1 /*- 2 * Copyright (c) 1998 - 2008 Søren Schmidt <sos@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification, immediately at the beginning of the file. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/ata.h> 33 #include <sys/kernel.h> 34 #include <sys/module.h> 35 #include <sys/endian.h> 36 #include <sys/ctype.h> 37 #include <sys/conf.h> 38 #include <sys/bus.h> 39 #include <sys/bio.h> 40 #include <sys/malloc.h> 41 #include <sys/sysctl.h> 42 #include <sys/sema.h> 43 #include <sys/taskqueue.h> 44 #include <vm/uma.h> 45 #include <machine/stdarg.h> 46 #include <machine/resource.h> 47 #include <machine/bus.h> 48 #include <sys/rman.h> 49 #include <dev/ata/ata-all.h> 50 #include <dev/pci/pcivar.h> 51 #include <ata_if.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_sim.h> 56 #include <cam/cam_xpt_sim.h> 57 #include <cam/cam_debug.h> 58 59 /* prototypes */ 60 static void ataaction(struct cam_sim *sim, union ccb *ccb); 61 static void atapoll(struct cam_sim *sim); 62 static void ata_cam_begin_transaction(device_t dev, union ccb *ccb); 63 static void ata_cam_end_transaction(device_t dev, struct ata_request *request); 64 static void ata_cam_request_sense(device_t dev, struct ata_request *request); 65 static int ata_check_ids(device_t dev, union ccb *ccb); 66 static void ata_conn_event(void *context, int dummy); 67 static void ata_interrupt_locked(void *data); 68 static int ata_module_event_handler(module_t mod, int what, void *arg); 69 static void ata_periodic_poll(void *data); 70 static int ata_str2mode(const char *str); 71 72 /* global vars */ 73 MALLOC_DEFINE(M_ATA, "ata_generic", "ATA driver generic layer"); 74 int (*ata_raid_ioctl_func)(u_long cmd, caddr_t data) = NULL; 75 devclass_t ata_devclass; 76 int ata_dma_check_80pin = 1; 77 78 /* sysctl vars */ 79 static SYSCTL_NODE(_hw, OID_AUTO, ata, CTLFLAG_RD, 0, "ATA driver parameters"); 80 SYSCTL_INT(_hw_ata, OID_AUTO, ata_dma_check_80pin, 81 CTLFLAG_RWTUN, &ata_dma_check_80pin, 0, 82 "Check for 80pin cable before setting ATA DMA mode"); 83 FEATURE(ata_cam, "ATA devices are accessed through the cam(4) driver"); 84 85 /* 86 * newbus device interface related functions 87 */ 88 int 89 ata_probe(device_t dev) 90 { 91 return (BUS_PROBE_LOW_PRIORITY); 92 } 93 94 int 95 ata_attach(device_t dev) 96 { 97 struct ata_channel *ch = device_get_softc(dev); 98 int error, rid; 99 struct cam_devq *devq; 100 const char *res; 101 char buf[64]; 102 int i, mode; 103 104 /* check that we have a virgin channel to attach */ 105 if (ch->r_irq) 106 return EEXIST; 107 108 /* initialize the softc basics */ 109 ch->dev = dev; 110 ch->state = ATA_IDLE; 111 bzero(&ch->state_mtx, sizeof(struct mtx)); 112 mtx_init(&ch->state_mtx, "ATA state lock", NULL, MTX_DEF); 113 TASK_INIT(&ch->conntask, 0, ata_conn_event, dev); 114 for (i = 0; i < 16; i++) { 115 ch->user[i].revision = 0; 116 snprintf(buf, sizeof(buf), "dev%d.sata_rev", i); 117 if (resource_int_value(device_get_name(dev), 118 device_get_unit(dev), buf, &mode) != 0 && 119 resource_int_value(device_get_name(dev), 120 device_get_unit(dev), "sata_rev", &mode) != 0) 121 mode = -1; 122 if (mode >= 0) 123 ch->user[i].revision = mode; 124 ch->user[i].mode = 0; 125 snprintf(buf, sizeof(buf), "dev%d.mode", i); 126 if (resource_string_value(device_get_name(dev), 127 device_get_unit(dev), buf, &res) == 0) 128 mode = ata_str2mode(res); 129 else if (resource_string_value(device_get_name(dev), 130 device_get_unit(dev), "mode", &res) == 0) 131 mode = ata_str2mode(res); 132 else 133 mode = -1; 134 if (mode >= 0) 135 ch->user[i].mode = mode; 136 if (ch->flags & ATA_SATA) 137 ch->user[i].bytecount = 8192; 138 else 139 ch->user[i].bytecount = MAXPHYS; 140 ch->user[i].caps = 0; 141 ch->curr[i] = ch->user[i]; 142 if (ch->flags & ATA_SATA) { 143 if (ch->pm_level > 0) 144 ch->user[i].caps |= CTS_SATA_CAPS_H_PMREQ; 145 if (ch->pm_level > 1) 146 ch->user[i].caps |= CTS_SATA_CAPS_D_PMREQ; 147 } else { 148 if (!(ch->flags & ATA_NO_48BIT_DMA)) 149 ch->user[i].caps |= CTS_ATA_CAPS_H_DMA48; 150 } 151 } 152 callout_init(&ch->poll_callout, 1); 153 154 /* allocate DMA resources if DMA HW present*/ 155 if (ch->dma.alloc) 156 ch->dma.alloc(dev); 157 158 /* setup interrupt delivery */ 159 rid = ATA_IRQ_RID; 160 ch->r_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 161 RF_SHAREABLE | RF_ACTIVE); 162 if (!ch->r_irq) { 163 device_printf(dev, "unable to allocate interrupt\n"); 164 return ENXIO; 165 } 166 if ((error = bus_setup_intr(dev, ch->r_irq, ATA_INTR_FLAGS, NULL, 167 ata_interrupt, ch, &ch->ih))) { 168 bus_release_resource(dev, SYS_RES_IRQ, rid, ch->r_irq); 169 device_printf(dev, "unable to setup interrupt\n"); 170 return error; 171 } 172 173 if (ch->flags & ATA_PERIODIC_POLL) 174 callout_reset(&ch->poll_callout, hz, ata_periodic_poll, ch); 175 mtx_lock(&ch->state_mtx); 176 /* Create the device queue for our SIM. */ 177 devq = cam_simq_alloc(1); 178 if (devq == NULL) { 179 device_printf(dev, "Unable to allocate