xref: /freebsd/sys/dev/ale/if_ale.c (revision aa0a1e58f0189b0fde359a8bda032887e72057fa)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/module.h>
41 #include <sys/rman.h>
42 #include <sys/queue.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_llc.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_vlan_var.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/ip.h>
61 #include <netinet/tcp.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 
66 #include <dev/pci/pcireg.h>
67 #include <dev/pci/pcivar.h>
68 
69 #include <machine/bus.h>
70 #include <machine/in_cksum.h>
71 
72 #include <dev/ale/if_alereg.h>
73 #include <dev/ale/if_alevar.h>
74 
75 /* "device miibus" required.  See GENERIC if you get errors here. */
76 #include "miibus_if.h"
77 
78 /* For more information about Tx checksum offload issues see ale_encap(). */
79 #define	ALE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
80 
81 MODULE_DEPEND(ale, pci, 1, 1, 1);
82 MODULE_DEPEND(ale, ether, 1, 1, 1);
83 MODULE_DEPEND(ale, miibus, 1, 1, 1);
84 
85 /* Tunables. */
86 static int msi_disable = 0;
87 static int msix_disable = 0;
88 TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
89 TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
90 
91 /*
92  * Devices supported by this driver.
93  */
94 static struct ale_dev {
95 	uint16_t	ale_vendorid;
96 	uint16_t	ale_deviceid;
97 	const char	*ale_name;
98 } ale_devs[] = {
99     { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
100     "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
101 };
102 
103 static int	ale_attach(device_t);
104 static int	ale_check_boundary(struct ale_softc *);
105 static int	ale_detach(device_t);
106 static int	ale_dma_alloc(struct ale_softc *);
107 static void	ale_dma_free(struct ale_softc *);
108 static void	ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
109 static int	ale_encap(struct ale_softc *, struct mbuf **);
110 static void	ale_get_macaddr(struct ale_softc *);
111 static void	ale_init(void *);
112 static void	ale_init_locked(struct ale_softc *);
113 static void	ale_init_rx_pages(struct ale_softc *);
114 static void	ale_init_tx_ring(struct ale_softc *);
115 static void	ale_int_task(void *, int);
116 static int	ale_intr(void *);
117 static int	ale_ioctl(struct ifnet *, u_long, caddr_t);
118 static void	ale_link_task(void *, int);
119 static void	ale_mac_config(struct ale_softc *);
120 static int	ale_miibus_readreg(device_t, int, int);
121 static void	ale_miibus_statchg(device_t);
122 static int	ale_miibus_writereg(device_t, int, int, int);
123 static int	ale_mediachange(struct ifnet *);
124 static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
125 static void	ale_phy_reset(struct ale_softc *);
126 static int	ale_probe(device_t);
127 static void	ale_reset(struct ale_softc *);
128 static int	ale_resume(device_t);
129 static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
130     uint32_t, uint32_t *);
131 static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
132 static int	ale_rxeof(struct ale_softc *sc, int);
133 static void	ale_rxfilter(struct ale_softc *);
134 static void	ale_rxvlan(struct ale_softc *);
135 static void	ale_setlinkspeed(struct ale_softc *);
136 static void	ale_setwol(struct ale_softc *);
137 static int	ale_shutdown(device_t);
138 static void	ale_start(struct ifnet *);
139 static void	ale_start_locked(struct ifnet *);
140 static void	ale_stats_clear(struct ale_softc *);
141 static void	ale_stats_update(struct ale_softc *);
142 static void	ale_stop(struct ale_softc *);
143 static void	ale_stop_mac(struct ale_softc *);
144 static int	ale_suspend(device_t);
145 static void	ale_sysctl_node(struct ale_softc *);
146 static void	ale_tick(void *);
147 static void	ale_txeof(struct ale_softc *);
148 static void	ale_watchdog(struct ale_softc *);
149 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
150 static int	sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
151 static int	sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
152 
153 static device_method_t ale_methods[] = {
154 	/* Device interface. */
155 	DEVMETHOD(device_probe,		ale_probe),
156 	DEVMETHOD(device_attach,	ale_attach),
157 	DEVMETHOD(device_detach,	ale_detach),
158 	DEVMETHOD(device_shutdown,	ale_shutdown),
159 	DEVMETHOD(device_suspend,	ale_suspend),
160 	DEVMETHOD(device_resume,	ale_resume),
161 
162 	/* MII interface. */
