xref: /freebsd/sys/dev/ath/ath_hal/ah.c (revision 5686c6c38a3e1cc78804eaf5f880bda23dcf592f)
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 #include "ah_devid.h"
24 #include "ah_eeprom.h"			/* for 5ghz fast clock flag */
25 
26 #include "ar5416/ar5416reg.h"		/* NB: includes ar5212reg.h */
27 #include "ar9003/ar9300_devid.h"
28 
29 /* linker set of registered chips */
30 OS_SET_DECLARE(ah_chips, struct ath_hal_chip);
31 
32 /*
33  * Check the set of registered chips to see if any recognize
34  * the device as one they can support.
35  */
36 const char*
37 ath_hal_probe(uint16_t vendorid, uint16_t devid)
38 {
39 	struct ath_hal_chip * const *pchip;
40 
41 	OS_SET_FOREACH(pchip, ah_chips) {
42 		const char *name = (*pchip)->probe(vendorid, devid);
43 		if (name != AH_NULL)
44 			return name;
45 	}
46 	return AH_NULL;
47 }
48 
49 /*
50  * Attach detects device chip revisions, initializes the hwLayer
51  * function list, reads EEPROM information,
52  * selects reset vectors, and performs a short self test.
53  * Any failures will return an error that should cause a hardware
54  * disable.
55  */
56 struct ath_hal*
57 ath_hal_attach(uint16_t devid, HAL_SOFTC sc,
58 	HAL_BUS_TAG st, HAL_BUS_HANDLE sh, uint16_t *eepromdata, HAL_STATUS *error)
59 {
60 	struct ath_hal_chip * const *pchip;
61 
62 	OS_SET_FOREACH(pchip, ah_chips) {
63 		struct ath_hal_chip *chip = *pchip;
64 		struct ath_hal *ah;
65 
66 		/* XXX don't have vendorid, assume atheros one works */
67 		if (chip->probe(ATHEROS_VENDOR_ID, devid) == AH_NULL)
68 			continue;
69 		ah = chip->attach(devid, sc, st, sh, eepromdata, error);
70 		if (ah != AH_NULL) {
71 			/* copy back private state to public area */
72 			ah->ah_devid = AH_PRIVATE(ah)->ah_devid;
73 			ah->ah_subvendorid = AH_PRIVATE(ah)->ah_subvendorid;
74 			ah->ah_macVersion = AH_PRIVATE(ah)->ah_macVersion;
75 			ah->ah_macRev = AH_PRIVATE(ah)->ah_macRev;
76 			ah->ah_phyRev = AH_PRIVATE(ah)->ah_phyRev;
77 			ah->ah_analog5GhzRev = AH_PRIVATE(ah)->ah_analog5GhzRev;
78 			ah->ah_analog2GhzRev = AH_PRIVATE(ah)->ah_analog2GhzRev;
79 			return ah;
80 		}
81 	}
82 	return AH_NULL;
83 }
84 
85 const char *
86 ath_hal_mac_name(struct ath_hal *ah)
87 {
88 	switch (ah->ah_macVersion) {
89 	case AR_SREV_VERSION_CRETE:
90 	case AR_SREV_VERSION_MAUI_1:
91 		return "5210";
92 	case AR_SREV_VERSION_MAUI_2:
93 	case AR_SREV_VERSION_OAHU:
94 		return "5211";
95 	case AR_SREV_VERSION_VENICE:
96 		return "5212";
97 	case AR_SREV_VERSION_GRIFFIN:
98 		return "2413";
99 	case AR_SREV_VERSION_CONDOR:
100 		return "5424";
101 	case AR_SREV_VERSION_EAGLE:
102 		return "5413";
103 	case AR_SREV_VERSION_COBRA:
104 		return "2415";
105 	case AR_SREV_2425:	/* Swan */
106 		return "2425";
107 	case AR_SREV_2417:	/* Nala */
108 		return "2417";
109 	case AR_XSREV_VERSION_OWL_PCI:
110 		return "5416";
111 	case AR_XSREV_VERSION_OWL_PCIE:
112 		return "5418";
113 	case AR_XSREV_VERSION_HOWL:
114 		return "9130";
115 	case AR_XSREV_VERSION_SOWL:
116 		return "9160";
117 	case AR_XSREV_VERSION_MERLIN:
118 		if (AH_PRIVATE(ah)->ah_ispcie)
119 			return "9280";
120 		return "9220";
121 	case AR_XSREV_VERSION_KITE:
122 		return "9285";
123 	case AR_XSREV_VERSION_KIWI:
124 		if (AH_PRIVATE(ah)->ah_ispcie)
125 			return "9287";
126 		return "9227";
127 	case AR_SREV_VERSION_AR9380:
128 		if (ah->ah_macRev >= AR_SREV_REVISION_AR9580_10)
129 			return "9580";
130 		return "9380";
131 	case AR_SREV_VERSION_AR9460:
132 		return "9460";
133 	case AR_SREV_VERSION_AR9330:
134 		return "9330";
135 	case AR_SREV_VERSION_AR9340:
136 		return "9340";
137 	case AR_SREV_VERSION_QCA9550:
138 		/* XXX should say QCA, not AR */
139 		return "9550";
140 	case AR_SREV_VERSION_AR9485:
141 		return "9485";
142 	case AR_SREV_VERSION_QCA9565:
143 		/* XXX should say QCA, not AR */
144 		return "9565";
145 	}
146 	return "????";
147 }
148 
149 /*
150  * Return the mask of available modes based on the hardware capabilities.
151  */
152 u_int
153 ath_hal_getwirelessmodes(struct ath_hal*ah)
154 {
155 	return ath_hal_getWirelessModes(ah);
156 }
157 
158 /* linker set of registered RF backends */
159 OS_SET_DECLARE(ah_rfs, struct ath_hal_rf);
160 
161 /*
162  * Check the set of registered RF backends to see if
163  * any recognize the device as one they can support.
164  */
165 struct ath_hal_rf *
166 ath_hal_rfprobe(struct ath_hal *ah, HAL_STATUS *ecode)
167 {
168 	struct ath_hal_rf * const *prf;
169 
170 	OS_SET_FOREACH(prf, ah_rfs) {
171 		struct ath_hal_rf *rf = *prf;
172 		if (rf->probe(ah))
173 			return rf;
174 	}
175 	*ecode = HAL_ENOTSUPP;
176 	return AH_NULL;
177 }
178 
179 const char *
180 ath_hal_rf_name(struct ath_hal *ah)
181 {
182 	switch (ah->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR) {
183 	case 0:			/* 5210 */
184 		return "5110";	/* NB: made up */
185 	case AR_RAD5111_SREV_MAJOR:
186 	case AR_RAD5111_SREV_PROD:
187 		return "5111";
188 	case AR_RAD2111_SREV_MAJOR:
189 		return "2111";
190 	case AR_RAD5112_SREV_MAJOR:
191 	case AR_RAD5112_SREV_2_0:
192 	case AR_RAD5112_SREV_2_1:
193 		return "5112";
194 	case AR_RAD2112_SREV_MAJOR:
195 	case AR_RAD2112_SREV_2_0:
196 	case AR_RAD2112_SREV_2_1:
197 		return "2112";
198 	case AR_RAD2413_SREV_MAJOR:
199 		return "2413";
200 	case AR_RAD5413_SREV_MAJOR:
201 		return "5413";
202 	case AR_RAD2316_SREV_MAJOR:
203 		return "2316";
204 	case AR_RAD2317_SREV_MAJOR:
205 		return "2317";
206 	case AR_RAD5424_SREV_MAJOR:
207 		return "5424";
208 
209 	case AR_RAD5133_SREV_MAJOR:
210 		return "5133";
211 	case AR_RAD2133_SREV_MAJOR:
212 		return "2133";
213 	case AR_RAD5122_SREV_MAJOR:
214 		return "5122";
215 	case AR_RAD2122_SREV_MAJOR:
216 		return "2122";
217 	}
218 	return "????";
219 }
220 
221 /*
222  * Poll the register looking for a specific value.
