xref: /freebsd/sys/dev/ale/if_ale.c (revision c0020399a650364d0134f79f3fa319f84064372d)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/module.h>
41 #include <sys/rman.h>
42 #include <sys/queue.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_llc.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_vlan_var.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/ip.h>
61 #include <netinet/tcp.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 
66 #include <dev/pci/pcireg.h>
67 #include <dev/pci/pcivar.h>
68 
69 #include <machine/atomic.h>
70 #include <machine/bus.h>
71 #include <machine/in_cksum.h>
72 
73 #include <dev/ale/if_alereg.h>
74 #include <dev/ale/if_alevar.h>
75 
76 /* "device miibus" required.  See GENERIC if you get errors here. */
77 #include "miibus_if.h"
78 
79 /* For more information about Tx checksum offload issues see ale_encap(). */
80 #define	ALE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
81 #ifndef	IFCAP_VLAN_HWTSO
82 #define	IFCAP_VLAN_HWTSO	0
83 #endif
84 
85 MODULE_DEPEND(ale, pci, 1, 1, 1);
86 MODULE_DEPEND(ale, ether, 1, 1, 1);
87 MODULE_DEPEND(ale, miibus, 1, 1, 1);
88 
89 /* Tunables. */
90 static int msi_disable = 0;
91 static int msix_disable = 0;
92 TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
93 TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
94 
95 /*
96  * Devices supported by this driver.
97  */
98 static struct ale_dev {
99 	uint16_t	ale_vendorid;
100 	uint16_t	ale_deviceid;
101 	const char	*ale_name;
102 } ale_devs[] = {
103     { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
104     "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
105 };
106 
107 static int	ale_attach(device_t);
108 static int	ale_check_boundary(struct ale_softc *);
109 static int	ale_detach(device_t);
110 static int	ale_dma_alloc(struct ale_softc *);
111 static void	ale_dma_free(struct ale_softc *);
112 static void	ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113 static int	ale_encap(struct ale_softc *, struct mbuf **);
114 static void	ale_get_macaddr(struct ale_softc *);
115 static void	ale_init(void *);
116 static void	ale_init_locked(struct ale_softc *);
117 static void	ale_init_rx_pages(struct ale_softc *);
118 static void	ale_init_tx_ring(struct ale_softc *);
119 static void	ale_int_task(void *, int);
120 static int	ale_intr(void *);
121 static int	ale_ioctl(struct ifnet *, u_long, caddr_t);
122 static void	ale_link_task(void *, int);
123 static void	ale_mac_config(struct ale_softc *);
124 static int	ale_miibus_readreg(device_t, int, int);
125 static void	ale_miibus_statchg(device_t);
126 static int	ale_miibus_writereg(device_t, int, int, int);
127 static int	ale_mediachange(struct ifnet *);
128 static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
129 static void	ale_phy_reset(struct ale_softc *);
130 static int	ale_probe(device_t);
131 static void	ale_reset(struct ale_softc *);
132 static int	ale_resume(device_t);
133 static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
134     uint32_t, uint32_t *);
135 static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
136 static int	ale_rxeof(struct ale_softc *sc, int);
137 static void	ale_rxfilter(struct ale_softc *);
138 static void	ale_rxvlan(struct ale_softc *);
139 static void	ale_setlinkspeed(struct ale_softc *);
140 static void	ale_setwol(struct ale_softc *);
141 static int	ale_shutdown(device_t);
142 static void	ale_start(struct ifnet *);
143 static void	ale_stats_clear(struct ale_softc *);
144 static void	ale_stats_update(struct ale_softc *);
145 static void	ale_stop(struct ale_softc *);
146 static void	ale_stop_mac(struct ale_softc *);
147 static int	ale_suspend(device_t);
148 static void	ale_sysctl_node(struct ale_softc *);
149 static void	ale_tick(void *);
150 static void	ale_tx_task(void *, int);
151 static void	ale_txeof(struct ale_softc *);
152 static void	ale_watchdog(struct ale_softc *);
153 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
154 static int	sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
155 static int	sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
156 
157 static device_method_t ale_methods[] = {
158 	/* Device interface. */
159 	DEVMETHOD(device_probe,		ale_probe),
160 	DEVMETHOD(device_attach,	ale_attach),
161 	DEVMETHOD(device_detach,	ale_detach),
162 	DEVMETHOD(device_shutdown,	ale_shutdown),
163 	DEVMETHOD(device_suspend,	ale_suspend),
164 	DEVMETHOD(device_resume,	ale_resume),
165 
166 	/* MII interface. */
167 	DEVMETHOD(miibus_readreg,	ale_miibus_readreg),
168 	DEVMETHOD(miibus_writereg,	ale_miibus_writereg),
169 	DEVMETHOD(miibus_statchg,	ale_miibus_statchg),
170 
171 	{ NULL, NULL }
172 };
173 
174 static driver_t ale_driver = {
175 	"ale",
176 	ale_methods,
177 	sizeof(struct ale_softc)
178 };
179 
180 static devclass_t ale_devclass;
181 
182 DRIVER_MODULE(ale, pci, ale_driver, ale_devclass, 0, 0);
183 DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, 0, 0);
184 
185 static struct resource_spec ale_res_spec_mem[] = {
186 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
187 	{ -1,			0,		0 }
188 };
189 
190 static struct resource_spec ale_irq_spec_legacy[] = {
191 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
192 	{ -1,			0,		0 }
193 };
194 
195 static struct resource_spec ale_irq_spec_msi[] = {
196 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
197 	{ -1,			0,		0 }
198 };
199 
200 static struct resource_spec ale_irq_spec_msix[] = {
201 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
202 	{ -1,			0,		0 }
203 };
204 
205 static int
206 ale_miibus_readreg(device_t dev, int phy, int reg)
207 {
208 	struct ale_softc *sc;
209 	uint32_t v;
210 	int i;
211 
212 	sc = device_get_softc(dev);
213 
214 	if (phy != sc->ale_phyaddr)
215 		return (0);
216 
217 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
218 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
219 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
220 		DELAY(5);
221 		v = CSR_READ_4(sc, ALE_MDIO);
222 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
223 			break;
224 	}
225 
226 	if (i == 0) {
227 		device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
228 		return (0);
229 	}
230 
231 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
232 }
233 
234 static int
235 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
236 {
237 	struct ale_softc *sc;
238 	uint32_t v;
239 	int i;
240 
241 	sc = device_get_softc(dev);
242 
243 	if (phy != sc->ale_phyaddr)
244 		return (0);
245 
246 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
247 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
248 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
249 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
250 		DELAY(5);
251 		v = CSR_READ_4(sc, ALE_MDIO);
252 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
253 			break;
254 	}
255 
256 	if (i == 0)
257 		device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
258 
259 	return (0);
260 }
261 
262 static void
263 ale_miibus_statchg(device_t dev)
264 {
265 	struct ale_softc *sc;
266 
267 	sc = device_get_softc(dev);
268 
269 	taskqueue_enqueue(taskqueue_swi, &sc->ale_link_task);
270 }
271 
272 static void
273 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
274 {
275 	struct ale_softc *sc;
276 	struct mii_data *mii;
277 
278 	sc = ifp->if_softc;
279 	ALE_LOCK(sc);
280 	mii = device_get_softc(sc->ale_miibus);
281 
282 	mii_pollstat(mii);
283 	ALE_UNLOCK(sc);
284 	ifmr->ifm_status = mii->mii_media_status;
285 	ifmr->ifm_active = mii->mii_media_active;
286 }
287 
288 static int
289 ale_mediachange(struct ifnet *ifp)
290 {
291 	struct ale_softc *sc;
292 	struct mii_data *mii;
293 	struct mii_softc *miisc;
294 	int error;
295 
296 	sc = ifp->if_softc;
297 	ALE_LOCK(sc);
298 	mii = device_get_softc(sc->ale_miibus);
299 	if (mii->mii_instance != 0) {
300 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
301 			mii_phy_reset(miisc);
302 	}
303 	error = mii_mediachg(mii);
304 	ALE_UNLOCK(sc);
305 
306 	return (error);
307 }
308 
309 static int
310 ale_probe(device_t dev)
311 {
312 	struct ale_dev *sp;
313 	int i;
314 	uint16_t vendor, devid;
315 
316 	vendor = pci_get_vendor(dev);
317 	devid = pci_get_device(dev);
318 	sp = ale_devs;
319 	for (i = 0; i < sizeof(ale_devs) / sizeof(ale_devs[0]); i++) {
320 		if (vendor == sp->ale_vendorid &&
321 		    devid == sp->ale_deviceid) {
322 			device_set_desc(dev, sp->ale_name);
323 			return (BUS_PROBE_DEFAULT);
324 		}
325 		sp++;
326 	}
327 
328 	return (ENXIO);
329 }
330 
331 static void
332 ale_get_macaddr(struct ale_softc *sc)
333 {
334 	uint32_t ea[2], reg;
335 	int i, vpdc;
336 
337 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
338 	if ((reg & SPI_VPD_ENB) != 0) {
339 		reg &= ~SPI_VPD_ENB;
340 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
341 	}
342 
343 	if (pci_find_extcap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
344 		/*
345 		 * PCI VPD capability found, let TWSI reload EEPROM.
346 		 * This will set ethernet address of controller.
347 		 */
348 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
349 		    TWSI_CTRL_SW_LD_START);
350 		for (i = 100; i > 0; i--) {
351 			DELAY(1000);
352 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
353 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
354 				break;
355 		}
356 		if (i == 0)
357 			device_printf(sc->ale_dev,
358 			    "reloading EEPROM timeout!\n");
359 	} else {
360 		if (bootverbose)
361 			device_printf(sc->ale_dev,
362 			    "PCI VPD capability not found!\n");
363 	}
364 
365 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
366 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
367 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
368 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
369 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
370 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
371 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
372 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
373 }
374 
375 static void
376 ale_phy_reset(struct ale_softc *sc)
377 {
378 
379 	/* Reset magic from Linux. */
380 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
381 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
382 	    GPHY_CTRL_PHY_PLL_ON);
383 	DELAY(1000);
384 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
385 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
386 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
387 	DELAY(1000);
388 
389 #define	ATPHY_DBG_ADDR		0x1D
390 #define	ATPHY_DBG_DATA		0x1E
391 
392 	/* Enable hibernation mode. */
393 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
394 	    ATPHY_DBG_ADDR, 0x0B);
395 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
396 	    ATPHY_DBG_DATA, 0xBC00);
397 	/* Set Class A/B for all modes. */
398 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
399 	    ATPHY_DBG_ADDR, 0x00);
400 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
401 	    ATPHY_DBG_DATA, 0x02EF);
402 	/* Enable 10BT power saving. */
403 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
404 	    ATPHY_DBG_ADDR, 0x12);
405 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
406 	    ATPHY_DBG_DATA, 0x4C04);
407 	/* Adjust 1000T power. */
408 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
409 	    ATPHY_DBG_ADDR, 0x04);
410 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
411 	    ATPHY_DBG_ADDR, 0x8BBB);
412 	/* 10BT center tap voltage. */
413 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
414 	    ATPHY_DBG_ADDR, 0x05);
415 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
416 	    ATPHY_DBG_ADDR, 0x2C46);
417 
418 #undef	ATPHY_DBG_ADDR
419 #undef	ATPHY_DBG_DATA
420 	DELAY(1000);
421 }
422 
423 static int
424 ale_attach(device_t dev)
425 {
426 	struct ale_softc *sc;
427 	struct ifnet *ifp;
428 	uint16_t burst;
429 	int error, i, msic, msixc, pmc;
430 	uint32_t rxf_len, txf_len;
431 
432 	error = 0;
433 	sc = device_get_softc(dev);
434 	sc->ale_dev = dev;
435 
436 	mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
437 	    MTX_DEF);
438 	callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
439 	TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
440 	TASK_INIT(&sc->ale_link_task, 0, ale_link_task, sc);
441 
442 	/* Map the device. */
443 	pci_enable_busmaster(dev);
444 	sc->ale_res_spec = ale_res_spec_mem;
445 	sc->ale_irq_spec = ale_irq_spec_legacy;
446 	error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
447 	if (error != 0) {
448 		device_printf(dev, "cannot allocate memory resources.\n");
449 		goto fail;
450 	}
451 
452 	/* Set PHY address. */
453 	sc->ale_phyaddr = ALE_PHY_ADDR;
454 
455 	/* Reset PHY. */
456 	ale_phy_reset(sc);
457 
458 	/* Reset the ethernet controller. */
459 	ale_reset(sc);
460 
461 	/* Get PCI and chip id/revision. */
462 	sc->ale_rev = pci_get_revid(dev);
463 	if (sc->ale_rev >= 0xF0) {
464 		/* L2E Rev. B. AR8114 */
465 		sc->ale_flags |= ALE_FLAG_FASTETHER;
466 	} else {
467 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
468 			/* L1E AR8121 */
469 			sc->ale_flags |= ALE_FLAG_JUMBO;
470 		} else {
471 			/* L2E Rev. A. AR8113 */
472 			sc->ale_flags |= ALE_FLAG_FASTETHER;
473 		}
474 	}
475 	/*
476 	 * All known controllers seems to require 4 bytes alignment
477 	 * of Tx buffers to make Tx checksum offload with custom
478 	 * checksum generation method work.
