xref: /freebsd/sys/dev/ale/if_ale.c (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/module.h>
43 #include <sys/rman.h>
44 #include <sys/queue.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/taskqueue.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/if_arp.h>
54 #include <net/ethernet.h>
55 #include <net/if_dl.h>
56 #include <net/if_llc.h>
57 #include <net/if_media.h>
58 #include <net/if_types.h>
59 #include <net/if_vlan_var.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/ip.h>
64 #include <netinet/tcp.h>
65 
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68 
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 
72 #include <machine/bus.h>
73 #include <machine/in_cksum.h>
74 
75 #include <dev/ale/if_alereg.h>
76 #include <dev/ale/if_alevar.h>
77 
78 /* "device miibus" required.  See GENERIC if you get errors here. */
79 #include "miibus_if.h"
80 
81 /* For more information about Tx checksum offload issues see ale_encap(). */
82 #define	ALE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
83 
84 MODULE_DEPEND(ale, pci, 1, 1, 1);
85 MODULE_DEPEND(ale, ether, 1, 1, 1);
86 MODULE_DEPEND(ale, miibus, 1, 1, 1);
87 
88 /* Tunables. */
89 static int msi_disable = 0;
90 static int msix_disable = 0;
91 TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
92 TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
93 
94 /*
95  * Devices supported by this driver.
96  */
97 static const struct ale_dev {
98 	uint16_t	ale_vendorid;
99 	uint16_t	ale_deviceid;
100 	const char	*ale_name;
101 } ale_devs[] = {
102     { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
103     "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
104 };
105 
106 static int	ale_attach(device_t);
107 static int	ale_check_boundary(struct ale_softc *);
108 static int	ale_detach(device_t);
109 static int	ale_dma_alloc(struct ale_softc *);
110 static void	ale_dma_free(struct ale_softc *);
111 static void	ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
112 static int	ale_encap(struct ale_softc *, struct mbuf **);
113 static void	ale_get_macaddr(struct ale_softc *);
114 static void	ale_init(void *);
115 static void	ale_init_locked(struct ale_softc *);
116 static void	ale_init_rx_pages(struct ale_softc *);
117 static void	ale_init_tx_ring(struct ale_softc *);
118 static void	ale_int_task(void *, int);
119 static int	ale_intr(void *);
120 static int	ale_ioctl(if_t, u_long, caddr_t);
121 static void	ale_mac_config(struct ale_softc *);
122 static int	ale_miibus_readreg(device_t, int, int);
123 static void	ale_miibus_statchg(device_t);
124 static int	ale_miibus_writereg(device_t, int, int, int);
125 static int	ale_mediachange(if_t);
126 static void	ale_mediastatus(if_t, struct ifmediareq *);
127 static void	ale_phy_reset(struct ale_softc *);
128 static int	ale_probe(device_t);
129 static void	ale_reset(struct ale_softc *);
130 static int	ale_resume(device_t);
131 static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
132     uint32_t, uint32_t *);
133 static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
134 static int	ale_rxeof(struct ale_softc *sc, int);
135 static void	ale_rxfilter(struct ale_softc *);
136 static void	ale_rxvlan(struct ale_softc *);
137 static void	ale_setlinkspeed(struct ale_softc *);
138 static void	ale_setwol(struct ale_softc *);
139 static int	ale_shutdown(device_t);
140 static void	ale_start(if_t);
141 static void	ale_start_locked(if_t);
142 static void	ale_stats_clear(struct ale_softc *);
143 static void	ale_stats_update(struct ale_softc *);
144 static void	ale_stop(struct ale_softc *);
145 static void	ale_stop_mac(struct ale_softc *);
146 static int	ale_suspend(device_t);
147 static void	ale_sysctl_node(struct ale_softc *);
148 static void	ale_tick(void *);
149 static void	ale_txeof(struct ale_softc *);
150 static void	ale_watchdog(struct ale_softc *);
151 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
152 static int	sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
153 static int	sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
154 
155 static device_method_t ale_methods[] = {
156 	/* Device interface. */
157 	DEVMETHOD(device_probe,		ale_probe),
158 	DEVMETHOD(device_attach,	ale_attach),
159 	DEVMETHOD(device_detach,	ale_detach),
160 	DEVMETHOD(device_shutdown,	ale_shutdown),
161 	DEVMETHOD(device_suspend,	ale_suspend),
162 	DEVMETHOD(device_resume,	ale_resume),
163 
164 	/* MII interface. */
165 	DEVMETHOD(miibus_readreg,	ale_miibus_readreg),
166 	DEVMETHOD(miibus_writereg,	ale_miibus_writereg),
167 	DEVMETHOD(miibus_statchg,	ale_miibus_statchg),
168 
169 	DEVMETHOD_END
170 };
171 
172 static driver_t ale_driver = {
173 	"ale",
174 	ale_methods,
175 	sizeof(struct ale_softc)
176 };
177 
178 DRIVER_MODULE(ale, pci, ale_driver, NULL, NULL);
179 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ale, ale_devs,
180     nitems(ale_devs));
181 DRIVER_MODULE(miibus, ale, miibus_driver, NULL, NULL);
182 
183 static struct resource_spec ale_res_spec_mem[] = {
184 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
185 	{ -1,			0,		0 }
186 };
187 
188 static struct resource_spec ale_irq_spec_legacy[] = {
189 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
190 	{ -1,			0,		0 }
191 };
192 
193 static struct resource_spec ale_irq_spec_msi[] = {
194 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
195 	{ -1,			0,		0 }
196 };
197 
198 static struct resource_spec ale_irq_spec_msix[] = {
199 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
200 	{ -1,			0,		0 }
201 };
202 
203 static int
204 ale_miibus_readreg(device_t dev, int phy, int reg)
205 {
206 	struct ale_softc *sc;
207 	uint32_t v;
208 	int i;
209 
210 	sc = device_get_softc(dev);
211 
212 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
213 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
214 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
215 		DELAY(5);
216 		v = CSR_READ_4(sc, ALE_MDIO);
217 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
218 			break;
219 	}
220 
221 	if (i == 0) {
222 		device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
223 		return (0);
224 	}
225 
226 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
227 }
228 
229 static int
230 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
231 {
232 	struct ale_softc *sc;
233 	uint32_t v;
234 	int i;
235 
236 	sc = device_get_softc(dev);
237 
238 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
239 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
240 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
241 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
242 		DELAY(5);
243 		v = CSR_READ_4(sc, ALE_MDIO);
244 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
245 			break;
246 	}
247 
248 	if (i == 0)
249 		device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
250 
251 	return (0);
252 }
253 
254 static void
255 ale_miibus_statchg(device_t dev)
256 {
257 	struct ale_softc *sc;
258 	struct mii_data *mii;
259 	if_t ifp;
260 	uint32_t reg;
261 
262 	sc = device_get_softc(dev);
263 	mii = device_get_softc(sc->ale_miibus);
264 	ifp = sc->ale_ifp;
265 	if (mii == NULL || ifp == NULL ||
266 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
267 		return;
268 
269 	sc->ale_flags &= ~ALE_FLAG_LINK;
270 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
271 	    (IFM_ACTIVE | IFM_AVALID)) {
272 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
273 		case IFM_10_T:
274 		case IFM_100_TX:
275 			sc->ale_flags |= ALE_FLAG_LINK;
276 			break;
277 		case IFM_1000_T:
278 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
279 				sc->ale_flags |= ALE_FLAG_LINK;
280 			break;
281 		default:
282 			break;
283 		}
284 	}
285 
286 	/* Stop Rx/Tx MACs. */
287 	ale_stop_mac(sc);
288 
289 	/* Program MACs with resolved speed/duplex/flow-control. */
290 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
291 		ale_mac_config(sc);
292 		/* Reenable Tx/Rx MACs. */
293 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
294 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
295 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
296 	}
297 }
298 
299 static void
300 ale_mediastatus(if_t ifp, struct ifmediareq *ifmr)
301 {
302 	struct ale_softc *sc;
303 	struct mii_data *mii;
304 
305 	sc = if_getsoftc(ifp);
306 	ALE_LOCK(sc);
307 	if ((if_getflags(ifp) & IFF_UP) == 0) {
308 		ALE_UNLOCK(sc);
309 		return;
310 	}
311 	mii = device_get_softc(sc->ale_miibus);
312 
313 	mii_pollstat(mii);
314 	ifmr->ifm_status = mii->mii_media_status;
315 	ifmr->ifm_active = mii->mii_media_active;
316 	ALE_UNLOCK(sc);
317 }
318 
319 static int
320 ale_mediachange(if_t ifp)
321 {
322 	struct ale_softc *sc;
323 	struct mii_data *mii;
324 	struct mii_softc *miisc;
325 	int error;
326 
327 	sc = if_getsoftc(ifp);
328 	ALE_LOCK(sc);
329 	mii = device_get_softc(sc->ale_miibus);
330 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
331 		PHY_RESET(miisc);
332 	error = mii_mediachg(mii);
333 	ALE_UNLOCK(sc);
334 
335 	return (error);
336 }
337 
338 static int
339 ale_probe(device_t dev)
340 {
341 	const struct ale_dev *sp;
342 	int i;
343 	uint16_t vendor, devid;
344 
345 	vendor = pci_get_vendor(dev);
346 	devid = pci_get_device(dev);
347 	sp = ale_devs;
348 	for (i = 0; i < nitems(ale_devs); i++) {
349 		if (vendor == sp->ale_vendorid &&
350 		    devid == sp->ale_deviceid) {
351 			device_set_desc(dev, sp->ale_name);
352 			return (BUS_PROBE_DEFAULT);
353 		}
354 		sp++;
355 	}
356 
357 	return (ENXIO);
358 }
359 
360 static void
361 ale_get_macaddr(struct ale_softc *sc)
362 {
363 	uint32_t ea[2], reg;
364 	int i, vpdc;
365 
366 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
367 	if ((reg & SPI_VPD_ENB) != 0) {
368 		reg &= ~SPI_VPD_ENB;
369 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
370 	}
371 
372 	if (pci_find_cap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
373 		/*
374 		 * PCI VPD capability found, let TWSI reload EEPROM.
375 		 * This will set ethernet address of controller.
376 		 */
377 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
378 		    TWSI_CTRL_SW_LD_START);
379 		for (i = 100; i > 0; i--) {
380 			DELAY(1000);
381 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
382 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
383 				break;
384 		}
385 		if (i == 0)
386 			device_printf(sc->ale_dev,
387 			    "reloading EEPROM timeout!\n");
388 	} else {
389 		if (bootverbose)
390 			device_printf(sc->ale_dev,
391 			    "PCI VPD capability not found!\n");
392 	}
393 
394 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
395 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
396 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
397 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
398 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
399 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
400 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
401 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
402 }
403 
404 static void
405 ale_phy_reset(struct ale_softc *sc)
406 {
407 
408 	/* Reset magic from Linux. */
409 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
410 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
411 	    GPHY_CTRL_PHY_PLL_ON);
412 	DELAY(1000);
413 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
414 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
415 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
416 	DELAY(1000);
417 
418 #define	ATPHY_DBG_ADDR		0x1D
419 #define	ATPHY_DBG_DATA		0x1E
420 
421 	/* Enable hibernation mode. */
422 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
423 	    ATPHY_DBG_ADDR, 0x0B);
424 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
425 	    ATPHY_DBG_DATA, 0xBC00);
426 	/* Set Class A/B for all modes. */
427 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
428 	    ATPHY_DBG_ADDR, 0x00);
429 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
430 	    ATPHY_DBG_DATA, 0x02EF);
431 	/* Enable 10BT power saving. */
432 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
433 	    ATPHY_DBG_ADDR, 0x12);
434 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
435 	    ATPHY_DBG_DATA, 0x4C04);
436 	/* Adjust 1000T power. */
437 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
438 	    ATPHY_DBG_ADDR, 0x04);
439 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
440 	    ATPHY_DBG_ADDR, 0x8BBB);
441 	/* 10BT center tap voltage. */
442 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
443 	    ATPHY_DBG_ADDR, 0x05);
444 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
445 	    ATPHY_DBG_ADDR, 0x2C46);
446 
447 #undef	ATPHY_DBG_ADDR
448 #undef	ATPHY_DBG_DATA
449 	DELAY(1000);
450 }
451 
452 static int
453 ale_attach(device_t dev)
454 {
455 	struct ale_softc *sc;
456 	if_t ifp;
457 	uint16_t burst;
458 	int error, i, msic, msixc, pmc;
459 	uint32_t rxf_len, txf_len;
460 
461 	error = 0;
462 	sc = device_get_softc(dev);
463 	sc->ale_dev = dev;
464 
465 	mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
466 	    MTX_DEF);
467 	callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
468 	NET_TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
469 
470 	/* Map the device. */
471 	pci_enable_busmaster(dev);
472 	sc->ale_res_spec = ale_res_spec_mem;
473 	sc->ale_irq_spec = ale_irq_spec_legacy;
474 	error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
475 	if (error != 0) {
476 		device_printf(dev, "cannot allocate memory resources.\n");
477 		goto fail;
478 	}
479 
480 	/* Set PHY address. */
481 	sc->ale_phyaddr = ALE_PHY_ADDR;
482 
483 	/* Reset PHY. */
484 	ale_phy_reset(sc);
485 
486 	/* Reset the ethernet controller. */
487 	ale_reset(sc);
488 
489 	/* Get PCI and chip id/revision. */
490 	sc->ale_rev = pci_get_revid(dev);
491 	if (sc->ale_rev >= 0xF0) {
492 		/* L2E Rev. B. AR8114 */
493 		sc->ale_flags |= ALE_FLAG_FASTETHER;
494 	} else {
495 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
496 			/* L1E AR8121 */
497 			sc->ale_flags |= ALE_FLAG_JUMBO;
498 		} else {
499 			/* L2E Rev. A. AR8113 */
500 			sc->ale_flags |= ALE_FLAG_FASTETHER;
501 		}
502 	}
503 	/*
504 	 * All known controllers seems to require 4 bytes alignment
505 	 * of Tx buffers to make Tx checksum offload with custom
506 	 * checksum generation method work.