223  */
224 HAL_BOOL
225 ath_hal_wait(struct ath_hal *ah, u_int reg, uint32_t mask, uint32_t val)
226 {
227 #define	AH_TIMEOUT	1000
228 	return ath_hal_waitfor(ah, reg, mask, val, AH_TIMEOUT);
229 #undef AH_TIMEOUT
230 }
231 
232 HAL_BOOL
233 ath_hal_waitfor(struct ath_hal *ah, u_int reg, uint32_t mask, uint32_t val, uint32_t timeout)
234 {
235 	int i;
236 
237 	for (i = 0; i < timeout; i++) {
238 		if ((OS_REG_READ(ah, reg) & mask) == val)
239 			return AH_TRUE;
240 		OS_DELAY(10);
241 	}
242 	HALDEBUG(ah, HAL_DEBUG_REGIO | HAL_DEBUG_PHYIO,
243 	    "%s: timeout on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
244 	    __func__, reg, OS_REG_READ(ah, reg), mask, val);
245 	return AH_FALSE;
246 }
247 
248 /*
249  * Reverse the bits starting at the low bit for a value of
250  * bit_count in size
251  */
252 uint32_t
253 ath_hal_reverseBits(uint32_t val, uint32_t n)
254 {
255 	uint32_t retval;
256 	int i;
257 
258 	for (i = 0, retval = 0; i < n; i++) {
259 		retval = (retval << 1) | (val & 1);
260 		val >>= 1;
261 	}
262 	return retval;
263 }
264 
265 /* 802.11n related timing definitions */
266 
267 #define	OFDM_PLCP_BITS	22
268 #define	HT_L_STF	8
269 #define	HT_L_LTF	8
270 #define	HT_L_SIG	4
271 #define	HT_SIG		8
272 #define	HT_STF		4
273 #define	HT_LTF(n)	((n) * 4)
274 
275 #define	HT_RC_2_MCS(_rc)	((_rc) & 0xf)
276 #define	HT_RC_2_STREAMS(_rc)	((((_rc) & 0x78) >> 3) + 1)
277 #define	IS_HT_RATE(_rc)		( (_rc) & IEEE80211_RATE_MCS)
278 
279 /*
280  * Calculate the duration of a packet whether it is 11n or legacy.
281  */
282 uint32_t
283 ath_hal_pkt_txtime(struct ath_hal *ah, const HAL_RATE_TABLE *rates, uint32_t frameLen,
284     uint16_t rateix, HAL_BOOL isht40, HAL_BOOL shortPreamble)
285 {
286 	uint8_t rc;
287 	int numStreams;
288 
289 	rc = rates->info[rateix].rateCode;
290 
291 	/* Legacy rate? Return the old way */
292 	if (! IS_HT_RATE(rc))
293 		return ath_hal_computetxtime(ah, rates, frameLen, rateix, shortPreamble);
294 
295 	/* 11n frame - extract out the number of spatial streams */
296 	numStreams = HT_RC_2_STREAMS(rc);
297 	KASSERT(numStreams > 0 && numStreams <= 4,
298 	    ("number of spatial streams needs to be 1..3: MCS rate 0x%x!",
299 	    rateix));
300 
301 	return ath_computedur_ht(frameLen, rc, numStreams, isht40, shortPreamble);
302 }
303 
304 static const uint16_t ht20_bps[32] = {
305     26, 52, 78, 104, 156, 208, 234, 260,
306     52, 104, 156, 208, 312, 416, 468, 520,
307     78, 156, 234, 312, 468, 624, 702, 780,
308     104, 208, 312, 416, 624, 832, 936, 1040
309 };
310 static const uint16_t ht40_bps[32] = {
311     54, 108, 162, 216, 324, 432, 486, 540,
312     108, 216, 324, 432, 648, 864, 972, 1080,
313     162, 324, 486, 648, 972, 1296, 1458, 1620,
314     216, 432, 648, 864, 1296, 1728, 1944, 2160
315 };
316 
317 /*
318  * Calculate the transmit duration of an 11n frame.
319  */
320 uint32_t
321 ath_computedur_ht(uint32_t frameLen, uint16_t rate, int streams,
322     HAL_BOOL isht40, HAL_BOOL isShortGI)
323 {
324 	uint32_t bitsPerSymbol, numBits, numSymbols, txTime;
325 
326 	KASSERT(rate & IEEE80211_RATE_MCS, ("not mcs %d", rate));
327 	KASSERT((rate &~ IEEE80211_RATE_MCS) < 31, ("bad mcs 0x%x", rate));
328 
329 	if (isht40)
330 		bitsPerSymbol = ht40_bps[rate & 0x1f];
331 	else
332 		bitsPerSymbol = ht20_bps[rate & 0x1f];
333 	numBits = OFDM_PLCP_BITS + (frameLen << 3);
334 	numSymbols = howmany(numBits, bitsPerSymbol);
335 	if (isShortGI)
336 		txTime = ((numSymbols * 18) + 4) / 5;   /* 3.6us */
337 	else
338 		txTime = numSymbols * 4;                /* 4us */
339 	return txTime + HT_L_STF + HT_L_LTF +
340 	    HT_L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
341 }
342 
343 /*
344  * Compute the time to transmit a frame of length frameLen bytes
345  * using the specified rate, phy, and short preamble setting.
346  */
347 uint16_t
348 ath_hal_computetxtime(struct ath_hal *ah,
349 	const HAL_RATE_TABLE *rates, uint32_t frameLen, uint16_t rateix,
350 	HAL_BOOL shortPreamble)
351 {
352 	uint32_t bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
353 	uint32_t kbps;
354 
355 	/* Warn if this function is called for 11n rates; it should not be! */
356 	if (IS_HT_RATE(rates->info[rateix].rateCode))
357 		ath_hal_printf(ah, "%s: MCS rate? (index %d; hwrate 0x%x)\n",
358 		    __func__, rateix, rates->info[rateix].rateCode);
359 
360 	kbps = rates->info[rateix].rateKbps;
361 	/*
362 	 * index can be invalid duting dynamic Turbo transitions.
363 	 * XXX
364 	 */
365 	if (kbps == 0)
366 		return 0;
367 	switch (rates->info[rateix].phy) {
368 	case IEEE80211_T_CCK:
369 		phyTime		= CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
370 		if (shortPreamble && rates->info[rateix].shortPreamble)
371 			phyTime >>= 1;
372 		numBits		= frameLen << 3;
373 		txTime		= CCK_SIFS_TIME + phyTime
374 				+ ((numBits * 1000)/kbps);
375 		break;
376 	case IEEE80211_T_OFDM:
377 		bitsPerSymbol	= (kbps * OFDM_SYMBOL_TIME) / 1000;
378 		HALASSERT(bitsPerSymbol != 0);
379 
380 		numBits		= OFDM_PLCP_BITS + (frameLen << 3);
381 		numSymbols	= howmany(numBits, bitsPerSymbol);
382 		txTime		= OFDM_SIFS_TIME
383 				+ OFDM_PREAMBLE_TIME
384 				+ (numSymbols * OFDM_SYMBOL_TIME);
385 		break;
386 	case IEEE80211_T_OFDM_HALF:
387 		bitsPerSymbol	= (kbps * OFDM_HALF_SYMBOL_TIME) / 1000;
388 		HALASSERT(bitsPerSymbol != 0);
389 
390 		numBits		= OFDM_HALF_PLCP_BITS + (frameLen << 3);
391 		numSymbols	= howmany(numBits, bitsPerSymbol);
392 		txTime		= OFDM_HALF_SIFS_TIME
393 				+ OFDM_HALF_PREAMBLE_TIME
394 				+ (numSymbols * OFDM_HALF_SYMBOL_TIME);
395 		break;
396 	case IEEE80211_T_OFDM_QUARTER:
397 		bitsPerSymbol	= (kbps * OFDM_QUARTER_SYMBOL_TIME) / 1000;
398 		HALASSERT(bitsPerSymbol != 0);
399 
400 		numBits		= OFDM_QUARTER_PLCP_BITS + (frameLen << 3);
401 		numSymbols	= howmany(numBits, bitsPerSymbol);
402 		txTime		= OFDM_QUARTER_SIFS_TIME
403 				+ OFDM_QUARTER_PREAMBLE_TIME
404 				+ (numSymbols * OFDM_QUARTER_SYMBOL_TIME);
405 		break;
406 	case IEEE80211_T_TURBO:
407 		bitsPerSymbol	= (kbps * TURBO_SYMBOL_TIME) / 1000;
408 		HALASSERT(bitsPerSymbol != 0);
409 
410 		numBits		= TURBO_PLCP_BITS + (frameLen << 3);
411 		numSymbols	= howmany(numBits, bitsPerSymbol);
412 		txTime		= TURBO_SIFS_TIME
413 				+ TURBO_PREAMBLE_TIME
414 				+ (numSymbols * TURBO_SYMBOL_TIME);
415 		break;
416 	default:
417 		HALDEBUG(ah, HAL_DEBUG_PHYIO,
418 		    "%s: unknown phy %u (rate ix %u)\n",
419 		    __func__, rates->info[rateix].phy, rateix);
420 		txTime = 0;
421 		break;
422 	}
423 	return txTime;
424 }
425 
426 int
427 ath_hal_get_curmode(struct ath_hal *ah, const struct ieee80211_channel *chan)
428 {
429 	/*
430 	 * Pick a default mode at bootup. A channel change is inevitable.
