xref: /freebsd/sys/dev/ale/if_ale.c (revision ec4deee4e4f2aef1b97d9424f25d04e91fd7dc10)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/module.h>
43 #include <sys/rman.h>
44 #include <sys/queue.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/taskqueue.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/if_arp.h>
54 #include <net/ethernet.h>
55 #include <net/if_dl.h>
56 #include <net/if_llc.h>
57 #include <net/if_media.h>
58 #include <net/if_types.h>
59 #include <net/if_vlan_var.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/ip.h>
64 #include <netinet/tcp.h>
65 
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68 
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 
72 #include <machine/bus.h>
73 #include <machine/in_cksum.h>
74 
75 #include <dev/ale/if_alereg.h>
76 #include <dev/ale/if_alevar.h>
77 
78 /* "device miibus" required.  See GENERIC if you get errors here. */
79 #include "miibus_if.h"
80 
81 /* For more information about Tx checksum offload issues see ale_encap(). */
82 #define	ALE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
83 
84 MODULE_DEPEND(ale, pci, 1, 1, 1);
85 MODULE_DEPEND(ale, ether, 1, 1, 1);
86 MODULE_DEPEND(ale, miibus, 1, 1, 1);
87 
88 /* Tunables. */
89 static int msi_disable = 0;
90 static int msix_disable = 0;
91 TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
92 TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
93 
94 /*
95  * Devices supported by this driver.
96  */
97 static const struct ale_dev {
98 	uint16_t	ale_vendorid;
99 	uint16_t	ale_deviceid;
100 	const char	*ale_name;
101 } ale_devs[] = {
102     { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
103     "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
104 };
105 
106 static int	ale_attach(device_t);
107 static int	ale_check_boundary(struct ale_softc *);
108 static int	ale_detach(device_t);
109 static int	ale_dma_alloc(struct ale_softc *);
110 static void	ale_dma_free(struct ale_softc *);
111 static void	ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
112 static int	ale_encap(struct ale_softc *, struct mbuf **);
113 static void	ale_get_macaddr(struct ale_softc *);
114 static void	ale_init(void *);
115 static void	ale_init_locked(struct ale_softc *);
116 static void	ale_init_rx_pages(struct ale_softc *);
117 static void	ale_init_tx_ring(struct ale_softc *);
118 static void	ale_int_task(void *, int);
119 static int	ale_intr(void *);
120 static int	ale_ioctl(struct ifnet *, u_long, caddr_t);
121 static void	ale_mac_config(struct ale_softc *);
122 static int	ale_miibus_readreg(device_t, int, int);
123 static void	ale_miibus_statchg(device_t);
124 static int	ale_miibus_writereg(device_t, int, int, int);
125 static int	ale_mediachange(struct ifnet *);
126 static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
127 static void	ale_phy_reset(struct ale_softc *);
128 static int	ale_probe(device_t);
129 static void	ale_reset(struct ale_softc *);
130 static int	ale_resume(device_t);
131 static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
132     uint32_t, uint32_t *);
133 static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
134 static int	ale_rxeof(struct ale_softc *sc, int);
135 static void	ale_rxfilter(struct ale_softc *);
136 static void	ale_rxvlan(struct ale_softc *);
137 static void	ale_setlinkspeed(struct ale_softc *);
138 static void	ale_setwol(struct ale_softc *);
139 static int	ale_shutdown(device_t);
140 static void	ale_start(struct ifnet *);
141 static void	ale_start_locked(struct ifnet *);
142 static void	ale_stats_clear(struct ale_softc *);
143 static void	ale_stats_update(struct ale_softc *);
144 static void	ale_stop(struct ale_softc *);
145 static void	ale_stop_mac(struct ale_softc *);
146 static int	ale_suspend(device_t);
147 static void	ale_sysctl_node(struct ale_softc *);
148 static void	ale_tick(void *);
149 static void	ale_txeof(struct ale_softc *);
150 static void	ale_watchdog(struct ale_softc *);
151 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
152 static int	sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
153 static int	sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
154 
155 static device_method_t ale_methods[] = {
156 	/* Device interface. */
157 	DEVMETHOD(device_probe,		ale_probe),
158 	DEVMETHOD(device_attach,	ale_attach),
159 	DEVMETHOD(device_detach,	ale_detach),
160 	DEVMETHOD(device_shutdown,	ale_shutdown),
161 	DEVMETHOD(device_suspend,	ale_suspend),
162 	DEVMETHOD(device_resume,	ale_resume),
163 
164 	/* MII interface. */
165 	DEVMETHOD(miibus_readreg,	ale_miibus_readreg),
166 	DEVMETHOD(miibus_writereg,	ale_miibus_writereg),
167 	DEVMETHOD(miibus_statchg,	ale_miibus_statchg),
168 
169 	DEVMETHOD_END
170 };
171 
172 static driver_t ale_driver = {
173 	"ale",
174 	ale_methods,
175 	sizeof(struct ale_softc)
176 };
177 
178 static devclass_t ale_devclass;
179 
180 DRIVER_MODULE(ale, pci, ale_driver, ale_devclass, NULL, NULL);
181 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ale, ale_devs,
182     nitems(ale_devs));
183 DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, NULL, NULL);
184 
185 static struct resource_spec ale_res_spec_mem[] = {
186 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
187 	{ -1,			0,		0 }
188 };
189 
190 static struct resource_spec ale_irq_spec_legacy[] = {
191 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
192 	{ -1,			0,		0 }
193 };
194 
195 static struct resource_spec ale_irq_spec_msi[] = {
196 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
197 	{ -1,			0,		0 }
198 };
199 
200 static struct resource_spec ale_irq_spec_msix[] = {
201 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
202 	{ -1,			0,		0 }
203 };
204 
205 static int
206 ale_miibus_readreg(device_t dev, int phy, int reg)
207 {
208 	struct ale_softc *sc;
209 	uint32_t v;
210 	int i;
211 
212 	sc = device_get_softc(dev);
213 
214 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
215 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
216 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
217 		DELAY(5);
218 		v = CSR_READ_4(sc, ALE_MDIO);
219 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
220 			break;
221 	}
222 
223 	if (i == 0) {
224 		device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
225 		return (0);
226 	}
227 
228 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
229 }
230 
231 static int
232 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
233 {
234 	struct ale_softc *sc;
235 	uint32_t v;
236 	int i;
237 
238 	sc = device_get_softc(dev);
239 
240 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
241 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
242 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
243 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
244 		DELAY(5);
245 		v = CSR_READ_4(sc, ALE_MDIO);
246 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
247 			break;
248 	}
249 
250 	if (i == 0)
251 		device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
252 
253 	return (0);
254 }
255 
256 static void
257 ale_miibus_statchg(device_t dev)
258 {
259 	struct ale_softc *sc;
260 	struct mii_data *mii;
261 	struct ifnet *ifp;
262 	uint32_t reg;
263 
264 	sc = device_get_softc(dev);
265 	mii = device_get_softc(sc->ale_miibus);
266 	ifp = sc->ale_ifp;
267 	if (mii == NULL || ifp == NULL ||
268 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
269 		return;
270 
271 	sc->ale_flags &= ~ALE_FLAG_LINK;
272 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
273 	    (IFM_ACTIVE | IFM_AVALID)) {
274 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
275 		case IFM_10_T:
276 		case IFM_100_TX:
277 			sc->ale_flags |= ALE_FLAG_LINK;
278 			break;
279 		case IFM_1000_T:
280 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
281 				sc->ale_flags |= ALE_FLAG_LINK;
282 			break;
283 		default:
284 			break;
285 		}
286 	}
287 
288 	/* Stop Rx/Tx MACs. */
289 	ale_stop_mac(sc);
290 
291 	/* Program MACs with resolved speed/duplex/flow-control. */
292 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
293 		ale_mac_config(sc);
294 		/* Reenable Tx/Rx MACs. */
295 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
296 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
297 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
298 	}
299 }
300 
301 static void
302 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
303 {
304 	struct ale_softc *sc;
305 	struct mii_data *mii;
306 
307 	sc = ifp->if_softc;
308 	ALE_LOCK(sc);
309 	if ((ifp->if_flags & IFF_UP) == 0) {
310 		ALE_UNLOCK(sc);
311 		return;
312 	}
313 	mii = device_get_softc(sc->ale_miibus);
314 
315 	mii_pollstat(mii);
316 	ifmr->ifm_status = mii->mii_media_status;
317 	ifmr->ifm_active = mii->mii_media_active;
318 	ALE_UNLOCK(sc);
319 }
320 
321 static int
322 ale_mediachange(struct ifnet *ifp)
323 {
324 	struct ale_softc *sc;
325 	struct mii_data *mii;
326 	struct mii_softc *miisc;
327 	int error;
328 
329 	sc = ifp->if_softc;
330 	ALE_LOCK(sc);
331 	mii = device_get_softc(sc->ale_miibus);
332 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
333 		PHY_RESET(miisc);
334 	error = mii_mediachg(mii);
335 	ALE_UNLOCK(sc);
336 
337 	return (error);
338 }
339 
340 static int
341 ale_probe(device_t dev)
342 {
343 	const struct ale_dev *sp;
344 	int i;
345 	uint16_t vendor, devid;
346 
347 	vendor = pci_get_vendor(dev);
348 	devid = pci_get_device(dev);
349 	sp = ale_devs;
350 	for (i = 0; i < nitems(ale_devs); i++) {
351 		if (vendor == sp->ale_vendorid &&
352 		    devid == sp->ale_deviceid) {
353 			device_set_desc(dev, sp->ale_name);
354 			return (BUS_PROBE_DEFAULT);
355 		}
356 		sp++;
357 	}
358 
359 	return (ENXIO);
360 }
361 
362 static void
363 ale_get_macaddr(struct ale_softc *sc)
364 {
365 	uint32_t ea[2], reg;
366 	int i, vpdc;
367 
368 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
369 	if ((reg & SPI_VPD_ENB) != 0) {
370 		reg &= ~SPI_VPD_ENB;
371 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
372 	}
373 
374 	if (pci_find_cap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
375 		/*
376 		 * PCI VPD capability found, let TWSI reload EEPROM.
377 		 * This will set ethernet address of controller.
378 		 */
379 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
380 		    TWSI_CTRL_SW_LD_START);
381 		for (i = 100; i > 0; i--) {
382 			DELAY(1000);
383 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
384 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
385 				break;
386 		}
387 		if (i == 0)
388 			device_printf(sc->ale_dev,
389 			    "reloading EEPROM timeout!\n");
390 	} else {
391 		if (bootverbose)
392 			device_printf(sc->ale_dev,
393 			    "PCI VPD capability not found!\n");
394 	}
395 
396 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
397 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
398 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
399 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
400 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
401 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
402 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
403 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
404 }
405 
406 static void
407 ale_phy_reset(struct ale_softc *sc)
408 {
409 
410 	/* Reset magic from Linux. */
411 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
412 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
413 	    GPHY_CTRL_PHY_PLL_ON);
414 	DELAY(1000);
415 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
416 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
417 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
418 	DELAY(1000);
419 
420 #define	ATPHY_DBG_ADDR		0x1D
421 #define	ATPHY_DBG_DATA		0x1E
422 
423 	/* Enable hibernation mode. */
424 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
425 	    ATPHY_DBG_ADDR, 0x0B);
426 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
427 	    ATPHY_DBG_DATA, 0xBC00);
428 	/* Set Class A/B for all modes. */
429 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
430 	    ATPHY_DBG_ADDR, 0x00);
431 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
432 	    ATPHY_DBG_DATA, 0x02EF);
433 	/* Enable 10BT power saving. */
434 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
435 	    ATPHY_DBG_ADDR, 0x12);
436 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
437 	    ATPHY_DBG_DATA, 0x4C04);
438 	/* Adjust 1000T power. */
439 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
440 	    ATPHY_DBG_ADDR, 0x04);
441 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
442 	    ATPHY_DBG_ADDR, 0x8BBB);
443 	/* 10BT center tap voltage. */
444 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
445 	    ATPHY_DBG_ADDR, 0x05);
446 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
447 	    ATPHY_DBG_ADDR, 0x2C46);
448 
449 #undef	ATPHY_DBG_ADDR
450 #undef	ATPHY_DBG_DATA
451 	DELAY(1000);
452 }
453 
454 static int
455 ale_attach(device_t dev)
456 {
457 	struct ale_softc *sc;
458 	struct ifnet *ifp;
459 	uint16_t burst;
460 	int error, i, msic, msixc, pmc;
461 	uint32_t rxf_len, txf_len;
462 
463 	error = 0;
464 	sc = device_get_softc(dev);
465 	sc->ale_dev = dev;
466 
467 	mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
468 	    MTX_DEF);
469 	callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
470 	NET_TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
471 
472 	/* Map the device. */
473 	pci_enable_busmaster(dev);
474 	sc->ale_res_spec = ale_res_spec_mem;
475 	sc->ale_irq_spec = ale_irq_spec_legacy;
476 	error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
477 	if (error != 0) {
478 		device_printf(dev, "cannot allocate memory resources.\n");
479 		goto fail;
480 	}
481 
482 	/* Set PHY address. */
483 	sc->ale_phyaddr = ALE_PHY_ADDR;
484 
485 	/* Reset PHY. */
486 	ale_phy_reset(sc);
487 
488 	/* Reset the ethernet controller. */
489 	ale_reset(sc);
490 
491 	/* Get PCI and chip id/revision. */
492 	sc->ale_rev = pci_get_revid(dev);
493 	if (sc->ale_rev >= 0xF0) {
494 		/* L2E Rev. B. AR8114 */
495 		sc->ale_flags |= ALE_FLAG_FASTETHER;
496 	} else {
497 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
498 			/* L1E AR8121 */
499 			sc->ale_flags |= ALE_FLAG_JUMBO;
500 		} else {
501 			/* L2E Rev. A. AR8113 */
502 			sc->ale_flags |= ALE_FLAG_FASTETHER;
503 		}
504 	}
505 	/*
506 	 * All known controllers seems to require 4 bytes alignment
507 	 * of Tx buffers to make Tx checksum offload with custom
508 	 * checksum generation method work.