507 	 */
508 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
509 	/*
510 	 * All known controllers seems to have issues on Rx checksum
511 	 * offload for fragmented IP datagrams.
512 	 */
513 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
514 	/*
515 	 * Don't use Tx CMB. It is known to cause RRS update failure
516 	 * under certain circumstances. Typical phenomenon of the
517 	 * issue would be unexpected sequence number encountered in
518 	 * Rx handler.
519 	 */
520 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
521 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
522 	    MASTER_CHIP_REV_SHIFT;
523 	if (bootverbose) {
524 		device_printf(dev, "PCI device revision : 0x%04x\n",
525 		    sc->ale_rev);
526 		device_printf(dev, "Chip id/revision : 0x%04x\n",
527 		    sc->ale_chip_rev);
528 	}
529 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
530 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
531 	/*
532 	 * Uninitialized hardware returns an invalid chip id/revision
533 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
534 	 */
535 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
536 	    rxf_len == 0xFFFFFFF) {
537 		device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
538 		    "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
539 		    txf_len, rxf_len);
540 		error = ENXIO;
541 		goto fail;
542 	}
543 	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
544 
545 	/* Allocate IRQ resources. */
546 	msixc = pci_msix_count(dev);
547 	msic = pci_msi_count(dev);
548 	if (bootverbose) {
549 		device_printf(dev, "MSIX count : %d\n", msixc);
550 		device_printf(dev, "MSI count : %d\n", msic);
551 	}
552 
553 	/* Prefer MSIX over MSI. */
554 	if (msix_disable == 0 || msi_disable == 0) {
555 		if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
556 		    pci_alloc_msix(dev, &msixc) == 0) {
557 			if (msixc == ALE_MSIX_MESSAGES) {
558 				device_printf(dev, "Using %d MSIX messages.\n",
559 				    msixc);
560 				sc->ale_flags |= ALE_FLAG_MSIX;
561 				sc->ale_irq_spec = ale_irq_spec_msix;
562 			} else
563 				pci_release_msi(dev);
564 		}
565 		if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
566 		    msic == ALE_MSI_MESSAGES &&
567 		    pci_alloc_msi(dev, &msic) == 0) {
568 			if (msic == ALE_MSI_MESSAGES) {
569 				device_printf(dev, "Using %d MSI messages.\n",
570 				    msic);
571 				sc->ale_flags |= ALE_FLAG_MSI;
572 				sc->ale_irq_spec = ale_irq_spec_msi;
573 			} else
574 				pci_release_msi(dev);
575 		}
576 	}
577 
578 	error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
579 	if (error != 0) {
580 		device_printf(dev, "cannot allocate IRQ resources.\n");
581 		goto fail;
582 	}
583 
584 	/* Get DMA parameters from PCIe device control register. */
585 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
586 		sc->ale_flags |= ALE_FLAG_PCIE;
587 		burst = pci_read_config(dev, i + 0x08, 2);
588 		/* Max read request size. */
589 		sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
590 		    DMA_CFG_RD_BURST_SHIFT;
591 		/* Max payload size. */
592 		sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
593 		    DMA_CFG_WR_BURST_SHIFT;
594 		if (bootverbose) {
595 			device_printf(dev, "Read request size : %d bytes.\n",
596 			    128 << ((burst >> 12) & 0x07));
597 			device_printf(dev, "TLP payload size : %d bytes.\n",
598 			    128 << ((burst >> 5) & 0x07));
599 		}
600 	} else {
601 		sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
602 		sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
603 	}
604 
605 	/* Create device sysctl node. */
606 	ale_sysctl_node(sc);
607 
608 	if ((error = ale_dma_alloc(sc)) != 0)
609 		goto fail;
610 
611 	/* Load station address. */
612 	ale_get_macaddr(sc);
613 
614 	ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
615 	if (ifp == NULL) {
616 		device_printf(dev, "cannot allocate ifnet structure.\n");
617 		error = ENXIO;
618 		goto fail;
619 	}
620 
621 	if_setsoftc(ifp, sc);
622 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
623 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
624 	if_setioctlfn(ifp, ale_ioctl);
625 	if_setstartfn(ifp, ale_start);
626 	if_setinitfn(ifp, ale_init);
627 	if_setsendqlen(ifp, ALE_TX_RING_CNT - 1);
628 	if_setsendqready(ifp);
629 	if_setcapabilities(ifp, IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4);
630 	if_sethwassist(ifp, ALE_CSUM_FEATURES | CSUM_TSO);
631 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
632 		sc->ale_flags |= ALE_FLAG_PMCAP;
633 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST, 0);
634 	}
635 	if_setcapenable(ifp, if_getcapabilities(ifp));
636 
637 	/* Set up MII bus. */
638 	error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange,
639 	    ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY,
640 	    MIIF_DOPAUSE);
641 	if (error != 0) {
642 		device_printf(dev, "attaching PHYs failed\n");
643 		goto fail;
644 	}
645 
646 	ether_ifattach(ifp, sc->ale_eaddr);
647 
648 	/* VLAN capability setup. */
649 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
650 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
651 	if_setcapenable(ifp, if_getcapabilities(ifp));
652 	/*
653 	 * Even though controllers supported by ale(3) have Rx checksum
654 	 * offload bug the workaround for fragmented frames seemed to
655 	 * work so far. However it seems Rx checksum offload does not
656 	 * work under certain conditions. So disable Rx checksum offload
657 	 * until I find more clue about it but allow users to override it.
658 	 */
659 	if_setcapenablebit(ifp, 0, IFCAP_RXCSUM);
660 
661 	/* Tell the upper layer(s) we support long frames. */
662 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
663 
664 	/* Create local taskq. */
665 	sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
666 	    taskqueue_thread_enqueue, &sc->ale_tq);
667 	if (sc->ale_tq == NULL) {
668 		device_printf(dev, "could not create taskqueue.\n");
669 		ether_ifdetach(ifp);
670 		error = ENXIO;
671 		goto fail;
672 	}
673 	taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
674 	    device_get_nameunit(sc->ale_dev));
675 
676 	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
677 		msic = ALE_MSIX_MESSAGES;
678 	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
679 		msic = ALE_MSI_MESSAGES;
680 	else
681 		msic = 1;
682 	for (i = 0; i < msic; i++) {
683 		error = bus_setup_intr(dev, sc->ale_irq[i],
684 		    INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
685 		    &sc->ale_intrhand[i]);
686 		if (error != 0)
687 			break;
688 	}
689 	if (error != 0) {
690 		device_printf(dev, "could not set up interrupt handler.\n");
691 		taskqueue_free(sc->ale_tq);
692 		sc->ale_tq = NULL;
693 		ether_ifdetach(ifp);
694 		goto fail;
695 	}
696 
697 fail:
698 	if (error != 0)
699 		ale_detach(dev);
700 
701 	return (error);
702 }
703 
704 static int
705 ale_detach(device_t dev)
706 {
707 	struct ale_softc *sc;
708 	if_t ifp;
709 	int i, msic;
710 
711 	sc = device_get_softc(dev);
712 
713 	ifp = sc->ale_ifp;
714 	if (device_is_attached(dev)) {
715 		ether_ifdetach(ifp);
716 		ALE_LOCK(sc);
717 		ale_stop(sc);
718 		ALE_UNLOCK(sc);
719 		callout_drain(&sc->ale_tick_ch);
720 		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
721 	}
722 
723 	if (sc->ale_tq != NULL) {
724 		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
725 		taskqueue_free(sc->ale_tq);
726 		sc->ale_tq = NULL;
727 	}
728 
729 	if (sc->ale_miibus != NULL) {
730 		device_delete_child(dev, sc->ale_miibus);
731 		sc->ale_miibus = NULL;
732 	}
733 	bus_generic_detach(dev);
734 	ale_dma_free(sc);
735 
736 	if (ifp != NULL) {
737 		if_free(ifp);
738 		sc->ale_ifp = NULL;
739 	}
740 
741 	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
742 		msic = ALE_MSIX_MESSAGES;
743 	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
744 		msic = ALE_MSI_MESSAGES;
745 	else
746 		msic = 1;
747 	for (i = 0; i < msic; i++) {
748 		if (sc->ale_intrhand[i] != NULL) {
749 			bus_teardown_intr(dev, sc->ale_irq[i],
750 			    sc->ale_intrhand[i]);
751 			sc->ale_intrhand[i] = NULL;
752 		}
753 	}
754 
755 	bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
756 	if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
757 		pci_release_msi(dev);
758 	bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
759 	mtx_destroy(&sc->ale_mtx);
760 
761 	return (0);
762 }
763 
764 #define	ALE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
765 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
766 
767 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
768 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
769 
770 static void
771 ale_sysctl_node(struct ale_softc *sc)
772 {
773 	struct sysctl_ctx_list *ctx;
774 	struct sysctl_oid_list *child, *parent;
775 	struct sysctl_oid *tree;
776 	struct ale_hw_stats *stats;
777 	int error;
778 
779 	stats = &sc->ale_stats;
780 	ctx = device_get_sysctl_ctx(sc->ale_dev);
781 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
782 
783 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
784 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->ale_int_rx_mod,
785 	    0, sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
786 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
787 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->ale_int_tx_mod,
788 	    0, sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
789 	/* Pull in device tunables. */
790 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
791 	error = resource_int_value(device_get_name(sc->ale_dev),
792 	    device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
793 	if (error == 0) {
794 		if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
795 		    sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
796 			device_printf(sc->ale_dev, "int_rx_mod value out of "
797 			    "range; using default: %d\n",
798 			    ALE_IM_RX_TIMER_DEFAULT);
799 			sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
800 		}
801 	}
802 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
803 	error = resource_int_value(device_get_name(sc->ale_dev),
804 	    device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
805 	if (error == 0) {
806 		if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
807 		    sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
808 			device_printf(sc->ale_dev, "int_tx_mod value out of "
809 			    "range; using default: %d\n",
810 			    ALE_IM_TX_TIMER_DEFAULT);
811 			sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
812 		}
813 	}
814 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
815 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
816 	    &sc->ale_process_limit, 0, sysctl_hw_ale_proc_limit, "I",
817 	    "max number of Rx events to process");
818 	/* Pull in device tunables. */
819 	sc->ale_process_limit = ALE_PROC_DEFAULT;
820 	error = resource_int_value(device_get_name(sc->ale_dev),
821 	    device_get_unit(sc->ale_dev), "process_limit",
822 	    &sc->ale_process_limit);
823 	if (error == 0) {
824 		if (sc->ale_process_limit < ALE_PROC_MIN ||
825 		    sc->ale_process_limit > ALE_PROC_MAX) {
826 			device_printf(sc->ale_dev,
827 			    "process_limit value out of range; "
828 			    "using default: %d\n", ALE_PROC_DEFAULT);
829 			sc->ale_process_limit = ALE_PROC_DEFAULT;
830 		}
831 	}
832 
833 	/* Misc statistics. */
834 	ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
835 	    &stats->reset_brk_seq,
836 	    "Controller resets due to broken Rx sequnce number");
837 
838 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
839 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ATE statistics");
840 	parent = SYSCTL_CHILDREN(tree);
841 
842 	/* Rx statistics. */
843 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
844 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
845 	child = SYSCTL_CHILDREN(tree);
846 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
847 	    &stats->rx_frames, "Good frames");
848 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
849 	    &stats->rx_bcast_frames, "Good broadcast frames");
850 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
851 	    &stats->rx_mcast_frames, "Good multicast frames");
852 	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
853 	    &stats->rx_pause_frames, "Pause control frames");
854 	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
855 	    &stats->rx_control_frames, "Control frames");
856 	ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
857 	    &stats->rx_crcerrs, "CRC errors");
858 	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
859 	    &stats->rx_lenerrs, "Frames with length mismatched");
860 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
861 	    &stats->rx_bytes, "Good octets");
862 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
863 	    &stats->rx_bcast_bytes, "Good broadcast octets");
864 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
865 	    &stats->rx_mcast_bytes, "Good multicast octets");
866 	ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
867 	    &stats->rx_runts, "Too short frames");
868 	ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
869 	    &stats->rx_fragments, "Fragmented frames");
870 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
871 	    &stats->rx_pkts_64, "64 bytes frames");
872 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
873 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
874 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
875 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
876 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
877 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
878 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
879 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
880 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
881 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
882 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
883 	    &stats->rx_pkts_1519_max, "1519 to max frames");
