAL_DIAG_SETREGS:
997 		ath_hal_setregs(ah, args, argsize);
998 		*resultsize = 0;
999 		return AH_TRUE;
1000 	case HAL_DIAG_FATALERR:
1001 		*result = &AH_PRIVATE(ah)->ah_fatalState[0];
1002 		*resultsize = sizeof(AH_PRIVATE(ah)->ah_fatalState);
1003 		return AH_TRUE;
1004 	case HAL_DIAG_EEREAD:
1005 		if (argsize != sizeof(uint16_t))
1006 			return AH_FALSE;
1007 		if (!ath_hal_eepromRead(ah, *(const uint16_t *)args, *result))
1008 			return AH_FALSE;
1009 		*resultsize = sizeof(uint16_t);
1010 		return AH_TRUE;
1011 #ifdef AH_PRIVATE_DIAG
1012 	case HAL_DIAG_SETKEY: {
1013 		const HAL_DIAG_KEYVAL *dk;
1014 
1015 		if (argsize != sizeof(HAL_DIAG_KEYVAL))
1016 			return AH_FALSE;
1017 		dk = (const HAL_DIAG_KEYVAL *)args;
1018 		return ah->ah_setKeyCacheEntry(ah, dk->dk_keyix,
1019 			&dk->dk_keyval, dk->dk_mac, dk->dk_xor);
1020 	}
1021 	case HAL_DIAG_RESETKEY:
1022 		if (argsize != sizeof(uint16_t))
1023 			return AH_FALSE;
1024 		return ah->ah_resetKeyCacheEntry(ah, *(const uint16_t *)args);
1025 #ifdef AH_SUPPORT_WRITE_EEPROM
1026 	case HAL_DIAG_EEWRITE: {
1027 		const HAL_DIAG_EEVAL *ee;
1028 		if (argsize != sizeof(HAL_DIAG_EEVAL))
1029 			return AH_FALSE;
1030 		ee = (const HAL_DIAG_EEVAL *)args;
1031 		return ath_hal_eepromWrite(ah, ee->ee_off, ee->ee_data);
1032 	}
1033 #endif /* AH_SUPPORT_WRITE_EEPROM */
1034 #endif /* AH_PRIVATE_DIAG */
1035 	case HAL_DIAG_11NCOMPAT:
1036 		if (argsize == 0) {
1037 			*resultsize = sizeof(uint32_t);
1038 			*((uint32_t *)(*result)) =
1039 				AH_PRIVATE(ah)->ah_11nCompat;
1040 		} else if (argsize == sizeof(uint32_t)) {
1041 			AH_PRIVATE(ah)->ah_11nCompat = *(const uint32_t *)args;
1042 		} else
1043 			return AH_FALSE;
1044 		return AH_TRUE;
1045 	case HAL_DIAG_CHANSURVEY:
1046 		*result = &AH_PRIVATE(ah)->ah_chansurvey;
1047 		*resultsize = sizeof(HAL_CHANNEL_SURVEY);
1048 		return AH_TRUE;
1049 	}
1050 	return AH_FALSE;
1051 }
1052 
1053 /*
1054  * Set the properties of the tx queue with the parameters
1055  * from qInfo.