509 	 */
510 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
511 	/*
512 	 * All known controllers seems to have issues on Rx checksum
513 	 * offload for fragmented IP datagrams.
514 	 */
515 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
516 	/*
517 	 * Don't use Tx CMB. It is known to cause RRS update failure
518 	 * under certain circumstances. Typical phenomenon of the
519 	 * issue would be unexpected sequence number encountered in
520 	 * Rx handler.
521 	 */
522 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
523 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
524 	    MASTER_CHIP_REV_SHIFT;
525 	if (bootverbose) {
526 		device_printf(dev, "PCI device revision : 0x%04x\n",
527 		    sc->ale_rev);
528 		device_printf(dev, "Chip id/revision : 0x%04x\n",
529 		    sc->ale_chip_rev);
530 	}
531 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
532 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
533 	/*
534 	 * Uninitialized hardware returns an invalid chip id/revision
535 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
536 	 */
537 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
538 	    rxf_len == 0xFFFFFFF) {
539 		device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
540 		    "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
541 		    txf_len, rxf_len);
542 		error = ENXIO;
543 		goto fail;
544 	}
545 	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
546 
547 	/* Allocate IRQ resources. */
548 	msixc = pci_msix_count(dev);
549 	msic = pci_msi_count(dev);
550 	if (bootverbose) {
551 		device_printf(dev, "MSIX count : %d\n", msixc);
552 		device_printf(dev, "MSI count : %d\n", msic);
553 	}
554 
555 	/* Prefer MSIX over MSI. */
556 	if (msix_disable == 0 || msi_disable == 0) {
557 		if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
558 		    pci_alloc_msix(dev, &msixc) == 0) {
559 			if (msixc == ALE_MSIX_MESSAGES) {
560 				device_printf(dev, "Using %d MSIX messages.\n",
561 				    msixc);
562 				sc->ale_flags |= ALE_FLAG_MSIX;
563 				sc->ale_irq_spec = ale_irq_spec_msix;
564 			} else
565 				pci_release_msi(dev);
566 		}
567 		if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
568 		    msic == ALE_MSI_MESSAGES &&
569 		    pci_alloc_msi(dev, &msic) == 0) {
570 			if (msic == ALE_MSI_MESSAGES) {
571 				device_printf(dev, "Using %d MSI messages.\n",
572 				    msic);
573 				sc->ale_flags |= ALE_FLAG_MSI;
574 				sc->ale_irq_spec = ale_irq_spec_msi;
575 			} else
576 				pci_release_msi(dev);
577 		}
578 	}
579 
580 	error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
581 	if (error != 0) {
582 		device_printf(dev, "cannot allocate IRQ resources.\n");
583 		goto fail;
584 	}
585 
586 	/* Get DMA parameters from PCIe device control register. */
587 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
588 		sc->ale_flags |= ALE_FLAG_PCIE;
589 		burst = pci_read_config(dev, i + 0x08, 2);
590 		/* Max read request size. */
591 		sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
592 		    DMA_CFG_RD_BURST_SHIFT;
593 		/* Max payload size. */
594 		sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
595 		    DMA_CFG_WR_BURST_SHIFT;
596 		if (bootverbose) {
597 			device_printf(dev, "Read request size : %d bytes.\n",
598 			    128 << ((burst >> 12) & 0x07));
599 			device_printf(dev, "TLP payload size : %d bytes.\n",
600 			    128 << ((burst >> 5) & 0x07));
601 		}
602 	} else {
603 		sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
604 		sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
605 	}
606 
607 	/* Create device sysctl node. */
608 	ale_sysctl_node(sc);
609 
610 	if ((error = ale_dma_alloc(sc)) != 0)
611 		goto fail;
612 
613 	/* Load station address. */
614 	ale_get_macaddr(sc);
615 
616 	ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
617 	if (ifp == NULL) {
618 		device_printf(dev, "cannot allocate ifnet structure.\n");
619 		error = ENXIO;
620 		goto fail;
621 	}
622 
623 	ifp->if_softc = sc;
624 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
625 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
626 	ifp->if_ioctl = ale_ioctl;
627 	ifp->if_start = ale_start;
628 	ifp->if_init = ale_init;
629 	ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1;
630 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
631 	IFQ_SET_READY(&ifp->if_snd);
632 	ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4;
633 	ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO;
634 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
635 		sc->ale_flags |= ALE_FLAG_PMCAP;
636 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
637 	}
638 	ifp->if_capenable = ifp->if_capabilities;
639 
640 	/* Set up MII bus. */
641 	error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange,
642 	    ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY,
643 	    MIIF_DOPAUSE);
644 	if (error != 0) {
645 		device_printf(dev, "attaching PHYs failed\n");
646 		goto fail;
647 	}
648 
649 	ether_ifattach(ifp, sc->ale_eaddr);
650 
651 	/* VLAN capability setup. */
652 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
653 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
654 	ifp->if_capenable = ifp->if_capabilities;
655 	/*
656 	 * Even though controllers supported by ale(3) have Rx checksum
657 	 * offload bug the workaround for fragmented frames seemed to
658 	 * work so far. However it seems Rx checksum offload does not
659 	 * work under certain conditions. So disable Rx checksum offload
660 	 * until I find more clue about it but allow users to override it.
661 	 */
662 	ifp->if_capenable &= ~IFCAP_RXCSUM;
663 
664 	/* Tell the upper layer(s) we support long frames. */
665 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
666 
667 	/* Create local taskq. */
668 	sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
669 	    taskqueue_thread_enqueue, &sc->ale_tq);
670 	if (sc->ale_tq == NULL) {
671 		device_printf(dev, "could not create taskqueue.\n");
672 		ether_ifdetach(ifp);
673 		error = ENXIO;
674 		goto fail;
675 	}
676 	taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
677 	    device_get_nameunit(sc->ale_dev));
678 
679 	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
680 		msic = ALE_MSIX_MESSAGES;
681 	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
682 		msic = ALE_MSI_MESSAGES;
683 	else
684 		msic = 1;
685 	for (i = 0; i < msic; i++) {
686 		error = bus_setup_intr(dev, sc->ale_irq[i],
687 		    INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
688 		    &sc->ale_intrhand[i]);
689 		if (error != 0)
690 			break;
691 	}
692 	if (error != 0) {
693 		device_printf(dev, "could not set up interrupt handler.\n");
694 		taskqueue_free(sc->ale_tq);
695 		sc->ale_tq = NULL;
696 		ether_ifdetach(ifp);
697 		goto fail;
698 	}
699 
700 fail:
701 	if (error != 0)
702 		ale_detach(dev);
703 
704 	return (error);
705 }
706 
707 static int
708 ale_detach(device_t dev)
709 {
710 	struct ale_softc *sc;
711 	struct ifnet *ifp;
712 	int i, msic;
713 
714 	sc = device_get_softc(dev);
715 
716 	ifp = sc->ale_ifp;
717 	if (device_is_attached(dev)) {
718 		ether_ifdetach(ifp);
719 		ALE_LOCK(sc);
720 		ale_stop(sc);
721 		ALE_UNLOCK(sc);
722 		callout_drain(&sc->ale_tick_ch);
723 		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
724 	}
725 
726 	if (sc->ale_tq != NULL) {
727 		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
728 		taskqueue_free(sc->ale_tq);
729 		sc->ale_tq = NULL;
730 	}
731 
732 	if (sc->ale_miibus != NULL) {
733 		device_delete_child(dev, sc->ale_miibus);
734 		sc->ale_miibus = NULL;
735 	}
736 	bus_generic_detach(dev);
737 	ale_dma_free(sc);
738 
739 	if (ifp != NULL) {
740 		if_free(ifp);
741 		sc->ale_ifp = NULL;
742 	}
743 
744 	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
745 		msic = ALE_MSIX_MESSAGES;
746 	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
747 		msic = ALE_MSI_MESSAGES;
748 	else
749 		msic = 1;
750 	for (i = 0; i < msic; i++) {
751 		if (sc->ale_intrhand[i] != NULL) {
752 			bus_teardown_intr(dev, sc->ale_irq[i],
753 			    sc->ale_intrhand[i]);
754 			sc->ale_intrhand[i] = NULL;
755 		}
756 	}
757 
758 	bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
759 	if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
760 		pci_release_msi(dev);
761 	bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
762 	mtx_destroy(&sc->ale_mtx);
763 
764 	return (0);
765 }
766 
767 #define	ALE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
768 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
769 
770 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
771 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
772 
773 static void
774 ale_sysctl_node(struct ale_softc *sc)
775 {
776 	struct sysctl_ctx_list *ctx;
777 	struct sysctl_oid_list *child, *parent;
778 	struct sysctl_oid *tree;
779 	struct ale_hw_stats *stats;
780 	int error;
781 
782 	stats = &sc->ale_stats;
783 	ctx = device_get_sysctl_ctx(sc->ale_dev);
784 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
785 
786 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
787 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->ale_int_rx_mod,
788 	    0, sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
789 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
790 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->ale_int_tx_mod,
791 	    0, sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
792 	/* Pull in device tunables. */
793 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
794 	error = resource_int_value(device_get_name(sc->ale_dev),
795 	    device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
796 	if (error == 0) {
797 		if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
798 		    sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
799 			device_printf(sc->ale_dev, "int_rx_mod value out of "
800 			    "range; using default: %d\n",
801 			    ALE_IM_RX_TIMER_DEFAULT);
802 			sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
803 		}
804 	}
805 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
806 	error = resource_int_value(device_get_name(sc->ale_dev),
807 	    device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
808 	if (error == 0) {
809 		if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
810 		    sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
811 			device_printf(sc->ale_dev, "int_tx_mod value out of "
812 			    "range; using default: %d\n",
813 			    ALE_IM_TX_TIMER_DEFAULT);
814 			sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
815 		}
816 	}
817 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
818 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
819 	    &sc->ale_process_limit, 0, sysctl_hw_ale_proc_limit, "I",
820 	    "max number of Rx events to process");
821 	/* Pull in device tunables. */
822 	sc->ale_process_limit = ALE_PROC_DEFAULT;
823 	error = resource_int_value(device_get_name(sc->ale_dev),
824 	    device_get_unit(sc->ale_dev), "process_limit",
825 	    &sc->ale_process_limit);
826 	if (error == 0) {
827 		if (sc->ale_process_limit < ALE_PROC_MIN ||
828 		    sc->ale_process_limit > ALE_PROC_MAX) {
829 			device_printf(sc->ale_dev,
830 			    "process_limit value out of range; "
831 			    "using default: %d\n", ALE_PROC_DEFAULT);
832 			sc->ale_process_limit = ALE_PROC_DEFAULT;
833 		}
834 	}
835 
836 	/* Misc statistics. */
837 	ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
838 	    &stats->reset_brk_seq,
839 	    "Controller resets due to broken Rx sequnce number");
840 
841 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
842 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ATE statistics");
843 	parent = SYSCTL_CHILDREN(tree);
844 
845 	/* Rx statistics. */
846 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
847 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
848 	child = SYSCTL_CHILDREN(tree);
849 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
850 	    &stats->rx_frames, "Good frames");
851 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
852 	    &stats->rx_bcast_frames, "Good broadcast frames");
853 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
854 	    &stats->rx_mcast_frames, "Good multicast frames");
855 	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
856 	    &stats->rx_pause_frames, "Pause control frames");
857 	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
858 	    &stats->rx_control_frames, "Control frames");
859 	ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
860 	    &stats->rx_crcerrs, "CRC errors");
861 	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
862 	    &stats->rx_lenerrs, "Frames with length mismatched");
863 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
864 	    &stats->rx_bytes, "Good octets");
865 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
866 	    &stats->rx_bcast_bytes, "Good broadcast octets");
867 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
868 	    &stats->rx_mcast_bytes, "Good multicast octets");
869 	ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
870 	    &stats->rx_runts, "Too short frames");
871 	ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
872 	    &stats->rx_fragments, "Fragmented frames");
873 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
874 	    &stats->rx_pkts_64, "64 bytes frames");
875 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
876 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
877 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
878 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
879 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
880 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
881 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
882 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
883 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
884 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
885 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
886 	    &stats->rx_pkts_1519_max, "1519 to max frames");