simq\n"); 180 error = ENOMEM; 181 goto err1; 182 } 183 /* Construct SIM entry */ 184 ch->sim = cam_sim_alloc(ataaction, atapoll, "ata", ch, 185 device_get_unit(dev), &ch->state_mtx, 1, 0, devq); 186 if (ch->sim == NULL) { 187 device_printf(dev, "unable to allocate sim\n"); 188 cam_simq_free(devq); 189 error = ENOMEM; 190 goto err1; 191 } 192 if (xpt_bus_register(ch->sim, dev, 0) != CAM_SUCCESS) { 193 device_printf(dev, "unable to register xpt bus\n"); 194 error = ENXIO; 195 goto err2; 196 } 197 if (xpt_create_path(&ch->path, /*periph*/NULL, cam_sim_path(ch->sim), 198 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 199 device_printf(dev, "unable to create path\n"); 200 error = ENXIO; 201 goto err3; 202 } 203 mtx_unlock(&ch->state_mtx); 204 return (0); 205 206 err3: 207 xpt_bus_deregister(cam_sim_path(ch->sim)); 208 err2: 209 cam_sim_free(ch->sim, /*free_devq*/TRUE); 210 ch->sim = NULL; 211 err1: 212 bus_release_resource(dev, SYS_RES_IRQ, rid, ch->r_irq); 213 mtx_unlock(&ch->state_mtx); 214 if (ch->flags & ATA_PERIODIC_POLL) 215 callout_drain(&ch->poll_callout); 216 return (error); 217 } 218 219 int 220 ata_detach(device_t dev) 221 { 222 struct ata_channel *ch = device_get_softc(dev); 223 224 /* check that we have a valid channel to detach */ 225 if (!ch->r_irq) 226 return ENXIO; 227 228 /* grap the channel lock so no new requests gets launched */ 229 mtx_lock(&ch->state_mtx); 230 ch->state |= ATA_STALL_QUEUE; 231 mtx_unlock(&ch->state_mtx); 232 if (ch->flags & ATA_PERIODIC_POLL) 233 callout_drain(&ch->poll_callout); 234 235 taskqueue_drain(taskqueue_thread, &ch->conntask); 236 237 mtx_lock(&ch->state_mtx); 238 xpt_async(AC_LOST_DEVICE, ch->path, NULL); 239 xpt_free_path(ch->path); 240 xpt_bus_deregister(cam_sim_path(ch->sim)); 241 cam_sim_free(ch->sim, /*free_devq*/TRUE); 242 ch->sim = NULL; 243 mtx_unlock(&ch->state_mtx); 244 245 /* release resources */ 246 bus_teardown_intr(dev, ch->r_irq, ch->ih); 247 bus_release_resource(dev, SYS_RES_IRQ, ATA_IRQ_RID, ch->r_irq); 248 ch->r_irq = NULL; 249 250 /* free DMA resources if DMA HW present*/ 251 if (ch->dma.free) 252 ch->dma.free(dev); 253 254 mtx_destroy(&ch->state_mtx); 255 return 0; 256 } 257 258 static void 259 ata_conn_event(void *context, int dummy) 260 { 261 device_t dev = (device_t)context; 262 struct ata_channel *ch = device_get_softc(dev); 263 union ccb *ccb; 264 265 mtx_lock(&ch->state_mtx); 266 if (ch->sim == NULL) { 267 mtx_unlock(&ch->state_mtx); 268 return; 269 } 270 ata_reinit(dev); 271 if ((ccb = xpt_alloc_ccb_nowait()) == NULL) 272 return; 273 if (xpt_create_path(&ccb->ccb_h.path, NULL, 274 cam_sim_path(ch->sim), 275 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 276 xpt_free_ccb(ccb); 277 return; 278 } 279 xpt_rescan(ccb); 280 mtx_unlock(&ch->state_mtx); 281 } 282 283 int 284 ata_reinit(device_t dev) 285 { 286 struct ata_channel *ch = device_get_softc(dev); 287 struct ata_request *request; 288 289 xpt_freeze_simq(ch->sim, 1); 290 if ((request = ch->running)) { 291 ch->running = NULL; 292 if (ch->state == ATA_ACTIVE) 293 ch->state = ATA_IDLE; 294 callout_stop(&request->callout); 295 if (ch->dma.unload) 296 ch->dma.unload(request); 297 request->result = ERESTART; 298 ata_cam_end_transaction(dev, request); 299 } 300 /* reset the controller HW, the channel and device(s) */ 301 ATA_RESET(dev); 302 /* Tell the XPT about the event */ 303 xpt_async(AC_BUS_RESET, ch->path, NULL); 304 xpt_release_simq(ch->sim, TRUE); 305 return(0); 306 } 307 308 int 309 ata_suspend(device_t dev) 310 { 311 struct ata_channel *ch; 312 313 /* check for valid device */ 314 if (!dev || !(ch = device_get_softc(dev))) 315 return ENXIO; 316 317 if (ch->flags & ATA_PERIODIC_POLL) 318 callout_drain(&ch->poll_callout); 319 mtx_lock(&ch->state_mtx); 320 xpt_freeze_simq(ch->sim, 1); 321 while (ch->state != ATA_IDLE) 322 msleep(ch, &ch->state_mtx, PRIBIO, "atasusp", hz/100); 323 mtx_unlock(&ch->state_mtx); 324 return(0); 325 } 326 327 int 328 ata_resume(device_t dev) 329 { 330 struct ata_channel *ch; 331 int error; 332 333 /* check for valid device */ 334 if (!dev || !(ch = device_get_softc(dev))) 335 return ENXIO; 336 337 mtx_lock(&ch->state_mtx); 338 error = ata_reinit(dev); 339 xpt_release_simq(ch->sim, TRUE); 340 mtx_unlock(&ch->state_mtx); 341 if (ch->flags & ATA_PERIODIC_POLL) 342 callout_reset(&ch->poll_callout, hz, ata_periodic_poll, ch); 343 return error; 344 } 345 346 void 347 ata_interrupt(void *data) 348 { 349 struct ata_channel *ch = (struct ata_channel *)data; 350 351 mtx_lock(&ch->state_mtx); 352 ata_interrupt_locked(data); 353 mtx_unlock(&ch->state_mtx); 354 } 355 356 static void 357 ata_interrupt_locked(void *data) 358 { 359 struct ata_channel *ch = (struct ata_channel *)data; 360 struct ata_request *request; 361 362 /* ignore interrupt if its not for us */ 363 if (ch->hw.status && !ch->hw.status(ch->dev)) 364 return; 365 366 /* do we have a running request */ 367 if (!