479 	 */
480 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
481 	/*
482 	 * All known controllers seems to have issues on Rx checksum
483 	 * offload for fragmented IP datagrams.
484 	 */
485 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
486 	/*
487 	 * Don't use Tx CMB. It is known to cause RRS update failure
488 	 * under certain circumstances. Typical phenomenon of the
489 	 * issue would be unexpected sequence number encountered in
490 	 * Rx handler.
491 	 */
492 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
493 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
494 	    MASTER_CHIP_REV_SHIFT;
495 	if (bootverbose) {
496 		device_printf(dev, "PCI device revision : 0x%04x\n",
497 		    sc->ale_rev);
498 		device_printf(dev, "Chip id/revision : 0x%04x\n",
499 		    sc->ale_chip_rev);
500 	}
501 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
502 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
503 	/*
504 	 * Uninitialized hardware returns an invalid chip id/revision
505 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
506 	 */
507 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
508 	    rxf_len == 0xFFFFFFF) {
509 		device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
510 		    "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
511 		    txf_len, rxf_len);
512 		error = ENXIO;
513 		goto fail;
514 	}
515 	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
516 
517 	/* Allocate IRQ resources. */
518 	msixc = pci_msix_count(dev);
519 	msic = pci_msi_count(dev);
520 	if (bootverbose) {
521 		device_printf(dev, "MSIX count : %d\n", msixc);
522 		device_printf(dev, "MSI count : %d\n", msic);
523 	}
524 
525 	/* Prefer MSIX over MSI. */
526 	if (msix_disable == 0 || msi_disable == 0) {
527 		if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
528 		    pci_alloc_msix(dev, &msixc) == 0) {
529 			if (msic == ALE_MSIX_MESSAGES) {
530 				device_printf(dev, "Using %d MSIX messages.\n",
531 				    msixc);
532 				sc->ale_flags |= ALE_FLAG_MSIX;
533 				sc->ale_irq_spec = ale_irq_spec_msix;
534 			} else
535 				pci_release_msi(dev);
536 		}
537 		if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
538 		    msic == ALE_MSI_MESSAGES &&
539 		    pci_alloc_msi(dev, &msic) == 0) {
540 			if (msic == ALE_MSI_MESSAGES) {
541 				device_printf(dev, "Using %d MSI messages.\n",
542 				    msic);
543 				sc->ale_flags |= ALE_FLAG_MSI;
544 				sc->ale_irq_spec = ale_irq_spec_msi;
545 			} else
546 				pci_release_msi(dev);
547 		}
548 	}
549 
550 	error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
551 	if (error != 0) {
552 		device_printf(dev, "cannot allocate IRQ resources.\n");
553 		goto fail;
554 	}
555 
556 	/* Get DMA parameters from PCIe device control register. */
557 	if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
558 		sc->ale_flags |= ALE_FLAG_PCIE;
559 		burst = pci_read_config(dev, i + 0x08, 2);
560 		/* Max read request size. */
561 		sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
562 		    DMA_CFG_RD_BURST_SHIFT;
563 		/* Max payload size. */
564 		sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
565 		    DMA_CFG_WR_BURST_SHIFT;
566 		if (bootverbose) {
567 			device_printf(dev, "Read request size : %d bytes.\n",
568 			    128 << ((burst >> 12) & 0x07));
569 			device_printf(dev, "TLP payload size : %d bytes.\n",
570 			    128 << ((burst >> 5) & 0x07));
571 		}
572 	} else {
573 		sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
574 		sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
575 	}
576 
577 	/* Create device sysctl node. */
578 	ale_sysctl_node(sc);
579 
580 	if ((error = ale_dma_alloc(sc) != 0))
581 		goto fail;
582 
583 	/* Load station address. */
584 	ale_get_macaddr(sc);
585 
586 	ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
587 	if (ifp == NULL) {
588 		device_printf(dev, "cannot allocate ifnet structure.\n");
589 		error = ENXIO;
590 		goto fail;
591 	}
592 
593 	ifp->if_softc = sc;
594 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
595 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
596 	ifp->if_ioctl = ale_ioctl;
597 	ifp->if_start = ale_start;
598 	ifp->if_init = ale_init;
599 	ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1;
600 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
601 	IFQ_SET_READY(&ifp->if_snd);
602 	ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4;
603 	ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO;
604 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
605 		sc->ale_flags |= ALE_FLAG_PMCAP;
606 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
607 	}
608 	ifp->if_capenable = ifp->if_capabilities;
609 
610 	/* Set up MII bus. */
611 	if ((error = mii_phy_probe(dev, &sc->ale_miibus, ale_mediachange,
612 	    ale_mediastatus)) != 0) {
613 		device_printf(dev, "no PHY found!\n");
614 		goto fail;
615 	}
616 
617 	ether_ifattach(ifp, sc->ale_eaddr);
618 
619 	/* VLAN capability setup. */
620 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
621 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
622 	ifp->if_capenable = ifp->if_capabilities;
623 
624 	/* Tell the upper layer(s) we support long frames. */
625 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
626 
627 	/* Create local taskq. */
628 	TASK_INIT(&sc->ale_tx_task, 1, ale_tx_task, ifp);
629 	sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
630 	    taskqueue_thread_enqueue, &sc->ale_tq);
631 	if (sc->ale_tq == NULL) {
632 		device_printf(dev, "could not create taskqueue.\n");
633 		ether_ifdetach(ifp);
634 		error = ENXIO;
635 		goto fail;
636 	}
637 	taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
638 	    device_get_nameunit(sc->ale_dev));
639 
640 	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
641 		msic = ALE_MSIX_MESSAGES;
642 	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
643 		msic = ALE_MSI_MESSAGES;
644 	else
645 		msic = 1;
646 	for (i = 0; i < msic; i++) {
647 		error = bus_setup_intr(dev, sc->ale_irq[i],
648 		    INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
649 		    &sc->ale_intrhand[i]);
650 		if (error != 0)
651 			break;
652 	}
653 	if (error != 0) {
654 		device_printf(dev, "could not set up interrupt handler.\n");
655 		taskqueue_free(sc->ale_tq);
656 		sc->ale_tq = NULL;
657 		ether_ifdetach(ifp);
658 		goto fail;
659 	}
660 
661 fail:
662 	if (error != 0)
663 		ale_detach(dev);
664 
665 	return (error);
666 }
667 
668 static int
669 ale_detach(device_t dev)
670 {
671 	struct ale_softc *sc;
672 	struct ifnet *ifp;
673 	int i, msic;
674 
675 	sc = device_get_softc(dev);
676 
677 	ifp = sc->ale_ifp;
678 	if (device_is_attached(dev)) {
679 		ALE_LOCK(sc);
680 		sc->ale_flags |= ALE_FLAG_DETACH;
681 		ale_stop(sc);
682 		ALE_UNLOCK(sc);
683 		callout_drain(&sc->ale_tick_ch);
684 		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
685 		taskqueue_drain(sc->ale_tq, &sc->ale_tx_task);
686 		taskqueue_drain(taskqueue_swi, &sc->ale_link_task);
687 		ether_ifdetach(ifp);
688 	}
689 
690 	if (sc->ale_tq != NULL) {
691 		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
692 		taskqueue_free(sc->ale_tq);
693 		sc->ale_tq = NULL;
694 	}
695 
696 	if (sc->ale_miibus != NULL) {
697 		device_delete_child(dev, sc->ale_miibus);
698 		sc->ale_miibus = NULL;
699 	}
700 	bus_generic_detach(dev);
701 	ale_dma_free(sc);
702 
703 	if (ifp != NULL) {
704 		if_free(ifp);
705 		sc->ale_ifp = NULL;
706 	}
707 
708 	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
709 		msic = ALE_MSIX_MESSAGES;
710 	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
711 		msic = ALE_MSI_MESSAGES;
712 	else
713 		msic = 1;
714 	for (i = 0; i < msic; i++) {
715 		if (sc->ale_intrhand[i] != NULL) {
716 			bus_teardown_intr(dev, sc->ale_irq[i],
717 			    sc->ale_intrhand[i]);
718 			sc->ale_intrhand[i] = NULL;
719 		}
720 	}
721 
722 	bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
723 	if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
724 		pci_release_msi(dev);
725 	bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
726 	mtx_destroy(&sc->ale_mtx);
727 
728 	return (0);
729 }
730 
731 #define	ALE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
732 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
733 
734 #if __FreeBSD_version > 800000
735 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
736 	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
737 #else
738 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
739 	    SYSCTL_ADD_ULONG(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
740 #endif
741 
742 static void
743 ale_sysctl_node(struct ale_softc *sc)
744 {
745 	struct sysctl_ctx_list *ctx;
746 	struct sysctl_oid_list *child, *parent;
747 	struct sysctl_oid *tree;
748 	struct ale_hw_stats *stats;
749 	int error;
750 
751 	stats = &sc->ale_stats;
752 	ctx = device_get_sysctl_ctx(sc->ale_dev);
753 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
754 
755 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
756 	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_rx_mod, 0,
757 	    sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
758 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
759 	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_tx_mod, 0,
760 	    sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
761 	/* Pull in device tunables. */
762 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
763 	error = resource_int_value(device_get_name(sc->ale_dev),
764 	    device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
765 	if (error == 0) {
766 		if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
767 		    sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
768 			device_printf(sc->ale_dev, "int_rx_mod value out of "
769 			    "range; using default: %d\n",
770 			    ALE_IM_RX_TIMER_DEFAULT);
771 			sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
772 		}
773 	}
774 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
775 	error = resource_int_value(device_get_name(sc->ale_dev),
776 	    device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
777 	if (error == 0) {
778 		if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
779 		    sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
780 			device_printf(sc->ale_dev, "int_tx_mod value out of "
781 			    "range; using default: %d\n",
782 			    ALE_IM_TX_TIMER_DEFAULT);
783 			sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
784 		}
785 	}
786 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
787 	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_process_limit, 0,
788 	    sysctl_hw_ale_proc_limit, "I",
789 	    "max number of Rx events to process");
790 	/* Pull in device tunables. */
791 	sc->ale_process_limit = ALE_PROC_DEFAULT;
792 	error = resource_int_value(device_get_name(sc->ale_dev),
793 	    device_get_unit(sc->ale_dev), "process_limit",
794 	    &sc->ale_process_limit);
795 	if (error == 0) {
796 		if (sc->ale_process_limit < ALE_PROC_MIN ||
797 		    sc->ale_process_limit > ALE_PROC_MAX) {
798 			device_printf(sc->ale_dev,
799 			    "process_limit value out of range; "
800 			    "using default: %d\n", ALE_PROC_DEFAULT);
801 			sc->ale_process_limit = ALE_PROC_DEFAULT;
802 		}
803 	}
804 
805 	/* Misc statistics. */
806 	ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
807 	    &stats->reset_brk_seq,
808 	    "Controller resets due to broken Rx sequnce number");
809 
810 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
811 	    NULL, "ATE statistics");
812 	parent = SYSCTL_CHILDREN(tree);
813 
814 	/* Rx statistics. */
815 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
816 	    NULL, "Rx MAC statistics");
817 	child = SYSCTL_CHILDREN(tree);
818 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
819 	    &stats->rx_frames, "Good frames");
820 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
821 	    &stats->rx_bcast_frames, "Good broadcast frames");
822 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
823 	    &stats->rx_mcast_frames, "Good multicast frames");
824 	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
825 	    &stats->rx_pause_frames, "Pause control frames");
826 	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
827 	    &stats->rx_control_frames, "Control frames");
828 	ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
829 	    &stats->rx_crcerrs, "CRC errors");
830 	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
831 	    &stats->rx_lenerrs, "Frames with length mismatched");
832 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
833 	    &stats->rx_bytes, "Good octets");
834 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
835 	    &stats->rx_bcast_bytes, "Good broadcast octets");
836 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
837 	    &stats->rx_mcast_bytes, "Good multicast octets");
838 	ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
839 	    &stats->rx_runts, "Too short frames");
840 	ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
841 	    &stats->rx_fragments, "Fragmented frames");
842 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
843 	    &stats->rx_pkts_64, "64 bytes frames");
844 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
845 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
846 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
847 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
848 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
849 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
850 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
851 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
852 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
853 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
854 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
855 	    &stats->rx_pkts_1519_max, "1519 to max frames");
856 	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
857 	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