887 	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
888 	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
889 	ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
890 	    &stats->rx_fifo_oflows, "FIFO overflows");
891 	ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
892 	    &stats->rx_rrs_errs, "Return status write-back errors");
893 	ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
894 	    &stats->rx_alignerrs, "Alignment errors");
895 	ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
896 	    &stats->rx_pkts_filtered,
897 	    "Frames dropped due to address filtering");
898 
899 	/* Tx statistics. */
900 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
901 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
902 	child = SYSCTL_CHILDREN(tree);
903 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
904 	    &stats->tx_frames, "Good frames");
905 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
906 	    &stats->tx_bcast_frames, "Good broadcast frames");
907 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
908 	    &stats->tx_mcast_frames, "Good multicast frames");
909 	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
910 	    &stats->tx_pause_frames, "Pause control frames");
911 	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
912 	    &stats->tx_control_frames, "Control frames");
913 	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
914 	    &stats->tx_excess_defer, "Frames with excessive derferrals");
915 	ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
916 	    &stats->tx_excess_defer, "Frames with derferrals");
917 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
918 	    &stats->tx_bytes, "Good octets");
919 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
920 	    &stats->tx_bcast_bytes, "Good broadcast octets");
921 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
922 	    &stats->tx_mcast_bytes, "Good multicast octets");
923 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
924 	    &stats->tx_pkts_64, "64 bytes frames");
925 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
926 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
927 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
928 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
929 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
930 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
931 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
932 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
933 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
934 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
935 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
936 	    &stats->tx_pkts_1519_max, "1519 to max frames");
937 	ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
938 	    &stats->tx_single_colls, "Single collisions");
939 	ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
940 	    &stats->tx_multi_colls, "Multiple collisions");
941 	ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
942 	    &stats->tx_late_colls, "Late collisions");
943 	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
944 	    &stats->tx_excess_colls, "Excessive collisions");
945 	ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
946 	    &stats->tx_underrun, "FIFO underruns");
947 	ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
948 	    &stats->tx_desc_underrun, "Descriptor write-back errors");
949 	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
950 	    &stats->tx_lenerrs, "Frames with length mismatched");
951 	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
952 	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
953 }
954 
955 #undef ALE_SYSCTL_STAT_ADD32
956 #undef ALE_SYSCTL_STAT_ADD64
957 
958 struct ale_dmamap_arg {
959 	bus_addr_t	ale_busaddr;
960 };
961 
962 static void
963 ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
964 {
965 	struct ale_dmamap_arg *ctx;
966 
967 	if (error != 0)
968 		return;
969 
970 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
971 
972 	ctx = (struct ale_dmamap_arg *)arg;
973 	ctx->ale_busaddr = segs[0].ds_addr;
974 }
975 
976 /*
977  * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
978  * which specifies high address region of DMA blocks. Therefore these
979  * blocks should have the same high address of given 4GB address
980  * space(i.e. crossing 4GB boundary is not allowed).
981  */
982 static int
983 ale_check_boundary(struct ale_softc *sc)
984 {
985 	bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
986 	bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
987 
988 	rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
989 	    sc->ale_pagesize;
990 	rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
991 	    sc->ale_pagesize;
992 	tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
993 	tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
994 	rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
995 	rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
996 
997 	if ((ALE_ADDR_HI(tx_ring_end) !=
998 	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
999 	    (ALE_ADDR_HI(rx_page_end[0]) !=
1000 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
1001 	    (ALE_ADDR_HI(rx_page_end[1]) !=
1002 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
1003 	    (ALE_ADDR_HI(tx_cmb_end) !=
1004 	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
1005 	    (ALE_ADDR_HI(rx_cmb_end[0]) !=
1006 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
1007 	    (ALE_ADDR_HI(rx_cmb_end[1]) !=
1008 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
1009 		return (EFBIG);
1010 
1011 	if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
1012 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
1013 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
1014 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
1015 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
1016 		return (EFBIG);
1017 
1018 	return (0);
1019 }
1020 
1021 static int
1022 ale_dma_alloc(struct ale_softc *sc)
1023 {
1024 	struct ale_txdesc *txd;
1025 	bus_addr_t lowaddr;
1026 	struct ale_dmamap_arg ctx;
1027 	int error, guard_size, i;
1028 
1029 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
1030 		guard_size = ALE_JUMBO_FRAMELEN;
1031 	else
1032 		guard_size = ALE_MAX_FRAMELEN;
1033 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
1034 	    ALE_RX_PAGE_ALIGN);
1035 	lowaddr = BUS_SPACE_MAXADDR;
1036 again:
1037 	/* Create parent DMA tag. */
1038 	error = bus_dma_tag_create(
1039 	    bus_get_dma_tag(sc->ale_dev), /* parent */
1040 	    1, 0,			/* alignment, boundary */
1041 	    lowaddr,			/* lowaddr */
1042 	    BUS_SPACE_MAXADDR,		/* highaddr */
1043 	    NULL, NULL,			/* filter, filterarg */
1044 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1045 	    0,				/* nsegments */
1046 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1047 	    0,				/* flags */
1048 	    NULL, NULL,			/* lockfunc, lockarg */
1049 	    &sc->ale_cdata.ale_parent_tag);
1050 	if (error != 0) {
1051 		device_printf(sc->ale_dev,
1052 		    "could not create parent DMA tag.\n");
1053 		goto fail;
1054 	}
1055 
1056 	/* Create DMA tag for Tx descriptor ring. */
1057 	error = bus_dma_tag_create(
1058 	    sc->ale_cdata.ale_parent_tag, /* parent */
1059 	    ALE_TX_RING_ALIGN, 0,	/* alignment, boundary */
1060 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1061 	    BUS_SPACE_MAXADDR,		/* highaddr */
1062 	    NULL, NULL,			/* filter, filterarg */
1063 	    ALE_TX_RING_SZ,		/* maxsize */
1064 	    1,				/* nsegments */
1065 	    ALE_TX_RING_SZ,		/* maxsegsize */
1066 	    0,				/* flags */
1067 	    NULL, NULL,			/* lockfunc, lockarg */
1068 	    &sc->ale_cdata.ale_tx_ring_tag);
1069 	if (error != 0) {
1070 		device_printf(sc->ale_dev,
1071 		    "could not create Tx ring DMA tag.\n");
1072 		goto fail;
1073 	}
1074 
1075 	/* Create DMA tag for Rx pages. */
1076 	for (i = 0; i < ALE_RX_PAGES; i++) {
1077 		error = bus_dma_tag_create(
1078 		    sc->ale_cdata.ale_parent_tag, /* parent */
1079 		    ALE_RX_PAGE_ALIGN, 0,	/* alignment, boundary */
1080 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1081 		    BUS_SPACE_MAXADDR,		/* highaddr */
1082 		    NULL, NULL,			/* filter, filterarg */
1083 		    sc->ale_pagesize,		/* maxsize */
1084 		    1,				/* nsegments */
1085 		    sc->ale_pagesize,		/* maxsegsize */
1086 		    0,				/* flags */
1087 		    NULL, NULL,			/* lockfunc, lockarg */
1088 		    &sc->ale_cdata.ale_rx_page[i].page_tag);
1089 		if (error != 0) {
1090 			device_printf(sc->ale_dev,
1091 			    "could not create Rx page %d DMA tag.\n", i);
1092 			goto fail;
1093 		}
1094 	}
1095 
1096 	/* Create DMA tag for Tx coalescing message block. */
1097 	error = bus_dma_tag_create(
1098 	    sc->ale_cdata.ale_parent_tag, /* parent */
1099 	    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1100 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1101 	    BUS_SPACE_MAXADDR,		/* highaddr */
1102 	    NULL, NULL,			/* filter, filterarg */
1103 	    ALE_TX_CMB_SZ,		/* maxsize */
1104 	    1,				/* nsegments */
1105 	    ALE_TX_CMB_SZ,		/* maxsegsize */
1106 	    0,				/* flags */
1107 	    NULL, NULL,			/* lockfunc, lockarg */
1108 	    &sc->ale_cdata.ale_tx_cmb_tag);
1109 	if (error != 0) {
1110 		device_printf(sc->ale_dev,
1111 		    "could not create Tx CMB DMA tag.\n");
1112 		goto fail;
1113 	}
1114 
1115 	/* Create DMA tag for Rx coalescing message block. */
1116 	for (i = 0; i < ALE_RX_PAGES; i++) {
1117 		error = bus_dma_tag_create(
1118 		    sc->ale_cdata.ale_parent_tag, /* parent */
1119 		    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1120 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1121 		    BUS_SPACE_MAXADDR,		/* highaddr */
1122 		    NULL, NULL,			/* filter, filterarg */
1123 		    ALE_RX_CMB_SZ,		/* maxsize */
1124 		    1,				/* nsegments */
1125 		    ALE_RX_CMB_SZ,		/* maxsegsize */
1126 		    0,				/* flags */
1127 		    NULL, NULL,			/* lockfunc, lockarg */
1128 		    &sc->ale_cdata.ale_rx_page[i].cmb_tag);
1129 		if (error != 0) {
1130 			device_printf(sc->ale_dev,
1131 			    "could not create Rx page %d CMB DMA tag.\n", i);
1132 			goto fail;
1133 		}
1134 	}
1135 
1136 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1137 	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
1138 	    (void **)&sc->ale_cdata.ale_tx_ring,
1139 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1140 	    &sc->ale_cdata.ale_tx_ring_map);
1141 	if (error != 0) {
1142 		device_printf(sc->ale_dev,
1143 		    "could not allocate DMA'able memory for Tx ring.\n");
1144 		goto fail;
1145 	}
1146 	ctx.ale_busaddr = 0;
1147 	error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
1148 	    sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
1149 	    ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
1150 	if (error != 0 || ctx.ale_busaddr == 0) {
1151 		device_printf(sc->ale_dev,
1152 		    "could not load DMA'able memory for Tx ring.\n");
1153 		goto fail;
1154 	}
1155 	sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
1156 
1157 	/* Rx pages. */
1158 	for (i = 0; i < ALE_RX_PAGES; i++) {
1159 		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
1160 		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
1161 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1162 		    &sc->ale_cdata.ale_rx_page[i].page_map);
1163 		if (error != 0) {
1164 			device_printf(sc->ale_dev,
1165 			    "could not allocate DMA'able memory for "
1166 			    "Rx page %d.\n", i);
1167 			goto fail;
1168 		}
1169 		ctx.ale_busaddr = 0;
1170 		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
1171 		    sc->ale_cdata.ale_rx_page[i].page_map,
1172 		    sc->ale_cdata.ale_rx_page[i].page_addr,
1173 		    sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
1174 		if (error != 0 || ctx.ale_busaddr == 0) {
1175 			device_printf(sc->ale_dev,
1176 			    "could not load DMA'able memory for "
1177 			    "Rx page %d.\n", i);
1178 			goto fail;
1179 		}
1180 		sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
1181 	}
1182 
1183 	/* Tx CMB. */
1184 	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
1185 	    (void **)&sc->ale_cdata.ale_tx_cmb,
1186 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1187 	    &sc->ale_cdata.ale_tx_cmb_map);
1188 	if (error != 0) {
1189 		device_printf(sc->ale_dev,
1190 		    "could not allocate DMA'able memory for Tx CMB.\n");
1191 		goto fail;
1192 	}
1193 	ctx.ale_busaddr = 0;
1194 	error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
1195 	    sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
1196 	    ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1197 	if (error != 0 || ctx.ale_busaddr == 0) {
1198 		device_printf(sc->ale_dev,
1199 		    "could not load DMA'able memory for Tx CMB.\n");
1200 		goto fail;
1201 	}
1202 	sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
1203 
1204 	/* Rx CMB. */
1205 	for (i = 0; i < ALE_RX_PAGES; i++) {
1206 		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1207 		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
1208 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1209 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
1210 		if (error != 0) {
1211 			device_printf(sc->ale_dev, "could not allocate "
1212 			    "DMA'able memory for Rx page %d CMB.\n", i);
1213 			goto fail;
1214 		}
1215 		ctx.ale_busaddr = 0;
1216 		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1217 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
1218 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1219 		    ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1220 		if (error != 0 || ctx.ale_busaddr == 0) {
1221 			device_printf(sc->ale_dev, "could not load DMA'able "
1222 			    "memory for Rx page %d CMB.\n", i);
1223 			goto fail;
1224 		}
1225 		sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
1226 	}
1227 
1228 	/*
1229 	 * Tx descriptors/RXF0/CMB DMA blocks share the same
1230 	 * high address region of 64bit DMA address space.