431 	 */
432 	if (!chan)
433 		return HAL_MODE_11NG_HT20;
434 
435 	if (IEEE80211_IS_CHAN_TURBO(chan))
436 		return HAL_MODE_TURBO;
437 
438 	/* check for NA_HT before plain A, since IS_CHAN_A includes NA_HT */
439 	if (IEEE80211_IS_CHAN_5GHZ(chan) && IEEE80211_IS_CHAN_HT20(chan))
440 		return HAL_MODE_11NA_HT20;
441 	if (IEEE80211_IS_CHAN_5GHZ(chan) && IEEE80211_IS_CHAN_HT40U(chan))
442 		return HAL_MODE_11NA_HT40PLUS;
443 	if (IEEE80211_IS_CHAN_5GHZ(chan) && IEEE80211_IS_CHAN_HT40D(chan))
444 		return HAL_MODE_11NA_HT40MINUS;
445 	if (IEEE80211_IS_CHAN_A(chan))
446 		return HAL_MODE_11A;
447 
448 	/* check for NG_HT before plain G, since IS_CHAN_G includes NG_HT */
449 	if (IEEE80211_IS_CHAN_2GHZ(chan) && IEEE80211_IS_CHAN_HT20(chan))
450 		return HAL_MODE_11NG_HT20;
451 	if (IEEE80211_IS_CHAN_2GHZ(chan) && IEEE80211_IS_CHAN_HT40U(chan))
452 		return HAL_MODE_11NG_HT40PLUS;
453 	if (IEEE80211_IS_CHAN_2GHZ(chan) && IEEE80211_IS_CHAN_HT40D(chan))
454 		return HAL_MODE_11NG_HT40MINUS;
455 
456 	/*
457 	 * XXX For FreeBSD, will this work correctly given the DYN
458 	 * chan mode (OFDM+CCK dynamic) ? We have pure-G versions DYN-BG..
459 	 */
460 	if (IEEE80211_IS_CHAN_G(chan))
461 		return HAL_MODE_11G;
462 	if (IEEE80211_IS_CHAN_B(chan))
463 		return HAL_MODE_11B;
464 
465 	HALASSERT(0);
466 	return HAL_MODE_11NG_HT20;
467 }
468 
469 
470 typedef enum {
471 	WIRELESS_MODE_11a   = 0,
472 	WIRELESS_MODE_TURBO = 1,
473 	WIRELESS_MODE_11b   = 2,
474 	WIRELESS_MODE_11g   = 3,
475 	WIRELESS_MODE_108g  = 4,
476 
477 	WIRELESS_MODE_MAX
478 } WIRELESS_MODE;
479 
480 static WIRELESS_MODE
481 ath_hal_chan2wmode(struct ath_hal *ah, const struct ieee80211_channel *chan)
482 {
483 	if (IEEE80211_IS_CHAN_B(chan))
484 		return WIRELESS_MODE_11b;
485 	if (IEEE80211_IS_CHAN_G(chan))
486 		return WIRELESS_MODE_11g;
487 	if (IEEE80211_IS_CHAN_108G(chan))
488 		return WIRELESS_MODE_108g;
489 	if (IEEE80211_IS_CHAN_TURBO(chan))
490 		return WIRELESS_MODE_TURBO;
491 	return WIRELESS_MODE_11a;
492 }
493 
494 /*
495  * Convert between microseconds and core system clocks.
496  */
497                                      /* 11a Turbo  11b  11g  108g */
498 static const uint8_t CLOCK_RATE[]  = { 40,  80,   22,  44,   88  };
499 
500 #define	CLOCK_FAST_RATE_5GHZ_OFDM	44
501 
502 u_int
503 ath_hal_mac_clks(struct ath_hal *ah, u_int usecs)
504 {
505 	const struct ieee80211_channel *c = AH_PRIVATE(ah)->ah_curchan;
506 	u_int clks;
507 
508 	/* NB: ah_curchan may be null when called attach time */
509 	/* XXX merlin and later specific workaround - 5ghz fast clock is 44 */
510 	if (c != AH_NULL && IS_5GHZ_FAST_CLOCK_EN(ah, c)) {
511 		clks = usecs * CLOCK_FAST_RATE_5GHZ_OFDM;
512 		if (IEEE80211_IS_CHAN_HT40(c))
513 			clks <<= 1;
514 	} else if (c != AH_NULL) {
515 		clks = usecs * CLOCK_RATE[ath_hal_chan2wmode(ah, c)];
516 		if (IEEE80211_IS_CHAN_HT40(c))
517 			clks <<= 1;
518 	} else
519 		clks = usecs * CLOCK_RATE[WIRELESS_MODE_11b];
520 
521 	/* Compensate for half/quarter rate */
522 	if (c != AH_NULL && IEEE80211_IS_CHAN_HALF(c))
523 		clks = clks / 2;
524 	else if (c != AH_NULL && IEEE80211_IS_CHAN_QUARTER(c))
525 		clks = clks / 4;
526 
527 	return clks;
528 }
529 
530 u_int
531 ath_hal_mac_usec(struct ath_hal *ah, u_int clks)
532 {
533 	const struct ieee80211_channel *c = AH_PRIVATE(ah)->ah_curchan;
534 	u_int usec;
535 
536 	/* NB: ah_curchan may be null when called attach time */
537 	/* XXX merlin and later specific workaround - 5ghz fast clock is 44 */
538 	if (c != AH_NULL && IS_5GHZ_FAST_CLOCK_EN(ah, c)) {
539 		usec = clks / CLOCK_FAST_RATE_5GHZ_OFDM;
540 		if (IEEE80211_IS_CHAN_HT40(c))
541 			usec >>= 1;
542 	} else if (c != AH_NULL) {
543 		usec = clks / CLOCK_RATE[ath_hal_chan2wmode(ah, c)];
544 		if (IEEE80211_IS_CHAN_HT40(c))
545 			usec >>= 1;
546 	} else
547 		usec = clks / CLOCK_RATE[WIRELESS_MODE_11b];
548 	return usec;
549 }
550 
551 /*
552  * Setup a h/w rate table's reverse lookup table and
553  * fill in ack durations.  This routine is called for
554  * each rate table returned through the ah_getRateTable
555  * method.  The reverse lookup tables are assumed to be
556  * initialized to zero (or at least the first entry).