1056  */
1057 HAL_BOOL
1058 ath_hal_setTxQProps(struct ath_hal *ah,
1059 	HAL_TX_QUEUE_INFO *qi, const HAL_TXQ_INFO *qInfo)
1060 {
1061 	uint32_t cw;
1062 
1063 	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
1064 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
1065 		    "%s: inactive queue\n", __func__);
1066 		return AH_FALSE;
1067 	}
1068 	/* XXX validate parameters */
1069 	qi->tqi_ver = qInfo->tqi_ver;
1070 	qi->tqi_subtype = qInfo->tqi_subtype;
1071 	qi->tqi_qflags = qInfo->tqi_qflags;
1072 	qi->tqi_priority = qInfo->tqi_priority;
1073 	if (qInfo->tqi_aifs != HAL_TXQ_USEDEFAULT)
1074 		qi->tqi_aifs = AH_MIN(qInfo->tqi_aifs, 255);
1075 	else
1076 		qi->tqi_aifs = INIT_AIFS;
1077 	if (qInfo->tqi_cwmin != HAL_TXQ_USEDEFAULT) {
1078 		cw = AH_MIN(qInfo->tqi_cwmin, 1024);
1079 		/* make sure that the CWmin is of the form (2^n - 1) */
1080 		qi->tqi_cwmin = 1;
1081 		while (qi->tqi_cwmin < cw)
1082 			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
1083 	} else
1084 		qi->tqi_cwmin = qInfo->tqi_cwmin;
1085 	if (qInfo->tqi_cwmax != HAL_TXQ_USEDEFAULT) {
1086 		cw = AH_MIN(qInfo->tqi_cwmax, 1024);
1087 		/* make sure that the CWmax is of the form (2^n - 1) */
1088 		qi->tqi_cwmax = 1;
1089 		while (qi->tqi_cwmax < cw)
1090 			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
1091 	} else
1092 		qi->tqi_cwmax = INIT_CWMAX;
1093 	/* Set retry limit values */
1094 	if (qInfo->tqi_shretry != 0)
1095 		qi->tqi_shretry = AH_MIN(qInfo->tqi_shretry, 15);
1096 	else
1097 		qi->tqi_shretry = INIT_SH_RETRY;
1098 	if (qInfo->tqi_lgretry != 0)
1099 		qi->tqi_lgretry = AH_MIN(qInfo->tqi_lgretry, 15);
1100 	else
1101 		qi->tqi_lgretry = INIT_LG_RETRY;
1102 	qi->tqi_cbrPeriod = qInfo->tqi_cbrPeriod;
1103 	qi->tqi_cbrOverflowLimit = qInfo->tqi_cbrOverflowLimit;
1104 	qi->tqi_burstTime = qInfo->tqi_burstTime;
1105 	qi->tqi_readyTime = qInfo->tqi_readyTime;
1106 
1107 	switch (qInfo->tqi_subtype) {
1108 	case HAL_WME_UPSD:
1109 		if (qi->tqi_type == HAL_TX_QUEUE_DATA)
1110 			qi->tqi_intFlags = HAL_TXQ_USE_LOCKOUT_BKOFF_DIS;
1111 		break;
1112 	default:
1113 		break;		/* NB: silence compiler */
1114 	}
1115 	return AH_TRUE;
1116 }
1117 
1118 HAL_BOOL
1119 ath_hal_getTxQProps(struct ath_hal *ah,
1120 	HAL_TXQ_INFO *qInfo, const HAL_TX_QUEUE_INFO *qi)
1121 {
1122 	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
1123 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
1124 		    "%s: inactive queue\n", __func__);
1125 		return AH_FALSE;
1126 	}
1127 
1128 	qInfo->tqi_qflags = qi->tqi_qflags;
1129 	qInfo->tqi_ver = qi->tqi_ver;
1130 	qInfo->tqi_subtype = qi->tqi_subtype;
1131 	qInfo->tqi_qflags = qi->tqi_qflags;
1132 	qInfo->tqi_priority = qi->tqi_priority;
1133 	qInfo->tqi_aifs = qi->tqi_aifs;
1134 	qInfo->tqi_cwmin = qi->tqi_cwmin;
1135 	qInfo->tqi_cwmax = qi->tqi_cwmax;
1136 	qInfo->tqi_shretry = qi->tqi_shretry;
1137 	qInfo->tqi_lgretry = qi->tqi_lgretry;
1138 	qInfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
1139 	qInfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
1140 	qInfo->tqi_burstTime = qi->tqi_burstTime;
1141 	qInfo->tqi_readyTime = qi->tqi_readyTime;
1142 	return AH_TRUE;
1143 }
1144 
1145                                      /* 11a Turbo  11b  11g  108g */
1146 static const int16_t NOISE_FLOOR[] = { -96, -93,  -98, -96,  -93 };
1147 
1148 /*
1149  * Read the current channel noise floor and return.
1150  * If nf cal hasn't finished, channel noise floor should be 0
1151  * and we return a nominal value based on band and frequency.
1152  *
1153  * NB: This is a private routine used by per-chip code to
1154  *     implement the ah_getChanNoise method.