(request = ch->running)) 368 return; 369 370 ATA_DEBUG_RQ(request, "interrupt"); 371 372 /* safetycheck for the right state */ 373 if (ch->state == ATA_IDLE) { 374 device_printf(request->dev, "interrupt on idle channel ignored\n"); 375 return; 376 } 377 378 /* 379 * we have the HW locks, so end the transaction for this request 380 * if it finishes immediately otherwise wait for next interrupt 381 */ 382 if (ch->hw.end_transaction(request) == ATA_OP_FINISHED) { 383 ch->running = NULL; 384 if (ch->state == ATA_ACTIVE) 385 ch->state = ATA_IDLE; 386 ata_cam_end_transaction(ch->dev, request); 387 return; 388 } 389 } 390 391 static void 392 ata_periodic_poll(void *data) 393 { 394 struct ata_channel *ch = (struct ata_channel *)data; 395 396 callout_reset(&ch->poll_callout, hz, ata_periodic_poll, ch); 397 ata_interrupt(ch); 398 } 399 400 void 401 ata_print_cable(device_t dev, u_int8_t *who) 402 { 403 device_printf(dev, 404 "DMA limited to UDMA33, %s found non-ATA66 cable\n", who); 405 } 406 407 /* 408 * misc support functions 409 */ 410 void 411 ata_default_registers(device_t dev) 412 { 413 struct ata_channel *ch = device_get_softc(dev); 414 415 /* fill in the defaults from whats setup already */ 416 ch->r_io[ATA_ERROR].res = ch->r_io[ATA_FEATURE].res; 417 ch->r_io[ATA_ERROR].offset = ch->r_io[ATA_FEATURE].offset; 418 ch->r_io[ATA_IREASON].res = ch->r_io[ATA_COUNT].res; 419 ch->r_io[ATA_IREASON].offset = ch->r_io[ATA_COUNT].offset; 420 ch->r_io[ATA_STATUS].res = ch->r_io[ATA_COMMAND].res; 421 ch->r_io[ATA_STATUS].offset = ch->r_io[ATA_COMMAND].offset; 422 ch->r_io[ATA_ALTSTAT].res = ch->r_io[ATA_CONTROL].res; 423 ch->r_io[ATA_ALTSTAT].offset = ch->r_io[ATA_CONTROL].offset; 424 } 425 426 void 427 ata_udelay(int interval) 428 { 429 /* for now just use DELAY, the timer/sleep subsytems are not there yet */ 430 if (1 || interval < (1000000/hz) || ata_delayed_attach) 431 DELAY(interval); 432 else 433 pause("ataslp", interval/(1000000/hz)); 434 } 435 436 const char * 437 ata_cmd2str(struct ata_request *request) 438 { 439 static char buffer[20]; 440 441 if (request->flags & ATA_R_ATAPI) { 442 switch (request->u.atapi.sense.key ? 443 request->u.atapi.saved_cmd : request->u.atapi.ccb[0]) { 444 case 0x00: return ("TEST_UNIT_READY"); 445 case 0x01: return ("REZERO"); 446 case 0x03: return ("REQUEST_SENSE"); 447 case 0x04: return ("FORMAT"); 448 case 0x08: return ("READ"); 449 case 0x0a: return ("WRITE"); 450 case 0x10: return ("WEOF"); 451 case 0x11: return ("SPACE"); 452 case 0x12: return ("INQUIRY"); 453 case 0x15: return ("MODE_SELECT"); 454 case 0x19: return ("ERASE"); 455 case 0x1a: return ("MODE_SENSE"); 456 case 0x1b: return ("START_STOP"); 457 case 0x1e: return ("PREVENT_ALLOW"); 458 case 0x23: return ("ATAPI_READ_FORMAT_CAPACITIES"); 459 case 0x25: return ("READ_CAPACITY"); 460 case 0x28: return ("READ_BIG"); 461 case 0x2a: return ("WRITE_BIG"); 462 case 0x2b: return ("LOCATE"); 463 case 0x34: return ("READ_POSITION"); 464 case 0x35: return ("SYNCHRONIZE_CACHE"); 465 case 0x3b: return ("WRITE_BUFFER"); 466 case 0x3c: return ("READ_BUFFER"); 467 case 0x42: return ("READ_SUBCHANNEL"); 468 case 0x43: return ("READ_TOC"); 469 case 0x45: return ("PLAY_10"); 470 case 0x47: return ("PLAY_MSF"); 471 case 0x48: return ("PLAY_TRACK"); 472 case 0x4b: return ("PAUSE"); 473 case 0x51: return ("READ_DISK_INFO"); 474 case 0x52: return ("READ_TRACK_INFO"); 475 case 0x53: return ("RESERVE_TRACK"); 476 case 0x54: return ("SEND_OPC_INFO"); 477 case 0x55: return ("MODE_SELECT_BIG"); 478 case 0x58: return ("REPAIR_TRACK"); 479 case 0x59: return ("READ_MASTER_CUE"); 480 case 0x5a: return ("MODE_SENSE_BIG"); 481 case 0x5b: return ("CLOSE_TRACK/SESSION"); 482 case 0x5c: return ("READ_BUFFER_CAPACITY"); 483 case 0x5d: return ("SEND_CUE_SHEET"); 484 case 0x96: return ("SERVICE_ACTION_IN"); 485 case 0xa1: return ("BLANK_CMD"); 486 case 0xa3: return ("SEND_KEY"); 487 case 0xa4: return ("REPORT_KEY"); 488 case 0xa5: return ("PLAY_12"); 489 case 0xa6: return ("LOAD_UNLOAD"); 490 case 0xad: return ("READ_DVD_STRUCTURE"); 491 case 0xb4: return ("PLAY_CD"); 492 case 0xbb: return ("SET_SPEED"); 493 case 0xbd: return ("MECH_STATUS"); 494 case 0xbe: return ("READ_CD"); 495 case 0xff: return ("POLL_DSC"); 496 } 497 } else { 498 switch (request->u.ata.command) { 499 case 0x00: 500 switch (request->u.ata.feature) { 501 case 0x00: return ("NOP FLUSHQUEUE"); 502 case 0x01: return ("NOP AUTOPOLL"); 503 } 504 return ("NOP"); 505 case 0x03: return ("CFA_REQUEST_EXTENDED_ERROR"); 506 case 0x06: 507 switch (request->u.ata.feature) { 508 case 0x01: return ("DSM TRIM"); 509 } 510 return "DSM"; 511 case 0x08: return ("DEVICE_RESET"); 512 case 0x20: return ("READ"); 513 case 0x24: return ("READ48"); 514 case 0x25: return ("READ_DMA48"); 515 case 0x26: return ("READ_DMA_QUEUED48"); 516 case 0x27: return ("READ_NATIVE_MAX_ADDRESS48"); 517 case 0x29: return ("READ_MUL48"); 518 case 0x2a: return ("READ_STREAM_DMA48"); 519 case 0x2b: return ("READ_STREAM48"); 520 case 0x2f: return ("READ_LOG_EXT"); 521 case 0x30: return ("WRITE"); 522 case 0x34: return ("WRITE48"); 523 case 0x35: return ("WRITE_DMA48"); 524 case 0x36: return ("WRITE_DMA_QUEUED48"); 525 case 0x37: return ("SET_MAX_ADDRESS48"); 526 case 0x39: return ("WRITE_MUL48"); 527 case 0x3a: return ("WRITE_STREAM_DMA48"); 528 case 0x3b: return ("WRITE_STREAM48"); 529 case 0x3d: return ("WRITE_DMA_FUA48"); 530 case 0x3e: return ("WRITE_DMA_QUEUED_FUA48"); 531 case 0x3f: return ("WRITE_LOG_EXT"); 532 case 0x40: return ("READ_VERIFY"); 533 case 0x42: return ("READ_VERIFY48"); 534 case 0x45: 535 switch (request->u.ata.feature) { 536 case 0x55: return ("WRITE_UNCORRECTABLE48 PSEUDO"); 537 case 0xaa: return ("WRITE_UNCORRECTABLE48 FLAGGED"); 538 } 539 return "WRITE_UNCORRECTABLE48"; 540 case 0x51: return ("CONFIGURE_STREAM"); 541 case 0x60: return ("READ_FPDMA_QUEUED"); 542 case 0x61: return ("WRITE_FPDMA_QUEUED"); 543 case 0x63: return ("NCQ_NON_DATA"); 544 case 0x64: return ("SEND_FPDMA_QUEUED"); 545 case 0x65: return ("RECEIVE_FPDMA_QUEUED"); 546 case 0x67: 547 if (request->u.ata.feature == 0xec) 548 return ("SEP_ATTN IDENTIFY"); 549 switch (request->u.ata.lba) { 550 case 0x00: return ("SEP_ATTN READ BUFFER"); 551 case 0x02: return ("SEP_ATTN RECEIVE DIAGNOSTIC RESULTS"); 552 case 0x80: return ("SEP_ATTN WRITE BUFFER"); 553 case 0x82: return ("SEP_ATTN SEND DIAGNOSTIC"); 554 } 555 return ("SEP_ATTN"); 556 case 0x70: return ("SEEK"); 557 case 0x87: return ("CFA_TRANSLATE_SECTOR"); 558 case 0x90: return ("EXECUTE_DEVICE_DIAGNOSTIC"); 559 case 0x92: return ("DOWNLOAD_MICROCODE"); 560 case 0xa0: return ("PACKET"); 561 case 0xa1: return ("ATAPI_IDENTIFY"); 562 case 0xa2: return ("SERVICE"); 563 case 0xb0: 564 switch(request->u.ata.feature) { 565 case 0xd0: return ("SMART READ ATTR VALUES"); 566 case 0xd1: return ("SMART READ ATTR THRESHOLDS"); 567 case 0xd3: return ("SMART SAVE ATTR VALUES"); 568 case 0xd4: return ("SMART EXECUTE OFFLINE IMMEDIATE"); 569 case 0xd5: return ("SMART READ LOG DATA"); 570 case 0xd8: return ("SMART ENABLE OPERATION"); 571 case 0xd9: return ("SMART DISABLE OPERATION"); 572 case 0xda: return ("SMART RETURN STATUS"); 573 } 574 return ("SMART"); 575 case 0xb1: return ("DEVICE CONFIGURATION"); 576 case 0xc0: return ("CFA_ERASE"); 577 case 0xc4: return ("READ_MUL"); 578 case 0xc5: return ("WRITE_MUL"); 579 case 0xc6: return ("SET_MULTI"); 580 case 0xc7: return ("READ_DMA_QUEUED"); 581 case 0xc8: return ("READ_DMA"); 582 case 0xca: return ("WRITE_DMA"); 583 case 0xcc: return ("WRITE_DMA_QUEUED"); 584 case 0xcd: return ("CFA_WRITE_MULTIPLE_WITHOUT_ERASE"); 585 case 0xce: return ("WRITE_MUL_FUA48"); 586 case 0xd1: return ("CHECK_MEDIA_CARD_TYPE"); 587 case 0xda: return ("GET_MEDIA_STATUS"); 588 case 0xde: return ("MEDIA_LOCK"); 589 case 0xdf: return ("MEDIA_UNLOCK"); 590 case 0xe0: return ("STANDBY_IMMEDIATE"); 591 case 0xe1: return ("IDLE_IMMEDIATE"); 592 case 0xe2: return ("STANDBY"); 593 case 0xe3: return ("IDLE"); 594 case 0xe4: return ("READ_BUFFER/PM"); 595 case 0xe5: return ("CHECK_POWER_MODE"); 596 case 0xe6: return ("SLEEP"); 597 case 0xe7: return ("FLUSHCACHE"); 598 case 0xe8: return ("WRITE_PM"); 599 case 0xea: return ("FLUSHCACHE48"); 600 case 0xec: return ("ATA_IDENTIFY"); 601 case 0xed: return ("MEDIA_EJECT"); 602 case 0xef: 603 switch (request->u.ata.feature) { 604 case 0x03: return ("SETFEATURES SET TRANSFER MODE"); 605 case 0x02: return ("SETFEATURES ENABLE WCACHE"); 606 case 0x82: return ("SETFEATURES DISABLE WCACHE"); 607 case 0x06: return ("SETFEATURES ENABLE PUIS"); 608 case 0x86: return ("SETFEATURES DISABLE PUIS"); 609 case 0x07: return ("SETFEATURES SPIN-UP"); 610 case 0x10: return ("SETFEATURES ENABLE SATA FEATURE"); 611 case 0x90: return ("SETFEATURES DISABLE SATA FEATURE"); 612 case 0xaa: return ("SETFEATURES ENABLE RCACHE"); 613 case 0x55: return ("SETFEATURES DISABLE RCACHE"); 614 case 0x5d: return ("SETFEATURES ENABLE RELIRQ"); 615 case 0xdd: return ("SETFEATURES DISABLE RELIRQ"); 616 case 0x5e: return ("SETFEATURES ENABLE SRVIRQ"); 617 case 0xde: return ("SETFEATURES DISABLE SRVIRQ"); 618 } 619 return "SETFEATURES"; 620 case 0xf1: return ("SECURITY_SET_PASSWORD"); 621 case 0xf2: return ("SECURITY_UNLOCK"); 622 case 0xf3: return ("SECURITY_ERASE_PREPARE"); 623 case 0xf4: return ("SECURITY_ERASE_UNIT"); 624 case 0xf5: return ("SECURITY_FREEZE_LOCK"); 625 case 0xf6: return ("SECURITY_DISABLE_PASSWORD"); 626 case 0xf8: return ("READ_NATIVE_MAX_ADDRESS"); 627 case 0xf9: return ("SET_MAX_ADDRESS"); 628 } 629 } 630 sprintf(buffer, "unknown CMD (0x%02x)", request->u.ata.command); 631 return (buffer); 632 } 633 634 const char * 635 ata_mode2str(int mode) 636 { 637 switch (mode) { 638 case -1: return "UNSUPPORTED"; 639 case ATA_PIO0: return "PIO0"; 640 case ATA_PIO1: return "PIO1"; 641 case ATA_PIO2: return "PIO2"; 642 case ATA_PIO3: return "PIO3"; 643 case ATA_PIO4: return "PIO4"; 644 case ATA_WDMA0: return "WDMA0"; 645 case ATA_WDMA1: return "WDMA1"; 646 case ATA_WDMA2: return "WDMA2"; 647 case ATA_UDMA0: return "UDMA16"; 648 case ATA_UDMA1: return "UDMA25"; 649 case ATA_UDMA2: return "UDMA33"; 650 case ATA_UDMA3: return "UDMA40"; 651 case ATA_UDMA4: return "UDMA66"; 652 case ATA_UDMA5: return "UDMA100"; 653 case ATA_UDMA6: return "UDMA133"; 654 case ATA_SA150: return "SATA150"; 655 case ATA_SA300: return "SATA300"; 656 case ATA_SA600: return "SATA600"; 657 default: 658 if (mode & ATA_DMA_MASK) 659 return "BIOSDMA"; 660 else 661 return "BIOSPIO"; 662 } 663 } 664 665 static int 666 ata_str2mode(const char *str) 667 { 668 669 if (!strcasecmp(str, "PIO0")) return (ATA_PIO0); 670 if (!strcasecmp(str, "PIO1")) return (ATA_PIO1); 671 if (!strcasecmp(str, "PIO2")) return (ATA_PIO2); 672 if (!strcasecmp(str, "PIO3")) return (ATA_PIO3); 673 if (!strcasecmp(str, "PIO4")) return (ATA_PIO4); 674 if (!strcasecmp(str, "WDMA0")) return (ATA_WDMA0); 675 if (!strcasecmp(str, "WDMA1")) return (ATA_WDMA1); 676 if (!strcasecmp(str, "WDMA2")) return (ATA_WDMA2); 677 if (!strcasecmp(str, "UDMA0")) return (ATA_UDMA0); 678 if (!strcasecmp(str, "UDMA16")) return (ATA_UDMA0); 679 if (!strcasecmp(str, "UDMA1")) return (ATA_UDMA1); 680 if (!strcasecmp(str, "UDMA25")) return (ATA_UDMA1); 681 if (!strcasecmp(str, "UDMA2")) return (ATA_UDMA2); 682 if (!strcasecmp(str, "UDMA33")) return (ATA_UDMA2); 683 if (!strcasecmp(str, "UDMA3")) return (ATA_UDMA3); 684 if (!strcasecmp(str, "UDMA44")) return (ATA_UDMA3); 685 if (!strcasecmp(str, "UDMA4")) return (ATA_UDMA4); 686 if (!strcasecmp(str, "UDMA66")) return (ATA_UDMA4); 687 if (!strcasecmp(str, "UDMA5")) return (ATA_UDMA5); 688 if (!strcasecmp(str, "UDMA100")) return (ATA_UDMA5); 689 if (!strcasecmp(str, "UDMA6")) return (ATA_UDMA6); 690 if (!strcasecmp(str, "UDMA133")) return (ATA_UDMA6); 691 return (-1); 692 } 693 694 int 695 ata_atapi(device_t dev, int target) 696 { 697 struct ata_channel *ch = device_get_softc(dev); 698 699 return (ch->devices & (ATA_ATAPI_MASTER << target)); 700 } 701 702 void 703 ata_timeout(struct ata_request *request) 704 { 705 struct ata_channel *ch; 706 707 ch = device_get_softc(request->parent); 708 //request->flags |= ATA_R_DEBUG; 709 ATA_DEBUG_RQ(request, "timeout"); 710 711 /* 712 * If we have an ATA_ACTIVE request running, we flag the request 713 * ATA_R_TIMEOUT so ata_cam_end_transaction() will handle it correctly. 714 * Also, NULL out the running request so we wont loose the race with 715 * an eventual interrupt arriving late. 716 */ 717 if (ch->state == ATA_ACTIVE) { 718 request->flags |= ATA_R_TIMEOUT; 719 if (ch->dma.unload) 720 ch->dma.unload(request); 721 ch->running = NULL; 722 ch->state = ATA_IDLE; 723 ata_cam_end_transaction(ch->dev, request); 724 } 725 mtx_unlock(&ch->state_mtx); 726 } 727 728 static void 729 ata_cam_begin_transaction(device_t dev, union ccb *ccb) 730 { 731 struct ata_channel *ch = device_get_softc(dev); 732 struct ata_request *request; 733 734 request = &ch->request; 735 bzero(request, sizeof(*request)); 736 737 /* setup request */ 738 request->dev = NULL; 739 request->parent = dev; 740 request->unit = ccb->ccb_h.target_id; 741 if (ccb->ccb_h.func_code == XPT_ATA_IO) { 742 request->data = ccb->ataio.data_ptr; 743 request->bytecount = ccb->ataio.dxfer_len; 744 request->u.ata.command = ccb->ataio.cmd.command; 745 request->u.ata.feature = ((uint16_t)ccb->ataio.cmd.features_exp << 8) | 746 (uint16_t)ccb->ataio.cmd.features; 747 request->u.ata.count = ((uint16_t)ccb->ataio.cmd.sector_count_exp << 8) | 748 (uint16_t)ccb->ataio.cmd.sector_count; 749 if (ccb->ataio.cmd.flags & CAM_ATAIO_48BIT) { 750 request->flags |= ATA_R_48BIT; 751 request->u.ata.lba = 752 ((uint64_t)ccb->ataio.cmd.lba_high_exp << 40) | 753 ((uint64_t)ccb->ataio.cmd.lba_mid_exp << 32) | 754 ((uint64_t)ccb->ataio.cmd.lba_low_exp << 24); 755 } else { 756 request->u.ata.lba = 757 ((uint64_t)(ccb->ataio.cmd.device & 0x0f) << 24); 758 } 759 request->u.ata.lba |= ((uint64_t)ccb->ataio.cmd.lba_high << 16) | 760 ((uint64_t)ccb->ataio.cmd.lba_mid << 8) | 761 (uint64_t)ccb->ataio.cmd.lba_low; 762 if (ccb->ataio.cmd.flags & CAM_ATAIO_NEEDRESULT) 763 request->flags |= ATA_R_NEEDRESULT; 764 if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE && 765 ccb->ataio.cmd.flags & CAM_ATAIO_DMA) 766 request->flags |= ATA_R_DMA; 767 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) 768 request->flags |= ATA_R_READ; 769 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) 770 request->flags |= ATA_R_WRITE; 771 if (ccb->ataio.cmd.command == ATA_READ_MUL || 772 ccb->ataio.cmd.command == ATA_READ_MUL48 || 773 ccb->ataio.cmd.command == ATA_WRITE_MUL || 774 ccb->ataio.cmd.command == ATA_WRITE_MUL48) { 775 request->transfersize = min(request->bytecount, 776 ch->curr[ccb->ccb_h.target_id].bytecount); 777 } else 778 request->transfersize = min(request->bytecount, 512); 779 } else { 780 request->data = ccb->csio.data_ptr; 781 request->bytecount = ccb->csio.dxfer_len; 782 bcopy((ccb->ccb_h.flags & CAM_CDB_POINTER) ? 