557  * We use this as a key that indicates whether or not
558  * we've previously setup the reverse lookup table.
559  *
560  * XXX not reentrant, but shouldn't matter
561  */
562 void
563 ath_hal_setupratetable(struct ath_hal *ah, HAL_RATE_TABLE *rt)
564 {
565 #define	N(a)	(sizeof(a)/sizeof(a[0]))
566 	int i;
567 
568 	if (rt->rateCodeToIndex[0] != 0)	/* already setup */
569 		return;
570 	for (i = 0; i < N(rt->rateCodeToIndex); i++)
571 		rt->rateCodeToIndex[i] = (uint8_t) -1;
572 	for (i = 0; i < rt->rateCount; i++) {
573 		uint8_t code = rt->info[i].rateCode;
574 		uint8_t cix = rt->info[i].controlRate;
575 
576 		HALASSERT(code < N(rt->rateCodeToIndex));
577 		rt->rateCodeToIndex[code] = i;
578 		HALASSERT((code | rt->info[i].shortPreamble) <
579 		    N(rt->rateCodeToIndex));
580 		rt->rateCodeToIndex[code | rt->info[i].shortPreamble] = i;
581 		/*
582 		 * XXX for 11g the control rate to use for 5.5 and 11 Mb/s
583 		 *     depends on whether they are marked as basic rates;
584 		 *     the static tables are setup with an 11b-compatible
585 		 *     2Mb/s rate which will work but is suboptimal
586 		 */
587 		rt->info[i].lpAckDuration = ath_hal_computetxtime(ah, rt,
588 			WLAN_CTRL_FRAME_SIZE, cix, AH_FALSE);
589 		rt->info[i].spAckDuration = ath_hal_computetxtime(ah, rt,
590 			WLAN_CTRL_FRAME_SIZE, cix, AH_TRUE);
591 	}
592 #undef N
593 }
594 
595 HAL_STATUS
596 ath_hal_getcapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
597 	uint32_t capability, uint32_t *result)
598 {
599 	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
600 
601 	switch (type) {
602 	case HAL_CAP_REG_DMN:		/* regulatory domain */
603 		*result = AH_PRIVATE(ah)->ah_currentRD;
604 		return HAL_OK;
605 	case HAL_CAP_DFS_DMN:		/* DFS Domain */
606 		*result = AH_PRIVATE(ah)->ah_dfsDomain;
607 		return HAL_OK;
608 	case HAL_CAP_CIPHER:		/* cipher handled in hardware */
609 	case HAL_CAP_TKIP_MIC:		/* handle TKIP MIC in hardware */
610 		return HAL_ENOTSUPP;
611 	case HAL_CAP_TKIP_SPLIT:	/* hardware TKIP uses split keys */
612 		return HAL_ENOTSUPP;
613 	case HAL_CAP_PHYCOUNTERS:	/* hardware PHY error counters */
614 		return pCap->halHwPhyCounterSupport ? HAL_OK : HAL_ENXIO;
615 	case HAL_CAP_WME_TKIPMIC:   /* hardware can do TKIP MIC when WMM is turned on */
616 		return HAL_ENOTSUPP;
617 	case HAL_CAP_DIVERSITY:		/* hardware supports fast diversity */
618 		return HAL_ENOTSUPP;
619 	case HAL_CAP_KEYCACHE_SIZE:	/* hardware key cache size */
620 		*result =  pCap->halKeyCacheSize;
621 		return HAL_OK;
622 	case HAL_CAP_NUM_TXQUEUES:	/* number of hardware tx queues */
623 		*result = pCap->halTotalQueues;
624 		return HAL_OK;
625 	case HAL_CAP_VEOL:		/* hardware supports virtual EOL */
626 		return pCap->halVEOLSupport ? HAL_OK : HAL_ENOTSUPP;
627 	case HAL_CAP_PSPOLL:		/* hardware PS-Poll support works */
628 		return pCap->halPSPollBroken ? HAL_ENOTSUPP : HAL_OK;
629 	case HAL_CAP_COMPRESSION:
630 		return pCap->halCompressSupport ? HAL_OK : HAL_ENOTSUPP;
631 	case HAL_CAP_BURST:
632 		return pCap->halBurstSupport ? HAL_OK : HAL_ENOTSUPP;
633 	case HAL_CAP_FASTFRAME:
634 		return pCap->halFastFramesSupport ? HAL_OK : HAL_ENOTSUPP;
635 	case HAL_CAP_DIAG:		/* hardware diagnostic support */
636 		*result = AH_PRIVATE(ah)->ah_diagreg;
637 		return HAL_OK;
638 	case HAL_CAP_TXPOW:		/* global tx power limit  */
639 		switch (capability) {
640 		case 0:			/* facility is supported */
641 			return HAL_OK;
642 		case 1:			/* current limit */
643 			*result = AH_PRIVATE(ah)->ah_powerLimit;
644 			return HAL_OK;
645 		case 2:			/* current max tx power */
646 			*result = AH_PRIVATE(ah)->ah_maxPowerLevel;
647 			return HAL_OK;
648 		case 3:			/* scale factor */
649 			*result = AH_PRIVATE(ah)->ah_tpScale;
650 			return HAL_OK;
651 		}
652 		return HAL_ENOTSUPP;
653 	case HAL_CAP_BSSIDMASK:		/* hardware supports bssid mask */
654 		return pCap->halBssIdMaskSupport ? HAL_OK : HAL_ENOTSUPP;
655 	case HAL_CAP_MCAST_KEYSRCH:	/* multicast frame keycache search */
656 		return pCap->halMcastKeySrchSupport ? HAL_OK : HAL_ENOTSUPP;
657 	case HAL_CAP_TSF_ADJUST:	/* hardware has beacon tsf adjust */
658 		return HAL_ENOTSUPP;
659 	case HAL_CAP_RFSILENT:		/* rfsilent support  */
660 		switch (capability) {
661 		case 0:			/* facility is supported */
662 			return pCap->halRfSilentSupport ? HAL_OK : HAL_ENOTSUPP;
663 		case 1:			/* current setting */
664 			return AH_PRIVATE(ah)->ah_rfkillEnabled ?