163 	DEVMETHOD(miibus_readreg,	ale_miibus_readreg),
164 	DEVMETHOD(miibus_writereg,	ale_miibus_writereg),
165 	DEVMETHOD(miibus_statchg,	ale_miibus_statchg),
166 
167 	{ NULL, NULL }
168 };
169 
170 static driver_t ale_driver = {
171 	"ale",
172 	ale_methods,
173 	sizeof(struct ale_softc)
174 };
175 
176 static devclass_t ale_devclass;
177 
178 DRIVER_MODULE(ale, pci, ale_driver, ale_devclass, 0, 0);
179 DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, 0, 0);
180 
181 static struct resource_spec ale_res_spec_mem[] = {
182 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
183 	{ -1,			0,		0 }
184 };
185 
186 static struct resource_spec ale_irq_spec_legacy[] = {
187 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
188 	{ -1,			0,		0 }
189 };
190 
191 static struct resource_spec ale_irq_spec_msi[] = {
192 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
193 	{ -1,			0,		0 }
194 };
195 
196 static struct resource_spec ale_irq_spec_msix[] = {
197 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
198 	{ -1,			0,		0 }
199 };
200 
201 static int
202 ale_miibus_readreg(device_t dev, int phy, int reg)
203 {
204 	struct ale_softc *sc;
205 	uint32_t v;
206 	int i;
207 
208 	sc = device_get_softc(dev);
209 
210 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
211 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
212 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
213 		DELAY(5);
214 		v = CSR_READ_4(sc, ALE_MDIO);
215 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
216 			break;
217 	}
218 
219 	if (i == 0) {
220 		device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
221 		return (0);
222 	}
223 
224 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
225 }
226 
227 static int
228 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
229 {
230 	struct ale_softc *sc;
231 	uint32_t v;
232 	int i;
233 
234 	sc = device_get_softc(dev);
235 
236 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
237 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
238 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
239 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
240 		DELAY(5);
241 		v = CSR_READ_4(sc, ALE_MDIO);
242 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
243 			break;
244 	}
245 
246 	if (i == 0)
247 		device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
248 
249 	return (0);
250 }
251 
252 static void
253 ale_miibus_statchg(device_t dev)
254 {
255 	struct ale_softc *sc;
256 
257 	sc = device_get_softc(dev);
258 
259 	taskqueue_enqueue(taskqueue_swi, &sc->ale_link_task);
260 }
261 
262 static void
263 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
264 {
265 	struct ale_softc *sc;
266 	struct mii_data *mii;
267 
268 	sc = ifp->if_softc;
269 	ALE_LOCK(sc);
270 	mii = device_get_softc(sc->ale_miibus);
271 
272 	mii_pollstat(mii);
273 	ALE_UNLOCK(sc);
274 	ifmr->ifm_status = mii->mii_media_status;
275 	ifmr->ifm_active = mii->mii_media_active;
276 }
277 
278 static int
279 ale_mediachange(struct ifnet *ifp)
280 {
281 	struct ale_softc *sc;
282 	struct mii_data *mii;
283 	struct mii_softc *miisc;
284 	int error;
285 
286 	sc = ifp->if_softc;
287 	ALE_LOCK(sc);
288 	mii = device_get_softc(sc->ale_miibus);
289 	if (mii->mii_instance != 0) {
290 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
291 			mii_phy_reset(miisc);
292 	}
293 	error = mii_mediachg(mii);
294 	ALE_UNLOCK(sc);
295 
296 	return (error);
297 }
298 
299 static int
300 ale_probe(device_t dev)
301 {
302 	struct ale_dev *sp;
303 	int i;
304 	uint16_t vendor, devid;
305 
306 	vendor = pci_get_vendor(dev);
307 	devid = pci_get_device(dev);
308 	sp = ale_devs;
309 	for (i = 0; i < sizeof(ale_devs) / sizeof(ale_devs[0]); i++) {
310 		if (vendor == sp->ale_vendorid &&
311 		    devid == sp->ale_deviceid) {
312 			device_set_desc(dev, sp->ale_name);
313 			return (BUS_PROBE_DEFAULT);
314 		}
315 		sp++;
316 	}
317 
318 	return (ENXIO);
319 }
320 
321 static void
322 ale_get_macaddr(struct ale_softc *sc)
323 {
324 	uint32_t ea[2], reg;
325 	int i, vpdc;
326 
327 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
328 	if ((reg & SPI_VPD_ENB) != 0) {
329 		reg &= ~SPI_VPD_ENB;
330 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
331 	}
332 
333 	if (pci_find_extcap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
334 		/*
335 		 * PCI VPD capability found, let TWSI reload EEPROM.