783 ccb->csio.cdb_io.cdb_ptr : ccb->csio.cdb_io.cdb_bytes, 784 request->u.atapi.ccb, ccb->csio.cdb_len); 785 request->flags |= ATA_R_ATAPI; 786 if (ch->curr[ccb->ccb_h.target_id].atapi == 16) 787 request->flags |= ATA_R_ATAPI16; 788 if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE && 789 ch->curr[ccb->ccb_h.target_id].mode >= ATA_DMA) 790 request->flags |= ATA_R_DMA; 791 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) 792 request->flags |= ATA_R_READ; 793 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) 794 request->flags |= ATA_R_WRITE; 795 request->transfersize = min(request->bytecount, 796 ch->curr[ccb->ccb_h.target_id].bytecount); 797 } 798 request->retries = 0; 799 request->timeout = (ccb->ccb_h.timeout + 999) / 1000; 800 callout_init_mtx(&request->callout, &ch->state_mtx, CALLOUT_RETURNUNLOCKED); 801 request->ccb = ccb; 802 request->flags |= ATA_R_DATA_IN_CCB; 803 804 ch->running = request; 805 ch->state = ATA_ACTIVE; 806 if (ch->hw.begin_transaction(request) == ATA_OP_FINISHED) { 807 ch->running = NULL; 808 ch->state = ATA_IDLE; 809 ata_cam_end_transaction(dev, request); 810 return; 811 } 812 } 813 814 static void 815 ata_cam_request_sense(device_t dev, struct ata_request *request) 816 { 817 struct ata_channel *ch = device_get_softc(dev); 818 union ccb *ccb = request->ccb; 819 820 ch->requestsense = 1; 821 822 bzero(request, sizeof(*request)); 823 request->dev = NULL; 824 request->parent = dev; 825 request->unit = ccb->ccb_h.target_id; 826 request->data = (void *)&ccb->csio.sense_data; 827 request->bytecount = ccb->csio.sense_len; 828 request->u.atapi.ccb[0] = ATAPI_REQUEST_SENSE; 829 request->u.atapi.ccb[4] = ccb->csio.sense_len; 830 request->flags |= ATA_R_ATAPI; 831 if (ch->curr[ccb->ccb_h.target_id].atapi == 16) 832 request->flags |= ATA_R_ATAPI16; 833 if (ch->curr[ccb->ccb_h.target_id].mode >= ATA_DMA) 834 request->flags |= ATA_R_DMA; 835 request->flags |= ATA_R_READ; 836 request->transfersize = min(request->bytecount, 837 ch->curr[ccb->ccb_h.target_id].bytecount); 838 request->retries = 0; 839 request->timeout = (ccb->ccb_h.timeout + 999) / 1000; 840 callout_init_mtx(&request->callout, &ch->state_mtx, CALLOUT_RETURNUNLOCKED); 841 request->ccb = ccb; 842 843 ch->running = request; 844 ch->state = ATA_ACTIVE; 845 if (ch->hw.begin_transaction(request) == ATA_OP_FINISHED) { 846 ch->running = NULL; 847 ch->state = ATA_IDLE; 848 ata_cam_end_transaction(dev, request); 849 return; 850 } 851 } 852 853 static void 854 ata_cam_process_sense(device_t dev, struct ata_request *request) 855 { 856 struct ata_channel *ch = device_get_softc(dev); 857 union ccb *ccb = request->ccb; 858 int fatalerr = 0; 859 860 ch->requestsense = 0; 861 862 if (request->flags & ATA_R_TIMEOUT) 863 fatalerr = 1; 864 if ((request->flags & ATA_R_TIMEOUT) == 0 && 865 (request->status & ATA_S_ERROR) == 0 && 866 request->result == 0) { 867 ccb->ccb_h.status |= CAM_AUTOSNS_VALID; 868 } else { 869 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 870 ccb->ccb_h.status |= CAM_AUTOSENSE_FAIL; 871 } 872 873 xpt_done(ccb); 874 /* Do error recovery if needed. */ 875 if (fatalerr) 876 ata_reinit(dev); 877 } 878 879 static void 880 ata_cam_end_transaction(device_t dev, struct ata_request *request) 881 { 882 struct ata_channel *ch = device_get_softc(dev); 883 union ccb *ccb = request->ccb; 884 int fatalerr = 0; 885 886 if (ch->requestsense) { 887 ata_cam_process_sense(dev, request); 888 return; 889 } 890 891 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 892 if (request->flags & ATA_R_TIMEOUT) { 893 xpt_freeze_simq(ch->sim, 1); 894 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 895 ccb->ccb_h.status |= CAM_CMD_TIMEOUT | CAM_RELEASE_SIMQ; 896 fatalerr = 1; 897 } else if (request->status & ATA_S_ERROR) { 898 if (ccb->ccb_h.func_code == XPT_ATA_IO) { 899 ccb->ccb_h.status |= CAM_ATA_STATUS_ERROR; 900 } else { 901 ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR; 902 ccb->csio.scsi_status = SCSI_STATUS_CHECK_COND; 903 } 904 } else if (request->result == ERESTART) 905 ccb->ccb_h.status |= CAM_REQUEUE_REQ; 906 else if (request->result != 0) 907 ccb->ccb_h.status |= CAM_REQ_CMP_ERR; 908 else 909 ccb->ccb_h.status |= CAM_REQ_CMP; 910 if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP && 911 !