884 	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
885 	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
886 	ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
887 	    &stats->rx_fifo_oflows, "FIFO overflows");
888 	ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
889 	    &stats->rx_rrs_errs, "Return status write-back errors");
890 	ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
891 	    &stats->rx_alignerrs, "Alignment errors");
892 	ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
893 	    &stats->rx_pkts_filtered,
894 	    "Frames dropped due to address filtering");
895 
896 	/* Tx statistics. */
897 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
898 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
899 	child = SYSCTL_CHILDREN(tree);
900 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
901 	    &stats->tx_frames, "Good frames");
902 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
903 	    &stats->tx_bcast_frames, "Good broadcast frames");
904 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
905 	    &stats->tx_mcast_frames, "Good multicast frames");
906 	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
907 	    &stats->tx_pause_frames, "Pause control frames");
908 	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
909 	    &stats->tx_control_frames, "Control frames");
910 	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
911 	    &stats->tx_excess_defer, "Frames with excessive derferrals");
912 	ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
913 	    &stats->tx_excess_defer, "Frames with derferrals");
914 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
915 	    &stats->tx_bytes, "Good octets");
916 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
917 	    &stats->tx_bcast_bytes, "Good broadcast octets");
918 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
919 	    &stats->tx_mcast_bytes, "Good multicast octets");
920 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
921 	    &stats->tx_pkts_64, "64 bytes frames");
922 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
923 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
924 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
925 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
926 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
927 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
928 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
929 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
930 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
931 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
932 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
933 	    &stats->tx_pkts_1519_max, "1519 to max frames");
934 	ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
935 	    &stats->tx_single_colls, "Single collisions");
936 	ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
937 	    &stats->tx_multi_colls, "Multiple collisions");
938 	ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
939 	    &stats->tx_late_colls, "Late collisions");
940 	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
941 	    &stats->tx_excess_colls, "Excessive collisions");
942 	ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
943 	    &stats->tx_underrun, "FIFO underruns");
944 	ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
945 	    &stats->tx_desc_underrun, "Descriptor write-back errors");
946 	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
947 	    &stats->tx_lenerrs, "Frames with length mismatched");
948 	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
949 	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
950 }
951 
952 #undef ALE_SYSCTL_STAT_ADD32
953 #undef ALE_SYSCTL_STAT_ADD64
954 
955 struct ale_dmamap_arg {
956 	bus_addr_t	ale_busaddr;
957 };
958 
959 static void
960 ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
961 {
962 	struct ale_dmamap_arg *ctx;
963 
964 	if (error != 0)
965 		return;
966 
967 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
968 
969 	ctx = (struct ale_dmamap_arg *)arg;
970 	ctx->ale_busaddr = segs[0].ds_addr;
971 }
972 
973 /*
974  * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
975  * which specifies high address region of DMA blocks. Therefore these
976  * blocks should have the same high address of given 4GB address
977  * space(i.e. crossing 4GB boundary is not allowed).
978  */
979 static int
980 ale_check_boundary(struct ale_softc *sc)
981 {
982 	bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
983 	bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
984 
985 	rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
986 	    sc->ale_pagesize;
987 	rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
988 	    sc->ale_pagesize;
989 	tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
990 	tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
991 	rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
992 	rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
993 
994 	if ((ALE_ADDR_HI(tx_ring_end) !=
995 	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
996 	    (ALE_ADDR_HI(rx_page_end[0]) !=
997 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
998 	    (ALE_ADDR_HI(rx_page_end[1]) !=
999 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
1000 	    (ALE_ADDR_HI(tx_cmb_end) !=
1001 	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
1002 	    (ALE_ADDR_HI(rx_cmb_end[0]) !=
1003 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
1004 	    (ALE_ADDR_HI(rx_cmb_end[1]) !=
1005 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
1006 		return (EFBIG);
1007 
1008 	if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
1009 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
1010 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
1011 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
1012 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
1013 		return (EFBIG);
1014 
1015 	return (0);
1016 }
1017 
1018 static int
1019 ale_dma_alloc(struct ale_softc *sc)
1020 {
1021 	struct ale_txdesc *txd;
1022 	bus_addr_t lowaddr;
1023 	struct ale_dmamap_arg ctx;
1024 	int error, guard_size, i;
1025 
1026 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
1027 		guard_size = ALE_JUMBO_FRAMELEN;
1028 	else
1029 		guard_size = ALE_MAX_FRAMELEN;
1030 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
1031 	    ALE_RX_PAGE_ALIGN);
1032 	lowaddr = BUS_SPACE_MAXADDR;
1033 again:
1034 	/* Create parent DMA tag. */
1035 	error = bus_dma_tag_create(
1036 	    bus_get_dma_tag(sc->ale_dev), /* parent */
1037 	    1, 0,			/* alignment, boundary */
1038 	    lowaddr,			/* lowaddr */
1039 	    BUS_SPACE_MAXADDR,		/* highaddr */
1040 	    NULL, NULL,			/* filter, filterarg */
1041 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1042 	    0,				/* nsegments */
1043 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1044 	    0,				/* flags */
1045 	    NULL, NULL,			/* lockfunc, lockarg */
1046 	    &sc->ale_cdata.ale_parent_tag);
1047 	if (error != 0) {
1048 		device_printf(sc->ale_dev,
1049 		    "could not create parent DMA tag.\n");
1050 		goto fail;
1051 	}
1052 
1053 	/* Create DMA tag for Tx descriptor ring. */
1054 	error = bus_dma_tag_create(
1055 	    sc->ale_cdata.ale_parent_tag, /* parent */
1056 	    ALE_TX_RING_ALIGN, 0,	/* alignment, boundary */
1057 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1058 	    BUS_SPACE_MAXADDR,		/* highaddr */
1059 	    NULL, NULL,			/* filter, filterarg */
1060 	    ALE_TX_RING_SZ,		/* maxsize */
1061 	    1,				/* nsegments */
1062 	    ALE_TX_RING_SZ,		/* maxsegsize */
1063 	    0,				/* flags */
1064 	    NULL, NULL,			/* lockfunc, lockarg */
1065 	    &sc->ale_cdata.ale_tx_ring_tag);
1066 	if (error != 0) {
1067 		device_printf(sc->ale_dev,
1068 		    "could not create Tx ring DMA tag.\n");
1069 		goto fail;
1070 	}
1071 
1072 	/* Create DMA tag for Rx pages. */
1073 	for (i = 0; i < ALE_RX_PAGES; i++) {
1074 		error = bus_dma_tag_create(
1075 		    sc->ale_cdata.ale_parent_tag, /* parent */
1076 		    ALE_RX_PAGE_ALIGN, 0,	/* alignment, boundary */
1077 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1078 		    BUS_SPACE_MAXADDR,		/* highaddr */
1079 		    NULL, NULL,			/* filter, filterarg */
1080 		    sc->ale_pagesize,		/* maxsize */
1081 		    1,				/* nsegments */
1082 		    sc->ale_pagesize,		/* maxsegsize */
1083 		    0,				/* flags */
1084 		    NULL, NULL,			/* lockfunc, lockarg */
1085 		    &sc->ale_cdata.ale_rx_page[i].page_tag);
1086 		if (error != 0) {
1087 			device_printf(sc->ale_dev,
1088 			    "could not create Rx page %d DMA tag.\n", i);
1089 			goto fail;
1090 		}
1091 	}
1092 
1093 	/* Create DMA tag for Tx coalescing message block. */
1094 	error = bus_dma_tag_create(
1095 	    sc->ale_cdata.ale_parent_tag, /* parent */
1096 	    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1097 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1098 	    BUS_SPACE_MAXADDR,		/* highaddr */
1099 	    NULL, NULL,			/* filter, filterarg */
1100 	    ALE_TX_CMB_SZ,		/* maxsize */
1101 	    1,				/* nsegments */
1102 	    ALE_TX_CMB_SZ,		/* maxsegsize */
1103 	    0,				/* flags */
1104 	    NULL, NULL,			/* lockfunc, lockarg */
1105 	    &sc->ale_cdata.ale_tx_cmb_tag);
1106 	if (error != 0) {
1107 		device_printf(sc->ale_dev,
1108 		    "could not create Tx CMB DMA tag.\n");
1109 		goto fail;
1110 	}
1111 
1112 	/* Create DMA tag for Rx coalescing message block. */
1113 	for (i = 0; i < ALE_RX_PAGES; i++) {
1114 		error = bus_dma_tag_create(
1115 		    sc->ale_cdata.ale_parent_tag, /* parent */
1116 		    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1117 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1118 		    BUS_SPACE_MAXADDR,		/* highaddr */
1119 		    NULL, NULL,			/* filter, filterarg */
1120 		    ALE_RX_CMB_SZ,		/* maxsize */
1121 		    1,				/* nsegments */
1122 		    ALE_RX_CMB_SZ,		/* maxsegsize */
1123 		    0,				/* flags */
1124 		    NULL, NULL,			/* lockfunc, lockarg */
1125 		    &sc->ale_cdata.ale_rx_page[i].cmb_tag);
1126 		if (error != 0) {
1127 			device_printf(sc->ale_dev,
1128 			    "could not create Rx page %d CMB DMA tag.\n", i);
1129 			goto fail;
1130 		}
1131 	}
1132 
1133 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1134 	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
1135 	    (void **)&sc->ale_cdata.ale_tx_ring,
1136 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1137 	    &sc->ale_cdata.ale_tx_ring_map);
1138 	if (error != 0) {
1139 		device_printf(sc->ale_dev,
1140 		    "could not allocate DMA'able memory for Tx ring.\n");
1141 		goto fail;
1142 	}
1143 	ctx.ale_busaddr = 0;
1144 	error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
1145 	    sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
1146 	    ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
1147 	if (error != 0 || ctx.ale_busaddr == 0) {
1148 		device_printf(sc->ale_dev,
1149 		    "could not load DMA'able memory for Tx ring.\n");
1150 		goto fail;
1151 	}
1152 	sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
1153 
1154 	/* Rx pages. */
1155 	for (i = 0; i < ALE_RX_PAGES; i++) {
1156 		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
1157 		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
1158 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1159 		    &sc->ale_cdata.ale_rx_page[i].page_map);
1160 		if (error != 0) {
1161 			device_printf(sc->ale_dev,
1162 			    "could not allocate DMA'able memory for "
1163 			    "Rx page %d.\n", i);
1164 			goto fail;
1165 		}
1166 		ctx.ale_busaddr = 0;
1167 		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
1168 		    sc->ale_cdata.ale_rx_page[i].page_map,
1169 		    sc->ale_cdata.ale_rx_page[i].page_addr,
1170 		    sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
1171 		if (error != 0 || ctx.ale_busaddr == 0) {
1172 			device_printf(sc->ale_dev,
1173 			    "could not load DMA'able memory for "
1174 			    "Rx page %d.\n", i);
1175 			goto fail;
1176 		}
1177 		sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
1178 	}
1179 
1180 	/* Tx CMB. */
1181 	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
1182 	    (void **)&sc->ale_cdata.ale_tx_cmb,
1183 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1184 	    &sc->ale_cdata.ale_tx_cmb_map);
1185 	if (error != 0) {
1186 		device_printf(sc->ale_dev,
1187 		    "could not allocate DMA'able memory for Tx CMB.\n");
1188 		goto fail;
1189 	}
1190 	ctx.ale_busaddr = 0;
1191 	error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
1192 	    sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
1193 	    ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1194 	if (error != 0 || ctx.ale_busaddr == 0) {
1195 		device_printf(sc->ale_dev,
1196 		    "could not load DMA'able memory for Tx CMB.\n");
1197 		goto fail;
1198 	}
1199 	sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
1200 
1201 	/* Rx CMB. */
1202 	for (i = 0; i < ALE_RX_PAGES; i++) {
1203 		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1204 		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
1205 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1206 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
1207 		if (error != 0) {
1208 			device_printf(sc->ale_dev, "could not allocate "
1209 			    "DMA'able memory for Rx page %d CMB.\n", i);
1210 			goto fail;
1211 		}
1212 		ctx.ale_busaddr = 0;
1213 		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1214 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
1215 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1216 		    ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1217 		if (error != 0 || ctx.ale_busaddr == 0) {
1218 			device_printf(sc->ale_dev, "could not load DMA'able "
1219 			    "memory for Rx page %d CMB.\n", i);
1220 			goto fail;
1221 		}
1222 		sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
1223 	}
1224 
1225 	/*
1226 	 * Tx descriptors/RXF0/CMB DMA blocks share the same
1227 	 * high address region of 64bit DMA address space.