336 		 * This will set ethernet address of controller.
337 		 */
338 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
339 		    TWSI_CTRL_SW_LD_START);
340 		for (i = 100; i > 0; i--) {
341 			DELAY(1000);
342 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
343 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
344 				break;
345 		}
346 		if (i == 0)
347 			device_printf(sc->ale_dev,
348 			    "reloading EEPROM timeout!\n");
349 	} else {
350 		if (bootverbose)
351 			device_printf(sc->ale_dev,
352 			    "PCI VPD capability not found!\n");
353 	}
354 
355 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
356 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
357 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
358 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
359 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
360 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
361 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
362 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
363 }
364 
365 static void
366 ale_phy_reset(struct ale_softc *sc)
367 {
368 
369 	/* Reset magic from Linux. */
370 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
371 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
372 	    GPHY_CTRL_PHY_PLL_ON);
373 	DELAY(1000);
374 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
375 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
376 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
377 	DELAY(1000);
378 
379 #define	ATPHY_DBG_ADDR		0x1D
380 #define	ATPHY_DBG_DATA		0x1E
381 
382 	/* Enable hibernation mode. */
383 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
384 	    ATPHY_DBG_ADDR, 0x0B);
385 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
386 	    ATPHY_DBG_DATA, 0xBC00);
387 	/* Set Class A/B for all modes. */
388 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
389 	    ATPHY_DBG_ADDR, 0x00);
390 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
391 	    ATPHY_DBG_DATA, 0x02EF);
392 	/* Enable 10BT power saving. */
393 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
394 	    ATPHY_DBG_ADDR, 0x12);
395 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
396 	    ATPHY_DBG_DATA, 0x4C04);
397 	/* Adjust 1000T power. */
398 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
399 	    ATPHY_DBG_ADDR, 0x04);
400 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
401 	    ATPHY_DBG_ADDR, 0x8BBB);
402 	/* 10BT center tap voltage. */
403 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
404 	    ATPHY_DBG_ADDR, 0x05);
405 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
406 	    ATPHY_DBG_ADDR, 0x2C46);
407 
408 #undef	ATPHY_DBG_ADDR
409 #undef	ATPHY_DBG_DATA
410 	DELAY(1000);
411 }
412 
413 static int
414 ale_attach(device_t dev)
415 {
416 	struct ale_softc *sc;
417 	struct ifnet *ifp;
418 	uint16_t burst;
419 	int error, i, msic, msixc, pmc;
420 	uint32_t rxf_len, txf_len;
421 
422 	error = 0;
423 	sc = device_get_softc(dev);
424 	sc->ale_dev = dev;
425 
426 	mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
427 	    MTX_DEF);
428 	callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
429 	TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
430 	TASK_INIT(&sc->ale_link_task, 0, ale_link_task, sc);
431 
432 	/* Map the device. */
433 	pci_enable_busmaster(dev);
434 	sc->ale_res_spec = ale_res_spec_mem;
435 	sc->ale_irq_spec = ale_irq_spec_legacy;
436 	error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
437 	if (error != 0) {
438 		device_printf(dev, "cannot allocate memory resources.\n");
439 		goto fail;
440 	}
441 
442 	/* Set PHY address. */
443 	sc->ale_phyaddr = ALE_PHY_ADDR;
444 
445 	/* Reset PHY. */
446 	ale_phy_reset(sc);
447 
448 	/* Reset the ethernet controller. */
449 	ale_reset(sc);
450 
451 	/* Get PCI and chip id/revision. */
452 	sc->ale_rev = pci_get_revid(dev);
453 	if (sc->ale_rev >= 0xF0) {
454 		/* L2E Rev. B. AR8114 */
455 		sc->ale_flags |= ALE_FLAG_FASTETHER;
456 	} else {
457 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
458 			/* L1E AR8121 */
459 			sc->ale_flags |= ALE_FLAG_JUMBO;
460 		} else {
461 			/* L2E Rev. A. AR8113 */
462 			sc->ale_flags |= ALE_FLAG_FASTETHER;
463 		}
464 	}
465 	/*
466 	 * All known controllers seems to require 4 bytes alignment
467 	 * of Tx buffers to make Tx checksum offload with custom
468 	 * checksum generation method work.