858 	ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
859 	    &stats->rx_fifo_oflows, "FIFO overflows");
860 	ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
861 	    &stats->rx_rrs_errs, "Return status write-back errors");
862 	ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
863 	    &stats->rx_alignerrs, "Alignment errors");
864 	ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
865 	    &stats->rx_pkts_filtered,
866 	    "Frames dropped due to address filtering");
867 
868 	/* Tx statistics. */
869 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
870 	    NULL, "Tx MAC statistics");
871 	child = SYSCTL_CHILDREN(tree);
872 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
873 	    &stats->tx_frames, "Good frames");
874 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
875 	    &stats->tx_bcast_frames, "Good broadcast frames");
876 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
877 	    &stats->tx_mcast_frames, "Good multicast frames");
878 	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
879 	    &stats->tx_pause_frames, "Pause control frames");
880 	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
881 	    &stats->tx_control_frames, "Control frames");
882 	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
883 	    &stats->tx_excess_defer, "Frames with excessive derferrals");
884 	ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
885 	    &stats->tx_excess_defer, "Frames with derferrals");
886 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
887 	    &stats->tx_bytes, "Good octets");
888 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
889 	    &stats->tx_bcast_bytes, "Good broadcast octets");
890 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
891 	    &stats->tx_mcast_bytes, "Good multicast octets");
892 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
893 	    &stats->tx_pkts_64, "64 bytes frames");
894 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
895 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
896 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
897 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
898 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
899 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
900 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
901 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
902 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
903 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
904 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
905 	    &stats->tx_pkts_1519_max, "1519 to max frames");
906 	ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
907 	    &stats->tx_single_colls, "Single collisions");
908 	ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
909 	    &stats->tx_multi_colls, "Multiple collisions");
910 	ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
911 	    &stats->tx_late_colls, "Late collisions");
912 	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
913 	    &stats->tx_excess_colls, "Excessive collisions");
914 	ALE_SYSCTL_STAT_ADD32(ctx, child, "abort",
915 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
916 	ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
917 	    &stats->tx_underrun, "FIFO underruns");
918 	ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
919 	    &stats->tx_desc_underrun, "Descriptor write-back errors");
920 	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
921 	    &stats->tx_lenerrs, "Frames with length mismatched");
922 	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
923 	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
924 }
925 
926 #undef ALE_SYSCTL_STAT_ADD32
927 #undef ALE_SYSCTL_STAT_ADD64
928 
929 struct ale_dmamap_arg {
930 	bus_addr_t	ale_busaddr;
931 };
932 
933 static void
934 ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
935 {
936 	struct ale_dmamap_arg *ctx;
937 
938 	if (error != 0)
939 		return;
940 
941 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
942 
943 	ctx = (struct ale_dmamap_arg *)arg;
944 	ctx->ale_busaddr = segs[0].ds_addr;
945 }
946 
947 /*
948  * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
949  * which specifies high address region of DMA blocks. Therefore these
950  * blocks should have the same high address of given 4GB address
951  * space(i.e. crossing 4GB boundary is not allowed).
952  */
953 static int
954 ale_check_boundary(struct ale_softc *sc)
955 {
956 	bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
957 	bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
958 
959 	rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
960 	    sc->ale_pagesize;
961 	rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
962 	    sc->ale_pagesize;
963 	tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
964 	tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
965 	rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
966 	rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
967 
968 	if ((ALE_ADDR_HI(tx_ring_end) !=
969 	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
970 	    (ALE_ADDR_HI(rx_page_end[0]) !=
971 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
972 	    (ALE_ADDR_HI(rx_page_end[1]) !=
973 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
974 	    (ALE_ADDR_HI(tx_cmb_end) !=
975 	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
976 	    (ALE_ADDR_HI(rx_cmb_end[0]) !=
977 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
978 	    (ALE_ADDR_HI(rx_cmb_end[1]) !=
979 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
980 		return (EFBIG);
981 
982 	if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
983 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
984 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
985 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
986 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
987 		return (EFBIG);
988 
989 	return (0);
990 }
991 
992 static int
993 ale_dma_alloc(struct ale_softc *sc)
994 {
995 	struct ale_txdesc *txd;
996 	bus_addr_t lowaddr;
997 	struct ale_dmamap_arg ctx;
998 	int error, guard_size, i;
999 
1000 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
1001 		guard_size = ALE_JUMBO_FRAMELEN;
1002 	else
1003 		guard_size = ALE_MAX_FRAMELEN;
1004 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
1005 	    ALE_RX_PAGE_ALIGN);
1006 	lowaddr = BUS_SPACE_MAXADDR;
1007 again:
1008 	/* Create parent DMA tag. */
1009 	error = bus_dma_tag_create(
1010 	    bus_get_dma_tag(sc->ale_dev), /* parent */
1011 	    1, 0,			/* alignment, boundary */
1012 	    lowaddr,			/* lowaddr */
1013 	    BUS_SPACE_MAXADDR,		/* highaddr */
1014 	    NULL, NULL,			/* filter, filterarg */
1015 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1016 	    0,				/* nsegments */
1017 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1018 	    0,				/* flags */
1019 	    NULL, NULL,			/* lockfunc, lockarg */
1020 	    &sc->ale_cdata.ale_parent_tag);
1021 	if (error != 0) {
1022 		device_printf(sc->ale_dev,
1023 		    "could not create parent DMA tag.\n");
1024 		goto fail;
1025 	}
1026 
1027 	/* Create DMA tag for Tx descriptor ring. */
1028 	error = bus_dma_tag_create(
1029 	    sc->ale_cdata.ale_parent_tag, /* parent */
1030 	    ALE_TX_RING_ALIGN, 0,	/* alignment, boundary */
1031 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1032 	    BUS_SPACE_MAXADDR,		/* highaddr */
1033 	    NULL, NULL,			/* filter, filterarg */
1034 	    ALE_TX_RING_SZ,		/* maxsize */
1035 	    1,				/* nsegments */
1036 	    ALE_TX_RING_SZ,		/* maxsegsize */
1037 	    0,				/* flags */
1038 	    NULL, NULL,			/* lockfunc, lockarg */
1039 	    &sc->ale_cdata.ale_tx_ring_tag);
1040 	if (error != 0) {
1041 		device_printf(sc->ale_dev,
1042 		    "could not create Tx ring DMA tag.\n");
1043 		goto fail;
1044 	}
1045 
1046 	/* Create DMA tag for Rx pages. */
1047 	for (i = 0; i < ALE_RX_PAGES; i++) {
1048 		error = bus_dma_tag_create(
1049 		    sc->ale_cdata.ale_parent_tag, /* parent */
1050 		    ALE_RX_PAGE_ALIGN, 0,	/* alignment, boundary */
1051 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1052 		    BUS_SPACE_MAXADDR,		/* highaddr */
1053 		    NULL, NULL,			/* filter, filterarg */
1054 		    sc->ale_pagesize,		/* maxsize */
1055 		    1,				/* nsegments */
1056 		    sc->ale_pagesize,		/* maxsegsize */
1057 		    0,				/* flags */
1058 		    NULL, NULL,			/* lockfunc, lockarg */
1059 		    &sc->ale_cdata.ale_rx_page[i].page_tag);
1060 		if (error != 0) {
1061 			device_printf(sc->ale_dev,
1062 			    "could not create Rx page %d DMA tag.\n", i);
1063 			goto fail;
1064 		}
1065 	}
1066 
1067 	/* Create DMA tag for Tx coalescing message block. */
1068 	error = bus_dma_tag_create(
1069 	    sc->ale_cdata.ale_parent_tag, /* parent */
1070 	    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1071 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1072 	    BUS_SPACE_MAXADDR,		/* highaddr */
1073 	    NULL, NULL,			/* filter, filterarg */
1074 	    ALE_TX_CMB_SZ,		/* maxsize */
1075 	    1,				/* nsegments */
1076 	    ALE_TX_CMB_SZ,		/* maxsegsize */
1077 	    0,				/* flags */
1078 	    NULL, NULL,			/* lockfunc, lockarg */
1079 	    &sc->ale_cdata.ale_tx_cmb_tag);
1080 	if (error != 0) {
1081 		device_printf(sc->ale_dev,
1082 		    "could not create Tx CMB DMA tag.\n");
1083 		goto fail;
1084 	}
1085 
1086 	/* Create DMA tag for Rx coalescing message block. */
1087 	for (i = 0; i < ALE_RX_PAGES; i++) {
1088 		error = bus_dma_tag_create(
1089 		    sc->ale_cdata.ale_parent_tag, /* parent */
1090 		    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1091 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1092 		    BUS_SPACE_MAXADDR,		/* highaddr */
1093 		    NULL, NULL,			/* filter, filterarg */
1094 		    ALE_RX_CMB_SZ,		/* maxsize */
1095 		    1,				/* nsegments */
1096 		    ALE_RX_CMB_SZ,		/* maxsegsize */
1097 		    0,				/* flags */
1098 		    NULL, NULL,			/* lockfunc, lockarg */
1099 		    &sc->ale_cdata.ale_rx_page[i].cmb_tag);
1100 		if (error != 0) {
1101 			device_printf(sc->ale_dev,
1102 			    "could not create Rx page %d CMB DMA tag.\n", i);
1103 			goto fail;
1104 		}
1105 	}
1106 
1107 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1108 	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
1109 	    (void **)&sc->ale_cdata.ale_tx_ring,
1110 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1111 	    &sc->ale_cdata.ale_tx_ring_map);
1112 	if (error != 0) {
1113 		device_printf(sc->ale_dev,
1114 		    "could not allocate DMA'able memory for Tx ring.\n");
1115 		goto fail;
1116 	}
1117 	ctx.ale_busaddr = 0;
1118 	error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
1119 	    sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
1120 	    ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
1121 	if (error != 0 || ctx.ale_busaddr == 0) {
1122 		device_printf(sc->ale_dev,
1123 		    "could not load DMA'able memory for Tx ring.\n");
1124 		goto fail;
1125 	}
1126 	sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
1127 
1128 	/* Rx pages. */
1129 	for (i = 0; i < ALE_RX_PAGES; i++) {
1130 		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
1131 		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
1132 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1133 		    &sc->ale_cdata.ale_rx_page[i].page_map);
1134 		if (error != 0) {
1135 			device_printf(sc->ale_dev,
1136 			    "could not allocate DMA'able memory for "
1137 			    "Rx page %d.\n", i);
1138 			goto fail;
1139 		}
1140 		ctx.ale_busaddr = 0;
1141 		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
1142 		    sc->ale_cdata.ale_rx_page[i].page_map,
1143 		    sc->ale_cdata.ale_rx_page[i].page_addr,
1144 		    sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
1145 		if (error != 0 || ctx.ale_busaddr == 0) {
1146 			device_printf(sc->ale_dev,
1147 			    "could not load DMA'able memory for "
1148 			    "Rx page %d.\n", i);
1149 			goto fail;
1150 		}
1151 		sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
1152 	}
1153 
1154 	/* Tx CMB. */
1155 	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
1156 	    (void **)&sc->ale_cdata.ale_tx_cmb,
1157 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1158 	    &sc->ale_cdata.ale_tx_cmb_map);
1159 	if (error != 0) {
1160 		device_printf(sc->ale_dev,
1161 		    "could not allocate DMA'able memory for Tx CMB.\n");
1162 		goto fail;
1163 	}
1164 	ctx.ale_busaddr = 0;
1165 	error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
1166 	    sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
1167 	    ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1168 	if (error != 0 || ctx.ale_busaddr == 0) {
1169 		device_printf(sc->ale_dev,
1170 		    "could not load DMA'able memory for Tx CMB.\n");
1171 		goto fail;
1172 	}
1173 	sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
1174 
1175 	/* Rx CMB. */
1176 	for (i = 0; i < ALE_RX_PAGES; i++) {
1177 		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1178 		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
1179 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1180 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
1181 		if (error != 0) {
1182 			device_printf(sc->ale_dev, "could not allocate "
1183 			    "DMA'able memory for Rx page %d CMB.\n", i);
1184 			goto fail;
1185 		}
1186 		ctx.ale_busaddr = 0;
1187 		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1188 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
1189 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1190 		    ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1191 		if (error != 0 || ctx.ale_busaddr == 0) {
1192 			device_printf(sc->ale_dev, "could not load DMA'able "
1193 			    "memory for Rx page %d CMB.\n", i);
1194 			goto fail;
1195 		}
1196 		sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
1197 	}
1198 
1199 	/*
1200 	 * Tx descriptors/RXF0/CMB DMA blocks share the same
1201 	 * high address region of 64bit DMA address space.