1228 	 */
1229 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1230 	    (error = ale_check_boundary(sc)) != 0) {
1231 		device_printf(sc->ale_dev, "4GB boundary crossed, "
1232 		    "switching to 32bit DMA addressing mode.\n");
1233 		ale_dma_free(sc);
1234 		/*
1235 		 * Limit max allowable DMA address space to 32bit
1236 		 * and try again.
1237 		 */
1238 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1239 		goto again;
1240 	}
1241 
1242 	/*
1243 	 * Create Tx buffer parent tag.
1244 	 * AR81xx allows 64bit DMA addressing of Tx buffers so it
1245 	 * needs separate parent DMA tag as parent DMA address space
1246 	 * could be restricted to be within 32bit address space by
1247 	 * 4GB boundary crossing.
1248 	 */
1249 	error = bus_dma_tag_create(
1250 	    bus_get_dma_tag(sc->ale_dev), /* parent */
1251 	    1, 0,			/* alignment, boundary */
1252 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1253 	    BUS_SPACE_MAXADDR,		/* highaddr */
1254 	    NULL, NULL,			/* filter, filterarg */
1255 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1256 	    0,				/* nsegments */
1257 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1258 	    0,				/* flags */
1259 	    NULL, NULL,			/* lockfunc, lockarg */
1260 	    &sc->ale_cdata.ale_buffer_tag);
1261 	if (error != 0) {
1262 		device_printf(sc->ale_dev,
1263 		    "could not create parent buffer DMA tag.\n");
1264 		goto fail;
1265 	}
1266 
1267 	/* Create DMA tag for Tx buffers. */
1268 	error = bus_dma_tag_create(
1269 	    sc->ale_cdata.ale_buffer_tag, /* parent */
1270 	    1, 0,			/* alignment, boundary */
1271 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1272 	    BUS_SPACE_MAXADDR,		/* highaddr */
1273 	    NULL, NULL,			/* filter, filterarg */
1274 	    ALE_TSO_MAXSIZE,		/* maxsize */
1275 	    ALE_MAXTXSEGS,		/* nsegments */
1276 	    ALE_TSO_MAXSEGSIZE,		/* maxsegsize */
1277 	    0,				/* flags */
1278 	    NULL, NULL,			/* lockfunc, lockarg */
1279 	    &sc->ale_cdata.ale_tx_tag);
1280 	if (error != 0) {
1281 		device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
1282 		goto fail;
1283 	}
1284 
1285 	/* Create DMA maps for Tx buffers. */
1286 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1287 		txd = &sc->ale_cdata.ale_txdesc[i];
1288 		txd->tx_m = NULL;
1289 		txd->tx_dmamap = NULL;
1290 		error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
1291 		    &txd->tx_dmamap);
1292 		if (error != 0) {
1293 			device_printf(sc->ale_dev,
1294 			    "could not create Tx dmamap.\n");
1295 			goto fail;
1296 		}
1297 	}
1298 
1299 fail:
1300 	return (error);
1301 }
1302 
1303 static void
1304 ale_dma_free(struct ale_softc *sc)
1305 {
1306 	struct ale_txdesc *txd;
1307 	int i;
1308 
1309 	/* Tx buffers. */
1310 	if (sc->ale_cdata.ale_tx_tag != NULL) {
1311 		for (i = 0; i < ALE_TX_RING_CNT; i++) {
1312 			txd = &sc->ale_cdata.ale_txdesc[i];
1313 			if (txd->tx_dmamap != NULL) {
1314 				bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
1315 				    txd->tx_dmamap);
1316 				txd->tx_dmamap = NULL;
1317 			}
1318 		}
1319 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
1320 		sc->ale_cdata.ale_tx_tag = NULL;
1321 	}
1322 	/* Tx descriptor ring. */
1323 	if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
1324 		if (sc->ale_cdata.ale_tx_ring_paddr != 0)
1325 			bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
1326 			    sc->ale_cdata.ale_tx_ring_map);
1327 		if (sc->ale_cdata.ale_tx_ring != NULL)
1328 			bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
1329 			    sc->ale_cdata.ale_tx_ring,
1330 			    sc->ale_cdata.ale_tx_ring_map);
1331 		sc->ale_cdata.ale_tx_ring_paddr = 0;
1332 		sc->ale_cdata.ale_tx_ring = NULL;
1333 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
1334 		sc->ale_cdata.ale_tx_ring_tag = NULL;
1335 	}
1336 	/* Rx page block. */
1337 	for (i = 0; i < ALE_RX_PAGES; i++) {
1338 		if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
1339 			if (sc->ale_cdata.ale_rx_page[i].page_paddr != 0)
1340 				bus_dmamap_unload(
1341 				    sc->ale_cdata.ale_rx_page[i].page_tag,
1342 				    sc->ale_cdata.ale_rx_page[i].page_map);
1343 			if (sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
1344 				bus_dmamem_free(
1345 				    sc->ale_cdata.ale_rx_page[i].page_tag,
1346 				    sc->ale_cdata.ale_rx_page[i].page_addr,
1347 				    sc->ale_cdata.ale_rx_page[i].page_map);
1348 			sc->ale_cdata.ale_rx_page[i].page_paddr = 0;
1349 			sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
1350 			bus_dma_tag_destroy(
1351 			    sc->ale_cdata.ale_rx_page[i].page_tag);
1352 			sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
1353 		}
1354 	}
1355 	/* Rx CMB. */
1356 	for (i = 0; i < ALE_RX_PAGES; i++) {
1357 		if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
1358 			if (sc->ale_cdata.ale_rx_page[i].cmb_paddr != 0)
1359 				bus_dmamap_unload(
1360 				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1361 				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1362 			if (sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
1363 				bus_dmamem_free(
1364 				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1365 				    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1366 				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1367 			sc->ale_cdata.ale_rx_page[i].cmb_paddr = 0;
1368 			sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
1369 			bus_dma_tag_destroy(
1370 			    sc->ale_cdata.ale_rx_page[i].cmb_tag);
1371 			sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
1372 		}
1373 	}
1374 	/* Tx CMB. */
1375 	if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
1376 		if (sc->ale_cdata.ale_tx_cmb_paddr != 0)
1377 			bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
1378 			    sc->ale_cdata.ale_tx_cmb_map);
1379 		if (sc->ale_cdata.ale_tx_cmb != NULL)
1380 			bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
1381 			    sc->ale_cdata.ale_tx_cmb,
1382 			    sc->ale_cdata.ale_tx_cmb_map);
1383 		sc->ale_cdata.ale_tx_cmb_paddr = 0;
1384 		sc->ale_cdata.ale_tx_cmb = NULL;
1385 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
1386 		sc->ale_cdata.ale_tx_cmb_tag = NULL;
1387 	}
1388 	if (sc->ale_cdata.ale_buffer_tag != NULL) {
1389 		bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
1390 		sc->ale_cdata.ale_buffer_tag = NULL;
1391 	}
1392 	if (sc->ale_cdata.ale_parent_tag != NULL) {
1393 		bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
1394 		sc->ale_cdata.ale_parent_tag = NULL;
1395 	}
1396 }
1397 
1398 static int
1399 ale_shutdown(device_t dev)
1400 {
1401 
1402 	return (ale_suspend(dev));
1403 }
1404 
1405 /*
1406  * Note, this driver resets the link speed to 10/100Mbps by
1407  * restarting auto-negotiation in suspend/shutdown phase but we
1408  * don't know whether that auto-negotiation would succeed or not
1409  * as driver has no control after powering off/suspend operation.
1410  * If the renegotiation fail WOL may not work. Running at 1Gbps
1411  * will draw more power than 375mA at 3.3V which is specified in
1412  * PCI specification and that would result in complete
1413  * shutdowning power to ethernet controller.
1414  *
1415  * TODO
1416  * Save current negotiated media speed/duplex/flow-control to
1417  * softc and restore the same link again after resuming. PHY
1418  * handling such as power down/resetting to 100Mbps may be better
1419  * handled in suspend method in phy driver.
1420  */
1421 static void
1422 ale_setlinkspeed(struct ale_softc *sc)
1423 {
1424 	struct mii_data *mii;
1425 	int aneg, i;
1426 
1427 	mii = device_get_softc(sc->ale_miibus);
1428 	mii_pollstat(mii);
1429 	aneg = 0;
1430 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1431 	    (IFM_ACTIVE | IFM_AVALID)) {
1432 		switch IFM_SUBTYPE(mii->mii_media_active) {
1433 		case IFM_10_T:
1434 		case IFM_100_TX:
1435 			return;
1436 		case IFM_1000_T:
1437 			aneg++;
1438 			break;
1439 		default:
1440 			break;
1441 		}
1442 	}
1443 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
1444 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1445 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1446 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1447 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1448 	DELAY(1000);
1449 	if (aneg != 0) {
1450 		/*
1451 		 * Poll link state until ale(4) get a 10/100Mbps link.
1452 		 */
1453 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1454 			mii_pollstat(mii);
1455 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1456 			    == (IFM_ACTIVE | IFM_AVALID)) {
1457 				switch (IFM_SUBTYPE(
1458 				    mii->mii_media_active)) {
1459 				case IFM_10_T:
1460 				case IFM_100_TX:
1461 					ale_mac_config(sc);
1462 					return;
1463 				default:
1464 					break;
1465 				}
1466 			}
1467 			ALE_UNLOCK(sc);
1468 			pause("alelnk", hz);
1469 			ALE_LOCK(sc);
1470 		}
1471 		if (i == MII_ANEGTICKS_GIGE)
1472 			device_printf(sc->ale_dev,
1473 			    "establishing a link failed, WOL may not work!");
1474 	}
1475 	/*
1476 	 * No link, force MAC to have 100Mbps, full-duplex link.
1477 	 * This is the last resort and may/may not work.