1231 	 */
1232 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1233 	    (error = ale_check_boundary(sc)) != 0) {
1234 		device_printf(sc->ale_dev, "4GB boundary crossed, "
1235 		    "switching to 32bit DMA addressing mode.\n");
1236 		ale_dma_free(sc);
1237 		/*
1238 		 * Limit max allowable DMA address space to 32bit
1239 		 * and try again.
1240 		 */
1241 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1242 		goto again;
1243 	}
1244 
1245 	/*
1246 	 * Create Tx buffer parent tag.
1247 	 * AR81xx allows 64bit DMA addressing of Tx buffers so it
1248 	 * needs separate parent DMA tag as parent DMA address space
1249 	 * could be restricted to be within 32bit address space by
1250 	 * 4GB boundary crossing.
1251 	 */
1252 	error = bus_dma_tag_create(
1253 	    bus_get_dma_tag(sc->ale_dev), /* parent */
1254 	    1, 0,			/* alignment, boundary */
1255 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1256 	    BUS_SPACE_MAXADDR,		/* highaddr */
1257 	    NULL, NULL,			/* filter, filterarg */
1258 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1259 	    0,				/* nsegments */
1260 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1261 	    0,				/* flags */
1262 	    NULL, NULL,			/* lockfunc, lockarg */
1263 	    &sc->ale_cdata.ale_buffer_tag);
1264 	if (error != 0) {
1265 		device_printf(sc->ale_dev,
1266 		    "could not create parent buffer DMA tag.\n");
1267 		goto fail;
1268 	}
1269 
1270 	/* Create DMA tag for Tx buffers. */
1271 	error = bus_dma_tag_create(
1272 	    sc->ale_cdata.ale_buffer_tag, /* parent */
1273 	    1, 0,			/* alignment, boundary */
1274 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1275 	    BUS_SPACE_MAXADDR,		/* highaddr */
1276 	    NULL, NULL,			/* filter, filterarg */
1277 	    ALE_TSO_MAXSIZE,		/* maxsize */
1278 	    ALE_MAXTXSEGS,		/* nsegments */
1279 	    ALE_TSO_MAXSEGSIZE,		/* maxsegsize */
1280 	    0,				/* flags */
1281 	    NULL, NULL,			/* lockfunc, lockarg */
1282 	    &sc->ale_cdata.ale_tx_tag);
1283 	if (error != 0) {
1284 		device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
1285 		goto fail;
1286 	}
1287 
1288 	/* Create DMA maps for Tx buffers. */
1289 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1290 		txd = &sc->ale_cdata.ale_txdesc[i];
1291 		txd->tx_m = NULL;
1292 		txd->tx_dmamap = NULL;
1293 		error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
1294 		    &txd->tx_dmamap);
1295 		if (error != 0) {
1296 			device_printf(sc->ale_dev,
1297 			    "could not create Tx dmamap.\n");
1298 			goto fail;
1299 		}
1300 	}
1301 
1302 fail:
1303 	return (error);
1304 }
1305 
1306 static void
1307 ale_dma_free(struct ale_softc *sc)
1308 {
1309 	struct ale_txdesc *txd;
1310 	int i;
1311 
1312 	/* Tx buffers. */
1313 	if (sc->ale_cdata.ale_tx_tag != NULL) {
1314 		for (i = 0; i < ALE_TX_RING_CNT; i++) {
1315 			txd = &sc->ale_cdata.ale_txdesc[i];
1316 			if (txd->tx_dmamap != NULL) {
1317 				bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
1318 				    txd->tx_dmamap);
1319 				txd->tx_dmamap = NULL;
1320 			}
1321 		}
1322 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
1323 		sc->ale_cdata.ale_tx_tag = NULL;
1324 	}
1325 	/* Tx descriptor ring. */
1326 	if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
1327 		if (sc->ale_cdata.ale_tx_ring_paddr != 0)
1328 			bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
1329 			    sc->ale_cdata.ale_tx_ring_map);
1330 		if (sc->ale_cdata.ale_tx_ring != NULL)
1331 			bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
1332 			    sc->ale_cdata.ale_tx_ring,
1333 			    sc->ale_cdata.ale_tx_ring_map);
1334 		sc->ale_cdata.ale_tx_ring_paddr = 0;
1335 		sc->ale_cdata.ale_tx_ring = NULL;
1336 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
1337 		sc->ale_cdata.ale_tx_ring_tag = NULL;
1338 	}
1339 	/* Rx page block. */
1340 	for (i = 0; i < ALE_RX_PAGES; i++) {
1341 		if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
1342 			if (sc->ale_cdata.ale_rx_page[i].page_paddr != 0)
1343 				bus_dmamap_unload(
1344 				    sc->ale_cdata.ale_rx_page[i].page_tag,
1345 				    sc->ale_cdata.ale_rx_page[i].page_map);
1346 			if (sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
1347 				bus_dmamem_free(
1348 				    sc->ale_cdata.ale_rx_page[i].page_tag,
1349 				    sc->ale_cdata.ale_rx_page[i].page_addr,
1350 				    sc->ale_cdata.ale_rx_page[i].page_map);
1351 			sc->ale_cdata.ale_rx_page[i].page_paddr = 0;
1352 			sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
1353 			bus_dma_tag_destroy(
1354 			    sc->ale_cdata.ale_rx_page[i].page_tag);
1355 			sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
1356 		}
1357 	}
1358 	/* Rx CMB. */
1359 	for (i = 0; i < ALE_RX_PAGES; i++) {
1360 		if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
1361 			if (sc->ale_cdata.ale_rx_page[i].cmb_paddr != 0)
1362 				bus_dmamap_unload(
1363 				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1364 				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1365 			if (sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
1366 				bus_dmamem_free(
1367 				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1368 				    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1369 				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1370 			sc->ale_cdata.ale_rx_page[i].cmb_paddr = 0;
1371 			sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
1372 			bus_dma_tag_destroy(
1373 			    sc->ale_cdata.ale_rx_page[i].cmb_tag);
1374 			sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
1375 		}
1376 	}
1377 	/* Tx CMB. */
1378 	if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
1379 		if (sc->ale_cdata.ale_tx_cmb_paddr != 0)
1380 			bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
1381 			    sc->ale_cdata.ale_tx_cmb_map);
1382 		if (sc->ale_cdata.ale_tx_cmb != NULL)
1383 			bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
1384 			    sc->ale_cdata.ale_tx_cmb,
1385 			    sc->ale_cdata.ale_tx_cmb_map);
1386 		sc->ale_cdata.ale_tx_cmb_paddr = 0;
1387 		sc->ale_cdata.ale_tx_cmb = NULL;
1388 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
1389 		sc->ale_cdata.ale_tx_cmb_tag = NULL;
1390 	}
1391 	if (sc->ale_cdata.ale_buffer_tag != NULL) {
1392 		bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
1393 		sc->ale_cdata.ale_buffer_tag = NULL;
1394 	}
1395 	if (sc->ale_cdata.ale_parent_tag != NULL) {
1396 		bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
1397 		sc->ale_cdata.ale_parent_tag = NULL;
1398 	}
1399 }
1400 
1401 static int
1402 ale_shutdown(device_t dev)
1403 {
1404 
1405 	return (ale_suspend(dev));
1406 }
1407 
1408 /*
1409  * Note, this driver resets the link speed to 10/100Mbps by
1410  * restarting auto-negotiation in suspend/shutdown phase but we
1411  * don't know whether that auto-negotiation would succeed or not
1412  * as driver has no control after powering off/suspend operation.
1413  * If the renegotiation fail WOL may not work. Running at 1Gbps
1414  * will draw more power than 375mA at 3.3V which is specified in
1415  * PCI specification and that would result in complete
1416  * shutdowning power to ethernet controller.
1417  *
1418  * TODO
1419  * Save current negotiated media speed/duplex/flow-control to
1420  * softc and restore the same link again after resuming. PHY
1421  * handling such as power down/resetting to 100Mbps may be better
1422  * handled in suspend method in phy driver.
1423  */
1424 static void
1425 ale_setlinkspeed(struct ale_softc *sc)
1426 {
1427 	struct mii_data *mii;
1428 	int aneg, i;
1429 
1430 	mii = device_get_softc(sc->ale_miibus);
1431 	mii_pollstat(mii);
1432 	aneg = 0;
1433 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1434 	    (IFM_ACTIVE | IFM_AVALID)) {
1435 		switch IFM_SUBTYPE(mii->mii_media_active) {
1436 		case IFM_10_T:
1437 		case IFM_100_TX:
1438 			return;
1439 		case IFM_1000_T:
1440 			aneg++;
1441 			break;
1442 		default:
1443 			break;
1444 		}
1445 	}
1446 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
1447 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1448 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1449 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1450 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1451 	DELAY(1000);
1452 	if (aneg != 0) {
1453 		/*
1454 		 * Poll link state until ale(4) get a 10/100Mbps link.
1455 		 */
1456 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1457 			mii_pollstat(mii);
1458 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1459 			    == (IFM_ACTIVE | IFM_AVALID)) {
1460 				switch (IFM_SUBTYPE(
1461 				    mii->mii_media_active)) {
1462 				case IFM_10_T:
1463 				case IFM_100_TX:
1464 					ale_mac_config(sc);
1465 					return;
1466 				default:
1467 					break;
1468 				}
1469 			}
1470 			ALE_UNLOCK(sc);
1471 			pause("alelnk", hz);
1472 			ALE_LOCK(sc);
1473 		}
1474 		if (i == MII_ANEGTICKS_GIGE)
1475 			device_printf(sc->ale_dev,
1476 			    "establishing a link failed, WOL may not work!");
1477 	}
1478 	/*
1479 	 * No link, force MAC to have 100Mbps, full-duplex link.
1480 	 * This is the last resort and may/may not work.