1202 	 */
1203 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1204 	    (error = ale_check_boundary(sc)) != 0) {
1205 		device_printf(sc->ale_dev, "4GB boundary crossed, "
1206 		    "switching to 32bit DMA addressing mode.\n");
1207 		ale_dma_free(sc);
1208 		/*
1209 		 * Limit max allowable DMA address space to 32bit
1210 		 * and try again.
1211 		 */
1212 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1213 		goto again;
1214 	}
1215 
1216 	/*
1217 	 * Create Tx buffer parent tag.
1218 	 * AR81xx allows 64bit DMA addressing of Tx buffers so it
1219 	 * needs separate parent DMA tag as parent DMA address space
1220 	 * could be restricted to be within 32bit address space by
1221 	 * 4GB boundary crossing.
1222 	 */
1223 	error = bus_dma_tag_create(
1224 	    bus_get_dma_tag(sc->ale_dev), /* parent */
1225 	    1, 0,			/* alignment, boundary */
1226 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1227 	    BUS_SPACE_MAXADDR,		/* highaddr */
1228 	    NULL, NULL,			/* filter, filterarg */
1229 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1230 	    0,				/* nsegments */
1231 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1232 	    0,				/* flags */
1233 	    NULL, NULL,			/* lockfunc, lockarg */
1234 	    &sc->ale_cdata.ale_buffer_tag);
1235 	if (error != 0) {
1236 		device_printf(sc->ale_dev,
1237 		    "could not create parent buffer DMA tag.\n");
1238 		goto fail;
1239 	}
1240 
1241 	/* Create DMA tag for Tx buffers. */
1242 	error = bus_dma_tag_create(
1243 	    sc->ale_cdata.ale_buffer_tag, /* parent */
1244 	    1, 0,			/* alignment, boundary */
1245 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1246 	    BUS_SPACE_MAXADDR,		/* highaddr */
1247 	    NULL, NULL,			/* filter, filterarg */
1248 	    ALE_TSO_MAXSIZE,		/* maxsize */
1249 	    ALE_MAXTXSEGS,		/* nsegments */
1250 	    ALE_TSO_MAXSEGSIZE,		/* maxsegsize */
1251 	    0,				/* flags */
1252 	    NULL, NULL,			/* lockfunc, lockarg */
1253 	    &sc->ale_cdata.ale_tx_tag);
1254 	if (error != 0) {
1255 		device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
1256 		goto fail;
1257 	}
1258 
1259 	/* Create DMA maps for Tx buffers. */
1260 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1261 		txd = &sc->ale_cdata.ale_txdesc[i];
1262 		txd->tx_m = NULL;
1263 		txd->tx_dmamap = NULL;
1264 		error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
1265 		    &txd->tx_dmamap);
1266 		if (error != 0) {
1267 			device_printf(sc->ale_dev,
1268 			    "could not create Tx dmamap.\n");
1269 			goto fail;
1270 		}
1271 	}
1272 
1273 fail:
1274 	return (error);
1275 }
1276 
1277 static void
1278 ale_dma_free(struct ale_softc *sc)
1279 {
1280 	struct ale_txdesc *txd;
1281 	int i;
1282 
1283 	/* Tx buffers. */
1284 	if (sc->ale_cdata.ale_tx_tag != NULL) {
1285 		for (i = 0; i < ALE_TX_RING_CNT; i++) {
1286 			txd = &sc->ale_cdata.ale_txdesc[i];
1287 			if (txd->tx_dmamap != NULL) {
1288 				bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
1289 				    txd->tx_dmamap);
1290 				txd->tx_dmamap = NULL;
1291 			}
1292 		}
1293 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
1294 		sc->ale_cdata.ale_tx_tag = NULL;
1295 	}
1296 	/* Tx descriptor ring. */
1297 	if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
1298 		if (sc->ale_cdata.ale_tx_ring_map != NULL)
1299 			bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
1300 			    sc->ale_cdata.ale_tx_ring_map);
1301 		if (sc->ale_cdata.ale_tx_ring_map != NULL &&
1302 		    sc->ale_cdata.ale_tx_ring != NULL)
1303 			bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
1304 			    sc->ale_cdata.ale_tx_ring,
1305 			    sc->ale_cdata.ale_tx_ring_map);
1306 		sc->ale_cdata.ale_tx_ring = NULL;
1307 		sc->ale_cdata.ale_tx_ring_map = NULL;
1308 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
1309 		sc->ale_cdata.ale_tx_ring_tag = NULL;
1310 	}
1311 	/* Rx page block. */
1312 	for (i = 0; i < ALE_RX_PAGES; i++) {
1313 		if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
1314 			if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
1315 				bus_dmamap_unload(
1316 				    sc->ale_cdata.ale_rx_page[i].page_tag,
1317 				    sc->ale_cdata.ale_rx_page[i].page_map);
1318 			if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
1319 			    sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
1320 				bus_dmamem_free(
1321 				    sc->ale_cdata.ale_rx_page[i].page_tag,
1322 				    sc->ale_cdata.ale_rx_page[i].page_addr,
1323 				    sc->ale_cdata.ale_rx_page[i].page_map);
1324 			sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
1325 			sc->ale_cdata.ale_rx_page[i].page_map = NULL;
1326 			bus_dma_tag_destroy(
1327 			    sc->ale_cdata.ale_rx_page[i].page_tag);
1328 			sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
1329 		}
1330 	}
1331 	/* Rx CMB. */
1332 	for (i = 0; i < ALE_RX_PAGES; i++) {
1333 		if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
1334 			if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
1335 				bus_dmamap_unload(
1336 				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1337 				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1338 			if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
1339 			    sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
1340 				bus_dmamem_free(
1341 				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1342 				    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1343 				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1344 			sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
1345 			sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
1346 			bus_dma_tag_destroy(
1347 			    sc->ale_cdata.ale_rx_page[i].cmb_tag);
1348 			sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
1349 		}
1350 	}
1351 	/* Tx CMB. */
1352 	if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
1353 		if (sc->ale_cdata.ale_tx_cmb_map != NULL)
1354 			bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
1355 			    sc->ale_cdata.ale_tx_cmb_map);
1356 		if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
1357 		    sc->ale_cdata.ale_tx_cmb != NULL)
1358 			bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
1359 			    sc->ale_cdata.ale_tx_cmb,
1360 			    sc->ale_cdata.ale_tx_cmb_map);
1361 		sc->ale_cdata.ale_tx_cmb = NULL;
1362 		sc->ale_cdata.ale_tx_cmb_map = NULL;
1363 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
1364 		sc->ale_cdata.ale_tx_cmb_tag = NULL;
1365 	}
1366 	if (sc->ale_cdata.ale_buffer_tag != NULL) {
1367 		bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
1368 		sc->ale_cdata.ale_buffer_tag = NULL;
1369 	}
1370 	if (sc->ale_cdata.ale_parent_tag != NULL) {
1371 		bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
1372 		sc->ale_cdata.ale_parent_tag = NULL;
1373 	}
1374 }
1375 
1376 static int
1377 ale_shutdown(device_t dev)
1378 {
1379 
1380 	return (ale_suspend(dev));
1381 }
1382 
1383 /*
1384  * Note, this driver resets the link speed to 10/100Mbps by
1385  * restarting auto-negotiation in suspend/shutdown phase but we
1386  * don't know whether that auto-negotiation would succeed or not
1387  * as driver has no control after powering off/suspend operation.
1388  * If the renegotiation fail WOL may not work. Running at 1Gbps
1389  * will draw more power than 375mA at 3.3V which is specified in
1390  * PCI specification and that would result in complete
1391  * shutdowning power to ethernet controller.
1392  *
1393  * TODO
1394  * Save current negotiated media speed/duplex/flow-control to
1395  * softc and restore the same link again after resuming. PHY
1396  * handling such as power down/resetting to 100Mbps may be better
1397  * handled in suspend method in phy driver.
1398  */
1399 static void
1400 ale_setlinkspeed(struct ale_softc *sc)
1401 {
1402 	struct mii_data *mii;
1403 	int aneg, i;
1404 
1405 	mii = device_get_softc(sc->ale_miibus);
1406 	mii_pollstat(mii);
1407 	aneg = 0;
1408 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1409 	    (IFM_ACTIVE | IFM_AVALID)) {
1410 		switch IFM_SUBTYPE(mii->mii_media_active) {
1411 		case IFM_10_T:
1412 		case IFM_100_TX:
1413 			return;
1414 		case IFM_1000_T:
1415 			aneg++;
1416 			break;
1417 		default:
1418 			break;
1419 		}
1420 	}
1421 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
1422 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1423 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1424 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1425 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1426 	DELAY(1000);
1427 	if (aneg != 0) {
1428 		/*
1429 		 * Poll link state until ale(4) get a 10/100Mbps link.
1430 		 */
1431 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1432 			mii_pollstat(mii);
1433 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1434 			    == (IFM_ACTIVE | IFM_AVALID)) {
1435 				switch (IFM_SUBTYPE(
1436 				    mii->mii_media_active)) {
1437 				case IFM_10_T:
1438 				case IFM_100_TX:
1439 					ale_mac_config(sc);
1440 					return;
1441 				default:
1442 					break;
1443 				}
1444 			}
1445 			ALE_UNLOCK(sc);
1446 			pause("alelnk", hz);
1447 			ALE_LOCK(sc);
1448 		}
1449 		if (i == MII_ANEGTICKS_GIGE)
1450 			device_printf(sc->ale_dev,
1451 			    "establishing a link failed, WOL may not work!");
1452 	}
1453 	/*
1454 	 * No link, force MAC to have 100Mbps, full-duplex link.
1455 	 * This is the last resort and may/may not work.