665 				HAL_OK : HAL_ENOTSUPP;
666 		case 2:			/* rfsilent config */
667 			*result = AH_PRIVATE(ah)->ah_rfsilent;
668 			return HAL_OK;
669 		}
670 		return HAL_ENOTSUPP;
671 	case HAL_CAP_11D:
672 		return HAL_OK;
673 
674 	case HAL_CAP_HT:
675 		return pCap->halHTSupport ? HAL_OK : HAL_ENOTSUPP;
676 	case HAL_CAP_GTXTO:
677 		return pCap->halGTTSupport ? HAL_OK : HAL_ENOTSUPP;
678 	case HAL_CAP_FAST_CC:
679 		return pCap->halFastCCSupport ? HAL_OK : HAL_ENOTSUPP;
680 	case HAL_CAP_TX_CHAINMASK:	/* mask of TX chains supported */
681 		*result = pCap->halTxChainMask;
682 		return HAL_OK;
683 	case HAL_CAP_RX_CHAINMASK:	/* mask of RX chains supported */
684 		*result = pCap->halRxChainMask;
685 		return HAL_OK;
686 	case HAL_CAP_NUM_GPIO_PINS:
687 		*result = pCap->halNumGpioPins;
688 		return HAL_OK;
689 	case HAL_CAP_CST:
690 		return pCap->halCSTSupport ? HAL_OK : HAL_ENOTSUPP;
691 	case HAL_CAP_RTS_AGGR_LIMIT:
692 		*result = pCap->halRtsAggrLimit;
693 		return HAL_OK;
694 	case HAL_CAP_4ADDR_AGGR:
695 		return pCap->hal4AddrAggrSupport ? HAL_OK : HAL_ENOTSUPP;
696 	case HAL_CAP_EXT_CHAN_DFS:
697 		return pCap->halExtChanDfsSupport ? HAL_OK : HAL_ENOTSUPP;
698 	case HAL_CAP_RX_STBC:
699 		return pCap->halRxStbcSupport ? HAL_OK : HAL_ENOTSUPP;
700 	case HAL_CAP_TX_STBC:
701 		return pCap->halTxStbcSupport ? HAL_OK : HAL_ENOTSUPP;
702 	case HAL_CAP_COMBINED_RADAR_RSSI:
703 		return pCap->halUseCombinedRadarRssi ? HAL_OK : HAL_ENOTSUPP;
704 	case HAL_CAP_AUTO_SLEEP:
705 		return pCap->halAutoSleepSupport ? HAL_OK : HAL_ENOTSUPP;
706 	case HAL_CAP_MBSSID_AGGR_SUPPORT:
707 		return pCap->halMbssidAggrSupport ? HAL_OK : HAL_ENOTSUPP;
708 	case HAL_CAP_SPLIT_4KB_TRANS:	/* hardware handles descriptors straddling 4k page boundary */
709 		return pCap->hal4kbSplitTransSupport ? HAL_OK : HAL_ENOTSUPP;
710 	case HAL_CAP_REG_FLAG:
711 		*result = AH_PRIVATE(ah)->ah_currentRDext;
712 		return HAL_OK;
713 	case HAL_CAP_ENHANCED_DMA_SUPPORT:
714 		return pCap->halEnhancedDmaSupport ? HAL_OK : HAL_ENOTSUPP;
715 	case HAL_CAP_NUM_TXMAPS:
716 		*result = pCap->halNumTxMaps;
717 		return HAL_OK;
718 	case HAL_CAP_TXDESCLEN:
719 		*result = pCap->halTxDescLen;
720 		return HAL_OK;
721 	case HAL_CAP_TXSTATUSLEN:
722 		*result = pCap->halTxStatusLen;
723 		return HAL_OK;
724 	case HAL_CAP_RXSTATUSLEN:
725 		*result = pCap->halRxStatusLen;
726 		return HAL_OK;
727 	case HAL_CAP_RXFIFODEPTH:
728 		switch (capability) {
729 		case HAL_RX_QUEUE_HP:
730 			*result = pCap->halRxHpFifoDepth;
731 			return HAL_OK;
732 		case HAL_RX_QUEUE_LP:
733 			*result = pCap->halRxLpFifoDepth;
734 			return HAL_OK;
735 		default:
736 			return HAL_ENOTSUPP;
737 	}
738 	case HAL_CAP_RXBUFSIZE:
739 	case HAL_CAP_NUM_MR_RETRIES:
740 		*result = pCap->halNumMRRetries;
741 		return HAL_OK;
742 	case HAL_CAP_BT_COEX:
743 		return pCap->halBtCoexSupport ? HAL_OK : HAL_ENOTSUPP;
744 	case HAL_CAP_SPECTRAL_SCAN:
745 		return pCap->halSpectralScanSupport ? HAL_OK : HAL_ENOTSUPP;
746 	case HAL_CAP_HT20_SGI:
747 		return pCap->halHTSGI20Support ? HAL_OK : HAL_ENOTSUPP;
748 	case HAL_CAP_RXTSTAMP_PREC:	/* rx desc tstamp precision (bits) */
749 		*result = pCap->halTstampPrecision;
750 		return HAL_OK;
751 	case HAL_CAP_ENHANCED_DFS_SUPPORT:
752 		return pCap->halEnhancedDfsSupport ? HAL_OK : HAL_ENOTSUPP;
753 
754 	/* FreeBSD-specific entries for now */
755 	case HAL_CAP_RXORN_FATAL:	/* HAL_INT_RXORN treated as fatal  */
756 		return AH_PRIVATE(ah)->ah_rxornIsFatal ? HAL_OK : HAL_ENOTSUPP;
757 	case HAL_CAP_INTRMASK:		/* mask of supported interrupts */
758 		*result = pCap->halIntrMask;
759 		return HAL_OK;
760 	case HAL_CAP_BSSIDMATCH:	/* hardware has disable bssid match */
761 		return pCap->halBssidMatchSupport ? HAL_OK : HAL_ENOTSUPP;
762 	case HAL_CAP_STREAMS:		/* number of 11n spatial streams */
763 		switch (capability) {
764 		case 0:			/* TX */
765 			*result = pCap->halTxStreams;
766 			return HAL_OK;
767 		case 1:			/* RX */
768 			*result = pCap->halRxStreams;
769 			return HAL_OK;
770 		default:
771 			return HAL_ENOTSUPP;
772 		}
773 	case HAL_CAP_RXDESC_SELFLINK:	/* hardware supports self-linked final RX descriptors correctly */
774 		return pCap->halHasRxSelfLinkedTail ? HAL_OK : HAL_ENOTSUPP;
775 	case HAL_CAP_LONG_RXDESC_TSF:		/* 32 bit TSF in RX descriptor? */
776 		return pCap->halHasLongRxDescTsf ? HAL_OK : HAL_ENOTSUPP;
777 	case HAL_CAP_BB_READ_WAR:		/* Baseband read WAR */
778 		return pCap->halHasBBReadWar? HAL_OK : HAL_ENOTSUPP;
779 	case HAL_CAP_SERIALISE_WAR:		/* PCI register serialisation */
780 		return pCap->halSerialiseRegWar ? HAL_OK : HAL_ENOTSUPP;
781 	case HAL_CAP_MFP:			/* Management frame protection setting */
782 		*result = pCap->halMfpSupport;
783 		return HAL_OK;
784 	default:
785 		return HAL_EINVAL;
786 	}
787 }
788 
789 HAL_BOOL
790 ath_hal_setcapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
791 	uint32_t capability, uint32_t setting, HAL_STATUS *status)
792 {
793 
794 	switch (type) {
795 	case HAL_CAP_TXPOW:
796 		switch (capability) {
797 		case 3:
798 			if (setting <= HAL_TP_SCALE_MIN) {
799 				AH_PRIVATE(ah)->ah_tpScale = setting;
800 				return AH_TRUE;
801 			}
802 			break;
803 		}
804 		break;
805 	case HAL_CAP_RFSILENT:		/* rfsilent support  */
806 		/*
807 		 * NB: allow even if halRfSilentSupport is false
808 		 *     in case the EEPROM is misprogrammed.
809 		 */
810 		switch (capability) {
811 		case 1:			/* current setting */
812 			AH_PRIVATE(ah)->ah_rfkillEnabled = (setting != 0);
813 			return AH_TRUE;
814 		case 2:			/* rfsilent config */
815 			/* XXX better done per-chip for validation? */
816 			AH_PRIVATE(ah)->ah_rfsilent = setting;
817 			return AH_TRUE;
818 		}
819 		break;
820 	case HAL_CAP_REG_DMN:		/* regulatory domain */
821 		AH_PRIVATE(ah)->ah_currentRD = setting;
822 		return AH_TRUE;
823 	case HAL_CAP_RXORN_FATAL:	/* HAL_INT_RXORN treated as fatal  */
824 		AH_PRIVATE(ah)->ah_rxornIsFatal = setting;
825 		return AH_TRUE;
826 	default:
827 		break;
828 	}
829 	if (status)
830 		*status = HAL_EINVAL;
831 	return AH_FALSE;
832 }
833 
834 /*
835  * Common support for getDiagState method.