1481 	 */
1482 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1483 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1484 	ale_mac_config(sc);
1485 }
1486 
1487 static void
1488 ale_setwol(struct ale_softc *sc)
1489 {
1490 	struct ifnet *ifp;
1491 	uint32_t reg, pmcs;
1492 	uint16_t pmstat;
1493 	int pmc;
1494 
1495 	ALE_LOCK_ASSERT(sc);
1496 
1497 	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
1498 		/* Disable WOL. */
1499 		CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1500 		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1501 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1502 		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1503 		/* Force PHY power down. */
1504 		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1505 		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1506 		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
1507 		    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
1508 		    GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
1509 		return;
1510 	}
1511 
1512 	ifp = sc->ale_ifp;
1513 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1514 		if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
1515 			ale_setlinkspeed(sc);
1516 	}
1517 
1518 	pmcs = 0;
1519 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1520 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1521 	CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
1522 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1523 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1524 	    MAC_CFG_BCAST);
1525 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1526 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1527 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1528 		reg |= MAC_CFG_RX_ENB;
1529 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1530 
1531 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1532 		/* WOL disabled, PHY power down. */
1533 		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1534 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1535 		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1536 		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1537 		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1538 		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
1539 		    GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
1540 		    GPHY_CTRL_PWDOWN_HW);
1541 	}
1542 	/* Request PME. */
1543 	pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
1544 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1545 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1546 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1547 	pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1548 }
1549 
1550 static int
1551 ale_suspend(device_t dev)
1552 {
1553 	struct ale_softc *sc;
1554 
1555 	sc = device_get_softc(dev);
1556 
1557 	ALE_LOCK(sc);
1558 	ale_stop(sc);
1559 	ale_setwol(sc);
1560 	ALE_UNLOCK(sc);
1561 
1562 	return (0);
1563 }
1564 
1565 static int
1566 ale_resume(device_t dev)
1567 {
1568 	struct ale_softc *sc;
1569 	struct ifnet *ifp;
1570 	int pmc;
1571 	uint16_t pmstat;
1572 
1573 	sc = device_get_softc(dev);
1574 
1575 	ALE_LOCK(sc);
1576 	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
1577 		/* Disable PME and clear PME status. */
1578 		pmstat = pci_read_config(sc->ale_dev,
1579 		    pmc + PCIR_POWER_STATUS, 2);
1580 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1581 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1582 			pci_write_config(sc->ale_dev,
1583 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
1584 		}
1585 	}
1586 	/* Reset PHY. */
1587 	ale_phy_reset(sc);
1588 	ifp = sc->ale_ifp;
1589 	if ((ifp->if_flags & IFF_UP) != 0) {
1590 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1591 		ale_init_locked(sc);
1592 	}
1593 	ALE_UNLOCK(sc);
1594 
1595 	return (0);
1596 }
1597 
1598 static int
1599 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
1600 {
1601 	struct ale_txdesc *txd, *txd_last;
1602 	struct tx_desc *desc;
1603 	struct mbuf *m;
1604 	struct ip *ip;
1605 	struct tcphdr *tcp;
1606 	bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
1607 	bus_dmamap_t map;
1608 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1609 	int error, i, nsegs, prod, si;
1610 
1611 	ALE_LOCK_ASSERT(sc);
1612 
1613 	M_ASSERTPKTHDR((*m_head));
1614 
1615 	m = *m_head;
1616 	ip = NULL;
1617 	tcp = NULL;
1618 	cflags = vtag = 0;
1619 	ip_off = poff = 0;
1620 	if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1621 		/*
1622 		 * AR81xx requires offset of TCP/UDP payload in its Tx
1623 		 * descriptor to perform hardware Tx checksum offload.
1624 		 * Additionally, TSO requires IP/TCP header size and
1625 		 * modification of IP/TCP header in order to make TSO
1626 		 * engine work. This kind of operation takes many CPU
1627 		 * cycles on FreeBSD so fast host CPU is required to
1628 		 * get smooth TSO performance.
1629 		 */
1630 		struct ether_header *eh;
1631 
1632 		if (M_WRITABLE(m) == 0) {
1633 			/* Get a writable copy. */
1634 			m = m_dup(*m_head, M_NOWAIT);
1635 			/* Release original mbufs. */
1636 			m_freem(*m_head);
1637 			if (m == NULL) {
1638 				*m_head = NULL;
1639 				return (ENOBUFS);
1640 			}
1641 			*m_head = m;
1642 		}
1643 
1644 		/*
1645 		 * Buggy-controller requires 4 byte aligned Tx buffer
1646 		 * to make custom checksum offload work.
1647 		 */
1648 		if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
1649 		    (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
1650 		    (mtod(m, intptr_t) & 3) != 0) {
1651 			m = m_defrag(*m_head, M_NOWAIT);
1652 			if (m == NULL) {
1653 				m_freem(*m_head);
1654 				*m_head = NULL;
1655 				return (ENOBUFS);
1656 			}
1657 			*m_head = m;
1658 		}
1659 
1660 		ip_off = sizeof(struct ether_header);
1661 		m = m_pullup(m, ip_off);
1662 		if (m == NULL) {
1663 			*m_head = NULL;
1664 			return (ENOBUFS);
1665 		}
1666 		eh = mtod(m, struct ether_header *);
1667 		/*
1668 		 * Check if hardware VLAN insertion is off.
1669 		 * Additional check for LLC/SNAP frame?
1670 		 */
1671 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1672 			ip_off = sizeof(struct ether_vlan_header);
1673 			m = m_pullup(m, ip_off);
1674 			if (m == NULL) {
1675 				*m_head = NULL;
1676 				return (ENOBUFS);
1677 			}
1678 		}
1679 		m = m_pullup(m, ip_off + sizeof(struct ip));
1680 		if (m == NULL) {
1681 			*m_head = NULL;
1682 			return (ENOBUFS);
1683 		}
1684 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1685 		poff = ip_off + (ip->ip_hl << 2);
1686 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1687 			/*
1688 			 * XXX
1689 			 * AR81xx requires the first descriptor should
1690 			 * not include any TCP playload for TSO case.
1691 			 * (i.e. ethernet header + IP + TCP header only)
1692 			 * m_pullup(9) above will ensure this too.
1693 			 * However it's not correct if the first mbuf
1694 			 * of the chain does not use cluster.
1695 			 */
1696 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1697 			if (m == NULL) {
1698 				*m_head = NULL;
1699 				return (ENOBUFS);
1700 			}
1701 			ip = (struct ip *)(mtod(m, char *) + ip_off);
1702 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1703 			m = m_pullup(m, poff + (tcp->th_off << 2));
1704 			if (m == NULL) {
1705 				*m_head = NULL;
1706 				return (ENOBUFS);
1707 			}
1708 			/*
1709 			 * AR81xx requires IP/TCP header size and offset as
1710 			 * well as TCP pseudo checksum which complicates
1711 			 * TSO configuration. I guess this comes from the
1712 			 * adherence to Microsoft NDIS Large Send
1713 			 * specification which requires insertion of
1714 			 * pseudo checksum by upper stack. The pseudo
1715 			 * checksum that NDIS refers to doesn't include
1716 			 * TCP payload length so ale(4) should recompute
1717 			 * the pseudo checksum here. Hopefully this wouldn't
1718 			 * be much burden on modern CPUs.
1719 			 * Reset IP checksum and recompute TCP pseudo
1720 			 * checksum as NDIS specification said.
1721 			 */
1722 			ip->ip_sum = 0;
1723 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1724 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1725 		}
1726 		*m_head = m;
1727 	}
1728 
1729 	si = prod = sc->ale_cdata.ale_tx_prod;
1730 	txd = &sc->ale_cdata.ale_txdesc[prod];
1731 	txd_last = txd;
1732 	map = txd->tx_dmamap;
1733 
1734 	error =  bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1735 	    *m_head, txsegs, &nsegs, 0);
1736 	if (error == EFBIG) {
1737 		m = m_collapse(*m_head, M_NOWAIT, ALE_MAXTXSEGS);
1738 		if (m == NULL) {
1739 			m_freem(*m_head);
1740 			*m_head = NULL;
1741 			return (ENOMEM);
1742 		}
1743 		*m_head = m;
1744 		error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1745 		    *m_head, txsegs, &nsegs, 0);
1746 		if (error != 0) {
1747 			m_freem(*m_head);
1748 			*m_head = NULL;
1749 			return (error);
1750 		}
1751 	} else if (error != 0)
1752 		return (error);
1753 	if (nsegs == 0) {
1754 		m_freem(*m_head);
1755 		*m_head = NULL;
1756 		return (EIO);
1757 	}
1758 
1759 	/* Check descriptor overrun. */
1760 	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) {
1761 		bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
1762 		return (ENOBUFS);
1763 	}
1764 	bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
1765 
1766 	m = *m_head;
1767 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1768 		/* Request TSO and set MSS. */
1769 		cflags |= ALE_TD_TSO;
1770 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
1771 		/* Set IP/TCP header size. */
1772 		cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
1773 		cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
1774 	} else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
1775 		/*
1776 		 * AR81xx supports Tx custom checksum offload feature
1777 		 * that offloads single 16bit checksum computation.
1778 		 * So you can choose one among IP, TCP and UDP.
1779 		 * Normally driver sets checksum start/insertion
1780 		 * position from the information of TCP/UDP frame as
1781 		 * TCP/UDP checksum takes more time than that of IP.
1782 		 * However it seems that custom checksum offload
1783 		 * requires 4 bytes aligned Tx buffers due to hardware
1784 		 * bug.
1785 		 * AR81xx also supports explicit Tx checksum computation
1786 		 * if it is told that the size of IP header and TCP
1787 		 * header(for UDP, the header size does not matter
1788 		 * because it's fixed length). However with this scheme
1789 		 * TSO does not work so you have to choose one either
1790 		 * TSO or explicit Tx checksum offload. I chosen TSO
1791 		 * plus custom checksum offload with work-around which
1792 		 * will cover most common usage for this consumer
1793 		 * ethernet controller. The work-around takes a lot of
1794 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
1795 		 * boundary, though.
1796 		 */
1797 		cflags |= ALE_TD_CXSUM;
1798 		/* Set checksum start offset. */
1799 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1800 		/* Set checksum insertion position of TCP/UDP. */
1801 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1802 		    ALE_TD_CSUM_XSUMOFFSET_SHIFT);
1803 	}
1804 
1805 	/* Configure VLAN hardware tag insertion. */
1806 	if ((m->m_flags & M_VLANTAG) != 0) {
1807 		vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1808 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1809 		cflags |= ALE_TD_INSERT_VLAN_TAG;
1810 	}
1811 
1812 	i = 0;
1813 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1814 		/*
1815 		 * Make sure the first fragment contains
1816 		 * only ethernet and IP/TCP header with options.
1817 		 */
1818 		hdrlen =  poff + (tcp->th_off << 2);
1819 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1820 		desc->addr = htole64(txsegs[i].ds_addr);
1821 		desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag);
1822 		desc->flags = htole32(cflags);
1823 		sc->ale_cdata.ale_tx_cnt++;
1824 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1825 		if (m->m_len - hdrlen > 0) {
1826 			/* Handle remaining payload of the first fragment. */
1827 			desc = &sc->ale_cdata.ale_tx_ring[prod];
1828 			desc->addr = htole64(txsegs[i].ds_addr + hdrlen);
1829 			desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) |
1830 			    vtag);
1831 			desc->flags = htole32(cflags);
1832 			sc->ale_cdata.ale_tx_cnt++;
1833 			ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1834 		}
1835 		i = 1;
1836 	}
1837 	for (; i < nsegs; i++) {
1838 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1839 		desc->addr = htole64(txsegs[i].ds_addr);
1840 		desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
1841 		desc->flags = htole32(cflags);
1842 		sc->ale_cdata.ale_tx_cnt++;
1843 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1844 	}
1845 	/* Update producer index. */
1846 	sc->ale_cdata.ale_tx_prod = prod;
1847 	/* Set TSO header on the first descriptor. */
1848 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1849 		desc = &sc->ale_cdata.ale_tx_ring[si];
1850 		desc->flags |= htole32(ALE_TD_TSO_HDR);
1851 	}
1852 
1853 	/* Finally set EOP on the last descriptor. */
1854 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1855 	desc = &sc->ale_cdata.ale_tx_ring[prod];
1856 	desc->flags |= htole32(ALE_TD_EOP);
1857 
1858 	/* Swap dmamap of the first and the last. */
1859 	txd = &sc->ale_cdata.ale_txdesc[prod];
1860 	map = txd_last->tx_dmamap;
1861 	txd_last->tx_dmamap = txd->tx_dmamap;
1862 	txd->tx_dmamap = map;
1863 	txd->tx_m = m;
1864 
1865 	/* Sync descriptors. */
1866 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
1867 	    sc->ale_cdata.ale_tx_ring_map,
1868 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1869 
1870 	return (0);
1871 }
1872 
1873 static void
1874 ale_start(struct ifnet *ifp)
1875 {
1876         struct ale_softc *sc;
1877 
1878 	sc = ifp->if_softc;
1879 	ALE_LOCK(sc);
1880 	ale_start_locked(ifp);
1881 	ALE_UNLOCK(sc);
1882 }
1883 
1884 static void
1885 ale_start_locked(struct ifnet *ifp)
1886 {
1887         struct ale_softc *sc;
1888         struct mbuf *m_head;
1889 	int enq;
1890 
1891 	sc = ifp->if_softc;
1892 
1893 	ALE_LOCK_ASSERT(sc);
1894 
1895 	/* Reclaim transmitted frames. */
1896 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1897 		ale_txeof(sc);
1898 
1899 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1900 	    IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0)
1901 		return;
1902 
1903 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1904 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1905 		if (m_head == NULL)
1906 			break;
1907 		/*
1908 		 * Pack the data into the transmit ring. If we
1909 		 * don't have room, set the OACTIVE flag and wait
1910 		 * for the NIC to drain the ring.