469 	 */
470 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
471 	/*
472 	 * All known controllers seems to have issues on Rx checksum
473 	 * offload for fragmented IP datagrams.
474 	 */
475 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
476 	/*
477 	 * Don't use Tx CMB. It is known to cause RRS update failure
478 	 * under certain circumstances. Typical phenomenon of the
479 	 * issue would be unexpected sequence number encountered in
480 	 * Rx handler.
481 	 */
482 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
483 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
484 	    MASTER_CHIP_REV_SHIFT;
485 	if (bootverbose) {
486 		device_printf(dev, "PCI device revision : 0x%04x\n",
487 		    sc->ale_rev);
488 		device_printf(dev, "Chip id/revision : 0x%04x\n",
489 		    sc->ale_chip_rev);
490 	}
491 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
492 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
493 	/*
494 	 * Uninitialized hardware returns an invalid chip id/revision
495 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
496 	 */
497 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
498 	    rxf_len == 0xFFFFFFF) {
499 		device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
500 		    "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
501 		    txf_len, rxf_len);
502 		error = ENXIO;
503 		goto fail;
504 	}
505 	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
506 
507 	/* Allocate IRQ resources. */
508 	msixc = pci_msix_count(dev);
509 	msic = pci_msi_count(dev);
510 	if (bootverbose) {
511 		device_printf(dev, "MSIX count : %d\n", msixc);
512 		device_printf(dev, "MSI count : %d\n", msic);
513 	}
514 
515 	/* Prefer MSIX over MSI. */
516 	if (msix_disable == 0 || msi_disable == 0) {
517 		if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
518 		    pci_alloc_msix(dev, &msixc) == 0) {
519 			if (msic == ALE_MSIX_MESSAGES) {
520 				device_printf(dev, "Using %d MSIX messages.\n",
521 				    msixc);
522 				sc->ale_flags |= ALE_FLAG_MSIX;
523 				sc->ale_irq_spec = ale_irq_spec_msix;
524 			} else
525 				pci_release_msi(dev);
526 		}
527 		if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
528 		    msic == ALE_MSI_MESSAGES &&
529 		    pci_alloc_msi(dev, &msic) == 0) {
530 			if (msic == ALE_MSI_MESSAGES) {
531 				device_printf(dev, "Using %d MSI messages.\n",
532 				    msic);
533 				sc->ale_flags |= ALE_FLAG_MSI;
534 				sc->ale_irq_spec = ale_irq_spec_msi;
535 			} else
536 				pci_release_msi(dev);
537 		}
538 	}
539 
540 	error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
541 	if (error != 0) {
542 		device_printf(dev, "cannot allocate IRQ resources.\n");
543 		goto fail;
544 	}
545 
546 	/* Get DMA parameters from PCIe device control register. */
547 	if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
548 		sc->ale_flags |= ALE_FLAG_PCIE;
549 		burst = pci_read_config(dev, i + 0x08, 2);
550 		/* Max read request size. */
551 		sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
552 		    DMA_CFG_RD_BURST_SHIFT;
553 		/* Max payload size. */
554 		sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
555 		    DMA_CFG_WR_BURST_SHIFT;
556 		if (bootverbose) {
557 			device_printf(dev, "Read request size : %d bytes.\n",
558 			    128 << ((burst >> 12) & 0x07));
559 			device_printf(dev, "TLP payload size : %d bytes.\n",
560 			    128 << ((burst >> 5) & 0x07));
561 		}
562 	} else {
563 		sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
564 		sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
565 	}
566 
567 	/* Create device sysctl node. */
568 	ale_sysctl_node(sc);
569 
570 	if ((error = ale_dma_alloc(sc) != 0))
571 		goto fail;
572 
573 	/* Load station address. */
574 	ale_get_macaddr(sc);
575 
576 	ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
577 	if (ifp == NULL) {
578 		device_printf(dev, "cannot allocate ifnet structure.\n");
579 		error = ENXIO;
580 		goto fail;
581 	}
582 
583 	ifp->if_softc = sc;
584 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
585 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
586 	ifp->if_ioctl = ale_ioctl;
587 	ifp->if_start = ale_start;
588 	ifp->if_init = ale_init;
589 	ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1;
590 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
591 	IFQ_SET_READY(&ifp->if_snd);
592 	ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4;
593 	ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO;
594 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
595 		sc->ale_flags |= ALE_FLAG_PMCAP;
596 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
597 	}
598 	ifp->if_capenable = ifp->if_capabilities;
599 
600 	/* Set up MII bus. */