(ccb->ccb_h.status & CAM_DEV_QFRZN)) { 912 xpt_freeze_devq(ccb->ccb_h.path, 1); 913 ccb->ccb_h.status |= CAM_DEV_QFRZN; 914 } 915 if (ccb->ccb_h.func_code == XPT_ATA_IO && 916 ((request->status & ATA_S_ERROR) || 917 (ccb->ataio.cmd.flags & CAM_ATAIO_NEEDRESULT))) { 918 struct ata_res *res = &ccb->ataio.res; 919 res->status = request->status; 920 res->error = request->error; 921 res->lba_low = request->u.ata.lba; 922 res->lba_mid = request->u.ata.lba >> 8; 923 res->lba_high = request->u.ata.lba >> 16; 924 res->device = request->u.ata.lba >> 24; 925 res->lba_low_exp = request->u.ata.lba >> 24; 926 res->lba_mid_exp = request->u.ata.lba >> 32; 927 res->lba_high_exp = request->u.ata.lba >> 40; 928 res->sector_count = request->u.ata.count; 929 res->sector_count_exp = request->u.ata.count >> 8; 930 } 931 if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) { 932 if (ccb->ccb_h.func_code == XPT_ATA_IO) { 933 ccb->ataio.resid = 934 ccb->ataio.dxfer_len - request->donecount; 935 } else { 936 ccb->csio.resid = 937 ccb->csio.dxfer_len - request->donecount; 938 } 939 } 940 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_SCSI_STATUS_ERROR && 941 (ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0) 942 ata_cam_request_sense(dev, request); 943 else 944 xpt_done(ccb); 945 /* Do error recovery if needed. */ 946 if (fatalerr) 947 ata_reinit(dev); 948 } 949 950 static int 951 ata_check_ids(device_t dev, union ccb *ccb) 952 { 953 struct ata_channel *ch = device_get_softc(dev); 954 955 if (ccb->ccb_h.target_id > ((ch->flags & ATA_NO_SLAVE) ? 0 : 1)) { 956 ccb->ccb_h.status = CAM_TID_INVALID; 957 xpt_done(ccb); 958 return (-1); 959 } 960 if (ccb->ccb_h.target_lun != 0) { 961 ccb->ccb_h.status = CAM_LUN_INVALID; 962 xpt_done(ccb); 963 return (-1); 964 } 965 return (0); 966 } 967 968 static void 969 ataaction(struct cam_sim *sim, union ccb *ccb) 970 { 971 device_t dev, parent; 972 struct ata_channel *ch; 973 974 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("ataaction func_code=%x\n", 975 ccb->ccb_h.func_code)); 976 977 ch = (struct ata_channel *)cam_sim_softc(sim); 978 dev = ch->dev; 979 switch (ccb->ccb_h.func_code) { 980 /* Common cases first */ 981 case XPT_ATA_IO: /* Execute the requested I/O operation */ 982 case XPT_SCSI_IO: 983 if (ata_check_ids(dev, ccb)) 984 return; 985 if ((ch->devices & ((ATA_ATA_MASTER | ATA_ATAPI_MASTER) 986 << ccb->ccb_h.target_id)) == 0) { 987 ccb->ccb_h.status = CAM_SEL_TIMEOUT; 988 break; 989 } 990 if (ch->running) 991 device_printf(dev, "already running!\n"); 992 if (ccb->ccb_h.func_code == XPT_ATA_IO && 993 (ccb->ataio.cmd.flags & CAM_ATAIO_CONTROL) && 994 (ccb->ataio.cmd.control & ATA_A_RESET)) { 995 struct ata_res *res = &ccb->ataio.res; 996 997 bzero(res, sizeof(*res)); 998 if (ch->devices & (ATA_ATA_MASTER << ccb->ccb_h.target_id)) { 999 res->lba_high = 0; 1000 res->lba_mid = 0; 1001 } else { 1002 res->lba_high = 0xeb; 1003 res->lba_mid = 0x14; 1004 } 1005 ccb->ccb_h.status = CAM_REQ_CMP; 1006 break; 1007 } 1008 ata_cam_begin_transaction(dev, ccb); 1009 return; 1010 case XPT_EN_LUN: /* Enable LUN as a target */ 1011 case XPT_TARGET_IO: /* Execute target I/O request */ 1012 case XPT_ACCEPT_TARGET_IO: /* Accept Host Target Mode CDB */ 1013 case XPT_CONT_TARGET_IO: /* Continue Host Target I/O Connection*/ 1014 case XPT_ABORT: /* Abort the specified CCB */ 1015 /* XXX Implement */ 1016 ccb->ccb_h.status = CAM_REQ_INVALID; 1017 break; 1018 case XPT_SET_TRAN_SETTINGS: 1019 { 1020 struct ccb_trans_settings *cts = &ccb->cts; 1021 struct ata_cam_device *d; 1022 1023 if (ata_check_ids(dev, ccb)) 1024 return; 1025 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) 1026 d = &ch->curr[ccb->ccb_h.target_id]; 1027 else 1028 d = &ch->user[ccb->ccb_h.target_id]; 1029 if (ch->flags & ATA_SATA) { 1030 if (cts->xport_specific.sata.valid & CTS_SATA_VALID_REVISION) 1031 d->revision = cts->xport_specific.sata.revision; 1032 if (cts->xport_specific.sata.valid & CTS_SATA_VALID_MODE) { 1033 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 1034 d->mode = ATA_SETMODE(ch->dev, 1035 ccb->ccb_h.target_id, 1036 cts->xport_specific.sata.mode); 1037 } else 1038 d->mode = cts->xport_specific.sata.mode; 1039 } 1040 if (cts->xport_specific.sata.valid & CTS_SATA_VALID_BYTECOUNT) 1041 d->bytecount = min(8192, cts->xport_specific.sata.bytecount); 1042 if (cts->xport_specific.sata.valid & CTS_SATA_VALID_ATAPI) 1043 d->atapi = cts->xport_specific.sata.atapi; 1044 if (cts->xport_specific.sata.valid & CTS_SATA_VALID_CAPS) 1045 d->caps = cts->xport_specific.sata.caps; 1046 } else { 1047 if (cts->xport_specific.ata.valid & CTS_ATA_VALID_MODE) { 1048 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 1049 d->mode = ATA_SETMODE(ch->dev, 1050 ccb->ccb_h.target_id, 1051 cts->xport_specific.ata.mode); 1052 } else 1053 d->mode = cts->xport_specific.ata.mode; 1054 } 1055 if (cts->xport_specific.ata.valid & CTS_ATA_VALID_BYTECOUNT) 1056 d->bytecount = cts->xport_specific.ata.bytecount; 1057 if (cts->xport_specific.ata.valid & CTS_ATA_VALID_ATAPI) 1058 d->atapi = cts->xport_specific.ata.atapi; 1059 if (cts->xport_specific.ata.valid & CTS_ATA_VALID_CAPS) 1060 d->caps = cts->xport_specific.ata.caps; 1061 } 1062 ccb->ccb_h.status = CAM_REQ_CMP; 1063 break; 1064 } 1065 case XPT_GET_TRAN_SETTINGS: 1066 { 1067 struct ccb_trans_settings *cts = &ccb->cts; 1068 struct ata_cam_device *d; 1069 1070 if (ata_check_ids(dev, ccb)) 1071 return; 1072 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) 1073 d = &ch->curr[ccb->ccb_h.target_id]; 1074 else 1075 d = &ch->user[ccb->ccb_h.target_id]; 1076 cts->protocol = PROTO_UNSPECIFIED; 