1456 	 */
1457 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1458 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1459 	ale_mac_config(sc);
1460 }
1461 
1462 static void
1463 ale_setwol(struct ale_softc *sc)
1464 {
1465 	struct ifnet *ifp;
1466 	uint32_t reg, pmcs;
1467 	uint16_t pmstat;
1468 	int pmc;
1469 
1470 	ALE_LOCK_ASSERT(sc);
1471 
1472 	if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
1473 		/* Disable WOL. */
1474 		CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1475 		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1476 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1477 		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1478 		/* Force PHY power down. */
1479 		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1480 		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1481 		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
1482 		    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
1483 		    GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
1484 		return;
1485 	}
1486 
1487 	ifp = sc->ale_ifp;
1488 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1489 		if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
1490 			ale_setlinkspeed(sc);
1491 	}
1492 
1493 	pmcs = 0;
1494 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1495 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1496 	CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
1497 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1498 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1499 	    MAC_CFG_BCAST);
1500 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1501 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1502 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1503 		reg |= MAC_CFG_RX_ENB;
1504 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1505 
1506 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1507 		/* WOL disabled, PHY power down. */
1508 		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1509 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1510 		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1511 		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1512 		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1513 		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
1514 		    GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
1515 		    GPHY_CTRL_PWDOWN_HW);
1516 	}
1517 	/* Request PME. */
1518 	pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
1519 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1520 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1521 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1522 	pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1523 }
1524 
1525 static int
1526 ale_suspend(device_t dev)
1527 {
1528 	struct ale_softc *sc;
1529 
1530 	sc = device_get_softc(dev);
1531 
1532 	ALE_LOCK(sc);
1533 	ale_stop(sc);
1534 	ale_setwol(sc);
1535 	ALE_UNLOCK(sc);
1536 
1537 	return (0);
1538 }
1539 
1540 static int
1541 ale_resume(device_t dev)
1542 {
1543 	struct ale_softc *sc;
1544 	struct ifnet *ifp;
1545 	int pmc;
1546 	uint16_t pmstat;
1547 
1548 	sc = device_get_softc(dev);
1549 
1550 	ALE_LOCK(sc);
1551 	if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
1552 		/* Disable PME and clear PME status. */
1553 		pmstat = pci_read_config(sc->ale_dev,
1554 		    pmc + PCIR_POWER_STATUS, 2);
1555 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1556 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1557 			pci_write_config(sc->ale_dev,
1558 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
1559 		}
1560 	}
1561 	/* Reset PHY. */
1562 	ale_phy_reset(sc);
1563 	ifp = sc->ale_ifp;
1564 	if ((ifp->if_flags & IFF_UP) != 0) {
1565 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1566 		ale_init_locked(sc);
1567 	}
1568 	ALE_UNLOCK(sc);
1569 
1570 	return (0);
1571 }
1572 
1573 static int
1574 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
1575 {
1576 	struct ale_txdesc *txd, *txd_last;
1577 	struct tx_desc *desc;
1578 	struct mbuf *m;
1579 	struct ip *ip;
1580 	struct tcphdr *tcp;
1581 	bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
1582 	bus_dmamap_t map;
1583 	uint32_t cflags, ip_off, poff, vtag;
1584 	int error, i, nsegs, prod, si;
1585 
1586 	ALE_LOCK_ASSERT(sc);
1587 
1588 	M_ASSERTPKTHDR((*m_head));
1589 
1590 	m = *m_head;
1591 	ip = NULL;
1592 	tcp = NULL;
1593 	cflags = vtag = 0;
1594 	ip_off = poff = 0;
1595 	if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1596 		/*
1597 		 * AR81xx requires offset of TCP/UDP payload in its Tx
1598 		 * descriptor to perform hardware Tx checksum offload.
1599 		 * Additionally, TSO requires IP/TCP header size and
1600 		 * modification of IP/TCP header in order to make TSO
1601 		 * engine work. This kind of operation takes many CPU
1602 		 * cycles on FreeBSD so fast host CPU is required to
1603 		 * get smooth TSO performance.
1604 		 */
1605 		struct ether_header *eh;
1606 
1607 		if (M_WRITABLE(m) == 0) {
1608 			/* Get a writable copy. */
1609 			m = m_dup(*m_head, M_DONTWAIT);
1610 			/* Release original mbufs. */
1611 			m_freem(*m_head);
1612 			if (m == NULL) {
1613 				*m_head = NULL;
1614 				return (ENOBUFS);
1615 			}
1616 			*m_head = m;
1617 		}
1618 
1619 		/*
1620 		 * Buggy-controller requires 4 byte aligned Tx buffer
1621 		 * to make custom checksum offload work.
1622 		 */
1623 		if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
1624 		    (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
1625 		    (mtod(m, intptr_t) & 3) != 0) {
1626 			m = m_defrag(*m_head, M_DONTWAIT);
1627 			if (m == NULL) {
1628 				*m_head = NULL;
1629 				return (ENOBUFS);
1630 			}
1631 			*m_head = m;
1632 		}
1633 
1634 		ip_off = sizeof(struct ether_header);
1635 		m = m_pullup(m, ip_off);
1636 		if (m == NULL) {
1637 			*m_head = NULL;
1638 			return (ENOBUFS);
1639 		}
1640 		eh = mtod(m, struct ether_header *);
1641 		/*
1642 		 * Check if hardware VLAN insertion is off.
1643 		 * Additional check for LLC/SNAP frame?
1644 		 */
1645 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1646 			ip_off = sizeof(struct ether_vlan_header);
1647 			m = m_pullup(m, ip_off);
1648 			if (m == NULL) {
1649 				*m_head = NULL;
1650 				return (ENOBUFS);
1651 			}
1652 		}
1653 		m = m_pullup(m, ip_off + sizeof(struct ip));
1654 		if (m == NULL) {
1655 			*m_head = NULL;
1656 			return (ENOBUFS);
1657 		}
1658 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1659 		poff = ip_off + (ip->ip_hl << 2);
1660 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1661 			/*
1662 			 * XXX
1663 			 * AR81xx requires the first descriptor should
1664 			 * not include any TCP playload for TSO case.
1665 			 * (i.e. ethernet header + IP + TCP header only)
1666 			 * m_pullup(9) above will ensure this too.
1667 			 * However it's not correct if the first mbuf
1668 			 * of the chain does not use cluster.
1669 			 */
1670 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1671 			if (m == NULL) {
1672 				*m_head = NULL;
1673 				return (ENOBUFS);
1674 			}
1675 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1676 			/*
1677 			 * AR81xx requires IP/TCP header size and offset as
1678 			 * well as TCP pseudo checksum which complicates
1679 			 * TSO configuration. I guess this comes from the
1680 			 * adherence to Microsoft NDIS Large Send
1681 			 * specification which requires insertion of
1682 			 * pseudo checksum by upper stack. The pseudo
1683 			 * checksum that NDIS refers to doesn't include
1684 			 * TCP payload length so ale(4) should recompute
1685 			 * the pseudo checksum here. Hopefully this wouldn't
1686 			 * be much burden on modern CPUs.
1687 			 * Reset IP checksum and recompute TCP pseudo
1688 			 * checksum as NDIS specification said.
1689 			 */
1690 			ip->ip_sum = 0;
1691 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1692 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1693 		}
1694 		*m_head = m;
1695 	}
1696 
1697 	si = prod = sc->ale_cdata.ale_tx_prod;
1698 	txd = &sc->ale_cdata.ale_txdesc[prod];
1699 	txd_last = txd;
1700 	map = txd->tx_dmamap;
1701 
1702 	error =  bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1703 	    *m_head, txsegs, &nsegs, 0);
1704 	if (error == EFBIG) {
1705 		m = m_collapse(*m_head, M_DONTWAIT, ALE_MAXTXSEGS);
1706 		if (m == NULL) {
1707 			m_freem(*m_head);
1708 			*m_head = NULL;
1709 			return (ENOMEM);
1710 		}
1711 		*m_head = m;
1712 		error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1713 		    *m_head, txsegs, &nsegs, 0);
1714 		if (error != 0) {
1715 			m_freem(*m_head);
1716 			*m_head = NULL;
1717 			return (error);
1718 		}
1719 	} else if (error != 0)
1720 		return (error);
1721 	if (nsegs == 0) {
1722 		m_freem(*m_head);
1723 		*m_head = NULL;
1724 		return (EIO);
1725 	}
1726 
1727 	/* Check descriptor overrun. */
1728 	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
1729 		bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
1730 		return (ENOBUFS);
1731 	}
1732 	bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
1733 
1734 	m = *m_head;
1735 	/* Configure Tx checksum offload. */
1736 	if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
1737 		/*
1738 		 * AR81xx supports Tx custom checksum offload feature
1739 		 * that offloads single 16bit checksum computation.
1740 		 * So you can choose one among IP, TCP and UDP.
1741 		 * Normally driver sets checksum start/insertion
1742 		 * position from the information of TCP/UDP frame as
1743 		 * TCP/UDP checksum takes more time than that of IP.
1744 		 * However it seems that custom checksum offload
1745 		 * requires 4 bytes aligned Tx buffers due to hardware
1746 		 * bug.
1747 		 * AR81xx also supports explicit Tx checksum computation
1748 		 * if it is told that the size of IP header and TCP
1749 		 * header(for UDP, the header size does not matter
1750 		 * because it's fixed length). However with this scheme
1751 		 * TSO does not work so you have to choose one either
1752 		 * TSO or explicit Tx checksum offload. I chosen TSO
1753 		 * plus custom checksum offload with work-around which
1754 		 * will cover most common usage for this consumer
1755 		 * ethernet controller. The work-around takes a lot of
1756 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
1757 		 * boundary, though.
1758 		 */
1759 		cflags |= ALE_TD_CXSUM;
1760 		/* Set checksum start offset. */
1761 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1762 		/* Set checksum insertion position of TCP/UDP. */
1763 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1764 		    ALE_TD_CSUM_XSUMOFFSET_SHIFT);
1765 	}
1766 
1767 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1768 		/* Request TSO and set MSS. */
1769 		cflags |= ALE_TD_TSO;
1770 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
1771 		/* Set IP/TCP header size. */
1772 		cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
1773 		cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
1774 	}
1775 
1776 	/* Configure VLAN hardware tag insertion. */
1777 	if ((m->m_flags & M_VLANTAG) != 0) {
1778 		vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1779 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1780 		cflags |= ALE_TD_INSERT_VLAN_TAG;
1781 	}
1782 
1783 	desc = NULL;
1784 	for (i = 0; i < nsegs; i++) {
1785 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1786 		desc->addr = htole64(txsegs[i].ds_addr);
1787 		desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
1788 		desc->flags = htole32(cflags);
1789 		sc->ale_cdata.ale_tx_cnt++;
1790 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1791 	}
1792 	/* Update producer index. */
1793 	sc->ale_cdata.ale_tx_prod = prod;
1794 	/* Set TSO header on the first descriptor. */
1795 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1796 		desc = &sc->ale_cdata.ale_tx_ring[si];
1797 		desc->flags |= htole32(ALE_TD_TSO_HDR);
1798 	}
1799 
1800 	/* Finally set EOP on the last descriptor. */
1801 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1802 	desc = &sc->ale_cdata.ale_tx_ring[prod];
1803 	desc->flags |= htole32(ALE_TD_EOP);
1804 
1805 	/* Swap dmamap of the first and the last. */
1806 	txd = &sc->ale_cdata.ale_txdesc[prod];
1807 	map = txd_last->tx_dmamap;
1808 	txd_last->tx_dmamap = txd->tx_dmamap;
1809 	txd->tx_dmamap = map;
1810 	txd->tx_m = m;
1811 
1812 	/* Sync descriptors. */
1813 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
1814 	    sc->ale_cdata.ale_tx_ring_map,
1815 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1816 
1817 	return (0);
1818 }
1819 
1820 static void
1821 ale_tx_task(void *arg, int pending)
1822 {
1823 	struct ifnet *ifp;
1824 
1825 	ifp = (struct ifnet *)arg;
1826 	ale_start(ifp);
1827 }
1828 
1829 static void
1830 ale_start(struct ifnet *ifp)
1831 {
1832         struct ale_softc *sc;
1833         struct mbuf *m_head;
1834 	int enq;
1835 
1836 	sc = ifp->if_softc;
1837 
1838 	ALE_LOCK(sc);
1839 
1840 	/* Reclaim transmitted frames. */
1841 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1842 		ale_txeof(sc);
1843 
1844 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1845 	    IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0) {
1846 		ALE_UNLOCK(sc);
1847 		return;
1848 	}
1849 
1850 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1851 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1852 		if (m_head == NULL)
1853 			break;
1854 		/*
1855 		 * Pack the data into the transmit ring. If we
1856 		 * don't have room, set the OACTIVE flag and wait
1857 		 * for the NIC to drain the ring.
1858 		 */
1859 		if (ale_encap(sc, &m_head)) {
1860 			if (m_head == NULL)
1861 				break;
1862 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1863 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1864 			break;
1865 		}
1866 
1867 		enq++;
1868 		/*
1869 		 * If there's a BPF listener, bounce a copy of this frame
1870 		 * to him.