601 	error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange,
602 	    ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY,
603 	    0);
604 	if (error != 0) {
605 		device_printf(dev, "attaching PHYs failed\n");
606 		goto fail;
607 	}
608 
609 	ether_ifattach(ifp, sc->ale_eaddr);
610 
611 	/* VLAN capability setup. */
612 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
613 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
614 	ifp->if_capenable = ifp->if_capabilities;
615 	/*
616 	 * Even though controllers supported by ale(3) have Rx checksum
617 	 * offload bug the workaround for fragmented frames seemed to
618 	 * work so far. However it seems Rx checksum offload does not
619 	 * work under certain conditions. So disable Rx checksum offload
620 	 * until I find more clue about it but allow users to override it.
621 	 */
622 	ifp->if_capenable &= ~IFCAP_RXCSUM;
623 
624 	/* Tell the upper layer(s) we support long frames. */
625 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
626 
627 	/* Create local taskq. */
628 	sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
629 	    taskqueue_thread_enqueue, &sc->ale_tq);
630 	if (sc->ale_tq == NULL) {
631 		device_printf(dev, "could not create taskqueue.\n");
632 		ether_ifdetach(ifp);
633 		error = ENXIO;
634 		goto fail;
635 	}
636 	taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
637 	    device_get_nameunit(sc->ale_dev));
638 
639 	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
640 		msic = ALE_MSIX_MESSAGES;
641 	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
642 		msic = ALE_MSI_MESSAGES;
643 	else
644 		msic = 1;
645 	for (i = 0; i < msic; i++) {
646 		error = bus_setup_intr(dev, sc->ale_irq[i],
647 		    INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
648 		    &sc->ale_intrhand[i]);
649 		if (error != 0)
650 			break;
651 	}
652 	if (error != 0) {
653 		device_printf(dev, "could not set up interrupt handler.\n");
654 		taskqueue_free(sc->ale_tq);
655 		sc->ale_tq = NULL;
656 		ether_ifdetach(ifp);
657 		goto fail;
658 	}
659 
660 fail:
661 	if (error != 0)
662 		ale_detach(dev);
663 
664 	return (error);
665 }
666 
667 static int
668 ale_detach(device_t dev)
669 {
670 	struct ale_softc *sc;
671 	struct ifnet *ifp;
672 	int i, msic;
673 
674 	sc = device_get_softc(dev);
675 
676 	ifp = sc->ale_ifp;
677 	if (device_is_attached(dev)) {
678 		ether_ifdetach(ifp);
679 		ALE_LOCK(sc);
680 		ale_stop(sc);
681 		ALE_UNLOCK(sc);
682 		callout_drain(&sc->ale_tick_ch);
683 		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
684 		taskqueue_drain(taskqueue_swi, &sc->ale_link_task);
685 	}
686 
687 	if (sc->ale_tq != NULL) {
688 		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
689 		taskqueue_free(sc->ale_tq);
690 		sc->ale_tq = NULL;
691 	}
692 
693 	if (sc->ale_miibus != NULL) {
694 		device_delete_child(dev, sc->ale_miibus);
695 		sc->ale_miibus = NULL;
696 	}
697 	bus_generic_detach(dev);
698 	ale_dma_free(sc);
699 
700 	if (ifp != NULL) {
701 		if_free(ifp);
702 		sc->ale_ifp = NULL;
703 	}
704 
705 	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
706 		msic = ALE_MSIX_MESSAGES;
707 	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
708 		msic = ALE_MSI_MESSAGES;
709 	else
710 		msic = 1;
711 	for (i = 0; i < msic; i++) {
712 		if (sc->ale_intrhand[i] != NULL) {
713 			bus_teardown_intr(dev, sc->ale_irq[i],
714 			    sc->ale_intrhand[i]);
715 			sc->ale_intrhand[i] = NULL;
716 		}
717 	}
718 
719 	bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
720 	if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
721 		pci_release_msi(dev);
722 	bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
723 	mtx_destroy(&sc->ale_mtx);
724 
725 	return (0);
726 }
727 
728 #define	ALE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
729 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
730 
731 #if __FreeBSD_version >= 900030
732 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
733 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
734 #elif __FreeBSD_version > 800000
735 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
736 	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
737 #else
738 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
739 	    SYSCTL_ADD_ULONG(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
740 #endif
741 
742 static void
743 ale_sysctl_node(struct ale_softc *sc)
744 {
745 	struct sysctl_ctx_list *ctx;
746 	struct sysctl_oid_list *child, *parent;
747 	struct sysctl_oid *tree;
748 	struct ale_hw_stats *stats;
749 	int error;
750 
751 	stats = &sc->ale_stats;
752 	ctx = device_get_sysctl_ctx(sc->ale_dev);
753 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
754 