836  */
837 
838 static u_int
839 ath_hal_getregdump(struct ath_hal *ah, const HAL_REGRANGE *regs,
840 	void *dstbuf, int space)
841 {
842 	uint32_t *dp = dstbuf;
843 	int i;
844 
845 	for (i = 0; space >= 2*sizeof(uint32_t); i++) {
846 		u_int r = regs[i].start;
847 		u_int e = regs[i].end;
848 		*dp++ = (r<<16) | e;
849 		space -= sizeof(uint32_t);
850 		do {
851 			*dp++ = OS_REG_READ(ah, r);
852 			r += sizeof(uint32_t);
853 			space -= sizeof(uint32_t);
854 		} while (r <= e && space >= sizeof(uint32_t));
855 	}
856 	return (char *) dp - (char *) dstbuf;
857 }
858 
859 static void
860 ath_hal_setregs(struct ath_hal *ah, const HAL_REGWRITE *regs, int space)
861 {
862 	while (space >= sizeof(HAL_REGWRITE)) {
863 		OS_REG_WRITE(ah, regs->addr, regs->value);
864 		regs++, space -= sizeof(HAL_REGWRITE);
865 	}
866 }
867 
868 HAL_BOOL
869 ath_hal_getdiagstate(struct ath_hal *ah, int request,
870 	const void *args, uint32_t argsize,
871 	void **result, uint32_t *resultsize)
872 {
873 	switch (request) {
874 	case HAL_DIAG_REVS:
875 		*result = &AH_PRIVATE(ah)->ah_devid;
876 		*resultsize = sizeof(HAL_REVS);
877 		return AH_TRUE;
878 	case HAL_DIAG_REGS:
879 		*resultsize = ath_hal_getregdump(ah, args, *result,*resultsize);
880 		return AH_TRUE;
881 	case HAL_DIAG_SETREGS:
882 		ath_hal_setregs(ah, args, argsize);
883 		*resultsize = 0;
884 		return AH_TRUE;
885 	case HAL_DIAG_FATALERR:
886 		*result = &AH_PRIVATE(ah)->ah_fatalState[0];
887 		*resultsize = sizeof(AH_PRIVATE(ah)->ah_fatalState);
888 		return AH_TRUE;
889 	case HAL_DIAG_EEREAD:
890 		if (argsize != sizeof(uint16_t))
891 			return AH_FALSE;
892 		if (!ath_hal_eepromRead(ah, *(const uint16_t *)args, *result))
893 			return AH_FALSE;
894 		*resultsize = sizeof(uint16_t);
895 		return AH_TRUE;
896 #ifdef AH_PRIVATE_DIAG
897 	case HAL_DIAG_SETKEY: {
898 		const HAL_DIAG_KEYVAL *dk;
899 
900 		if (argsize != sizeof(HAL_DIAG_KEYVAL))
901 			return AH_FALSE;
902 		dk = (const HAL_DIAG_KEYVAL *)args;
903 		return ah->ah_setKeyCacheEntry(ah, dk->dk_keyix,
904 			&dk->dk_keyval, dk->dk_mac, dk->dk_xor);
905 	}
906 	case HAL_DIAG_RESETKEY:
907 		if (argsize != sizeof(uint16_t))
908 			return AH_FALSE;
909 		return ah->ah_resetKeyCacheEntry(ah, *(const uint16_t *)args);
910 #ifdef AH_SUPPORT_WRITE_EEPROM
911 	case HAL_DIAG_EEWRITE: {
912 		const HAL_DIAG_EEVAL *ee;
913 		if (argsize != sizeof(HAL_DIAG_EEVAL))
914 			return AH_FALSE;
915 		ee = (const HAL_DIAG_EEVAL *)args;
916 		return ath_hal_eepromWrite(ah, ee->ee_off, ee->ee_data);
917 	}
918 #endif /* AH_SUPPORT_WRITE_EEPROM */
919 #endif /* AH_PRIVATE_DIAG */
920 	case HAL_DIAG_11NCOMPAT:
921 		if (argsize == 0) {
922 			*resultsize = sizeof(uint32_t);
923 			*((uint32_t *)(*result)) =
924 				AH_PRIVATE(ah)->ah_11nCompat;
925 		} else if (argsize == sizeof(uint32_t)) {
926 			AH_PRIVATE(ah)->ah_11nCompat = *(const uint32_t *)args;
927 		} else
928 			return AH_FALSE;
929 		return AH_TRUE;
930 	}
931 	return AH_FALSE;
932 }
933 
934 /*
935  * Set the properties of the tx queue with the parameters
936  * from qInfo.
937  */
938 HAL_BOOL
939 ath_hal_setTxQProps(struct ath_hal *ah,
940 	HAL_TX_QUEUE_INFO *qi, const HAL_TXQ_INFO *qInfo)
941 {
942 	uint32_t cw;
943 
944 	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
945 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
946 		    "%s: inactive queue\n", __func__);
947 		return AH_FALSE;
948 	}
949 	/* XXX validate parameters */
950 	qi->tqi_ver = qInfo->tqi_ver;
951 	qi->tqi_subtype = qInfo->tqi_subtype;
952 	qi->tqi_qflags = qInfo->tqi_qflags;
953 	qi->tqi_priority = qInfo->tqi_priority;
954 	if (qInfo->tqi_aifs != HAL_TXQ_USEDEFAULT)
955 		qi->tqi_aifs = AH_MIN(qInfo->tqi_aifs, 255);
956 	else
957 		qi->tqi_aifs = INIT_AIFS;
958 	if (qInfo->tqi_cwmin != HAL_TXQ_USEDEFAULT) {
959 		cw = AH_MIN(qInfo->tqi_cwmin, 1024);
960 		/* make sure that the CWmin is of the form (2^n - 1) */
961 		qi->tqi_cwmin = 1;
962 		while (qi->tqi_cwmin < cw)
963 			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
964 	} else
965 		qi->tqi_cwmin = qInfo->tqi_cwmin;
966 	if (qInfo->tqi_cwmax != HAL_TXQ_USEDEFAULT) {
967 		cw = AH_MIN(qInfo->tqi_cwmax, 1024);
968 		/* make sure that the CWmax is of the form (2^n - 1) */
969 		qi->tqi_cwmax = 1;
970 		while (qi->tqi_cwmax < cw)
971 			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
972 	} else
973 		qi->tqi_cwmax = INIT_CWMAX;
974 	/* Set retry limit values */
975 	if (qInfo->tqi_shretry != 0)
976 		qi->tqi_shretry = AH_MIN(qInfo->tqi_shretry, 15);
977 	else
978 		qi->tqi_shretry = INIT_SH_RETRY;
979 	if (qInfo->tqi_lgretry != 0)
980 		qi->tqi_lgretry = AH_MIN(qInfo->tqi_lgretry, 15);
981 	else
982 		qi->tqi_lgretry = INIT_LG_RETRY;
983 	qi->tqi_cbrPeriod = qInfo->tqi_cbrPeriod;
984 	qi->tqi_cbrOverflowLimit = qInfo->tqi_cbrOverflowLimit;
985 	qi->tqi_burstTime = qInfo->tqi_burstTime;
986 	qi->tqi_readyTime = qInfo->tqi_readyTime;
987 
988 	switch (qInfo->tqi_subtype) {
989 	case HAL_WME_UPSD:
990 		if (qi->tqi_type == HAL_TX_QUEUE_DATA)
991 			qi->tqi_intFlags = HAL_TXQ_USE_LOCKOUT_BKOFF_DIS;
992 		break;
993 	default:
994 		break;		/* NB: silence compiler */
995 	}
996 	return AH_TRUE;
997 }
998 
999 HAL_BOOL
1000 ath_hal_getTxQProps(struct ath_hal *ah,
1001 	HAL_TXQ_INFO *qInfo, const HAL_TX_QUEUE_INFO *qi)
1002 {
1003 	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
1004 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
1005 		    "%s: inactive queue\n", __func__);
1006 		return AH_FALSE;
1007 	}
1008 
1009 	qInfo->tqi_qflags = qi->tqi_qflags;
1010 	qInfo->tqi_ver = qi->tqi_ver;
1011 	qInfo->tqi_subtype = qi->tqi_subtype;
1012 	qInfo->tqi_qflags = qi->tqi_qflags;
1013 	qInfo->tqi_priority = qi->tqi_priority;
1014 	qInfo->tqi_aifs = qi->tqi_aifs;
1015 	qInfo->tqi_cwmin = qi->tqi_cwmin;
1016 	qInfo->tqi_cwmax = qi->tqi_cwmax;
1017 	qInfo->tqi_shretry = qi->tqi_shretry;
1018 	qInfo->tqi_lgretry = qi->tqi_lgretry;
1019 	qInfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
1020 	qInfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
1021 	qInfo->tqi_burstTime = qi->tqi_burstTime;
1022 	qInfo->tqi_readyTime = qi->tqi_readyTime;
1023 	return AH_TRUE;
1024 }
1025 
1026                                      /* 11a Turbo  11b  11g  108g */
1027 static const int16_t NOISE_FLOOR[] = { -96, -93,  -98, -96,  -93 };
1028 
1029 /*
1030  * Read the current channel noise floor and return.