1077 cts->protocol_version = PROTO_VERSION_UNSPECIFIED; 1078 if (ch->flags & ATA_SATA) { 1079 cts->transport = XPORT_SATA; 1080 cts->transport_version = XPORT_VERSION_UNSPECIFIED; 1081 cts->xport_specific.sata.valid = 0; 1082 cts->xport_specific.sata.mode = d->mode; 1083 cts->xport_specific.sata.valid |= CTS_SATA_VALID_MODE; 1084 cts->xport_specific.sata.bytecount = d->bytecount; 1085 cts->xport_specific.sata.valid |= CTS_SATA_VALID_BYTECOUNT; 1086 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 1087 cts->xport_specific.sata.revision = 1088 ATA_GETREV(dev, ccb->ccb_h.target_id); 1089 if (cts->xport_specific.sata.revision != 0xff) { 1090 cts->xport_specific.sata.valid |= 1091 CTS_SATA_VALID_REVISION; 1092 } 1093 cts->xport_specific.sata.caps = 1094 d->caps & CTS_SATA_CAPS_D; 1095 if (ch->pm_level) { 1096 cts->xport_specific.sata.caps |= 1097 CTS_SATA_CAPS_H_PMREQ; 1098 } 1099 cts->xport_specific.sata.caps &= 1100 ch->user[ccb->ccb_h.target_id].caps; 1101 } else { 1102 cts->xport_specific.sata.revision = d->revision; 1103 cts->xport_specific.sata.valid |= CTS_SATA_VALID_REVISION; 1104 cts->xport_specific.sata.caps = d->caps; 1105 } 1106 cts->xport_specific.sata.valid |= CTS_SATA_VALID_CAPS; 1107 cts->xport_specific.sata.atapi = d->atapi; 1108 cts->xport_specific.sata.valid |= CTS_SATA_VALID_ATAPI; 1109 } else { 1110 cts->transport = XPORT_ATA; 1111 cts->transport_version = XPORT_VERSION_UNSPECIFIED; 1112 cts->xport_specific.ata.valid = 0; 1113 cts->xport_specific.ata.mode = d->mode; 1114 cts->xport_specific.ata.valid |= CTS_ATA_VALID_MODE; 1115 cts->xport_specific.ata.bytecount = d->bytecount; 1116 cts->xport_specific.ata.valid |= CTS_ATA_VALID_BYTECOUNT; 1117 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 1118 cts->xport_specific.ata.caps = 1119 d->caps & CTS_ATA_CAPS_D; 1120 if (!(ch->flags & ATA_NO_48BIT_DMA)) 1121 cts->xport_specific.ata.caps |= 1122 CTS_ATA_CAPS_H_DMA48; 1123 cts->xport_specific.ata.caps &= 1124 ch->user[ccb->ccb_h.target_id].caps; 1125 } else 1126 cts->xport_specific.ata.caps = d->caps; 1127 cts->xport_specific.ata.valid |= CTS_ATA_VALID_CAPS; 1128 cts->xport_specific.ata.atapi = d->atapi; 1129 cts->xport_specific.ata.valid |= CTS_ATA_VALID_ATAPI; 1130 } 1131 ccb->ccb_h.status = CAM_REQ_CMP; 1132 break; 1133 } 1134 case XPT_RESET_BUS: /* Reset the specified SCSI bus */ 1135 case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */ 1136 ata_reinit(dev); 1137 ccb->ccb_h.status = CAM_REQ_CMP; 1138 break; 1139 case XPT_TERM_IO: /* Terminate the I/O process */ 1140 /* XXX Implement */ 1141 ccb->ccb_h.status = CAM_REQ_INVALID; 1142 break; 1143 case XPT_PATH_INQ: /* Path routing inquiry */ 1144 { 1145 struct ccb_pathinq *cpi = &ccb->cpi; 1146 1147 parent = device_get_parent(dev); 1148 cpi->version_num = 1; /* XXX??? */ 1149 cpi->hba_inquiry = PI_SDTR_ABLE; 1150 cpi->target_sprt = 0; 1151 cpi->hba_misc = PIM_SEQSCAN | PIM_UNMAPPED; 1152 cpi->hba_eng_cnt = 0; 1153 if (ch->flags & ATA_NO_SLAVE) 1154 cpi->max_target = 0; 1155 else 1156 cpi->max_target = 1; 1157 cpi->max_lun = 0; 1158 cpi->initiator_id = 0; 1159 cpi->bus_id = cam_sim_bus(sim); 1160 if (ch->flags & ATA_SATA) 1161 cpi->base_transfer_speed = 150000; 1162 else 1163 cpi->base_transfer_speed = 3300; 1164 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 1165 strncpy(cpi->hba_vid, "ATA", HBA_IDLEN); 1166 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 1167 cpi->unit_number = cam_sim_unit(sim); 1168 if (ch->flags & ATA_SATA) 1169 cpi->transport = XPORT_SATA; 1170 else 1171 cpi->transport = XPORT_ATA; 1172 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 1173 cpi->protocol = PROTO_ATA; 1174 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 1175 cpi->maxio = ch->dma.max_iosize ? ch->dma.max_iosize : DFLTPHYS; 1176 if (device_get_devclass(device_get_parent(parent)) == 1177 devclass_find("pci")) { 1178 cpi->hba_vendor = pci_get_vendor(parent); 1179 cpi->hba_device = pci_get_device(parent); 1180 cpi->hba_subvendor = pci_get_subvendor(parent); 1181 cpi->hba_subdevice = pci_get_subdevice(parent); 1182 } 1183 cpi->ccb_h.status = CAM_REQ_CMP; 1184 break; 1185 } 1186 default: 1187 ccb->ccb_h.status = CAM_REQ_INVALID; 1188 break; 1189 } 1190 xpt_done(ccb); 1191 } 1192 1193 static void 1194 atapoll(struct cam_sim *sim) 1195 { 1196 struct ata_channel *ch = (struct ata_channel *)cam_sim_softc(sim); 1197 1198 ata_interrupt_locked(ch); 1199 } 1200 1201 /* 1202 * module handeling 1203 */ 1204 static int 1205 ata_module_event_handler(module_t mod, int what, void *arg) 1206 { 1207 1208 switch (what) { 1209 case MOD_LOAD: 1210 return 0; 1211 1212 case MOD_UNLOAD: 1213 return 0; 1214 1215 default: 1216 return EOPNOTSUPP; 1217 } 1218 } 1219 1220 static moduledata_t ata_moduledata = { "ata", ata_module_event_handler, NULL }; 1221 DECLARE_MODULE(ata, ata_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 1222 MODULE_VERSION(ata, 1); 1223 MODULE_DEPEND(ata, cam, 1, 1, 1); 1224