755 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
756 	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_rx_mod, 0,
757 	    sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
758 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
759 	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_tx_mod, 0,
760 	    sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
761 	/* Pull in device tunables. */
762 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
763 	error = resource_int_value(device_get_name(sc->ale_dev),
764 	    device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
765 	if (error == 0) {
766 		if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
767 		    sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
768 			device_printf(sc->ale_dev, "int_rx_mod value out of "
769 			    "range; using default: %d\n",
770 			    ALE_IM_RX_TIMER_DEFAULT);
771 			sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
772 		}
773 	}
774 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
775 	error = resource_int_value(device_get_name(sc->ale_dev),
776 	    device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
777 	if (error == 0) {
778 		if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
779 		    sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
780 			device_printf(sc->ale_dev, "int_tx_mod value out of "
781 			    "range; using default: %d\n",
782 			    ALE_IM_TX_TIMER_DEFAULT);
783 			sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
784 		}
785 	}
786 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
787 	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_process_limit, 0,
788 	    sysctl_hw_ale_proc_limit, "I",
789 	    "max number of Rx events to process");
790 	/* Pull in device tunables. */
791 	sc->ale_process_limit = ALE_PROC_DEFAULT;
792 	error = resource_int_value(device_get_name(sc->ale_dev),
793 	    device_get_unit(sc->ale_dev), "process_limit",
794 	    &sc->ale_process_limit);
795 	if (error == 0) {
796 		if (sc->ale_process_limit < ALE_PROC_MIN ||
797 		    sc->ale_process_limit > ALE_PROC_MAX) {
798 			device_printf(sc->ale_dev,
799 			    "process_limit value out of range; "
800 			    "using default: %d\n", ALE_PROC_DEFAULT);
801 			sc->ale_process_limit = ALE_PROC_DEFAULT;
802 		}
803 	}
804 
805 	/* Misc statistics. */
806 	ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
807 	    &stats->reset_brk_seq,
808 	    "Controller resets due to broken Rx sequnce number");
809 
810 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
811 	    NULL, "ATE statistics");
812 	parent = SYSCTL_CHILDREN(tree);
813 
814 	/* Rx statistics. */
815 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
816 	    NULL, "Rx MAC statistics");
817 	child = SYSCTL_CHILDREN(tree);
818 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
819 	    &stats->rx_frames, "Good frames");
820 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
821 	    &stats->rx_bcast_frames, "Good broadcast frames");
822 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
823 	    &stats->rx_mcast_frames, "Good multicast frames");
824 	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
825 	    &stats->rx_pause_frames, "Pause control frames");
826 	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
827 	    &stats->rx_control_frames, "Control frames");
828 	ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
829 	    &stats->rx_crcerrs, "CRC errors");
830 	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
831 	    &stats->rx_lenerrs, "Frames with length mismatched");
832 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
833 	    &stats->rx_bytes, "Good octets");
834 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
835 	    &stats->rx_bcast_bytes, "Good broadcast octets");
836 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
837 	    &stats->rx_mcast_bytes, "Good multicast octets");
838 	ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
839 	    &stats->rx_runts, "Too short frames");
840 	ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
841 	    &stats->rx_fragments, "Fragmented frames");
842 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
843 	    &stats->rx_pkts_64, "64 bytes frames");
844 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
845 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
846 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
847 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
848 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
849 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
850 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
851 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