1031  * If nf cal hasn't finished, channel noise floor should be 0
1032  * and we return a nominal value based on band and frequency.
1033  *
1034  * NB: This is a private routine used by per-chip code to
1035  *     implement the ah_getChanNoise method.
1036  */
1037 int16_t
1038 ath_hal_getChanNoise(struct ath_hal *ah, const struct ieee80211_channel *chan)
1039 {
1040 	HAL_CHANNEL_INTERNAL *ichan;
1041 
1042 	ichan = ath_hal_checkchannel(ah, chan);
1043 	if (ichan == AH_NULL) {
1044 		HALDEBUG(ah, HAL_DEBUG_NFCAL,
1045 		    "%s: invalid channel %u/0x%x; no mapping\n",
1046 		    __func__, chan->ic_freq, chan->ic_flags);
1047 		return 0;
1048 	}
1049 	if (ichan->rawNoiseFloor == 0) {
1050 		WIRELESS_MODE mode = ath_hal_chan2wmode(ah, chan);
1051 
1052 		HALASSERT(mode < WIRELESS_MODE_MAX);
1053 		return NOISE_FLOOR[mode] + ath_hal_getNfAdjust(ah, ichan);
1054 	} else
1055 		return ichan->rawNoiseFloor + ichan->noiseFloorAdjust;
1056 }
1057 
1058 /*
1059  * Fetch the current setup of ctl/ext noise floor values.
1060  *
1061  * If the CHANNEL_MIMO_NF_VALID flag isn't set, the array is simply
1062  * populated with values from NOISE_FLOOR[] + ath_hal_getNfAdjust().
1063  *
1064  * The caller must supply ctl/ext NF arrays which are at least
1065  * AH_MAX_CHAINS entries long.
1066  */
1067 int
1068 ath_hal_get_mimo_chan_noise(struct ath_hal *ah,
1069     const struct ieee80211_channel *chan, int16_t *nf_ctl,
1070     int16_t *nf_ext)
1071 {
1072 #ifdef	AH_SUPPORT_AR5416
1073 	HAL_CHANNEL_INTERNAL *ichan;
1074 	int i;
1075 
1076 	ichan = ath_hal_checkchannel(ah, chan);
1077 	if (ichan == AH_NULL) {
1078 		HALDEBUG(ah, HAL_DEBUG_NFCAL,
1079 		    "%s: invalid channel %u/0x%x; no mapping\n",
1080 		    __func__, chan->ic_freq, chan->ic_flags);
1081 		for (i = 0; i < AH_MAX_CHAINS; i++) {
1082 			nf_ctl[i] = nf_ext[i] = 0;
1083 		}
1084 		return 0;
1085 	}
1086 
1087 	/* Return 0 if there's no valid MIMO values (yet) */
1088 	if (! (ichan->privFlags & CHANNEL_MIMO_NF_VALID)) {
1089 		for (i = 0; i < AH_MAX_CHAINS; i++) {
1090 			nf_ctl[i] = nf_ext[i] = 0;
1091 		}
1092 		return 0;
1093 	}
1094 	if (ichan->rawNoiseFloor == 0) {
1095 		WIRELESS_MODE mode = ath_hal_chan2wmode(ah, chan);
1096 		HALASSERT(mode < WIRELESS_MODE_MAX);
1097 		/*
1098 		 * See the comment below - this could cause issues for
1099 		 * stations which have a very low RSSI, below the
1100 		 * 'normalised' NF values in NOISE_FLOOR[].
1101 		 */
1102 		for (i = 0; i < AH_MAX_CHAINS; i++) {
1103 			nf_ctl[i] = nf_ext[i] = NOISE_FLOOR[mode] +
1104 			    ath_hal_getNfAdjust(ah, ichan);
1105 		}
1106 		return 1;
1107 	} else {
1108 		/*
1109 		 * The value returned here from a MIMO radio is presumed to be
1110 		 * "good enough" as a NF calculation. As RSSI values are calculated
1111 		 * against this, an adjusted NF may be higher than the RSSI value
1112 		 * returned from a vary weak station, resulting in an obscenely
1113 		 * high signal strength calculation being returned.
1114 		 *
1115 		 * This should be re-evaluated at a later date, along with any
1116 		 * signal strength calculations which are made. Quite likely the
1117 		 * RSSI values will need to be adjusted to ensure the calculations
1118 		 * don't "wrap" when RSSI is less than the "adjusted" NF value.
1119 		 * ("Adjust" here is via ichan->noiseFloorAdjust.)
1120 		 */
1121 		for (i = 0; i < AH_MAX_CHAINS; i++) {
1122 			nf_ctl[i] = ichan->noiseFloorCtl[i] + ath_hal_getNfAdjust(ah, ichan);
1123 			nf_ext[i] = ichan->noiseFloorExt[i] + ath_hal_getNfAdjust(ah, ichan);
1124 		}
1125 		return 1;
1126 	}
1127 #else
1128 	return 0;
1129 #endif	/* AH_SUPPORT_AR5416 */
1130 }
1131 
1132 /*
1133  * Process all valid raw noise floors into the dBm noise floor values.
1134  * Though our device has no reference for a dBm noise floor, we perform
1135  * a relative minimization of NF's based on the lowest NF found across a
1136  * channel scan.
1137  */
1138 void
1139 ath_hal_process_noisefloor(struct ath_hal *ah)
1140 {
1141 	HAL_CHANNEL_INTERNAL *c;
1142 	int16_t correct2, correct5;
1143 	int16_t lowest2, lowest5;
1144 	int i;
1145 
1146 	/*
1147 	 * Find the lowest 2GHz and 5GHz noise floor values after adjusting
1148 	 * for statistically recorded NF/channel deviation.
1149 	 */
1150 	correct2 = lowest2 = 0;
1151 	correct5 = lowest5 = 0;
1152 	for (i = 0; i < AH_PRIVATE(ah)->ah_nchan; i++) {
1153 		WIRELESS_MODE mode;
1154 		int16_t nf;
1155 
1156 		c = &AH_PRIVATE(ah)->ah_channels[i];
1157 		if (c->rawNoiseFloor >= 0)
1158 			continue;
1159 		/* XXX can't identify proper mode */
1160 		mode = IS_CHAN_5GHZ(c) ? WIRELESS_MODE_11a : WIRELESS_MODE_11g;
1161 		nf = c->rawNoiseFloor + NOISE_FLOOR[mode] +
1162 			ath_hal_getNfAdjust(ah, c);
1163 		if (IS_CHAN_5GHZ(c)) {
1164 			if (nf < lowest5) {
1165 				lowest5 = nf;
1166 				correct5 = NOISE_FLOOR[mode] -
1167 				    (c->rawNoiseFloor + ath_hal_getNfAdjust(ah, c));
1168 			}
1169 		} else {
1170 			if (nf < lowest2) {
1171 				lowest2 = nf;
1172 				correct2 = NOISE_FLOOR[mode] -
1173 				    (c->rawNoiseFloor + ath_hal_getNfAdjust(ah, c));
1174 			}
1175 		}
1176 	}
1177 
1178 	/* Correct the channels to reach the expected NF value */
1179 	for (i = 0; i < AH_PRIVATE(ah)->ah_nchan; i++) {
1180 		c = &AH_PRIVATE(ah)->ah_channels[i];
1181 		if (c->rawNoiseFloor >= 0)
1182 			continue;
1183 		/* Apply correction factor */
1184 		c->noiseFloorAdjust = ath_hal_getNfAdjust(ah, c) +
1185 			(IS_CHAN_5GHZ(c) ? correct5 : correct2);
1186 		HALDEBUG(ah, HAL_DEBUG_NFCAL, "%u raw nf %d adjust %d\n",
1187 		    c->channel, c->rawNoiseFloor, c->noiseFloorAdjust);
1188 	}
1189 }
1190 
1191 /*
1192  * INI support routines.