1155  */
1156 int16_t
1157 ath_hal_getChanNoise(struct ath_hal *ah, const struct ieee80211_channel *chan)
1158 {
1159 	HAL_CHANNEL_INTERNAL *ichan;
1160 
1161 	ichan = ath_hal_checkchannel(ah, chan);
1162 	if (ichan == AH_NULL) {
1163 		HALDEBUG(ah, HAL_DEBUG_NFCAL,
1164 		    "%s: invalid channel %u/0x%x; no mapping\n",
1165 		    __func__, chan->ic_freq, chan->ic_flags);
1166 		return 0;
1167 	}
1168 	if (ichan->rawNoiseFloor == 0) {
1169 		WIRELESS_MODE mode = ath_hal_chan2wmode(ah, chan);
1170 
1171 		HALASSERT(mode < WIRELESS_MODE_MAX);
1172 		return NOISE_FLOOR[mode] + ath_hal_getNfAdjust(ah, ichan);
1173 	} else
1174 		return ichan->rawNoiseFloor + ichan->noiseFloorAdjust;
1175 }
1176 
1177 /*
1178  * Fetch the current setup of ctl/ext noise floor values.
1179  *
1180  * If the CHANNEL_MIMO_NF_VALID flag isn't set, the array is simply
1181  * populated with values from NOISE_FLOOR[] + ath_hal_getNfAdjust().
1182  *
1183  * The caller must supply ctl/ext NF arrays which are at least
1184  * AH_MAX_CHAINS entries long.
1185  */
1186 int
1187 ath_hal_get_mimo_chan_noise(struct ath_hal *ah,
1188     const struct ieee80211_channel *chan, int16_t *nf_ctl,
1189     int16_t *nf_ext)
1190 {
1191 	HAL_CHANNEL_INTERNAL *ichan;
1192 	int i;
1193 
1194 	ichan = ath_hal_checkchannel(ah, chan);
1195 	if (ichan == AH_NULL) {
1196 		HALDEBUG(ah, HAL_DEBUG_NFCAL,
1197 		    "%s: invalid channel %u/0x%x; no mapping\n",
1198 		    __func__, chan->ic_freq, chan->ic_flags);
1199 		for (i = 0; i < AH_MAX_CHAINS; i++) {
1200 			nf_ctl[i] = nf_ext[i] = 0;
1201 		}
1202 		return 0;
1203 	}
1204 
1205 	/* Return 0 if there's no valid MIMO values (yet) */
1206 	if (! (ichan->privFlags & CHANNEL_MIMO_NF_VALID)) {
1207 		for (i = 0; i < AH_MAX_CHAINS; i++) {
1208 			nf_ctl[i] = nf_ext[i] = 0;
1209 		}
1210 		return 0;
1211 	}
1212 	if (ichan->rawNoiseFloor == 0) {
1213 		WIRELESS_MODE mode = ath_hal_chan2wmode(ah, chan);
1214 		HALASSERT(mode < WIRELESS_MODE_MAX);
1215 		/*
1216 		 * See the comment below - this could cause issues for
1217 		 * stations which have a very low RSSI, below the
1218 		 * 'normalised' NF values in NOISE_FLOOR[].
1219 		 */
1220 		for (i = 0; i < AH_MAX_CHAINS; i++) {
1221 			nf_ctl[i] = nf_ext[i] = NOISE_FLOOR[mode] +
1222 			    ath_hal_getNfAdjust(ah, ichan);
1223 		}
1224 		return 1;
1225 	} else {
1226 		/*
1227 		 * The value returned here from a MIMO radio is presumed to be
1228 		 * "good enough" as a NF calculation. As RSSI values are calculated
1229 		 * against this, an adjusted NF may be higher than the RSSI value
1230 		 * returned from a vary weak station, resulting in an obscenely
1231 		 * high signal strength calculation being returned.
1232 		 *
1233 		 * This should be re-evaluated at a later date, along with any
1234 		 * signal strength calculations which are made. Quite likely the
1235 		 * RSSI values will need to be adjusted to ensure the calculations
1236 		 * don't "wrap" when RSSI is less than the "adjusted" NF value.
1237 		 * ("Adjust" here is via ichan->noiseFloorAdjust.)