852 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
853 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
854 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
855 	    &stats->rx_pkts_1519_max, "1519 to max frames");
856 	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
857 	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
858 	ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
859 	    &stats->rx_fifo_oflows, "FIFO overflows");
860 	ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
861 	    &stats->rx_rrs_errs, "Return status write-back errors");
862 	ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
863 	    &stats->rx_alignerrs, "Alignment errors");
864 	ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
865 	    &stats->rx_pkts_filtered,
866 	    "Frames dropped due to address filtering");
867 
868 	/* Tx statistics. */
869 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
870 	    NULL, "Tx MAC statistics");
871 	child = SYSCTL_CHILDREN(tree);
872 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
873 	    &stats->tx_frames, "Good frames");
874 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
875 	    &stats->tx_bcast_frames, "Good broadcast frames");
876 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
877 	    &stats->tx_mcast_frames, "Good multicast frames");
878 	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
879 	    &stats->tx_pause_frames, "Pause control frames");
880 	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
881 	    &stats->tx_control_frames, "Control frames");
882 	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
883 	    &stats->tx_excess_defer, "Frames with excessive derferrals");
884 	ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
885 	    &stats->tx_excess_defer, "Frames with derferrals");
886 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
887 	    &stats->tx_bytes, "Good octets");
888 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
889 	    &stats->tx_bcast_bytes, "Good broadcast octets");
890 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
891 	    &stats->tx_mcast_bytes, "Good multicast octets");
892 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
893 	    &stats->tx_pkts_64, "64 bytes frames");
894 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
895 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
896 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
897 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
898 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
899 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
900 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
901 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
902 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
903 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
904 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
905 	    &stats->tx_pkts_1519_max, "1519 to max frames");
906 	ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
907 	    &stats->tx_single_colls, "Single collisions");
908 	ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
909 	    &stats->tx_multi_colls, "Multiple collisions");
910 	ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
911 	    &stats->tx_late_colls, "Late collisions");
912 	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
913 	    &stats->tx_excess_colls, "Excessive collisions");
914 	ALE_SYSCTL_STAT_ADD32(ctx, child, "abort",
915 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
916 	ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
917 	    &stats->tx_underrun, "FIFO underruns");
918 	ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
919 	    &stats->tx_desc_underrun, "Descriptor write-back errors");
920 	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
921 	    &stats->tx_lenerrs, "Frames with length mismatched");
922 	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
923 	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
924 }
925 
926 #undef ALE_SYSCTL_STAT_ADD32
927 #undef ALE_SYSCTL_STAT_ADD64
928 
929 struct ale_dmamap_arg {
930 	bus_addr_t	ale_busaddr;
931 };
932 
933 static void
934 ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
935 {
936 	struct ale_dmamap_arg *ctx;
937 
938 	if (error != 0)
939 		return;
940 
941 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
942 
943 	ctx = (struct ale_dmamap_arg *)arg;
944 	ctx->ale_busaddr = segs[0].ds_addr;
945 }
946 
947 /*
948  * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
949  * which specifies high address region of DMA blocks. Therefore these
950  * blocks should have the same high address of given 4GB address
951  * space(i.e. crossing 4GB boundary is not allowed).