1478 	 */
1479 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1480 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1481 	ale_mac_config(sc);
1482 }
1483 
1484 static void
1485 ale_setwol(struct ale_softc *sc)
1486 {
1487 	if_t ifp;
1488 	uint32_t reg, pmcs;
1489 	uint16_t pmstat;
1490 	int pmc;
1491 
1492 	ALE_LOCK_ASSERT(sc);
1493 
1494 	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
1495 		/* Disable WOL. */
1496 		CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1497 		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1498 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1499 		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1500 		/* Force PHY power down. */
1501 		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1502 		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1503 		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
1504 		    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
1505 		    GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
1506 		return;
1507 	}
1508 
1509 	ifp = sc->ale_ifp;
1510 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
1511 		if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
1512 			ale_setlinkspeed(sc);
1513 	}
1514 
1515 	pmcs = 0;
1516 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
1517 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1518 	CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
1519 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1520 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1521 	    MAC_CFG_BCAST);
1522 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) != 0)
1523 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1524 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1525 		reg |= MAC_CFG_RX_ENB;
1526 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1527 
1528 	if ((if_getcapenable(ifp) & IFCAP_WOL) == 0) {
1529 		/* WOL disabled, PHY power down. */
1530 		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1531 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1532 		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1533 		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1534 		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1535 		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
1536 		    GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
1537 		    GPHY_CTRL_PWDOWN_HW);
1538 	}
1539 	/* Request PME. */
1540 	pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
1541 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1542 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1543 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1544 	pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1545 }
1546 
1547 static int
1548 ale_suspend(device_t dev)
1549 {
1550 	struct ale_softc *sc;
1551 
1552 	sc = device_get_softc(dev);
1553 
1554 	ALE_LOCK(sc);
1555 	ale_stop(sc);
1556 	ale_setwol(sc);
1557 	ALE_UNLOCK(sc);
1558 
1559 	return (0);
1560 }
1561 
1562 static int
1563 ale_resume(device_t dev)
1564 {
1565 	struct ale_softc *sc;
1566 	if_t ifp;
1567 	int pmc;
1568 	uint16_t pmstat;
1569 
1570 	sc = device_get_softc(dev);
1571 
1572 	ALE_LOCK(sc);
1573 	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
1574 		/* Disable PME and clear PME status. */
1575 		pmstat = pci_read_config(sc->ale_dev,
1576 		    pmc + PCIR_POWER_STATUS, 2);
1577 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1578 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1579 			pci_write_config(sc->ale_dev,
1580 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
1581 		}
1582 	}
1583 	/* Reset PHY. */
1584 	ale_phy_reset(sc);
1585 	ifp = sc->ale_ifp;
1586 	if ((if_getflags(ifp) & IFF_UP) != 0) {
1587 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1588 		ale_init_locked(sc);
1589 	}
1590 	ALE_UNLOCK(sc);
1591 
1592 	return (0);
1593 }
1594 
1595 static int
1596 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
1597 {
1598 	struct ale_txdesc *txd, *txd_last;
1599 	struct tx_desc *desc;
1600 	struct mbuf *m;
1601 	struct ip *ip;
1602 	struct tcphdr *tcp;
1603 	bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
1604 	bus_dmamap_t map;
1605 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1606 	int error, i, nsegs, prod, si;
1607 
1608 	ALE_LOCK_ASSERT(sc);
1609 
1610 	M_ASSERTPKTHDR((*m_head));
1611 
1612 	m = *m_head;
1613 	ip = NULL;
1614 	tcp = NULL;
1615 	cflags = vtag = 0;
1616 	ip_off = poff = 0;
1617 	if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1618 		/*
1619 		 * AR81xx requires offset of TCP/UDP payload in its Tx
1620 		 * descriptor to perform hardware Tx checksum offload.
1621 		 * Additionally, TSO requires IP/TCP header size and
1622 		 * modification of IP/TCP header in order to make TSO
1623 		 * engine work. This kind of operation takes many CPU
1624 		 * cycles on FreeBSD so fast host CPU is required to
1625 		 * get smooth TSO performance.
1626 		 */
1627 		struct ether_header *eh;
1628 
1629 		if (M_WRITABLE(m) == 0) {
1630 			/* Get a writable copy. */
1631 			m = m_dup(*m_head, M_NOWAIT);
1632 			/* Release original mbufs. */
1633 			m_freem(*m_head);
1634 			if (m == NULL) {
1635 				*m_head = NULL;
1636 				return (ENOBUFS);
1637 			}
1638 			*m_head = m;
1639 		}
1640 
1641 		/*
1642 		 * Buggy-controller requires 4 byte aligned Tx buffer
1643 		 * to make custom checksum offload work.
1644 		 */
1645 		if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
1646 		    (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
1647 		    (mtod(m, intptr_t) & 3) != 0) {
1648 			m = m_defrag(*m_head, M_NOWAIT);
1649 			if (m == NULL) {
1650 				m_freem(*m_head);
1651 				*m_head = NULL;
1652 				return (ENOBUFS);
1653 			}
1654 			*m_head = m;
1655 		}
1656 
1657 		ip_off = sizeof(struct ether_header);
1658 		m = m_pullup(m, ip_off);
1659 		if (m == NULL) {
1660 			*m_head = NULL;
1661 			return (ENOBUFS);
1662 		}
1663 		eh = mtod(m, struct ether_header *);
1664 		/*
1665 		 * Check if hardware VLAN insertion is off.
1666 		 * Additional check for LLC/SNAP frame?
1667 		 */
1668 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1669 			ip_off = sizeof(struct ether_vlan_header);
1670 			m = m_pullup(m, ip_off);
1671 			if (m == NULL) {
1672 				*m_head = NULL;
1673 				return (ENOBUFS);
1674 			}
1675 		}
1676 		m = m_pullup(m, ip_off + sizeof(struct ip));
1677 		if (m == NULL) {
1678 			*m_head = NULL;
1679 			return (ENOBUFS);
1680 		}
1681 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1682 		poff = ip_off + (ip->ip_hl << 2);
1683 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1684 			/*
1685 			 * XXX
1686 			 * AR81xx requires the first descriptor should
1687 			 * not include any TCP playload for TSO case.
1688 			 * (i.e. ethernet header + IP + TCP header only)
1689 			 * m_pullup(9) above will ensure this too.
1690 			 * However it's not correct if the first mbuf
1691 			 * of the chain does not use cluster.
1692 			 */
1693 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1694 			if (m == NULL) {
1695 				*m_head = NULL;
1696 				return (ENOBUFS);
1697 			}
1698 			ip = (struct ip *)(mtod(m, char *) + ip_off);
1699 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1700 			m = m_pullup(m, poff + (tcp->th_off << 2));
1701 			if (m == NULL) {
1702 				*m_head = NULL;
1703 				return (ENOBUFS);
1704 			}
1705 			/*
1706 			 * AR81xx requires IP/TCP header size and offset as
1707 			 * well as TCP pseudo checksum which complicates
1708 			 * TSO configuration. I guess this comes from the
1709 			 * adherence to Microsoft NDIS Large Send
1710 			 * specification which requires insertion of
1711 			 * pseudo checksum by upper stack. The pseudo
1712 			 * checksum that NDIS refers to doesn't include
1713 			 * TCP payload length so ale(4) should recompute
1714 			 * the pseudo checksum here. Hopefully this wouldn't
1715 			 * be much burden on modern CPUs.
1716 			 * Reset IP checksum and recompute TCP pseudo
1717 			 * checksum as NDIS specification said.
1718 			 */
1719 			ip->ip_sum = 0;
1720 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1721 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1722 		}
1723 		*m_head = m;
1724 	}
1725 
1726 	si = prod = sc->ale_cdata.ale_tx_prod;
1727 	txd = &sc->ale_cdata.ale_txdesc[prod];
1728 	txd_last = txd;
1729 	map = txd->tx_dmamap;
1730 
1731 	error =  bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1732 	    *m_head, txsegs, &nsegs, 0);
1733 	if (error == EFBIG) {
1734 		m = m_collapse(*m_head, M_NOWAIT, ALE_MAXTXSEGS);
1735 		if (m == NULL) {
1736 			m_freem(*m_head);
1737 			*m_head = NULL;
1738 			return (ENOMEM);
1739 		}
1740 		*m_head = m;
1741 		error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1742 		    *m_head, txsegs, &nsegs, 0);
1743 		if (error != 0) {
1744 			m_freem(*m_head);
1745 			*m_head = NULL;
1746 			return (error);
1747 		}
1748 	} else if (error != 0)
1749 		return (error);
1750 	if (nsegs == 0) {
1751 		m_freem(*m_head);
1752 		*m_head = NULL;
1753 		return (EIO);
1754 	}
1755 
1756 	/* Check descriptor overrun. */
1757 	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) {
1758 		bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
1759 		return (ENOBUFS);
1760 	}
1761 	bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
1762 
1763 	m = *m_head;
1764 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1765 		/* Request TSO and set MSS. */
1766 		cflags |= ALE_TD_TSO;
1767 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
1768 		/* Set IP/TCP header size. */
1769 		cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
1770 		cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
1771 	} else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
1772 		/*
1773 		 * AR81xx supports Tx custom checksum offload feature
1774 		 * that offloads single 16bit checksum computation.
1775 		 * So you can choose one among IP, TCP and UDP.
1776 		 * Normally driver sets checksum start/insertion
1777 		 * position from the information of TCP/UDP frame as
1778 		 * TCP/UDP checksum takes more time than that of IP.
1779 		 * However it seems that custom checksum offload
1780 		 * requires 4 bytes aligned Tx buffers due to hardware
1781 		 * bug.
1782 		 * AR81xx also supports explicit Tx checksum computation
1783 		 * if it is told that the size of IP header and TCP
1784 		 * header(for UDP, the header size does not matter
1785 		 * because it's fixed length). However with this scheme
1786 		 * TSO does not work so you have to choose one either
1787 		 * TSO or explicit Tx checksum offload. I chosen TSO
1788 		 * plus custom checksum offload with work-around which
1789 		 * will cover most common usage for this consumer
1790 		 * ethernet controller. The work-around takes a lot of
1791 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
1792 		 * boundary, though.
1793 		 */
1794 		cflags |= ALE_TD_CXSUM;
1795 		/* Set checksum start offset. */
1796 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1797 		/* Set checksum insertion position of TCP/UDP. */
1798 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1799 		    ALE_TD_CSUM_XSUMOFFSET_SHIFT);
1800 	}
1801 
1802 	/* Configure VLAN hardware tag insertion. */
1803 	if ((m->m_flags & M_VLANTAG) != 0) {
1804 		vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1805 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1806 		cflags |= ALE_TD_INSERT_VLAN_TAG;
1807 	}
1808 
1809 	i = 0;
1810 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1811 		/*
1812 		 * Make sure the first fragment contains
1813 		 * only ethernet and IP/TCP header with options.
1814 		 */
1815 		hdrlen =  poff + (tcp->th_off << 2);
1816 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1817 		desc->addr = htole64(txsegs[i].ds_addr);
1818 		desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag);
1819 		desc->flags = htole32(cflags);
1820 		sc->ale_cdata.ale_tx_cnt++;
1821 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1822 		if (m->m_len - hdrlen > 0) {
1823 			/* Handle remaining payload of the first fragment. */
1824 			desc = &sc->ale_cdata.ale_tx_ring[prod];
1825 			desc->addr = htole64(txsegs[i].ds_addr + hdrlen);
1826 			desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) |
1827 			    vtag);
1828 			desc->flags = htole32(cflags);
1829 			sc->ale_cdata.ale_tx_cnt++;
1830 			ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1831 		}
1832 		i = 1;
1833 	}
1834 	for (; i < nsegs; i++) {
1835 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1836 		desc->addr = htole64(txsegs[i].ds_addr);
1837 		desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
1838 		desc->flags = htole32(cflags);
1839 		sc->ale_cdata.ale_tx_cnt++;
1840 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1841 	}
1842 	/* Update producer index. */
1843 	sc->ale_cdata.ale_tx_prod = prod;
1844 	/* Set TSO header on the first descriptor. */
1845 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1846 		desc = &sc->ale_cdata.ale_tx_ring[si];
1847 		desc->flags |= htole32(ALE_TD_TSO_HDR);
1848 	}
1849 
1850 	/* Finally set EOP on the last descriptor. */
1851 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1852 	desc = &sc->ale_cdata.ale_tx_ring[prod];
1853 	desc->flags |= htole32(ALE_TD_EOP);
1854 
1855 	/* Swap dmamap of the first and the last. */
1856 	txd = &sc->ale_cdata.ale_txdesc[prod];
1857 	map = txd_last->tx_dmamap;
1858 	txd_last->tx_dmamap = txd->tx_dmamap;
1859 	txd->tx_dmamap = map;
1860 	txd->tx_m = m;
1861 
1862 	/* Sync descriptors. */
1863 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
1864 	    sc->ale_cdata.ale_tx_ring_map,
1865 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1866 
1867 	return (0);
1868 }
1869 
1870 static void
1871 ale_start(if_t ifp)
1872 {
1873         struct ale_softc *sc;
1874 
1875 	sc = if_getsoftc(ifp);
1876 	ALE_LOCK(sc);
1877 	ale_start_locked(ifp);
1878 	ALE_UNLOCK(sc);
1879 }
1880 
1881 static void
1882 ale_start_locked(if_t ifp)
1883 {
1884         struct ale_softc *sc;
1885         struct mbuf *m_head;
1886 	int enq;
1887 
1888 	sc = if_getsoftc(ifp);
1889 
1890 	ALE_LOCK_ASSERT(sc);
1891 
1892 	/* Reclaim transmitted frames. */
1893 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1894 		ale_txeof(sc);
1895 
1896 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1897 	    IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0)
1898 		return;
1899 
1900 	for (enq = 0; !if_sendq_empty(ifp); ) {
1901 		m_head = if_dequeue(ifp);
1902 		if (m_head == NULL)
1903 			break;
1904 		/*
1905 		 * Pack the data into the transmit ring. If we
1906 		 * don't have room, set the OACTIVE flag and wait
1907 		 * for the NIC to drain the ring.