1238 		 */
1239 		for (i = 0; i < AH_MAX_CHAINS; i++) {
1240 			nf_ctl[i] = ichan->noiseFloorCtl[i] + ath_hal_getNfAdjust(ah, ichan);
1241 			nf_ext[i] = ichan->noiseFloorExt[i] + ath_hal_getNfAdjust(ah, ichan);
1242 		}
1243 		return 1;
1244 	}
1245 }
1246 
1247 /*
1248  * Process all valid raw noise floors into the dBm noise floor values.
1249  * Though our device has no reference for a dBm noise floor, we perform
1250  * a relative minimization of NF's based on the lowest NF found across a
1251  * channel scan.
1252  */
1253 void
1254 ath_hal_process_noisefloor(struct ath_hal *ah)
1255 {
1256 	HAL_CHANNEL_INTERNAL *c;
1257 	int16_t correct2, correct5;
1258 	int16_t lowest2, lowest5;
1259 	int i;
1260 
1261 	/*
1262 	 * Find the lowest 2GHz and 5GHz noise floor values after adjusting
1263 	 * for statistically recorded NF/channel deviation.
1264 	 */
1265 	correct2 = lowest2 = 0;
1266 	correct5 = lowest5 = 0;
1267 	for (i = 0; i < AH_PRIVATE(ah)->ah_nchan; i++) {
1268 		WIRELESS_MODE mode;
1269 		int16_t nf;
1270 
1271 		c = &AH_PRIVATE(ah)->ah_channels[i];
1272 		if (c->rawNoiseFloor >= 0)
1273 			continue;
1274 		/* XXX can't identify proper mode */
1275 		mode = IS_CHAN_5GHZ(c) ? WIRELESS_MODE_11a : WIRELESS_MODE_11g;
1276 		nf = c->rawNoiseFloor + NOISE_FLOOR[mode] +
1277 			ath_hal_getNfAdjust(ah, c);
1278 		if (IS_CHAN_5GHZ(c)) {
1279 			if (nf < lowest5) {
1280 				lowest5 = nf;
1281 				correct5 = NOISE_FLOOR[mode] -
1282 				    (c->rawNoiseFloor + ath_hal_getNfAdjust(ah, c));
1283 			}
1284 		} else {
1285 			if (nf < lowest2) {
1286 				lowest2 = nf;
1287 				correct2 = NOISE_FLOOR[mode] -
1288 				    (c->rawNoiseFloor + ath_hal_getNfAdjust(ah, c));
1289 			}
1290 		}
1291 	}
1292 
1293 	/* Correct the channels to reach the expected NF value */
1294 	for (i = 0; i < AH_PRIVATE(ah)->ah_nchan; i++) {
1295 		c = &AH_PRIVATE(ah)->ah_channels[i];
1296 		if (c->rawNoiseFloor >= 0)
1297 			continue;
1298 		/* Apply correction factor */
1299 		c->noiseFloorAdjust = ath_hal_getNfAdjust(ah, c) +
1300 			(IS_CHAN_5GHZ(c) ? correct5 : correct2);
1301 		HALDEBUG(ah, HAL_DEBUG_NFCAL, "%u raw nf %d adjust %d\n",
1302 		    c->channel, c->rawNoiseFloor, c->noiseFloorAdjust);
1303 	}
1304 }
1305 
1306 /*
1307  * INI support routines.
1308  */
1309 
1310 int
1311 ath_hal_ini_write(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
1312 	int col, int regWr)
1313 {
1314 	int r;
1315 
1316 	HALASSERT(col < ia->cols);
1317 	for (r = 0; r < ia->rows; r++) {
1318 		OS_REG_WRITE(ah, HAL_INI_VAL(ia, r, 0),
1319 		    HAL_INI_VAL(ia, r, col));
1320 
1321 		/* Analog shift register delay seems needed for Merlin - PR kern/154220 */
1322 		if (HAL_INI_VAL(ia, r, 0) >= 0x7800 && HAL_INI_VAL(ia, r, 0) < 0x7900)
1323 			OS_DELAY(100);
1324 
1325 		DMA_YIELD(regWr);
1326 	}
1327 	return regWr;
1328 }
1329 
1330 void
1331 ath_hal_ini_bank_setup(uint32_t data[], const HAL_INI_ARRAY *ia, int col)
1332 {
1333 	int r;
1334 
1335 	HALASSERT(col < ia->cols);
1336 	for (r = 0; r < ia->rows; r++)
1337 		data[r] = HAL_INI_VAL(ia, r, col);
1338 }
1339 
1340 int
1341 ath_hal_ini_bank_write(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
1342 	const uint32_t data[], int regWr)
1343 {
1344 	int r;
1345 
1346 	for (r = 0; r < ia->rows; r++) {
1347 		OS_REG_WRITE(ah, HAL_INI_VAL(ia, r, 0), data[r]);
1348 		DMA_YIELD(regWr);
1349 	}
1350 	return regWr;
1351 }
1352 
1353 /*
1354  * These are EEPROM board related routines which should likely live in
1355  * a helper library of some sort.