1871 		 */
1872 		ETHER_BPF_MTAP(ifp, m_head);
1873 	}
1874 
1875 	if (enq > 0) {
1876 		/* Kick. */
1877 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1878 		    sc->ale_cdata.ale_tx_prod);
1879 		/* Set a timeout in case the chip goes out to lunch. */
1880 		sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
1881 	}
1882 
1883 	ALE_UNLOCK(sc);
1884 }
1885 
1886 static void
1887 ale_watchdog(struct ale_softc *sc)
1888 {
1889 	struct ifnet *ifp;
1890 
1891 	ALE_LOCK_ASSERT(sc);
1892 
1893 	if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
1894 		return;
1895 
1896 	ifp = sc->ale_ifp;
1897 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1898 		if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
1899 		ifp->if_oerrors++;
1900 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1901 		ale_init_locked(sc);
1902 		return;
1903 	}
1904 	if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
1905 	ifp->if_oerrors++;
1906 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1907 	ale_init_locked(sc);
1908 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1909 		taskqueue_enqueue(sc->ale_tq, &sc->ale_tx_task);
1910 }
1911 
1912 static int
1913 ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1914 {
1915 	struct ale_softc *sc;
1916 	struct ifreq *ifr;
1917 	struct mii_data *mii;
1918 	int error, mask;
1919 
1920 	sc = ifp->if_softc;
1921 	ifr = (struct ifreq *)data;
1922 	error = 0;
1923 	switch (cmd) {
1924 	case SIOCSIFMTU:
1925 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
1926 		    ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
1927 		    ifr->ifr_mtu > ETHERMTU))
1928 			error = EINVAL;
1929 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1930 			ALE_LOCK(sc);
1931 			ifp->if_mtu = ifr->ifr_mtu;
1932 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1933 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1934 				ale_init_locked(sc);
1935 			}
1936 			ALE_UNLOCK(sc);
1937 		}
1938 		break;
1939 	case SIOCSIFFLAGS:
1940 		ALE_LOCK(sc);
1941 		if ((ifp->if_flags & IFF_UP) != 0) {
1942 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1943 				if (((ifp->if_flags ^ sc->ale_if_flags)
1944 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1945 					ale_rxfilter(sc);
1946 			} else {
1947 				if ((sc->ale_flags & ALE_FLAG_DETACH) == 0)
1948 					ale_init_locked(sc);
1949 			}
1950 		} else {
1951 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1952 				ale_stop(sc);
1953 		}
1954 		sc->ale_if_flags = ifp->if_flags;
1955 		ALE_UNLOCK(sc);
1956 		break;
1957 	case SIOCADDMULTI:
1958 	case SIOCDELMULTI:
1959 		ALE_LOCK(sc);
1960 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1961 			ale_rxfilter(sc);
1962 		ALE_UNLOCK(sc);
1963 		break;
1964 	case SIOCSIFMEDIA:
1965 	case SIOCGIFMEDIA:
1966 		mii = device_get_softc(sc->ale_miibus);
1967 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1968 		break;
1969 	case SIOCSIFCAP:
1970 		ALE_LOCK(sc);
1971 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1972 		if ((mask & IFCAP_TXCSUM) != 0 &&
1973 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1974 			ifp->if_capenable ^= IFCAP_TXCSUM;
1975 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1976 				ifp->if_hwassist |= ALE_CSUM_FEATURES;
1977 			else
1978 				ifp->if_hwassist &= ~ALE_CSUM_FEATURES;
1979 		}
1980 		if ((mask & IFCAP_RXCSUM) != 0 &&
1981 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
1982 			ifp->if_capenable ^= IFCAP_RXCSUM;
1983 		if ((mask & IFCAP_TSO4) != 0 &&
1984 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1985 			ifp->if_capenable ^= IFCAP_TSO4;
1986 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1987 				ifp->if_hwassist |= CSUM_TSO;
1988 			else
1989 				ifp->if_hwassist &= ~CSUM_TSO;
1990 		}
1991 
1992 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1993 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1994 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1995 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1996 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1997 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1998 
1999 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2000 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2001 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2002 			ale_rxvlan(sc);
2003 		}
2004 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2005 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2006 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2007 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2008 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2009 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2010 		/*
2011 		 * VLAN hardware tagging is required to do checksum
2012 		 * offload or TSO on VLAN interface. Checksum offload
2013 		 * on VLAN interface also requires hardware checksum
2014 		 * offload of parent interface.
2015 		 */
2016 		if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
2017 			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2018 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2019 			ifp->if_capenable &=
2020 			    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
2021 		ALE_UNLOCK(sc);
2022 		VLAN_CAPABILITIES(ifp);
2023 		break;
2024 	default:
2025 		error = ether_ioctl(ifp, cmd, data);
2026 		break;
2027 	}
2028 
2029 	return (error);
2030 }
2031 
2032 static void
2033 ale_mac_config(struct ale_softc *sc)
2034 {
2035 	struct mii_data *mii;
2036 	uint32_t reg;
2037 
2038 	ALE_LOCK_ASSERT(sc);
2039 
2040 	mii = device_get_softc(sc->ale_miibus);
2041 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2042 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2043 	    MAC_CFG_SPEED_MASK);
2044 	/* Reprogram MAC with resolved speed/duplex. */
2045 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2046 	case IFM_10_T:
2047 	case IFM_100_TX:
2048 		reg |= MAC_CFG_SPEED_10_100;
2049 		break;
2050 	case IFM_1000_T:
2051 		reg |= MAC_CFG_SPEED_1000;
2052 		break;
2053 	}
2054 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2055 		reg |= MAC_CFG_FULL_DUPLEX;
2056 #ifdef notyet
2057 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2058 			reg |= MAC_CFG_TX_FC;
2059 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2060 			reg |= MAC_CFG_RX_FC;
2061 #endif
2062 	}
2063 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2064 }
2065 
2066 static void
2067 ale_link_task(void *arg, int pending)
2068 {
2069 	struct ale_softc *sc;
2070 	struct mii_data *mii;
2071 	struct ifnet *ifp;
2072 	uint32_t reg;
2073 
2074 	sc = (struct ale_softc *)arg;
2075 
2076 	ALE_LOCK(sc);
2077 	mii = device_get_softc(sc->ale_miibus);
2078 	ifp = sc->ale_ifp;
2079 	if (mii == NULL || ifp == NULL ||
2080 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2081 		ALE_UNLOCK(sc);
2082 		return;
2083 	}
2084 
2085 	sc->ale_flags &= ~ALE_FLAG_LINK;
2086 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2087 	    (IFM_ACTIVE | IFM_AVALID)) {
2088 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2089 		case IFM_10_T:
2090 		case IFM_100_TX:
2091 			sc->ale_flags |= ALE_FLAG_LINK;
2092 			break;
2093 		case IFM_1000_T:
2094 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
2095 				sc->ale_flags |= ALE_FLAG_LINK;
2096 			break;
2097 		default:
2098 			break;
2099 		}
2100 	}
2101 
2102 	/* Stop Rx/Tx MACs. */
2103 	ale_stop_mac(sc);
2104 
2105 	/* Program MACs with resolved speed/duplex/flow-control. */
2106 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
2107 		ale_mac_config(sc);
2108 		/* Reenable Tx/Rx MACs. */
2109 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
2110 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2111 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2112 	}
2113 
2114 	ALE_UNLOCK(sc);
2115 }
2116 
2117 static void
2118 ale_stats_clear(struct ale_softc *sc)
2119 {
2120 	struct smb sb;
2121 	uint32_t *reg;
2122 	int i;
2123 
2124 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2125 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2126 		i += sizeof(uint32_t);
2127 	}
2128 	/* Read Tx statistics. */
2129 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2130 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2131 		i += sizeof(uint32_t);
2132 	}
2133 }
2134 
2135 static void
2136 ale_stats_update(struct ale_softc *sc)
2137 {
2138 	struct ale_hw_stats *stat;
2139 	struct smb sb, *smb;
2140 	struct ifnet *ifp;
2141 	uint32_t *reg;
2142 	int i;
2143 
2144 	ALE_LOCK_ASSERT(sc);
2145 
2146 	ifp = sc->ale_ifp;
2147 	stat = &sc->ale_stats;
2148 	smb = &sb;
2149 
2150 	/* Read Rx statistics. */
2151 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2152 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2153 		i += sizeof(uint32_t);
2154 	}
2155 	/* Read Tx statistics. */
2156 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2157 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2158 		i += sizeof(uint32_t);
2159 	}
2160 
2161 	/* Rx stats. */
2162 	stat->rx_frames += smb->rx_frames;
2163 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2164 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2165 	stat->rx_pause_frames += smb->rx_pause_frames;
2166 	stat->rx_control_frames += smb->rx_control_frames;
2167 	stat->rx_crcerrs += smb->rx_crcerrs;
2168 	stat->rx_lenerrs += smb->rx_lenerrs;
2169 	stat->rx_bytes += smb->rx_bytes;
2170 	stat->rx_runts += smb->rx_runts;
2171 	stat->rx_fragments += smb->rx_fragments;
2172 	stat->rx_pkts_64 += smb->rx_pkts_64;
2173 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2174 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2175 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2176 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2177 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2178 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2179 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2180 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2181 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2182 	stat->rx_alignerrs += smb->rx_alignerrs;
2183 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2184 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2185 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2186 
2187 	/* Tx stats. */
2188 	stat->tx_frames += smb->tx_frames;
2189 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2190 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2191 	stat->tx_pause_frames += smb->tx_pause_frames;
2192 	stat->tx_excess_defer += smb->tx_excess_defer;
2193 	stat->tx_control_frames += smb->tx_control_frames;
2194 	stat->tx_deferred += smb->tx_deferred;
2195 	stat->tx_bytes += smb->tx_bytes;
2196 	stat->tx_pkts_64 += smb->tx_pkts_64;
2197 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2198 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2199 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2200 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2201 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2202 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2203 	stat->tx_single_colls += smb->tx_single_colls;
2204 	stat->tx_multi_colls += smb->tx_multi_colls;
2205 	stat->tx_late_colls += smb->tx_late_colls;
2206 	stat->tx_excess_colls += smb->tx_excess_colls;
2207 	stat->tx_abort += smb->tx_abort;
2208 	stat->tx_underrun += smb->tx_underrun;
2209 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2210 	stat->tx_lenerrs += smb->tx_lenerrs;
2211 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2212 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2213 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2214 
2215 	/* Update counters in ifnet. */
2216 	ifp->if_opackets += smb->tx_frames;
2217 
2218 	ifp->if_collisions += smb->tx_single_colls +
2219 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2220 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
2221 
2222 	/*
2223 	 * XXX
2224 	 * tx_pkts_truncated counter looks suspicious. It constantly
2225 	 * increments with no sign of Tx errors. This may indicate
2226 	 * the counter name is not correct one so I've removed the
2227 	 * counter in output errors.
2228 	 */
2229 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
2230 	    smb->tx_underrun;
2231 
2232 	ifp->if_ipackets += smb->rx_frames;
2233 
2234 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2235 	    smb->rx_runts + smb->rx_pkts_truncated +
2236 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2237 	    smb->rx_alignerrs;
2238 }
2239 
2240 static int
2241 ale_intr(void *arg)
2242 {
2243 	struct ale_softc *sc;
2244 	uint32_t status;
2245 
2246 	sc = (struct ale_softc *)arg;
2247 
2248 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2249 	if ((status & ALE_INTRS) == 0)
2250 		return (FILTER_STRAY);
2251 	/* Disable interrupts. */
2252 	CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
2253 	taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2254 
2255 	return (FILTER_HANDLED);
2256 }
2257 
2258 static void
2259 ale_int_task(void *arg, int pending)
2260 {
2261 	struct ale_softc *sc;
2262 	struct ifnet *ifp;
2263 	uint32_t status;
2264 	int more;
2265 
2266 	sc = (struct ale_softc *)arg;
2267 
2268 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2269 	more = atomic_readandclear_int(&sc->ale_morework);
2270 	if (more != 0)
2271 		status |= INTR_RX_PKT;
2272 	if ((status & ALE_INTRS) == 0)
2273 		goto done;
2274 
2275 	/* Acknowledge interrupts but still disable interrupts. */
2276 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
2277 
2278 	ifp = sc->ale_ifp;
2279 	more = 0;
2280 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2281 		more = ale_rxeof(sc, sc->ale_process_limit);
2282 		if (more == EAGAIN)
2283 			atomic_set_int(&sc->ale_morework, 1);
2284 		else if (more == EIO) {
2285 			ALE_LOCK(sc);
2286 			sc->ale_stats.reset_brk_seq++;
2287 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2288 			ale_init_locked(sc);
2289 			ALE_UNLOCK(sc);
2290 			return;
2291 		}
2292 
2293 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2294 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2295 				device_printf(sc->ale_dev,
2296 				    "DMA read error! -- resetting\n");
2297 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2298 				device_printf(sc->ale_dev,
2299 				    "DMA write error! -- resetting\n");
2300 			ALE_LOCK(sc);
2301 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2302 			ale_init_locked(sc);
2303 			ALE_UNLOCK(sc);
2304 			return;
2305 		}
2306 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2307 			taskqueue_enqueue(sc->ale_tq, &sc->ale_tx_task);
2308 	}
2309 
2310 	if (more == EAGAIN ||
2311 	    (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
2312 		taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2313 		return;
2314 	}
2315 
2316 done:
2317 	/* Re-enable interrupts. */
2318 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
2319 }
2320 
2321 static void
2322 ale_txeof(struct ale_softc *sc)
2323 {
2324 	struct ifnet *ifp;
2325 	struct ale_txdesc *txd;
2326 	uint32_t cons, prod;
2327 	int prog;
2328 
2329 	ALE_LOCK_ASSERT(sc);
2330 
2331 	ifp = sc->ale_ifp;
2332 
2333 	if (sc->ale_cdata.ale_tx_cnt == 0)
2334 		return;
2335 
2336 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2337 	    sc->ale_cdata.ale_tx_ring_map,
2338 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2339 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
2340 		bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2341 		    sc->ale_cdata.ale_tx_cmb_map,
2342 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2343 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
2344 	} else
2345 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
2346 	cons = sc->ale_cdata.ale_tx_cons;
2347 	/*
2348 	 * Go through our Tx list and free mbufs for those
2349 	 * frames which have been transmitted.