1908 		 */
1909 		if (ale_encap(sc, &m_head)) {
1910 			if (m_head == NULL)
1911 				break;
1912 			if_sendq_prepend(ifp, m_head);
1913 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1914 			break;
1915 		}
1916 
1917 		enq++;
1918 		/*
1919 		 * If there's a BPF listener, bounce a copy of this frame
1920 		 * to him.
1921 		 */
1922 		ETHER_BPF_MTAP(ifp, m_head);
1923 	}
1924 
1925 	if (enq > 0) {
1926 		/* Kick. */
1927 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1928 		    sc->ale_cdata.ale_tx_prod);
1929 		/* Set a timeout in case the chip goes out to lunch. */
1930 		sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
1931 	}
1932 }
1933 
1934 static void
1935 ale_watchdog(struct ale_softc *sc)
1936 {
1937 	if_t ifp;
1938 
1939 	ALE_LOCK_ASSERT(sc);
1940 
1941 	if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
1942 		return;
1943 
1944 	ifp = sc->ale_ifp;
1945 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1946 		if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
1947 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1948 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1949 		ale_init_locked(sc);
1950 		return;
1951 	}
1952 	if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
1953 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1954 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1955 	ale_init_locked(sc);
1956 	if (!if_sendq_empty(ifp))
1957 		ale_start_locked(ifp);
1958 }
1959 
1960 static int
1961 ale_ioctl(if_t ifp, u_long cmd, caddr_t data)
1962 {
1963 	struct ale_softc *sc;
1964 	struct ifreq *ifr;
1965 	struct mii_data *mii;
1966 	int error, mask;
1967 
1968 	sc = if_getsoftc(ifp);
1969 	ifr = (struct ifreq *)data;
1970 	error = 0;
1971 	switch (cmd) {
1972 	case SIOCSIFMTU:
1973 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
1974 		    ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
1975 		    ifr->ifr_mtu > ETHERMTU))
1976 			error = EINVAL;
1977 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1978 			ALE_LOCK(sc);
1979 			if_setmtu(ifp, ifr->ifr_mtu);
1980 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1981 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1982 				ale_init_locked(sc);
1983 			}
1984 			ALE_UNLOCK(sc);
1985 		}
1986 		break;
1987 	case SIOCSIFFLAGS:
1988 		ALE_LOCK(sc);
1989 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1990 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1991 				if (((if_getflags(ifp) ^ sc->ale_if_flags)
1992 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1993 					ale_rxfilter(sc);
1994 			} else {
1995 				ale_init_locked(sc);
1996 			}
1997 		} else {
1998 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1999 				ale_stop(sc);
2000 		}
2001 		sc->ale_if_flags = if_getflags(ifp);
2002 		ALE_UNLOCK(sc);
2003 		break;
2004 	case SIOCADDMULTI:
2005 	case SIOCDELMULTI:
2006 		ALE_LOCK(sc);
2007 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2008 			ale_rxfilter(sc);
2009 		ALE_UNLOCK(sc);
2010 		break;
2011 	case SIOCSIFMEDIA:
2012 	case SIOCGIFMEDIA:
2013 		mii = device_get_softc(sc->ale_miibus);
2014 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2015 		break;
2016 	case SIOCSIFCAP:
2017 		ALE_LOCK(sc);
2018 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2019 		if ((mask & IFCAP_TXCSUM) != 0 &&
2020 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
2021 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2022 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
2023 				if_sethwassistbits(ifp, ALE_CSUM_FEATURES, 0);
2024 			else
2025 				if_sethwassistbits(ifp, 0, ALE_CSUM_FEATURES);
2026 		}
2027 		if ((mask & IFCAP_RXCSUM) != 0 &&
2028 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
2029 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2030 		if ((mask & IFCAP_TSO4) != 0 &&
2031 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
2032 			if_togglecapenable(ifp, IFCAP_TSO4);
2033 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
2034 				if_sethwassistbits(ifp, CSUM_TSO, 0);
2035 			else
2036 				if_sethwassistbits(ifp, 0, CSUM_TSO);
2037 		}
2038 
2039 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2040 		    (if_getcapabilities(ifp) & IFCAP_WOL_MCAST) != 0)
2041 			if_togglecapenable(ifp, IFCAP_WOL_MCAST);
2042 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2043 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
2044 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2045 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2046 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2047 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2048 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2049 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
2050 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2051 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2052 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2053 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2054 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
2055 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
2056 			ale_rxvlan(sc);
2057 		}
2058 		ALE_UNLOCK(sc);
2059 		VLAN_CAPABILITIES(ifp);
2060 		break;
2061 	default:
2062 		error = ether_ioctl(ifp, cmd, data);
2063 		break;
2064 	}
2065 
2066 	return (error);
2067 }
2068 
2069 static void
2070 ale_mac_config(struct ale_softc *sc)
2071 {
2072 	struct mii_data *mii;
2073 	uint32_t reg;
2074 
2075 	ALE_LOCK_ASSERT(sc);
2076 
2077 	mii = device_get_softc(sc->ale_miibus);
2078 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2079 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2080 	    MAC_CFG_SPEED_MASK);
2081 	/* Reprogram MAC with resolved speed/duplex. */
2082 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2083 	case IFM_10_T:
2084 	case IFM_100_TX:
2085 		reg |= MAC_CFG_SPEED_10_100;
2086 		break;
2087 	case IFM_1000_T:
2088 		reg |= MAC_CFG_SPEED_1000;
2089 		break;
2090 	}
2091 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2092 		reg |= MAC_CFG_FULL_DUPLEX;
2093 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2094 			reg |= MAC_CFG_TX_FC;
2095 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2096 			reg |= MAC_CFG_RX_FC;
2097 	}
2098 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2099 }
2100 
2101 static void
2102 ale_stats_clear(struct ale_softc *sc)
2103 {
2104 	struct smb sb;
2105 	uint32_t *reg;
2106 	int i;
2107 
2108 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2109 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2110 		i += sizeof(uint32_t);
2111 	}
2112 	/* Read Tx statistics. */
2113 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2114 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2115 		i += sizeof(uint32_t);
2116 	}
2117 }
2118 
2119 static void
2120 ale_stats_update(struct ale_softc *sc)
2121 {
2122 	struct ale_hw_stats *stat;
2123 	struct smb sb, *smb;
2124 	if_t ifp;
2125 	uint32_t *reg;
2126 	int i;
2127 
2128 	ALE_LOCK_ASSERT(sc);
2129 
2130 	ifp = sc->ale_ifp;
2131 	stat = &sc->ale_stats;
2132 	smb = &sb;
2133 
2134 	/* Read Rx statistics. */
2135 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2136 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2137 		i += sizeof(uint32_t);
2138 	}
2139 	/* Read Tx statistics. */
2140 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2141 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2142 		i += sizeof(uint32_t);
2143 	}
2144 
2145 	/* Rx stats. */
2146 	stat->rx_frames += smb->rx_frames;
2147 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2148 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2149 	stat->rx_pause_frames += smb->rx_pause_frames;
2150 	stat->rx_control_frames += smb->rx_control_frames;
2151 	stat->rx_crcerrs += smb->rx_crcerrs;
2152 	stat->rx_lenerrs += smb->rx_lenerrs;
2153 	stat->rx_bytes += smb->rx_bytes;
2154 	stat->rx_runts += smb->rx_runts;
2155 	stat->rx_fragments += smb->rx_fragments;
2156 	stat->rx_pkts_64 += smb->rx_pkts_64;
2157 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2158 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2159 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2160 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2161 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2162 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2163 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2164 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2165 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2166 	stat->rx_alignerrs += smb->rx_alignerrs;
2167 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2168 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2169 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2170 
2171 	/* Tx stats. */
2172 	stat->tx_frames += smb->tx_frames;
2173 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2174 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2175 	stat->tx_pause_frames += smb->tx_pause_frames;
2176 	stat->tx_excess_defer += smb->tx_excess_defer;
2177 	stat->tx_control_frames += smb->tx_control_frames;
2178 	stat->tx_deferred += smb->tx_deferred;
2179 	stat->tx_bytes += smb->tx_bytes;
2180 	stat->tx_pkts_64 += smb->tx_pkts_64;
2181 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2182 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2183 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2184 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2185 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2186 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2187 	stat->tx_single_colls += smb->tx_single_colls;
2188 	stat->tx_multi_colls += smb->tx_multi_colls;
2189 	stat->tx_late_colls += smb->tx_late_colls;
2190 	stat->tx_excess_colls += smb->tx_excess_colls;
2191 	stat->tx_underrun += smb->tx_underrun;
2192 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2193 	stat->tx_lenerrs += smb->tx_lenerrs;
2194 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2195 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2196 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2197 
2198 	/* Update counters in ifnet. */
2199 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2200 
2201 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2202 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2203 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2204 
2205 	if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_late_colls +
2206 	    smb->tx_excess_colls + smb->tx_underrun + smb->tx_pkts_truncated);
2207 
2208 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2209 
2210 	if_inc_counter(ifp, IFCOUNTER_IERRORS,
2211 	    smb->rx_crcerrs + smb->rx_lenerrs +
2212 	    smb->rx_runts + smb->rx_pkts_truncated +
2213 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2214 	    smb->rx_alignerrs);
2215 }
2216 
2217 static int
2218 ale_intr(void *arg)
2219 {
2220 	struct ale_softc *sc;
2221 	uint32_t status;
2222 
2223 	sc = (struct ale_softc *)arg;
2224 
2225 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2226 	if ((status & ALE_INTRS) == 0)
2227 		return (FILTER_STRAY);
2228 	/* Disable interrupts. */
2229 	CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
2230 	taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2231 
2232 	return (FILTER_HANDLED);
2233 }
2234 
2235 static void
2236 ale_int_task(void *arg, int pending)
2237 {
2238 	struct ale_softc *sc;
2239 	if_t ifp;
2240 	uint32_t status;
2241 	int more;
2242 
2243 	sc = (struct ale_softc *)arg;
2244 
2245 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2246 	ALE_LOCK(sc);
2247 	if (sc->ale_morework != 0)
2248 		status |= INTR_RX_PKT;
2249 	if ((status & ALE_INTRS) == 0)
2250 		goto done;
2251 
2252 	/* Acknowledge interrupts but still disable interrupts. */
2253 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
2254 
2255 	ifp = sc->ale_ifp;
2256 	more = 0;
2257 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2258 		more = ale_rxeof(sc, sc->ale_process_limit);
2259 		if (more == EAGAIN)
2260 			sc->ale_morework = 1;
2261 		else if (more == EIO) {
2262 			sc->ale_stats.reset_brk_seq++;
2263 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2264 			ale_init_locked(sc);
2265 			ALE_UNLOCK(sc);
2266 			return;
2267 		}
2268 
2269 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2270 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2271 				device_printf(sc->ale_dev,
2272 				    "DMA read error! -- resetting\n");
2273 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2274 				device_printf(sc->ale_dev,
2275 				    "DMA write error! -- resetting\n");
2276 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2277 			ale_init_locked(sc);
2278 			ALE_UNLOCK(sc);
2279 			return;
2280 		}
2281 		if (!if_sendq_empty(ifp))
2282 			ale_start_locked(ifp);
2283 	}
2284 
2285 	if (more == EAGAIN ||
2286 	    (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
2287 		ALE_UNLOCK(sc);
2288 		taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2289 		return;
2290 	}
2291 
2292 done:
2293 	ALE_UNLOCK(sc);
2294 
2295 	/* Re-enable interrupts. */
2296 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
2297 }
2298 
2299 static void
2300 ale_txeof(struct ale_softc *sc)
2301 {
2302 	if_t ifp;
2303 	struct ale_txdesc *txd;
2304 	uint32_t cons, prod;
2305 	int prog;
2306 
2307 	ALE_LOCK_ASSERT(sc);
2308 
2309 	ifp = sc->ale_ifp;
2310 
2311 	if (sc->ale_cdata.ale_tx_cnt == 0)
2312 		return;
2313 
2314 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2315 	    sc->ale_cdata.ale_tx_ring_map,
2316 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2317 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
2318 		bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2319 		    sc->ale_cdata.ale_tx_cmb_map,
2320 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2321 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
2322 	} else
2323 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
2324 	cons = sc->ale_cdata.ale_tx_cons;
2325 	/*
2326 	 * Go through our Tx list and free mbufs for those
2327 	 * frames which have been transmitted.