1356  */
1357 
1358 /**************************************************************
1359  * ath_ee_getLowerUppderIndex
1360  *
1361  * Return indices surrounding the value in sorted integer lists.
1362  * Requirement: the input list must be monotonically increasing
1363  *     and populated up to the list size
1364  * Returns: match is set if an index in the array matches exactly
1365  *     or a the target is before or after the range of the array.
1366  */
1367 HAL_BOOL
1368 ath_ee_getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
1369                    uint16_t *indexL, uint16_t *indexR)
1370 {
1371     uint16_t i;
1372 
1373     /*
1374      * Check first and last elements for beyond ordered array cases.
1375      */
1376     if (target <= pList[0]) {
1377         *indexL = *indexR = 0;
1378         return AH_TRUE;
1379     }
1380     if (target >= pList[listSize-1]) {
1381         *indexL = *indexR = (uint16_t)(listSize - 1);
1382         return AH_TRUE;
1383     }
1384 
1385     /* look for value being near or between 2 values in list */
1386     for (i = 0; i < listSize - 1; i++) {
1387         /*
1388          * If value is close to the current value of the list
1389          * then target is not between values, it is one of the values
1390          */
1391         if (pList[i] == target) {
1392             *indexL = *indexR = i;
1393             return AH_TRUE;
1394         }
1395         /*
1396          * Look for value being between current value and next value
1397          * if so return these 2 values
1398          */
1399         if (target < pList[i + 1]) {
1400             *indexL = i;
1401             *indexR = (uint16_t)(i + 1);
1402             return AH_FALSE;
1403         }
1404     }
1405     HALASSERT(0);
1406     *indexL = *indexR = 0;
1407     return AH_FALSE;
1408 }
1409 
1410 /**************************************************************
1411  * ath_ee_FillVpdTable
1412  *
1413  * Fill the Vpdlist for indices Pmax-Pmin
1414  * Note: pwrMin, pwrMax and Vpdlist are all in dBm * 4
1415  */
1416 HAL_BOOL
1417 ath_ee_FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
1418                    uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
1419 {
1420     uint16_t  i, k;
1421     uint8_t   currPwr = pwrMin;
1422     uint16_t  idxL, idxR;
1423 
1424     HALASSERT(pwrMax > pwrMin);
1425     for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
1426         ath_ee_getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
1427                            &(idxL), &(idxR));
1428         if (idxR < 1)
1429             idxR = 1;           /* extrapolate below */
1430         if (idxL == numIntercepts - 1)
1431             idxL = (uint16_t)(numIntercepts - 2);   /* extrapolate above */
1432         if (pPwrList[idxL] == pPwrList[idxR])
1433             k = pVpdList[idxL];
1434         else
1435             k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
1436                   (pPwrList[idxR] - pPwrList[idxL]) );
1437         HALASSERT(k < 256);
1438         pRetVpdList[i] = (uint8_t)k;
1439         currPwr += 2;               /* half dB steps */
1440     }
1441 
1442     return AH_TRUE;
1443 }
1444 
1445 /**************************************************************************
1446  * ath_ee_interpolate
1447  *
1448  * Returns signed interpolated or the scaled up interpolated value
1449  */
1450 int16_t
1451 ath_ee_interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
1452             int16_t targetLeft, int16_t targetRight)
1453 {
1454     int16_t rv;
1455 
1456     if (srcRight == srcLeft) {
1457         rv = targetLeft;
1458     } else {
1459         rv = (int16_t)( ((target - srcLeft) * targetRight +
1460               (srcRight - target) * targetLeft) / (srcRight - srcLeft) );
1461     }
1462     return rv;
1463 }
1464 
1465 /*
1466  * Adjust the TSF.