2350 	 */
2351 	for (prog = 0; cons != prod; prog++,
2352 	    ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
2353 		if (sc->ale_cdata.ale_tx_cnt <= 0)
2354 			break;
2355 		prog++;
2356 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2357 		sc->ale_cdata.ale_tx_cnt--;
2358 		txd = &sc->ale_cdata.ale_txdesc[cons];
2359 		if (txd->tx_m != NULL) {
2360 			/* Reclaim transmitted mbufs. */
2361 			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2362 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2363 			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2364 			    txd->tx_dmamap);
2365 			m_freem(txd->tx_m);
2366 			txd->tx_m = NULL;
2367 		}
2368 	}
2369 
2370 	if (prog > 0) {
2371 		sc->ale_cdata.ale_tx_cons = cons;
2372 		/*
2373 		 * Unarm watchdog timer only when there is no pending
2374 		 * Tx descriptors in queue.
2375 		 */
2376 		if (sc->ale_cdata.ale_tx_cnt == 0)
2377 			sc->ale_watchdog_timer = 0;
2378 	}
2379 }
2380 
2381 static void
2382 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
2383     uint32_t length, uint32_t *prod)
2384 {
2385 	struct ale_rx_page *rx_page;
2386 
2387 	rx_page = *page;
2388 	/* Update consumer position. */
2389 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
2390 	    ALE_RX_PAGE_ALIGN);
2391 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
2392 		/*
2393 		 * End of Rx page reached, let hardware reuse
2394 		 * this page.
2395 		 */
2396 		rx_page->cons = 0;
2397 		*rx_page->cmb_addr = 0;
2398 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2399 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2400 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
2401 		    RXF_VALID);
2402 		/* Switch to alternate Rx page. */
2403 		sc->ale_cdata.ale_rx_curp ^= 1;
2404 		rx_page = *page =
2405 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2406 		/* Page flipped, sync CMB and Rx page. */
2407 		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2408 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2409 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2410 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2411 		/* Sync completed, cache updated producer index. */
2412 		*prod = *rx_page->cmb_addr;
2413 	}
2414 }
2415 
2416 
2417 /*
2418  * It seems that AR81xx controller can compute partial checksum.
2419  * The partial checksum value can be used to accelerate checksum
2420  * computation for fragmented TCP/UDP packets. Upper network stack
2421  * already takes advantage of the partial checksum value in IP
2422  * reassembly stage. But I'm not sure the correctness of the
2423  * partial hardware checksum assistance due to lack of data sheet.
2424  * In addition, the Rx feature of controller that requires copying
2425  * for every frames effectively nullifies one of most nice offload
2426  * capability of controller.
2427  */
2428 static void
2429 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
2430 {
2431 	struct ifnet *ifp;
2432 	struct ip *ip;
2433 	char *p;
2434 
2435 	ifp = sc->ale_ifp;
2436 	m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2437 	if ((status & ALE_RD_IPCSUM_NOK) == 0)
2438 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2439 
2440 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
2441 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
2442 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
2443 		    ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
2444 			m->m_pkthdr.csum_flags |=
2445 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2446 			m->m_pkthdr.csum_data = 0xffff;
2447 		}
2448 	} else {
2449 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
2450 		    (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
2451 			p = mtod(m, char *);
2452 			p += ETHER_HDR_LEN;
2453 			if ((status & ALE_RD_802_3) != 0)
2454 				p += LLC_SNAPFRAMELEN;
2455 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 &&
2456 			    (status & ALE_RD_VLAN) != 0)
2457 				p += ETHER_VLAN_ENCAP_LEN;
2458 			ip = (struct ip *)p;
2459 			if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
2460 				return;
2461 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2462 			    CSUM_PSEUDO_HDR;
2463 			m->m_pkthdr.csum_data = 0xffff;
2464 		}
2465 	}
2466 	/*
2467 	 * Don't mark bad checksum for TCP/UDP frames
2468 	 * as fragmented frames may always have set
2469 	 * bad checksummed bit of frame status.
2470 	 */
2471 }
2472 
2473 /* Process received frames. */
2474 static int
2475 ale_rxeof(struct ale_softc *sc, int count)
2476 {
2477 	struct ale_rx_page *rx_page;
2478 	struct rx_rs *rs;
2479 	struct ifnet *ifp;
2480 	struct mbuf *m;
2481 	uint32_t length, prod, seqno, status, vtags;
2482 	int prog;
2483 
2484 	ifp = sc->ale_ifp;
2485 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2486 	bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2487 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2488 	bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2489 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2490 	/*
2491 	 * Don't directly access producer index as hardware may
2492 	 * update it while Rx handler is in progress. It would
2493 	 * be even better if there is a way to let hardware
2494 	 * know how far driver processed its received frames.
2495 	 * Alternatively, hardware could provide a way to disable
2496 	 * CMB updates until driver acknowledges the end of CMB
2497 	 * access.
2498 	 */
2499 	prod = *rx_page->cmb_addr;
2500 	for (prog = 0; prog < count; prog++) {
2501 		if (rx_page->cons >= prod)
2502 			break;
2503 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
2504 		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
2505 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
2506 			/*
2507 			 * Normally I believe this should not happen unless
2508 			 * severe driver bug or corrupted memory. However
2509 			 * it seems to happen under certain conditions which
2510 			 * is triggered by abrupt Rx events such as initiation
2511 			 * of bulk transfer of remote host. It's not easy to
2512 			 * reproduce this and I doubt it could be related
2513 			 * with FIFO overflow of hardware or activity of Tx
2514 			 * CMB updates. I also remember similar behaviour
2515 			 * seen on RealTek 8139 which uses resembling Rx
2516 			 * scheme.
2517 			 */
2518 			if (bootverbose)
2519 				device_printf(sc->ale_dev,
2520 				    "garbled seq: %u, expected: %u -- "
2521 				    "resetting!\n", seqno,
2522 				    sc->ale_cdata.ale_rx_seqno);
2523 			return (EIO);
2524 		}
2525 		/* Frame received. */
2526 		sc->ale_cdata.ale_rx_seqno++;
2527 		length = ALE_RX_BYTES(le32toh(rs->length));
2528 		status = le32toh(rs->flags);
2529 		if ((status & ALE_RD_ERROR) != 0) {
2530 			/*
2531 			 * We want to pass the following frames to upper
2532 			 * layer regardless of error status of Rx return
2533 			 * status.
2534 			 *
2535 			 *  o IP/TCP/UDP checksum is bad.
2536 			 *  o frame length and protocol specific length
2537 			 *     does not match.
2538 			 */
2539 			if ((status & (ALE_RD_CRC | ALE_RD_CODE |
2540 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
2541 			    ALE_RD_TRUNC)) != 0) {
2542 				ale_rx_update_page(sc, &rx_page, length, &prod);
2543 				continue;
2544 			}
2545 		}
2546 		/*
2547 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
2548 		 * from hardware limitation). For jumbo frames we could
2549 		 * get a slightly better performance if driver use
2550 		 * m_getjcl(9) with proper buffer size argument. However
2551 		 * that would make code more complicated and I don't
2552 		 * think users would expect good Rx performance numbers
2553 		 * on these low-end consumer ethernet controller.
2554 		 */
2555 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
2556 		    ETHER_ALIGN, ifp, NULL);
2557 		if (m == NULL) {
2558 			ifp->if_iqdrops++;
2559 			ale_rx_update_page(sc, &rx_page, length, &prod);
2560 			continue;
2561 		}
2562 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2563 		    (status & ALE_RD_IPV4) != 0)
2564 			ale_rxcsum(sc, m, status);
2565 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2566 		    (status & ALE_RD_VLAN) != 0) {
2567 			vtags = ALE_RX_VLAN(le32toh(rs->vtags));
2568 			m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
2569 			m->m_flags |= M_VLANTAG;
2570 		}
2571 
2572 		/* Pass it to upper layer. */
2573 		(*ifp->if_input)(ifp, m);
2574 
2575 		ale_rx_update_page(sc, &rx_page, length, &prod);
2576 	}
2577 
2578 	return (count > 0 ? 0 : EAGAIN);
2579 }
2580 
2581 static void
2582 ale_tick(void *arg)
2583 {
2584 	struct ale_softc *sc;
2585 	struct mii_data *mii;
2586 
2587 	sc = (struct ale_softc *)arg;
2588 
2589 	ALE_LOCK_ASSERT(sc);
2590 
2591 	mii = device_get_softc(sc->ale_miibus);
2592 	mii_tick(mii);
2593 	ale_stats_update(sc);
2594 	/*
2595 	 * Reclaim Tx buffers that have been transferred. It's not
2596 	 * needed here but it would release allocated mbuf chains
2597 	 * faster and limit the maximum delay to a hz.
2598 	 */
2599 	ale_txeof(sc);
2600 	ale_watchdog(sc);
2601 	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2602 }
2603 
2604 static void
2605 ale_reset(struct ale_softc *sc)
2606 {
2607 	uint32_t reg;
2608 	int i;
2609 
2610 	/* Initialize PCIe module. From Linux. */
2611 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2612 
2613 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
2614 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2615 		DELAY(10);
2616 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
2617 			break;
2618 	}
2619 	if (i == 0)
2620 		device_printf(sc->ale_dev, "master reset timeout!\n");
2621 
2622 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2623 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
2624 			break;
2625 		DELAY(10);
2626 	}
2627 
2628 	if (i == 0)
2629 		device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
2630 }
2631 
2632 static void
2633 ale_init(void *xsc)
2634 {
2635 	struct ale_softc *sc;
2636 
2637 	sc = (struct ale_softc *)xsc;
2638 	ALE_LOCK(sc);
2639 	ale_init_locked(sc);
2640 	ALE_UNLOCK(sc);
2641 }
2642 
2643 static void
2644 ale_init_locked(struct ale_softc *sc)
2645 {
2646 	struct ifnet *ifp;
2647 	struct mii_data *mii;
2648 	uint8_t eaddr[ETHER_ADDR_LEN];
2649 	bus_addr_t paddr;
2650 	uint32_t reg, rxf_hi, rxf_lo;
2651 
2652 	ALE_LOCK_ASSERT(sc);
2653 
2654 	ifp = sc->ale_ifp;
2655 	mii = device_get_softc(sc->ale_miibus);
2656 
2657 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2658 		return;
2659 	/*
2660 	 * Cancel any pending I/O.
2661 	 */
2662 	ale_stop(sc);
2663 	/*
2664 	 * Reset the chip to a known state.
2665 	 */
2666 	ale_reset(sc);
2667 	/* Initialize Tx descriptors, DMA memory blocks. */
2668 	ale_init_rx_pages(sc);
2669 	ale_init_tx_ring(sc);
2670 
2671 	/* Reprogram the station address. */
2672 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2673 	CSR_WRITE_4(sc, ALE_PAR0,
2674 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2675 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
2676 	/*
2677 	 * Clear WOL status and disable all WOL feature as WOL
2678 	 * would interfere Rx operation under normal environments.