1193  */
1194 
1195 int
1196 ath_hal_ini_write(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
1197 	int col, int regWr)
1198 {
1199 	int r;
1200 
1201 	HALASSERT(col < ia->cols);
1202 	for (r = 0; r < ia->rows; r++) {
1203 		OS_REG_WRITE(ah, HAL_INI_VAL(ia, r, 0),
1204 		    HAL_INI_VAL(ia, r, col));
1205 
1206 		/* Analog shift register delay seems needed for Merlin - PR kern/154220 */
1207 		if (HAL_INI_VAL(ia, r, 0) >= 0x7800 && HAL_INI_VAL(ia, r, 0) < 0x7900)
1208 			OS_DELAY(100);
1209 
1210 		DMA_YIELD(regWr);
1211 	}
1212 	return regWr;
1213 }
1214 
1215 void
1216 ath_hal_ini_bank_setup(uint32_t data[], const HAL_INI_ARRAY *ia, int col)
1217 {
1218 	int r;
1219 
1220 	HALASSERT(col < ia->cols);
1221 	for (r = 0; r < ia->rows; r++)
1222 		data[r] = HAL_INI_VAL(ia, r, col);
1223 }
1224 
1225 int
1226 ath_hal_ini_bank_write(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
1227 	const uint32_t data[], int regWr)
1228 {
1229 	int r;
1230 
1231 	for (r = 0; r < ia->rows; r++) {
1232 		OS_REG_WRITE(ah, HAL_INI_VAL(ia, r, 0), data[r]);
1233 		DMA_YIELD(regWr);
1234 	}
1235 	return regWr;
1236 }
1237 
1238 /*
1239  * These are EEPROM board related routines which should likely live in
1240  * a helper library of some sort.
1241  */
1242 
1243 /**************************************************************
1244  * ath_ee_getLowerUppderIndex
1245  *
1246  * Return indices surrounding the value in sorted integer lists.
1247  * Requirement: the input list must be monotonically increasing
1248  *     and populated up to the list size
1249  * Returns: match is set if an index in the array matches exactly
1250  *     or a the target is before or after the range of the array.
1251  */
1252 HAL_BOOL
1253 ath_ee_getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
1254                    uint16_t *indexL, uint16_t *indexR)
1255 {
1256     uint16_t i;
1257 
1258     /*
1259      * Check first and last elements for beyond ordered array cases.
1260      */
1261     if (target <= pList[0]) {
1262         *indexL = *indexR = 0;
1263         return AH_TRUE;
1264     }
1265     if (target >= pList[listSize-1]) {
1266         *indexL = *indexR = (uint16_t)(listSize - 1);
1267         return AH_TRUE;
1268     }
1269 
1270     /* look for value being near or between 2 values in list */
1271     for (i = 0; i < listSize - 1; i++) {
1272         /*
1273          * If value is close to the current value of the list
1274          * then target is not between values, it is one of the values
1275          */
1276         if (pList[i] == target) {
1277             *indexL = *indexR = i;
1278             return AH_TRUE;
1279         }
1280         /*
1281          * Look for value being between current value and next value
1282          * if so return these 2 values
1283          */
1284         if (target < pList[i + 1]) {
1285             *indexL = i;
1286             *indexR = (uint16_t)(i + 1);
1287             return AH_FALSE;
1288         }
1289     }
1290     HALASSERT(0);
1291     *indexL = *indexR = 0;
1292     return AH_FALSE;
1293 }
1294 
1295 /**************************************************************
1296  * ath_ee_FillVpdTable
1297  *
1298  * Fill the Vpdlist for indices Pmax-Pmin
1299  * Note: pwrMin, pwrMax and Vpdlist are all in dBm * 4
1300  */
1301 HAL_BOOL
1302 ath_ee_FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
1303                    uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
1304 {
1305     uint16_t  i, k;
1306     uint8_t   currPwr = pwrMin;
1307     uint16_t  idxL, idxR;
1308 
1309     HALASSERT(pwrMax > pwrMin);
1310     for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
1311         ath_ee_getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
1312                            &(idxL), &(idxR));
1313         if (idxR < 1)
1314             idxR = 1;           /* extrapolate below */
1315         if (idxL == numIntercepts - 1)
1316             idxL = (uint16_t)(numIntercepts - 2);   /* extrapolate above */
1317         if (pPwrList[idxL] == pPwrList[idxR])
1318             k = pVpdList[idxL];
1319         else
1320             k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
1321                   (pPwrList[idxR] - pPwrList[idxL]) );
1322         HALASSERT(k < 256);
1323         pRetVpdList[i] = (uint8_t)k;
1324         currPwr += 2;               /* half dB steps */
1325     }
1326 
1327     return AH_TRUE;
1328 }
1329 
1330 /**************************************************************************
1331  * ath_ee_interpolate
1332  *
1333  * Returns signed interpolated or the scaled up interpolated value
1334  */
1335 int16_t
1336 ath_ee_interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
1337             int16_t targetLeft, int16_t targetRight)
1338 {
1339     int16_t rv;
1340 
1341     if (srcRight == srcLeft) {
1342         rv = targetLeft;
1343     } else {
1344         rv = (int16_t)( ((target - srcLeft) * targetRight +
1345               (srcRight - target) * targetLeft) / (srcRight - srcLeft) );
1346     }
1347     return rv;
1348 }
1349 
1350 /*
1351  * Adjust the TSF.
1352  */
1353 void
1354 ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
1355 {
1356 	/* XXX handle wrap/overflow */
1357 	OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
1358 }
1359 
1360 /*
1361  * Enable or disable CCA.
1362  */
1363 void
1364 ath_hal_setcca(struct ath_hal *ah, int ena)
1365 {
1366 	/*
1367 	 * NB: fill me in; this is not provided by default because disabling
1368 	 *     CCA in most locales violates regulatory.
1369 	 */
1370 }
1371 
1372 /*
1373  * Get CCA setting.
1374  */
1375 int
1376 ath_hal_getcca(struct ath_hal *ah)
1377 {
1378 	u_int32_t diag;
1379 	if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
1380 		return 1;
1381 	return ((diag & 0x500000) == 0);
1382 }
1383 
1384 /*
1385  * This routine is only needed when supporting EEPROM-in-RAM setups
1386  * (eg embedded SoCs and on-board PCI/PCIe devices.)
1387  */
1388 /* NB: This is in 16 bit words; not bytes */
1389 /* XXX This doesn't belong here!  */
1390 #define ATH_DATA_EEPROM_SIZE    2048
1391 
1392 HAL_BOOL
1393 ath_hal_EepromDataRead(struct ath_hal *ah, u_int off, uint16_t *data)
1394 {
1395 	if (ah->ah_eepromdata == AH_NULL) {
1396 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: no eeprom data!\n", __func__);
1397 		return AH_FALSE;
1398 	}
1399 	if (off > ATH_DATA_EEPROM_SIZE) {
1400 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: offset %x > %x\n",
1401 		    __func__, off, ATH_DATA_EEPROM_SIZE);
1402 		return AH_FALSE;
1403 	}
1404 	(*data) = ah->ah_eepromdata[off];
1405 	return AH_TRUE;
1406 }
1407