1467  */
1468 void
1469 ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
1470 {
1471 	/* XXX handle wrap/overflow */
1472 	OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
1473 }
1474 
1475 /*
1476  * Enable or disable CCA.
1477  */
1478 void
1479 ath_hal_setcca(struct ath_hal *ah, int ena)
1480 {
1481 	/*
1482 	 * NB: fill me in; this is not provided by default because disabling
1483 	 *     CCA in most locales violates regulatory.
1484 	 */
1485 }
1486 
1487 /*
1488  * Get CCA setting.
1489  *
1490  * XXX TODO: turn this and the above function into methods
1491  * in case there are chipset differences in handling CCA.
1492  */
1493 int
1494 ath_hal_getcca(struct ath_hal *ah)
1495 {
1496 	u_int32_t diag;
1497 	if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
1498 		return 1;
1499 	return ((diag & 0x500000) == 0);
1500 }
1501 
1502 /*
1503  * Set the current state of self-generated ACK and RTS/CTS frames.
1504  *
1505  * For correct DFS operation, the device should not even /ACK/ frames
1506  * that are sent to it during CAC or CSA.
1507  */
1508 void
1509 ath_hal_set_dfs_cac_tx_quiet(struct ath_hal *ah, HAL_BOOL ena)
1510 {
1511 
1512 	if (ah->ah_setDfsCacTxQuiet == NULL)
1513 		return;
1514 	ah->ah_setDfsCacTxQuiet(ah, ena);
1515 }
1516 
1517 /*
1518  * This routine is only needed when supporting EEPROM-in-RAM setups
1519  * (eg embedded SoCs and on-board PCI/PCIe devices.)
1520  */
1521 /* NB: This is in 16 bit words; not bytes */
1522 /* XXX This doesn't belong here!  */
1523 #define ATH_DATA_EEPROM_SIZE    2048
1524 
1525 HAL_BOOL
1526 ath_hal_EepromDataRead(struct ath_hal *ah, u_int off, uint16_t *data)
1527 {
1528 	if (ah->ah_eepromdata == AH_NULL) {
1529 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: no eeprom data!\n", __func__);
1530 		return AH_FALSE;
1531 	}
1532 	if (off > ATH_DATA_EEPROM_SIZE) {
1533 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: offset %x > %x\n",
1534 		    __func__, off, ATH_DATA_EEPROM_SIZE);
1535 		return AH_FALSE;
1536 	}
1537 	(*data) = ah->ah_eepromdata[off];
1538 	return AH_TRUE;
1539 }
1540 
1541 /*
1542  * Do a 2GHz specific MHz->IEEE based on the hardware
1543  * frequency.
1544  *
1545  * This is the unmapped frequency which is programmed into the hardware.
1546  */
1547 int
1548 ath_hal_mhz2ieee_2ghz(struct ath_hal *ah, int freq)
1549 {
1550 
1551 	if (freq == 2484)
1552 		return 14;
1553 	if (freq < 2484)
1554 		return ((int) freq - 2407) / 5;
1555 	else
1556 		return 15 + ((freq - 2512) / 20);
1557 }
1558 
1559 /*
1560  * Clear the current survey data.
1561  *
1562  * This should be done during a channel change.
1563  */
1564 void
1565 ath_hal_survey_clear(struct ath_hal *ah)
1566 {
1567 
1568 	OS_MEMZERO(&AH_PRIVATE(ah)->ah_chansurvey,
1569 	    sizeof(AH_PRIVATE(ah)->ah_chansurvey));
1570 }
1571 
1572 /*
1573  * Add a sample to the channel survey.
1574  */
1575 void
1576 ath_hal_survey_add_sample(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hs)
1577 {
1578 	HAL_CHANNEL_SURVEY *cs;
1579 
1580 	cs = &AH_PRIVATE(ah)->ah_chansurvey;
1581 
1582 	OS_MEMCPY(&cs->samples[cs->cur_sample], hs, sizeof(*hs));
1583 	cs->samples[cs->cur_sample].seq_num = cs->cur_seq;
1584 	cs->cur_sample = (cs->cur_sample + 1) % CHANNEL_SURVEY_SAMPLE_COUNT;
1585 	cs->cur_seq++;
1586 }
1587