1911 		 */
1912 		if (ale_encap(sc, &m_head)) {
1913 			if (m_head == NULL)
1914 				break;
1915 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1916 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1917 			break;
1918 		}
1919 
1920 		enq++;
1921 		/*
1922 		 * If there's a BPF listener, bounce a copy of this frame
1923 		 * to him.
1924 		 */
1925 		ETHER_BPF_MTAP(ifp, m_head);
1926 	}
1927 
1928 	if (enq > 0) {
1929 		/* Kick. */
1930 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1931 		    sc->ale_cdata.ale_tx_prod);
1932 		/* Set a timeout in case the chip goes out to lunch. */
1933 		sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
1934 	}
1935 }
1936 
1937 static void
1938 ale_watchdog(struct ale_softc *sc)
1939 {
1940 	struct ifnet *ifp;
1941 
1942 	ALE_LOCK_ASSERT(sc);
1943 
1944 	if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
1945 		return;
1946 
1947 	ifp = sc->ale_ifp;
1948 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1949 		if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
1950 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1951 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1952 		ale_init_locked(sc);
1953 		return;
1954 	}
1955 	if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
1956 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1957 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1958 	ale_init_locked(sc);
1959 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1960 		ale_start_locked(ifp);
1961 }
1962 
1963 static int
1964 ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1965 {
1966 	struct ale_softc *sc;
1967 	struct ifreq *ifr;
1968 	struct mii_data *mii;
1969 	int error, mask;
1970 
1971 	sc = ifp->if_softc;
1972 	ifr = (struct ifreq *)data;
1973 	error = 0;
1974 	switch (cmd) {
1975 	case SIOCSIFMTU:
1976 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
1977 		    ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
1978 		    ifr->ifr_mtu > ETHERMTU))
1979 			error = EINVAL;
1980 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1981 			ALE_LOCK(sc);
1982 			ifp->if_mtu = ifr->ifr_mtu;
1983 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1984 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1985 				ale_init_locked(sc);
1986 			}
1987 			ALE_UNLOCK(sc);
1988 		}
1989 		break;
1990 	case SIOCSIFFLAGS:
1991 		ALE_LOCK(sc);
1992 		if ((ifp->if_flags & IFF_UP) != 0) {
1993 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1994 				if (((ifp->if_flags ^ sc->ale_if_flags)
1995 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1996 					ale_rxfilter(sc);
1997 			} else {
1998 				ale_init_locked(sc);
1999 			}
2000 		} else {
2001 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2002 				ale_stop(sc);
2003 		}
2004 		sc->ale_if_flags = ifp->if_flags;
2005 		ALE_UNLOCK(sc);
2006 		break;
2007 	case SIOCADDMULTI:
2008 	case SIOCDELMULTI:
2009 		ALE_LOCK(sc);
2010 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2011 			ale_rxfilter(sc);
2012 		ALE_UNLOCK(sc);
2013 		break;
2014 	case SIOCSIFMEDIA:
2015 	case SIOCGIFMEDIA:
2016 		mii = device_get_softc(sc->ale_miibus);
2017 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2018 		break;
2019 	case SIOCSIFCAP:
2020 		ALE_LOCK(sc);
2021 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2022 		if ((mask & IFCAP_TXCSUM) != 0 &&
2023 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2024 			ifp->if_capenable ^= IFCAP_TXCSUM;
2025 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2026 				ifp->if_hwassist |= ALE_CSUM_FEATURES;
2027 			else
2028 				ifp->if_hwassist &= ~ALE_CSUM_FEATURES;
2029 		}
2030 		if ((mask & IFCAP_RXCSUM) != 0 &&
2031 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2032 			ifp->if_capenable ^= IFCAP_RXCSUM;
2033 		if ((mask & IFCAP_TSO4) != 0 &&
2034 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2035 			ifp->if_capenable ^= IFCAP_TSO4;
2036 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2037 				ifp->if_hwassist |= CSUM_TSO;
2038 			else
2039 				ifp->if_hwassist &= ~CSUM_TSO;
2040 		}
2041 
2042 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2043 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2044 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2045 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2046 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2047 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2048 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2049 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2050 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2051 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2052 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2053 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2054 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2055 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2056 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2057 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2058 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
2059 			ale_rxvlan(sc);
2060 		}
2061 		ALE_UNLOCK(sc);
2062 		VLAN_CAPABILITIES(ifp);
2063 		break;
2064 	default:
2065 		error = ether_ioctl(ifp, cmd, data);
2066 		break;
2067 	}
2068 
2069 	return (error);
2070 }
2071 
2072 static void
2073 ale_mac_config(struct ale_softc *sc)
2074 {
2075 	struct mii_data *mii;
2076 	uint32_t reg;
2077 
2078 	ALE_LOCK_ASSERT(sc);
2079 
2080 	mii = device_get_softc(sc->ale_miibus);
2081 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2082 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2083 	    MAC_CFG_SPEED_MASK);
2084 	/* Reprogram MAC with resolved speed/duplex. */
2085 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2086 	case IFM_10_T:
2087 	case IFM_100_TX:
2088 		reg |= MAC_CFG_SPEED_10_100;
2089 		break;
2090 	case IFM_1000_T:
2091 		reg |= MAC_CFG_SPEED_1000;
2092 		break;
2093 	}
2094 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2095 		reg |= MAC_CFG_FULL_DUPLEX;
2096 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2097 			reg |= MAC_CFG_TX_FC;
2098 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2099 			reg |= MAC_CFG_RX_FC;
2100 	}
2101 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2102 }
2103 
2104 static void
2105 ale_stats_clear(struct ale_softc *sc)
2106 {
2107 	struct smb sb;
2108 	uint32_t *reg;
2109 	int i;
2110 
2111 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2112 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2113 		i += sizeof(uint32_t);
2114 	}
2115 	/* Read Tx statistics. */
2116 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2117 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2118 		i += sizeof(uint32_t);
2119 	}
2120 }
2121 
2122 static void
2123 ale_stats_update(struct ale_softc *sc)
2124 {
2125 	struct ale_hw_stats *stat;
2126 	struct smb sb, *smb;
2127 	struct ifnet *ifp;
2128 	uint32_t *reg;
2129 	int i;
2130 
2131 	ALE_LOCK_ASSERT(sc);
2132 
2133 	ifp = sc->ale_ifp;
2134 	stat = &sc->ale_stats;
2135 	smb = &sb;
2136 
2137 	/* Read Rx statistics. */
2138 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2139 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2140 		i += sizeof(uint32_t);
2141 	}
2142 	/* Read Tx statistics. */
2143 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2144 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2145 		i += sizeof(uint32_t);
2146 	}
2147 
2148 	/* Rx stats. */
2149 	stat->rx_frames += smb->rx_frames;
2150 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2151 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2152 	stat->rx_pause_frames += smb->rx_pause_frames;
2153 	stat->rx_control_frames += smb->rx_control_frames;
2154 	stat->rx_crcerrs += smb->rx_crcerrs;
2155 	stat->rx_lenerrs += smb->rx_lenerrs;
2156 	stat->rx_bytes += smb->rx_bytes;
2157 	stat->rx_runts += smb->rx_runts;
2158 	stat->rx_fragments += smb->rx_fragments;
2159 	stat->rx_pkts_64 += smb->rx_pkts_64;
2160 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2161 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2162 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2163 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2164 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2165 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2166 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2167 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2168 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2169 	stat->rx_alignerrs += smb->rx_alignerrs;
2170 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2171 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2172 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2173 
2174 	/* Tx stats. */
2175 	stat->tx_frames += smb->tx_frames;
2176 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2177 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2178 	stat->tx_pause_frames += smb->tx_pause_frames;
2179 	stat->tx_excess_defer += smb->tx_excess_defer;
2180 	stat->tx_control_frames += smb->tx_control_frames;
2181 	stat->tx_deferred += smb->tx_deferred;
2182 	stat->tx_bytes += smb->tx_bytes;
2183 	stat->tx_pkts_64 += smb->tx_pkts_64;
2184 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2185 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2186 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2187 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2188 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2189 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2190 	stat->tx_single_colls += smb->tx_single_colls;
2191 	stat->tx_multi_colls += smb->tx_multi_colls;
2192 	stat->tx_late_colls += smb->tx_late_colls;
2193 	stat->tx_excess_colls += smb->tx_excess_colls;
2194 	stat->tx_underrun += smb->tx_underrun;
2195 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2196 	stat->tx_lenerrs += smb->tx_lenerrs;
2197 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2198 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2199 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2200 
2201 	/* Update counters in ifnet. */
2202 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2203 
2204 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2205 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2206 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2207 
2208 	if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_late_colls +
2209 	    smb->tx_excess_colls + smb->tx_underrun + smb->tx_pkts_truncated);
2210 
2211 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2212 
2213 	if_inc_counter(ifp, IFCOUNTER_IERRORS,
2214 	    smb->rx_crcerrs + smb->rx_lenerrs +
2215 	    smb->rx_runts + smb->rx_pkts_truncated +
2216 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2217 	    smb->rx_alignerrs);
2218 }
2219 
2220 static int
2221 ale_intr(void *arg)
2222 {
2223 	struct ale_softc *sc;
2224 	uint32_t status;
2225 
2226 	sc = (struct ale_softc *)arg;
2227 
2228 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2229 	if ((status & ALE_INTRS) == 0)
2230 		return (FILTER_STRAY);
2231 	/* Disable interrupts. */
2232 	CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
2233 	taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2234 
2235 	return (FILTER_HANDLED);
2236 }
2237 
2238 static void
2239 ale_int_task(void *arg, int pending)
2240 {
2241 	struct ale_softc *sc;
2242 	struct ifnet *ifp;
2243 	uint32_t status;
2244 	int more;
2245 
2246 	sc = (struct ale_softc *)arg;
2247 
2248 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2249 	ALE_LOCK(sc);
2250 	if (sc->ale_morework != 0)
2251 		status |= INTR_RX_PKT;
2252 	if ((status & ALE_INTRS) == 0)
2253 		goto done;
2254 
2255 	/* Acknowledge interrupts but still disable interrupts. */
2256 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
2257 
2258 	ifp = sc->ale_ifp;
2259 	more = 0;
2260 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2261 		more = ale_rxeof(sc, sc->ale_process_limit);
2262 		if (more == EAGAIN)
2263 			sc->ale_morework = 1;
2264 		else if (more == EIO) {
2265 			sc->ale_stats.reset_brk_seq++;
2266 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2267 			ale_init_locked(sc);
2268 			ALE_UNLOCK(sc);
2269 			return;
2270 		}
2271 
2272 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2273 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2274 				device_printf(sc->ale_dev,
2275 				    "DMA read error! -- resetting\n");
2276 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2277 				device_printf(sc->ale_dev,
2278 				    "DMA write error! -- resetting\n");
2279 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2280 			ale_init_locked(sc);
2281 			ALE_UNLOCK(sc);
2282 			return;
2283 		}
2284 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2285 			ale_start_locked(ifp);
2286 	}
2287 
2288 	if (more == EAGAIN ||
2289 	    (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
2290 		ALE_UNLOCK(sc);
2291 		taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2292 		return;
2293 	}
2294 
2295 done:
2296 	ALE_UNLOCK(sc);
2297 
2298 	/* Re-enable interrupts. */
2299 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
2300 }
2301 
2302 static void
2303 ale_txeof(struct ale_softc *sc)
2304 {
2305 	struct ifnet *ifp;
2306 	struct ale_txdesc *txd;
2307 	uint32_t cons, prod;
2308 	int prog;
2309 
2310 	ALE_LOCK_ASSERT(sc);
2311 
2312 	ifp = sc->ale_ifp;
2313 
2314 	if (sc->ale_cdata.ale_tx_cnt == 0)
2315 		return;
2316 
2317 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2318 	    sc->ale_cdata.ale_tx_ring_map,
2319 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2320 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
2321 		bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2322 		    sc->ale_cdata.ale_tx_cmb_map,
2323 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2324 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
2325 	} else
2326 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
2327 	cons = sc->ale_cdata.ale_tx_cons;
2328 	/*
2329 	 * Go through our Tx list and free mbufs for those
2330 	 * frames which have been transmitted.