2328 	 */
2329 	for (prog = 0; cons != prod; prog++,
2330 	    ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
2331 		if (sc->ale_cdata.ale_tx_cnt <= 0)
2332 			break;
2333 		prog++;
2334 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2335 		sc->ale_cdata.ale_tx_cnt--;
2336 		txd = &sc->ale_cdata.ale_txdesc[cons];
2337 		if (txd->tx_m != NULL) {
2338 			/* Reclaim transmitted mbufs. */
2339 			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2340 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2341 			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2342 			    txd->tx_dmamap);
2343 			m_freem(txd->tx_m);
2344 			txd->tx_m = NULL;
2345 		}
2346 	}
2347 
2348 	if (prog > 0) {
2349 		sc->ale_cdata.ale_tx_cons = cons;
2350 		/*
2351 		 * Unarm watchdog timer only when there is no pending
2352 		 * Tx descriptors in queue.
2353 		 */
2354 		if (sc->ale_cdata.ale_tx_cnt == 0)
2355 			sc->ale_watchdog_timer = 0;
2356 	}
2357 }
2358 
2359 static void
2360 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
2361     uint32_t length, uint32_t *prod)
2362 {
2363 	struct ale_rx_page *rx_page;
2364 
2365 	rx_page = *page;
2366 	/* Update consumer position. */
2367 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
2368 	    ALE_RX_PAGE_ALIGN);
2369 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
2370 		/*
2371 		 * End of Rx page reached, let hardware reuse
2372 		 * this page.
2373 		 */
2374 		rx_page->cons = 0;
2375 		*rx_page->cmb_addr = 0;
2376 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2377 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2378 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
2379 		    RXF_VALID);
2380 		/* Switch to alternate Rx page. */
2381 		sc->ale_cdata.ale_rx_curp ^= 1;
2382 		rx_page = *page =
2383 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2384 		/* Page flipped, sync CMB and Rx page. */
2385 		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2386 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2387 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2388 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2389 		/* Sync completed, cache updated producer index. */
2390 		*prod = *rx_page->cmb_addr;
2391 	}
2392 }
2393 
2394 /*
2395  * It seems that AR81xx controller can compute partial checksum.
2396  * The partial checksum value can be used to accelerate checksum
2397  * computation for fragmented TCP/UDP packets. Upper network stack
2398  * already takes advantage of the partial checksum value in IP
2399  * reassembly stage. But I'm not sure the correctness of the
2400  * partial hardware checksum assistance due to lack of data sheet.
2401  * In addition, the Rx feature of controller that requires copying
2402  * for every frames effectively nullifies one of most nice offload
2403  * capability of controller.
2404  */
2405 static void
2406 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
2407 {
2408 	if_t ifp;
2409 	struct ip *ip;
2410 	char *p;
2411 
2412 	ifp = sc->ale_ifp;
2413 	m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2414 	if ((status & ALE_RD_IPCSUM_NOK) == 0)
2415 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2416 
2417 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
2418 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
2419 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
2420 		    ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
2421 			m->m_pkthdr.csum_flags |=
2422 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2423 			m->m_pkthdr.csum_data = 0xffff;
2424 		}
2425 	} else {
2426 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
2427 		    (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
2428 			p = mtod(m, char *);
2429 			p += ETHER_HDR_LEN;
2430 			if ((status & ALE_RD_802_3) != 0)
2431 				p += LLC_SNAPFRAMELEN;
2432 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0 &&
2433 			    (status & ALE_RD_VLAN) != 0)
2434 				p += ETHER_VLAN_ENCAP_LEN;
2435 			ip = (struct ip *)p;
2436 			if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
2437 				return;
2438 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2439 			    CSUM_PSEUDO_HDR;
2440 			m->m_pkthdr.csum_data = 0xffff;
2441 		}
2442 	}
2443 	/*
2444 	 * Don't mark bad checksum for TCP/UDP frames
2445 	 * as fragmented frames may always have set
2446 	 * bad checksummed bit of frame status.
2447 	 */
2448 }
2449 
2450 /* Process received frames. */
2451 static int
2452 ale_rxeof(struct ale_softc *sc, int count)
2453 {
2454 	struct ale_rx_page *rx_page;
2455 	struct rx_rs *rs;
2456 	if_t ifp;
2457 	struct mbuf *m;
2458 	uint32_t length, prod, seqno, status, vtags;
2459 	int prog;
2460 
2461 	ifp = sc->ale_ifp;
2462 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2463 	bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2464 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2465 	bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2466 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2467 	/*
2468 	 * Don't directly access producer index as hardware may
2469 	 * update it while Rx handler is in progress. It would
2470 	 * be even better if there is a way to let hardware
2471 	 * know how far driver processed its received frames.
2472 	 * Alternatively, hardware could provide a way to disable
2473 	 * CMB updates until driver acknowledges the end of CMB
2474 	 * access.
2475 	 */
2476 	prod = *rx_page->cmb_addr;
2477 	for (prog = 0; prog < count; prog++) {
2478 		if (rx_page->cons >= prod)
2479 			break;
2480 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
2481 		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
2482 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
2483 			/*
2484 			 * Normally I believe this should not happen unless
2485 			 * severe driver bug or corrupted memory. However
2486 			 * it seems to happen under certain conditions which
2487 			 * is triggered by abrupt Rx events such as initiation
2488 			 * of bulk transfer of remote host. It's not easy to
2489 			 * reproduce this and I doubt it could be related
2490 			 * with FIFO overflow of hardware or activity of Tx
2491 			 * CMB updates. I also remember similar behaviour
2492 			 * seen on RealTek 8139 which uses resembling Rx
2493 			 * scheme.
2494 			 */
2495 			if (bootverbose)
2496 				device_printf(sc->ale_dev,
2497 				    "garbled seq: %u, expected: %u -- "
2498 				    "resetting!\n", seqno,
2499 				    sc->ale_cdata.ale_rx_seqno);
2500 			return (EIO);
2501 		}
2502 		/* Frame received. */
2503 		sc->ale_cdata.ale_rx_seqno++;
2504 		length = ALE_RX_BYTES(le32toh(rs->length));
2505 		status = le32toh(rs->flags);
2506 		if ((status & ALE_RD_ERROR) != 0) {
2507 			/*
2508 			 * We want to pass the following frames to upper
2509 			 * layer regardless of error status of Rx return
2510 			 * status.
2511 			 *
2512 			 *  o IP/TCP/UDP checksum is bad.
2513 			 *  o frame length and protocol specific length
2514 			 *     does not match.
2515 			 */
2516 			if ((status & (ALE_RD_CRC | ALE_RD_CODE |
2517 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
2518 			    ALE_RD_TRUNC)) != 0) {
2519 				ale_rx_update_page(sc, &rx_page, length, &prod);
2520 				continue;
2521 			}
2522 		}
2523 		/*
2524 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
2525 		 * from hardware limitation). For jumbo frames we could
2526 		 * get a slightly better performance if driver use
2527 		 * m_getjcl(9) with proper buffer size argument. However
2528 		 * that would make code more complicated and I don't
2529 		 * think users would expect good Rx performance numbers
2530 		 * on these low-end consumer ethernet controller.
2531 		 */
2532 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
2533 		    ETHER_ALIGN, ifp, NULL);
2534 		if (m == NULL) {
2535 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2536 			ale_rx_update_page(sc, &rx_page, length, &prod);
2537 			continue;
2538 		}
2539 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
2540 		    (status & ALE_RD_IPV4) != 0)
2541 			ale_rxcsum(sc, m, status);
2542 		if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
2543 		    (status & ALE_RD_VLAN) != 0) {
2544 			vtags = ALE_RX_VLAN(le32toh(rs->vtags));
2545 			m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
2546 			m->m_flags |= M_VLANTAG;
2547 		}
2548 
2549 		/* Pass it to upper layer. */
2550 		ALE_UNLOCK(sc);
2551 		if_input(ifp, m);
2552 		ALE_LOCK(sc);
2553 
2554 		ale_rx_update_page(sc, &rx_page, length, &prod);
2555 	}
2556 
2557 	return (count > 0 ? 0 : EAGAIN);
2558 }
2559 
2560 static void
2561 ale_tick(void *arg)
2562 {
2563 	struct ale_softc *sc;
2564 	struct mii_data *mii;
2565 
2566 	sc = (struct ale_softc *)arg;
2567 
2568 	ALE_LOCK_ASSERT(sc);
2569 
2570 	mii = device_get_softc(sc->ale_miibus);
2571 	mii_tick(mii);
2572 	ale_stats_update(sc);
2573 	/*
2574 	 * Reclaim Tx buffers that have been transferred. It's not
2575 	 * needed here but it would release allocated mbuf chains
2576 	 * faster and limit the maximum delay to a hz.
2577 	 */
2578 	ale_txeof(sc);
2579 	ale_watchdog(sc);
2580 	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2581 }
2582 
2583 static void
2584 ale_reset(struct ale_softc *sc)
2585 {
2586 	uint32_t reg;
2587 	int i;
2588 
2589 	/* Initialize PCIe module. From Linux. */
2590 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2591 
2592 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
2593 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2594 		DELAY(10);
2595 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
2596 			break;
2597 	}
2598 	if (i == 0)
2599 		device_printf(sc->ale_dev, "master reset timeout!\n");
2600 
2601 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2602 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
2603 			break;
2604 		DELAY(10);
2605 	}
2606 
2607 	if (i == 0)
2608 		device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
2609 }
2610 
2611 static void
2612 ale_init(void *xsc)
2613 {
2614 	struct ale_softc *sc;
2615 
2616 	sc = (struct ale_softc *)xsc;
2617 	ALE_LOCK(sc);
2618 	ale_init_locked(sc);
2619 	ALE_UNLOCK(sc);
2620 }
2621 
2622 static void
2623 ale_init_locked(struct ale_softc *sc)
2624 {
2625 	if_t ifp;
2626 	struct mii_data *mii;
2627 	uint8_t eaddr[ETHER_ADDR_LEN];
2628 	bus_addr_t paddr;
2629 	uint32_t reg, rxf_hi, rxf_lo;
2630 
2631 	ALE_LOCK_ASSERT(sc);
2632 
2633 	ifp = sc->ale_ifp;
2634 	mii = device_get_softc(sc->ale_miibus);
2635 
2636 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2637 		return;
2638 	/*
2639 	 * Cancel any pending I/O.
2640 	 */
2641 	ale_stop(sc);
2642 	/*
2643 	 * Reset the chip to a known state.