2679 	 */
2680 	CSR_READ_4(sc, ALE_WOL_CFG);
2681 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
2682 	/*
2683 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
2684 	 * the same high address part of DMAable region.
2685 	 */
2686 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
2687 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
2688 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
2689 	CSR_WRITE_4(sc, ALE_TPD_CNT,
2690 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
2691 	/* Set Rx page base address, note we use single queue. */
2692 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
2693 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
2694 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
2695 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
2696 	/* Set Tx/Rx CMB addresses. */
2697 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
2698 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
2699 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
2700 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
2701 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
2702 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
2703 	/* Mark RXF0 is valid. */
2704 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
2705 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
2706 	/*
2707 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
2708 	 * multi-queue yet.
2709 	 */
2710 
2711 	/* Set Rx page size, excluding guard frame size. */
2712 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
2713 	/* Tell hardware that we're ready to load DMA blocks. */
2714 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
2715 
2716 	/* Set Rx/Tx interrupt trigger threshold. */
2717 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
2718 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
2719 	/*
2720 	 * XXX
2721 	 * Set interrupt trigger timer, its purpose and relation
2722 	 * with interrupt moderation mechanism is not clear yet.
2723 	 */
2724 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
2725 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
2726 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
2727 
2728 	/* Configure interrupt moderation timer. */
2729 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
2730 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
2731 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
2732 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
2733 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
2734 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2735 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
2736 		reg |= MASTER_IM_RX_TIMER_ENB;
2737 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
2738 		reg |= MASTER_IM_TX_TIMER_ENB;
2739 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
2740 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
2741 
2742 	/* Set Maximum frame size of controller. */
2743 	if (ifp->if_mtu < ETHERMTU)
2744 		sc->ale_max_frame_size = ETHERMTU;
2745 	else
2746 		sc->ale_max_frame_size = ifp->if_mtu;
2747 	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2748 	    ETHER_CRC_LEN;
2749 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
2750 	/* Configure IPG/IFG parameters. */
2751 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
2752 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2753 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2754 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2755 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2756 	/* Set parameters for half-duplex media. */
2757 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
2758 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2759 	    HDPX_CFG_LCOL_MASK) |
2760 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2761 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2762 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2763 	    HDPX_CFG_ABEBT_MASK) |
2764 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2765 	    HDPX_CFG_JAMIPG_MASK));
2766 
2767 	/* Configure Tx jumbo frame parameters. */
2768 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2769 		if (ifp->if_mtu < ETHERMTU)
2770 			reg = sc->ale_max_frame_size;
2771 		else if (ifp->if_mtu < 6 * 1024)
2772 			reg = (sc->ale_max_frame_size * 2) / 3;
2773 		else
2774 			reg = sc->ale_max_frame_size / 2;
2775 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
2776 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
2777 		    TX_JUMBO_THRESH_UNIT_SHIFT);
2778 	}
2779 	/* Configure TxQ. */
2780 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
2781 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
2782 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2783 	    TXQ_CFG_TPD_BURST_MASK;
2784 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
2785 
2786 	/* Configure Rx jumbo frame & flow control parameters. */
2787 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2788 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
2789 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
2790 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
2791 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
2792 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
2793 		    RX_JUMBO_LKAH_MASK));
2794 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
2795 		rxf_hi = (reg * 7) / 10;
2796 		rxf_lo = (reg * 3)/ 10;
2797 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
2798 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2799 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
2800 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2801 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
2802 	}
2803 
2804 	/* Disable RSS. */
2805 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
2806 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
2807 
2808 	/* Configure RxQ. */
2809 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
2810 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2811 
2812 	/* Configure DMA parameters. */
2813 	reg = 0;
2814 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
2815 		reg |= DMA_CFG_TXCMB_ENB;
2816 	CSR_WRITE_4(sc, ALE_DMA_CFG,
2817 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
2818 	    sc->ale_dma_rd_burst | reg |
2819 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
2820 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2821 	    DMA_CFG_RD_DELAY_CNT_MASK) |
2822 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2823 	    DMA_CFG_WR_DELAY_CNT_MASK));
2824 
2825 	/*
2826 	 * Hardware can be configured to issue SMB interrupt based
2827 	 * on programmed interval. Since there is a callout that is
2828 	 * invoked for every hz in driver we use that instead of
2829 	 * relying on periodic SMB interrupt.
2830 	 */
2831 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
2832 	/* Clear MAC statistics. */
2833 	ale_stats_clear(sc);
2834 
2835 	/*
2836 	 * Configure Tx/Rx MACs.
2837 	 *  - Auto-padding for short frames.
2838 	 *  - Enable CRC generation.
2839 	 *  Actual reconfiguration of MAC for resolved speed/duplex
2840 	 *  is followed after detection of link establishment.
2841 	 *  AR81xx always does checksum computation regardless of
2842 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
2843 	 *  cause Rx handling issue for fragmented IP datagrams due
2844 	 *  to silicon bug.
2845 	 */
2846 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2847 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2848 	    MAC_CFG_PREAMBLE_MASK);
2849 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
2850 		reg |= MAC_CFG_SPEED_10_100;
2851 	else
2852 		reg |= MAC_CFG_SPEED_1000;
2853 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2854 
2855 	/* Set up the receive filter. */
2856 	ale_rxfilter(sc);
2857 	ale_rxvlan(sc);
2858 
2859 	/* Acknowledge all pending interrupts and clear it. */
2860 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
2861 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2862 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
2863 
2864 	sc->ale_flags &= ~ALE_FLAG_LINK;
2865 	/* Switch to the current media. */
2866 	mii_mediachg(mii);
2867 
2868 	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2869 
2870 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2871 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2872 }
2873 
2874 static void
2875 ale_stop(struct ale_softc *sc)
2876 {
2877 	struct ifnet *ifp;
2878 	struct ale_txdesc *txd;
2879 	uint32_t reg;
2880 	int i;
2881 
2882 	ALE_LOCK_ASSERT(sc);
2883 	/*
2884 	 * Mark the interface down and cancel the watchdog timer.
2885 	 */
2886 	ifp = sc->ale_ifp;
2887 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2888 	sc->ale_flags &= ~ALE_FLAG_LINK;
2889 	callout_stop(&sc->ale_tick_ch);
2890 	sc->ale_watchdog_timer = 0;
2891 	ale_stats_update(sc);
2892 	/* Disable interrupts. */
2893 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
2894 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2895 	/* Disable queue processing and DMA. */
2896 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
2897 	reg &= ~TXQ_CFG_ENB;
2898 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
2899 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
2900 	reg &= ~RXQ_CFG_ENB;
2901 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
2902 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
2903 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
2904 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
2905 	DELAY(1000);
2906 	/* Stop Rx/Tx MACs. */
2907 	ale_stop_mac(sc);
2908 	/* Disable interrupts which might be touched in taskq handler. */
2909 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2910 
2911 	/*
2912 	 * Free TX mbufs still in the queues.
2913 	 */
2914 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2915 		txd = &sc->ale_cdata.ale_txdesc[i];
2916 		if (txd->tx_m != NULL) {
2917 			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2918 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2919 			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2920 			    txd->tx_dmamap);
2921 			m_freem(txd->tx_m);
2922 			txd->tx_m = NULL;
2923 		}
2924         }
2925 }
2926 
2927 static void
2928 ale_stop_mac(struct ale_softc *sc)
2929 {
2930 	uint32_t reg;
2931 	int i;
2932 
2933 	ALE_LOCK_ASSERT(sc);
2934 
2935 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2936 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2937 		reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2938 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2939 	}
2940 
2941 	for (i = ALE_TIMEOUT; i > 0; i--) {
2942 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
2943 		if (reg == 0)
2944 			break;
2945 		DELAY(10);
2946 	}
2947 	if (i == 0)
2948 		device_printf(sc->ale_dev,
2949 		    "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
2950 }
2951 
2952 static void
2953 ale_init_tx_ring(struct ale_softc *sc)
2954 {
2955 	struct ale_txdesc *txd;
2956 	int i;
2957 
2958 	ALE_LOCK_ASSERT(sc);
2959 
2960 	sc->ale_cdata.ale_tx_prod = 0;
2961 	sc->ale_cdata.ale_tx_cons = 0;
2962 	sc->ale_cdata.ale_tx_cnt = 0;
2963 
2964 	bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
2965 	bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
2966 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2967 		txd = &sc->ale_cdata.ale_txdesc[i];
2968 		txd->tx_m = NULL;
2969 	}
2970 	*sc->ale_cdata.ale_tx_cmb = 0;
2971 	bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2972 	    sc->ale_cdata.ale_tx_cmb_map,
2973 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2974 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2975 	    sc->ale_cdata.ale_tx_ring_map,
2976 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2977 }
2978 
2979 static void
2980 ale_init_rx_pages(struct ale_softc *sc)
2981 {
2982 	struct ale_rx_page *rx_page;
2983 	int i;
2984 
2985 	ALE_LOCK_ASSERT(sc);
2986 
2987 	atomic_set_int(&sc->ale_morework, 0);
2988 	sc->ale_cdata.ale_rx_seqno = 0;
2989 	sc->ale_cdata.ale_rx_curp = 0;
2990 
2991 	for (i = 0; i < ALE_RX_PAGES; i++) {
2992 		rx_page = &sc->ale_cdata.ale_rx_page[i];
2993 		bzero(rx_page->page_addr, sc->ale_pagesize);
2994 		bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
2995 		rx_page->cons = 0;
2996 		*rx_page->cmb_addr = 0;
2997 		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2998 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2999 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
3000 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3001 	}
3002 }
3003 
3004 static void
3005 ale_rxvlan(struct ale_softc *sc)
3006 {
3007 	struct ifnet *ifp;
3008 	uint32_t reg;
3009 
3010 	ALE_LOCK_ASSERT(sc);
3011 
3012 	ifp = sc->ale_ifp;
3013 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
3014 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3015 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3016 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3017 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
3018 }
3019 
3020 static void
3021 ale_rxfilter(struct ale_softc *sc)
3022 {
3023 	struct ifnet *ifp;
3024 	struct ifmultiaddr *ifma;
3025 	uint32_t crc;
3026 	uint32_t mchash[2];
3027 	uint32_t rxcfg;
3028 
3029 	ALE_LOCK_ASSERT(sc);
3030 
3031 	ifp = sc->ale_ifp;
3032 
3033 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
3034 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3035 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3036 		rxcfg |= MAC_CFG_BCAST;
3037 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3038 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3039 			rxcfg |= MAC_CFG_PROMISC;
3040 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3041 			rxcfg |= MAC_CFG_ALLMULTI;
3042 		CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
3043 		CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
3044 		CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3045 		return;
3046 	}
3047 
3048 	/* Program new filter. */
3049 	bzero(mchash, sizeof(mchash));
3050 
3051 	IF_ADDR_LOCK(ifp);
3052 	TAILQ_FOREACH(ifma, &sc->ale_ifp->if_multiaddrs, ifma_link) {
3053 		if (ifma->ifma_addr->sa_family != AF_LINK)
3054 			continue;
3055 		crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
3056 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3057 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3058 	}
3059 	IF_ADDR_UNLOCK(ifp);
3060 
3061 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
3062 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
3063 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3064 }
3065 
3066 static int
3067 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3068 {
3069 	int error, value;
3070 
3071 	if (arg1 == NULL)
3072 		return (EINVAL);
3073 	value = *(int *)arg1;
3074 	error = sysctl_handle_int(oidp, &value, 0, req);
3075 	if (error || req->newptr == NULL)
3076 		return (error);
3077 	if (value < low || value > high)
3078 		return (EINVAL);
3079         *(int *)arg1 = value;
3080 
3081         return (0);
3082 }
3083 
3084 static int
3085 sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
3086 {
3087 	return (sysctl_int_range(oidp, arg1, arg2, req,
3088 	    ALE_PROC_MIN, ALE_PROC_MAX));
3089 }
3090 
3091 static int
3092 sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
3093 {
3094 
3095 	return (sysctl_int_range(oidp, arg1, arg2, req,
3096 	    ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
3097 }
3098