2331 	 */
2332 	for (prog = 0; cons != prod; prog++,
2333 	    ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
2334 		if (sc->ale_cdata.ale_tx_cnt <= 0)
2335 			break;
2336 		prog++;
2337 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2338 		sc->ale_cdata.ale_tx_cnt--;
2339 		txd = &sc->ale_cdata.ale_txdesc[cons];
2340 		if (txd->tx_m != NULL) {
2341 			/* Reclaim transmitted mbufs. */
2342 			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2343 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2344 			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2345 			    txd->tx_dmamap);
2346 			m_freem(txd->tx_m);
2347 			txd->tx_m = NULL;
2348 		}
2349 	}
2350 
2351 	if (prog > 0) {
2352 		sc->ale_cdata.ale_tx_cons = cons;
2353 		/*
2354 		 * Unarm watchdog timer only when there is no pending
2355 		 * Tx descriptors in queue.
2356 		 */
2357 		if (sc->ale_cdata.ale_tx_cnt == 0)
2358 			sc->ale_watchdog_timer = 0;
2359 	}
2360 }
2361 
2362 static void
2363 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
2364     uint32_t length, uint32_t *prod)
2365 {
2366 	struct ale_rx_page *rx_page;
2367 
2368 	rx_page = *page;
2369 	/* Update consumer position. */
2370 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
2371 	    ALE_RX_PAGE_ALIGN);
2372 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
2373 		/*
2374 		 * End of Rx page reached, let hardware reuse
2375 		 * this page.
2376 		 */
2377 		rx_page->cons = 0;
2378 		*rx_page->cmb_addr = 0;
2379 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2380 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2381 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
2382 		    RXF_VALID);
2383 		/* Switch to alternate Rx page. */
2384 		sc->ale_cdata.ale_rx_curp ^= 1;
2385 		rx_page = *page =
2386 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2387 		/* Page flipped, sync CMB and Rx page. */
2388 		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2389 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2390 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2391 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2392 		/* Sync completed, cache updated producer index. */
2393 		*prod = *rx_page->cmb_addr;
2394 	}
2395 }
2396 
2397 
2398 /*
2399  * It seems that AR81xx controller can compute partial checksum.
2400  * The partial checksum value can be used to accelerate checksum
2401  * computation for fragmented TCP/UDP packets. Upper network stack
2402  * already takes advantage of the partial checksum value in IP
2403  * reassembly stage. But I'm not sure the correctness of the
2404  * partial hardware checksum assistance due to lack of data sheet.
2405  * In addition, the Rx feature of controller that requires copying
2406  * for every frames effectively nullifies one of most nice offload
2407  * capability of controller.
2408  */
2409 static void
2410 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
2411 {
2412 	struct ifnet *ifp;
2413 	struct ip *ip;
2414 	char *p;
2415 
2416 	ifp = sc->ale_ifp;
2417 	m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2418 	if ((status & ALE_RD_IPCSUM_NOK) == 0)
2419 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2420 
2421 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
2422 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
2423 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
2424 		    ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
2425 			m->m_pkthdr.csum_flags |=
2426 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2427 			m->m_pkthdr.csum_data = 0xffff;
2428 		}
2429 	} else {
2430 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
2431 		    (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
2432 			p = mtod(m, char *);
2433 			p += ETHER_HDR_LEN;
2434 			if ((status & ALE_RD_802_3) != 0)
2435 				p += LLC_SNAPFRAMELEN;
2436 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 &&
2437 			    (status & ALE_RD_VLAN) != 0)
2438 				p += ETHER_VLAN_ENCAP_LEN;
2439 			ip = (struct ip *)p;
2440 			if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
2441 				return;
2442 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2443 			    CSUM_PSEUDO_HDR;
2444 			m->m_pkthdr.csum_data = 0xffff;
2445 		}
2446 	}
2447 	/*
2448 	 * Don't mark bad checksum for TCP/UDP frames
2449 	 * as fragmented frames may always have set
2450 	 * bad checksummed bit of frame status.
2451 	 */
2452 }
2453 
2454 /* Process received frames. */
2455 static int
2456 ale_rxeof(struct ale_softc *sc, int count)
2457 {
2458 	struct ale_rx_page *rx_page;
2459 	struct rx_rs *rs;
2460 	struct ifnet *ifp;
2461 	struct mbuf *m;
2462 	uint32_t length, prod, seqno, status, vtags;
2463 	int prog;
2464 
2465 	ifp = sc->ale_ifp;
2466 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2467 	bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2468 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2469 	bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2470 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2471 	/*
2472 	 * Don't directly access producer index as hardware may
2473 	 * update it while Rx handler is in progress. It would
2474 	 * be even better if there is a way to let hardware
2475 	 * know how far driver processed its received frames.
2476 	 * Alternatively, hardware could provide a way to disable
2477 	 * CMB updates until driver acknowledges the end of CMB
2478 	 * access.
2479 	 */
2480 	prod = *rx_page->cmb_addr;
2481 	for (prog = 0; prog < count; prog++) {
2482 		if (rx_page->cons >= prod)
2483 			break;
2484 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
2485 		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
2486 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
2487 			/*
2488 			 * Normally I believe this should not happen unless
2489 			 * severe driver bug or corrupted memory. However
2490 			 * it seems to happen under certain conditions which
2491 			 * is triggered by abrupt Rx events such as initiation
2492 			 * of bulk transfer of remote host. It's not easy to
2493 			 * reproduce this and I doubt it could be related
2494 			 * with FIFO overflow of hardware or activity of Tx
2495 			 * CMB updates. I also remember similar behaviour
2496 			 * seen on RealTek 8139 which uses resembling Rx
2497 			 * scheme.
2498 			 */
2499 			if (bootverbose)
2500 				device_printf(sc->ale_dev,
2501 				    "garbled seq: %u, expected: %u -- "
2502 				    "resetting!\n", seqno,
2503 				    sc->ale_cdata.ale_rx_seqno);
2504 			return (EIO);
2505 		}
2506 		/* Frame received. */
2507 		sc->ale_cdata.ale_rx_seqno++;
2508 		length = ALE_RX_BYTES(le32toh(rs->length));
2509 		status = le32toh(rs->flags);
2510 		if ((status & ALE_RD_ERROR) != 0) {
2511 			/*
2512 			 * We want to pass the following frames to upper
2513 			 * layer regardless of error status of Rx return
2514 			 * status.
2515 			 *
2516 			 *  o IP/TCP/UDP checksum is bad.
2517 			 *  o frame length and protocol specific length
2518 			 *     does not match.
2519 			 */
2520 			if ((status & (ALE_RD_CRC | ALE_RD_CODE |
2521 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
2522 			    ALE_RD_TRUNC)) != 0) {
2523 				ale_rx_update_page(sc, &rx_page, length, &prod);
2524 				continue;
2525 			}
2526 		}
2527 		/*
2528 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
2529 		 * from hardware limitation). For jumbo frames we could
2530 		 * get a slightly better performance if driver use
2531 		 * m_getjcl(9) with proper buffer size argument. However
2532 		 * that would make code more complicated and I don't
2533 		 * think users would expect good Rx performance numbers
2534 		 * on these low-end consumer ethernet controller.
2535 		 */
2536 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
2537 		    ETHER_ALIGN, ifp, NULL);
2538 		if (m == NULL) {
2539 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2540 			ale_rx_update_page(sc, &rx_page, length, &prod);
2541 			continue;
2542 		}
2543 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2544 		    (status & ALE_RD_IPV4) != 0)
2545 			ale_rxcsum(sc, m, status);
2546 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2547 		    (status & ALE_RD_VLAN) != 0) {
2548 			vtags = ALE_RX_VLAN(le32toh(rs->vtags));
2549 			m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
2550 			m->m_flags |= M_VLANTAG;
2551 		}
2552 
2553 		/* Pass it to upper layer. */
2554 		ALE_UNLOCK(sc);
2555 		(*ifp->if_input)(ifp, m);
2556 		ALE_LOCK(sc);
2557 
2558 		ale_rx_update_page(sc, &rx_page, length, &prod);
2559 	}
2560 
2561 	return (count > 0 ? 0 : EAGAIN);
2562 }
2563 
2564 static void
2565 ale_tick(void *arg)
2566 {
2567 	struct ale_softc *sc;
2568 	struct mii_data *mii;
2569 
2570 	sc = (struct ale_softc *)arg;
2571 
2572 	ALE_LOCK_ASSERT(sc);
2573 
2574 	mii = device_get_softc(sc->ale_miibus);
2575 	mii_tick(mii);
2576 	ale_stats_update(sc);
2577 	/*
2578 	 * Reclaim Tx buffers that have been transferred. It's not
2579 	 * needed here but it would release allocated mbuf chains
2580 	 * faster and limit the maximum delay to a hz.
2581 	 */
2582 	ale_txeof(sc);
2583 	ale_watchdog(sc);
2584 	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2585 }
2586 
2587 static void
2588 ale_reset(struct ale_softc *sc)
2589 {
2590 	uint32_t reg;
2591 	int i;
2592 
2593 	/* Initialize PCIe module. From Linux. */
2594 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2595 
2596 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
2597 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2598 		DELAY(10);
2599 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
2600 			break;
2601 	}
2602 	if (i == 0)
2603 		device_printf(sc->ale_dev, "master reset timeout!\n");
2604 
2605 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2606 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
2607 			break;
2608 		DELAY(10);
2609 	}
2610 
2611 	if (i == 0)
2612 		device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
2613 }
2614 
2615 static void
2616 ale_init(void *xsc)
2617 {
2618 	struct ale_softc *sc;
2619 
2620 	sc = (struct ale_softc *)xsc;
2621 	ALE_LOCK(sc);
2622 	ale_init_locked(sc);
2623 	ALE_UNLOCK(sc);
2624 }
2625 
2626 static void
2627 ale_init_locked(struct ale_softc *sc)
2628 {
2629 	struct ifnet *ifp;
2630 	struct mii_data *mii;
2631 	uint8_t eaddr[ETHER_ADDR_LEN];
2632 	bus_addr_t paddr;
2633 	uint32_t reg, rxf_hi, rxf_lo;
2634 
2635 	ALE_LOCK_ASSERT(sc);
2636 
2637 	ifp = sc->ale_ifp;
2638 	mii = device_get_softc(sc->ale_miibus);
2639 
2640 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2641 		return;
2642 	/*
2643 	 * Cancel any pending I/O.
2644 	 */
2645 	ale_stop(sc);
2646 	/*
2647 	 * Reset the chip to a known state.