2644 	 */
2645 	ale_reset(sc);
2646 	/* Initialize Tx descriptors, DMA memory blocks. */
2647 	ale_init_rx_pages(sc);
2648 	ale_init_tx_ring(sc);
2649 
2650 	/* Reprogram the station address. */
2651 	bcopy(if_getlladdr(ifp), eaddr, ETHER_ADDR_LEN);
2652 	CSR_WRITE_4(sc, ALE_PAR0,
2653 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2654 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
2655 	/*
2656 	 * Clear WOL status and disable all WOL feature as WOL
2657 	 * would interfere Rx operation under normal environments.
2658 	 */
2659 	CSR_READ_4(sc, ALE_WOL_CFG);
2660 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
2661 	/*
2662 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
2663 	 * the same high address part of DMAable region.
2664 	 */
2665 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
2666 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
2667 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
2668 	CSR_WRITE_4(sc, ALE_TPD_CNT,
2669 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
2670 	/* Set Rx page base address, note we use single queue. */
2671 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
2672 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
2673 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
2674 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
2675 	/* Set Tx/Rx CMB addresses. */
2676 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
2677 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
2678 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
2679 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
2680 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
2681 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
2682 	/* Mark RXF0 is valid. */
2683 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
2684 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
2685 	/*
2686 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
2687 	 * multi-queue yet.
2688 	 */
2689 
2690 	/* Set Rx page size, excluding guard frame size. */
2691 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
2692 	/* Tell hardware that we're ready to load DMA blocks. */
2693 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
2694 
2695 	/* Set Rx/Tx interrupt trigger threshold. */
2696 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
2697 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
2698 	/*
2699 	 * XXX
2700 	 * Set interrupt trigger timer, its purpose and relation
2701 	 * with interrupt moderation mechanism is not clear yet.
2702 	 */
2703 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
2704 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
2705 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
2706 
2707 	/* Configure interrupt moderation timer. */
2708 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
2709 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
2710 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
2711 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
2712 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
2713 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2714 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
2715 		reg |= MASTER_IM_RX_TIMER_ENB;
2716 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
2717 		reg |= MASTER_IM_TX_TIMER_ENB;
2718 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
2719 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
2720 
2721 	/* Set Maximum frame size of controller. */
2722 	if (if_getmtu(ifp) < ETHERMTU)
2723 		sc->ale_max_frame_size = ETHERMTU;
2724 	else
2725 		sc->ale_max_frame_size = if_getmtu(ifp);
2726 	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2727 	    ETHER_CRC_LEN;
2728 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
2729 	/* Configure IPG/IFG parameters. */
2730 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
2731 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2732 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2733 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2734 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2735 	/* Set parameters for half-duplex media. */
2736 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
2737 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2738 	    HDPX_CFG_LCOL_MASK) |
2739 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2740 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2741 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2742 	    HDPX_CFG_ABEBT_MASK) |
2743 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2744 	    HDPX_CFG_JAMIPG_MASK));
2745 
2746 	/* Configure Tx jumbo frame parameters. */
2747 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2748 		if (if_getmtu(ifp) < ETHERMTU)
2749 			reg = sc->ale_max_frame_size;
2750 		else if (if_getmtu(ifp) < 6 * 1024)
2751 			reg = (sc->ale_max_frame_size * 2) / 3;
2752 		else
2753 			reg = sc->ale_max_frame_size / 2;
2754 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
2755 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
2756 		    TX_JUMBO_THRESH_UNIT_SHIFT);
2757 	}
2758 	/* Configure TxQ. */
2759 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
2760 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
2761 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2762 	    TXQ_CFG_TPD_BURST_MASK;
2763 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
2764 
2765 	/* Configure Rx jumbo frame & flow control parameters. */
2766 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2767 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
2768 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
2769 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
2770 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
2771 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
2772 		    RX_JUMBO_LKAH_MASK));
2773 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
2774 		rxf_hi = (reg * 7) / 10;
2775 		rxf_lo = (reg * 3)/ 10;
2776 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
2777 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2778 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
2779 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2780 		    RX_FIFO_PAUSE_THRESH_HI_MASK));
2781 	}
2782 
2783 	/* Disable RSS. */
2784 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
2785 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
2786 
2787 	/* Configure RxQ. */
2788 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
2789 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2790 
2791 	/* Configure DMA parameters. */
2792 	reg = 0;
2793 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
2794 		reg |= DMA_CFG_TXCMB_ENB;
2795 	CSR_WRITE_4(sc, ALE_DMA_CFG,
2796 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
2797 	    sc->ale_dma_rd_burst | reg |
2798 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
2799 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2800 	    DMA_CFG_RD_DELAY_CNT_MASK) |
2801 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2802 	    DMA_CFG_WR_DELAY_CNT_MASK));
2803 
2804 	/*
2805 	 * Hardware can be configured to issue SMB interrupt based
2806 	 * on programmed interval. Since there is a callout that is
2807 	 * invoked for every hz in driver we use that instead of
2808 	 * relying on periodic SMB interrupt.
2809 	 */
2810 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
2811 	/* Clear MAC statistics. */
2812 	ale_stats_clear(sc);
2813 
2814 	/*
2815 	 * Configure Tx/Rx MACs.
2816 	 *  - Auto-padding for short frames.
2817 	 *  - Enable CRC generation.
2818 	 *  Actual reconfiguration of MAC for resolved speed/duplex
2819 	 *  is followed after detection of link establishment.
2820 	 *  AR81xx always does checksum computation regardless of
2821 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
2822 	 *  cause Rx handling issue for fragmented IP datagrams due
2823 	 *  to silicon bug.
2824 	 */
2825 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2826 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2827 	    MAC_CFG_PREAMBLE_MASK);
2828 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
2829 		reg |= MAC_CFG_SPEED_10_100;
2830 	else
2831 		reg |= MAC_CFG_SPEED_1000;
2832 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2833 
2834 	/* Set up the receive filter. */
2835 	ale_rxfilter(sc);
2836 	ale_rxvlan(sc);
2837 
2838 	/* Acknowledge all pending interrupts and clear it. */
2839 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
2840 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2841 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
2842 
2843 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2844 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2845 
2846 	sc->ale_flags &= ~ALE_FLAG_LINK;
2847 	/* Switch to the current media. */
2848 	mii_mediachg(mii);
2849 
2850 	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2851 }
2852 
2853 static void
2854 ale_stop(struct ale_softc *sc)
2855 {
2856 	if_t ifp;
2857 	struct ale_txdesc *txd;
2858 	uint32_t reg;
2859 	int i;
2860 
2861 	ALE_LOCK_ASSERT(sc);
2862 	/*
2863 	 * Mark the interface down and cancel the watchdog timer.
2864 	 */
2865 	ifp = sc->ale_ifp;
2866 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2867 	sc->ale_flags &= ~ALE_FLAG_LINK;
2868 	callout_stop(&sc->ale_tick_ch);
2869 	sc->ale_watchdog_timer = 0;
2870 	ale_stats_update(sc);
2871 	/* Disable interrupts. */
2872 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
2873 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2874 	/* Disable queue processing and DMA. */
2875 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
2876 	reg &= ~TXQ_CFG_ENB;
2877 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
2878 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
2879 	reg &= ~RXQ_CFG_ENB;
2880 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
2881 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
2882 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
2883 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
2884 	DELAY(1000);
2885 	/* Stop Rx/Tx MACs. */
2886 	ale_stop_mac(sc);
2887 	/* Disable interrupts which might be touched in taskq handler. */
2888 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2889 
2890 	/*
2891 	 * Free TX mbufs still in the queues.
2892 	 */
2893 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2894 		txd = &sc->ale_cdata.ale_txdesc[i];
2895 		if (txd->tx_m != NULL) {
2896 			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2897 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2898 			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2899 			    txd->tx_dmamap);
2900 			m_freem(txd->tx_m);
2901 			txd->tx_m = NULL;
2902 		}
2903         }
2904 }
2905 
2906 static void
2907 ale_stop_mac(struct ale_softc *sc)
2908 {
2909 	uint32_t reg;
2910 	int i;
2911 
2912 	ALE_LOCK_ASSERT(sc);
2913 
2914 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2915 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2916 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2917 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2918 	}
2919 
2920 	for (i = ALE_TIMEOUT; i > 0; i--) {
2921 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
2922 		if (reg == 0)
2923 			break;
2924 		DELAY(10);
2925 	}
2926 	if (i == 0)
2927 		device_printf(sc->ale_dev,
2928 		    "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
2929 }
2930 
2931 static void
2932 ale_init_tx_ring(struct ale_softc *sc)
2933 {
2934 	struct ale_txdesc *txd;
2935 	int i;
2936 
2937 	ALE_LOCK_ASSERT(sc);
2938 
2939 	sc->ale_cdata.ale_tx_prod = 0;
2940 	sc->ale_cdata.ale_tx_cons = 0;
2941 	sc->ale_cdata.ale_tx_cnt = 0;
2942 
2943 	bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
2944 	bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
2945 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2946 		txd = &sc->ale_cdata.ale_txdesc[i];
2947 		txd->tx_m = NULL;
2948 	}
2949 	*sc->ale_cdata.ale_tx_cmb = 0;
2950 	bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2951 	    sc->ale_cdata.ale_tx_cmb_map,
2952 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2953 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2954 	    sc->ale_cdata.ale_tx_ring_map,
2955 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2956 }
2957 
2958 static void
2959 ale_init_rx_pages(struct ale_softc *sc)
2960 {
2961 	struct ale_rx_page *rx_page;
2962 	int i;
2963 
2964 	ALE_LOCK_ASSERT(sc);
2965 
2966 	sc->ale_morework = 0;
2967 	sc->ale_cdata.ale_rx_seqno = 0;
2968 	sc->ale_cdata.ale_rx_curp = 0;
2969 
2970 	for (i = 0; i < ALE_RX_PAGES; i++) {
2971 		rx_page = &sc->ale_cdata.ale_rx_page[i];
2972 		bzero(rx_page->page_addr, sc->ale_pagesize);
2973 		bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
2974 		rx_page->cons = 0;
2975 		*rx_page->cmb_addr = 0;
2976 		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2977 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2978 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2979 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2980 	}
2981 }
2982 
2983 static void
2984 ale_rxvlan(struct ale_softc *sc)
2985 {
2986 	if_t ifp;
2987 	uint32_t reg;
2988 
2989 	ALE_LOCK_ASSERT(sc);
2990 
2991 	ifp = sc->ale_ifp;
2992 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2993 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2994 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
2995 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2996 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2997 }
2998 
2999 static u_int
3000 ale_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3001 {
3002 	uint32_t crc, *mchash = arg;
3003 
3004 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
3005 	mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3006 
3007 	return (1);
3008 }
3009 
3010 static void
3011 ale_rxfilter(struct ale_softc *sc)
3012 {
3013 	if_t ifp;
3014 	uint32_t mchash[2];
3015 	uint32_t rxcfg;
3016 
3017 	ALE_LOCK_ASSERT(sc);
3018 
3019 	ifp = sc->ale_ifp;
3020 
3021 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
3022 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3023 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
3024 		rxcfg |= MAC_CFG_BCAST;
3025 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3026 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
3027 			rxcfg |= MAC_CFG_PROMISC;
3028 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
3029 			rxcfg |= MAC_CFG_ALLMULTI;
3030 		CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
3031 		CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
3032 		CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3033 		return;
3034 	}
3035 
3036 	/* Program new filter. */
3037 	bzero(mchash, sizeof(mchash));
3038 	if_foreach_llmaddr(ifp, ale_hash_maddr, &mchash);
3039 
3040 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
3041 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
3042 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3043 }
3044 
3045 static int
3046 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3047 {
3048 	int error, value;
3049 
3050 	if (arg1 == NULL)
3051 		return (EINVAL);
3052 	value = *(int *)arg1;
3053 	error = sysctl_handle_int(oidp, &value, 0, req);
3054 	if (error || req->newptr == NULL)
3055 		return (error);
3056 	if (value < low || value > high)
3057 		return (EINVAL);
3058         *(int *)arg1 = value;
3059 
3060         return (0);
3061 }
3062 
3063 static int
3064 sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
3065 {
3066 	return (sysctl_int_range(oidp, arg1, arg2, req,
3067 	    ALE_PROC_MIN, ALE_PROC_MAX));
3068 }
3069 
3070 static int
3071 sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
3072 {
3073 
3074 	return (sysctl_int_range(oidp, arg1, arg2, req,
3075 	    ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
3076 }
3077