2648 	 */
2649 	ale_reset(sc);
2650 	/* Initialize Tx descriptors, DMA memory blocks. */
2651 	ale_init_rx_pages(sc);
2652 	ale_init_tx_ring(sc);
2653 
2654 	/* Reprogram the station address. */
2655 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2656 	CSR_WRITE_4(sc, ALE_PAR0,
2657 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2658 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
2659 	/*
2660 	 * Clear WOL status and disable all WOL feature as WOL
2661 	 * would interfere Rx operation under normal environments.
2662 	 */
2663 	CSR_READ_4(sc, ALE_WOL_CFG);
2664 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
2665 	/*
2666 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
2667 	 * the same high address part of DMAable region.
2668 	 */
2669 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
2670 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
2671 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
2672 	CSR_WRITE_4(sc, ALE_TPD_CNT,
2673 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
2674 	/* Set Rx page base address, note we use single queue. */
2675 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
2676 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
2677 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
2678 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
2679 	/* Set Tx/Rx CMB addresses. */
2680 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
2681 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
2682 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
2683 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
2684 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
2685 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
2686 	/* Mark RXF0 is valid. */
2687 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
2688 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
2689 	/*
2690 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
2691 	 * multi-queue yet.
2692 	 */
2693 
2694 	/* Set Rx page size, excluding guard frame size. */
2695 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
2696 	/* Tell hardware that we're ready to load DMA blocks. */
2697 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
2698 
2699 	/* Set Rx/Tx interrupt trigger threshold. */
2700 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
2701 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
2702 	/*
2703 	 * XXX
2704 	 * Set interrupt trigger timer, its purpose and relation
2705 	 * with interrupt moderation mechanism is not clear yet.
2706 	 */
2707 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
2708 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
2709 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
2710 
2711 	/* Configure interrupt moderation timer. */
2712 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
2713 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
2714 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
2715 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
2716 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
2717 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2718 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
2719 		reg |= MASTER_IM_RX_TIMER_ENB;
2720 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
2721 		reg |= MASTER_IM_TX_TIMER_ENB;
2722 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
2723 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
2724 
2725 	/* Set Maximum frame size of controller. */
2726 	if (ifp->if_mtu < ETHERMTU)
2727 		sc->ale_max_frame_size = ETHERMTU;
2728 	else
2729 		sc->ale_max_frame_size = ifp->if_mtu;
2730 	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2731 	    ETHER_CRC_LEN;
2732 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
2733 	/* Configure IPG/IFG parameters. */
2734 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
2735 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2736 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2737 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2738 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2739 	/* Set parameters for half-duplex media. */
2740 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
2741 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2742 	    HDPX_CFG_LCOL_MASK) |
2743 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2744 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2745 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2746 	    HDPX_CFG_ABEBT_MASK) |
2747 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2748 	    HDPX_CFG_JAMIPG_MASK));
2749 
2750 	/* Configure Tx jumbo frame parameters. */
2751 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2752 		if (ifp->if_mtu < ETHERMTU)
2753 			reg = sc->ale_max_frame_size;
2754 		else if (ifp->if_mtu < 6 * 1024)
2755 			reg = (sc->ale_max_frame_size * 2) / 3;
2756 		else
2757 			reg = sc->ale_max_frame_size / 2;
2758 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
2759 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
2760 		    TX_JUMBO_THRESH_UNIT_SHIFT);
2761 	}
2762 	/* Configure TxQ. */
2763 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
2764 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
2765 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2766 	    TXQ_CFG_TPD_BURST_MASK;
2767 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
2768 
2769 	/* Configure Rx jumbo frame & flow control parameters. */
2770 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2771 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
2772 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
2773 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
2774 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
2775 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
2776 		    RX_JUMBO_LKAH_MASK));
2777 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
2778 		rxf_hi = (reg * 7) / 10;
2779 		rxf_lo = (reg * 3)/ 10;
2780 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
2781 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2782 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
2783 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2784 		    RX_FIFO_PAUSE_THRESH_HI_MASK));
2785 	}
2786 
2787 	/* Disable RSS. */
2788 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
2789 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
2790 
2791 	/* Configure RxQ. */
2792 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
2793 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2794 
2795 	/* Configure DMA parameters. */
2796 	reg = 0;
2797 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
2798 		reg |= DMA_CFG_TXCMB_ENB;
2799 	CSR_WRITE_4(sc, ALE_DMA_CFG,
2800 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
2801 	    sc->ale_dma_rd_burst | reg |
2802 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
2803 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2804 	    DMA_CFG_RD_DELAY_CNT_MASK) |
2805 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2806 	    DMA_CFG_WR_DELAY_CNT_MASK));
2807 
2808 	/*
2809 	 * Hardware can be configured to issue SMB interrupt based
2810 	 * on programmed interval. Since there is a callout that is
2811 	 * invoked for every hz in driver we use that instead of
2812 	 * relying on periodic SMB interrupt.
2813 	 */
2814 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
2815 	/* Clear MAC statistics. */
2816 	ale_stats_clear(sc);
2817 
2818 	/*
2819 	 * Configure Tx/Rx MACs.
2820 	 *  - Auto-padding for short frames.
2821 	 *  - Enable CRC generation.
2822 	 *  Actual reconfiguration of MAC for resolved speed/duplex
2823 	 *  is followed after detection of link establishment.
2824 	 *  AR81xx always does checksum computation regardless of
2825 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
2826 	 *  cause Rx handling issue for fragmented IP datagrams due
2827 	 *  to silicon bug.
2828 	 */
2829 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2830 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2831 	    MAC_CFG_PREAMBLE_MASK);
2832 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
2833 		reg |= MAC_CFG_SPEED_10_100;
2834 	else
2835 		reg |= MAC_CFG_SPEED_1000;
2836 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2837 
2838 	/* Set up the receive filter. */
2839 	ale_rxfilter(sc);
2840 	ale_rxvlan(sc);
2841 
2842 	/* Acknowledge all pending interrupts and clear it. */
2843 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
2844 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2845 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
2846 
2847 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2848 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2849 
2850 	sc->ale_flags &= ~ALE_FLAG_LINK;
2851 	/* Switch to the current media. */
2852 	mii_mediachg(mii);
2853 
2854 	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2855 }
2856 
2857 static void
2858 ale_stop(struct ale_softc *sc)
2859 {
2860 	struct ifnet *ifp;
2861 	struct ale_txdesc *txd;
2862 	uint32_t reg;
2863 	int i;
2864 
2865 	ALE_LOCK_ASSERT(sc);
2866 	/*
2867 	 * Mark the interface down and cancel the watchdog timer.
2868 	 */
2869 	ifp = sc->ale_ifp;
2870 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2871 	sc->ale_flags &= ~ALE_FLAG_LINK;
2872 	callout_stop(&sc->ale_tick_ch);
2873 	sc->ale_watchdog_timer = 0;
2874 	ale_stats_update(sc);
2875 	/* Disable interrupts. */
2876 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
2877 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2878 	/* Disable queue processing and DMA. */
2879 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
2880 	reg &= ~TXQ_CFG_ENB;
2881 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
2882 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
2883 	reg &= ~RXQ_CFG_ENB;
2884 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
2885 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
2886 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
2887 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
2888 	DELAY(1000);
2889 	/* Stop Rx/Tx MACs. */
2890 	ale_stop_mac(sc);
2891 	/* Disable interrupts which might be touched in taskq handler. */
2892 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2893 
2894 	/*
2895 	 * Free TX mbufs still in the queues.
2896 	 */
2897 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2898 		txd = &sc->ale_cdata.ale_txdesc[i];
2899 		if (txd->tx_m != NULL) {
2900 			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2901 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2902 			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2903 			    txd->tx_dmamap);
2904 			m_freem(txd->tx_m);
2905 			txd->tx_m = NULL;
2906 		}
2907         }
2908 }
2909 
2910 static void
2911 ale_stop_mac(struct ale_softc *sc)
2912 {
2913 	uint32_t reg;
2914 	int i;
2915 
2916 	ALE_LOCK_ASSERT(sc);
2917 
2918 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2919 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2920 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2921 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2922 	}
2923 
2924 	for (i = ALE_TIMEOUT; i > 0; i--) {
2925 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
2926 		if (reg == 0)
2927 			break;
2928 		DELAY(10);
2929 	}
2930 	if (i == 0)
2931 		device_printf(sc->ale_dev,
2932 		    "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
2933 }
2934 
2935 static void
2936 ale_init_tx_ring(struct ale_softc *sc)
2937 {
2938 	struct ale_txdesc *txd;
2939 	int i;
2940 
2941 	ALE_LOCK_ASSERT(sc);
2942 
2943 	sc->ale_cdata.ale_tx_prod = 0;
2944 	sc->ale_cdata.ale_tx_cons = 0;
2945 	sc->ale_cdata.ale_tx_cnt = 0;
2946 
2947 	bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
2948 	bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
2949 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2950 		txd = &sc->ale_cdata.ale_txdesc[i];
2951 		txd->tx_m = NULL;
2952 	}
2953 	*sc->ale_cdata.ale_tx_cmb = 0;
2954 	bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2955 	    sc->ale_cdata.ale_tx_cmb_map,
2956 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2957 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2958 	    sc->ale_cdata.ale_tx_ring_map,
2959 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2960 }
2961 
2962 static void
2963 ale_init_rx_pages(struct ale_softc *sc)
2964 {
2965 	struct ale_rx_page *rx_page;
2966 	int i;
2967 
2968 	ALE_LOCK_ASSERT(sc);
2969 
2970 	sc->ale_morework = 0;
2971 	sc->ale_cdata.ale_rx_seqno = 0;
2972 	sc->ale_cdata.ale_rx_curp = 0;
2973 
2974 	for (i = 0; i < ALE_RX_PAGES; i++) {
2975 		rx_page = &sc->ale_cdata.ale_rx_page[i];
2976 		bzero(rx_page->page_addr, sc->ale_pagesize);
2977 		bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
2978 		rx_page->cons = 0;
2979 		*rx_page->cmb_addr = 0;
2980 		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2981 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2982 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2983 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2984 	}
2985 }
2986 
2987 static void
2988 ale_rxvlan(struct ale_softc *sc)
2989 {
2990 	struct ifnet *ifp;
2991 	uint32_t reg;
2992 
2993 	ALE_LOCK_ASSERT(sc);
2994 
2995 	ifp = sc->ale_ifp;
2996 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2997 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2998 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2999 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3000 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
3001 }
3002 
3003 static u_int
3004 ale_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3005 {
3006 	uint32_t crc, *mchash = arg;
3007 
3008 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
3009 	mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3010 
3011 	return (1);
3012 }
3013 
3014 static void
3015 ale_rxfilter(struct ale_softc *sc)
3016 {
3017 	struct ifnet *ifp;
3018 	uint32_t mchash[2];
3019 	uint32_t rxcfg;
3020 
3021 	ALE_LOCK_ASSERT(sc);
3022 
3023 	ifp = sc->ale_ifp;
3024 
3025 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
3026 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3027 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3028 		rxcfg |= MAC_CFG_BCAST;
3029 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3030 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3031 			rxcfg |= MAC_CFG_PROMISC;
3032 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3033 			rxcfg |= MAC_CFG_ALLMULTI;
3034 		CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
3035 		CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
3036 		CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3037 		return;
3038 	}
3039 
3040 	/* Program new filter. */
3041 	bzero(mchash, sizeof(mchash));
3042 	if_foreach_llmaddr(ifp, ale_hash_maddr, &mchash);
3043 
3044 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
3045 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
3046 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3047 }
3048 
3049 static int
3050 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3051 {
3052 	int error, value;
3053 
3054 	if (arg1 == NULL)
3055 		return (EINVAL);
3056 	value = *(int *)arg1;
3057 	error = sysctl_handle_int(oidp, &value, 0, req);
3058 	if (error || req->newptr == NULL)
3059 		return (error);
3060 	if (value < low || value > high)
3061 		return (EINVAL);
3062         *(int *)arg1 = value;
3063 
3064         return (0);
3065 }
3066 
3067 static int
3068 sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
3069 {
3070 	return (sysctl_int_range(oidp, arg1, arg2, req,
3071 	    ALE_PROC_MIN, ALE_PROC_MAX));
3072 }
3073 
3074 static int
3075 sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
3076 {
3077 
3078 	return (sysctl_int_range(oidp, arg1, arg2, req,
3079 	    ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
3080 }
3081