952  */
953 static int
954 ale_check_boundary(struct ale_softc *sc)
955 {
956 	bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
957 	bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
958 
959 	rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
960 	    sc->ale_pagesize;
961 	rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
962 	    sc->ale_pagesize;
963 	tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
964 	tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
965 	rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
966 	rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
967 
968 	if ((ALE_ADDR_HI(tx_ring_end) !=
969 	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
970 	    (ALE_ADDR_HI(rx_page_end[0]) !=
971 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
972 	    (ALE_ADDR_HI(rx_page_end[1]) !=
973 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
974 	    (ALE_ADDR_HI(tx_cmb_end) !=
975 	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
976 	    (ALE_ADDR_HI(rx_cmb_end[0]) !=
977 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
978 	    (ALE_ADDR_HI(rx_cmb_end[1]) !=
979 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
980 		return (EFBIG);
981 
982 	if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
983 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
984 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
985 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
986 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
987 		return (EFBIG);
988 
989 	return (0);
990 }
991 
992 static int
993 ale_dma_alloc(struct ale_softc *sc)
994 {
995 	struct ale_txdesc *txd;
996 	bus_addr_t lowaddr;
997 	struct ale_dmamap_arg ctx;
998 	int error, guard_size, i;
999 
1000 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
1001 		guard_size = ALE_JUMBO_FRAMELEN;
1002 	else
1003 		guard_size = ALE_MAX_FRAMELEN;
1004 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
1005 	    ALE_RX_PAGE_ALIGN);
1006 	lowaddr = BUS_SPACE_MAXADDR;
1007 again:
1008 	/* Create parent DMA tag. */
1009 	error = bus_dma_tag_create(
1010 	    bus_get_dma_tag(sc->ale_dev), /* parent */
1011 	    1, 0,			/* alignment, boundary */
1012 	    lowaddr,			/* lowaddr */
1013 	    BUS_SPACE_MAXADDR,		/* highaddr */
1014 	    NULL, NULL,			/* filter, filterarg */
1015 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1016 	    0,				/* nsegments */
1017 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1018 	    0,				/* flags */
1019 	    NULL, NULL,			/* lockfunc, lockarg */
1020 	    &sc->ale_cdata.ale_parent_tag);
1021 	if (error != 0) {
1022 		device_printf(sc->ale_dev,
1023 		    "could not create parent DMA tag.\n");
1024 		goto fail;
1025 	}
1026 
1027 	/* Create DMA tag for Tx descriptor ring. */
1028 	error = bus_dma_tag_create(
1029 	    sc->ale_cdata.ale_parent_tag, /* parent */
1030 	    ALE_TX_RING_ALIGN, 0,	/* alignment, boundary */
1031 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1032 	    BUS_SPACE_MAXADDR,		/* highaddr */
1033 	    NULL, NULL,			/* filter, filterarg */
1034 	    ALE_TX_RING_SZ,		/* maxsize */
1035 	    1,				/* nsegments */
1036 	    ALE_TX_RING_SZ,		/* maxsegsize */
1037 	    0,				/* flags */
1038 	    NULL, NULL,			/* lockfunc, lockarg */
1039 	    &sc->ale_cdata.ale_tx_ring_tag);
1040 	if (error != 0) {
1041 		device_printf(sc->ale_dev,
1042 		    "could not create Tx ring DMA tag.\n");
1043 		goto fail;
1044 	}
1045 
1046 	/* Create DMA tag for Rx pages. */
1047 	for (i = 0; i < ALE_RX_PAGES; i++) {
1048 		error = bus_dma_tag_create(
1049 		    sc->ale_cdata.ale_parent_tag, /* parent */
1050 		    ALE_RX_PAGE_ALIGN, 0,	/* alignment, boundary */
1051 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1052 		    BUS_SPACE_MAXADDR,		/* highaddr */
1053 		    NULL, NULL,			/* filter, filterarg */
1054 		    sc->ale_pagesize,		/* maxsize */
1055 		    1,				/* nsegments */
1056 		    sc->ale_pagesize,		/* maxsegsize */
1057 		    0,				/* flags */
1058 		    NULL, NULL,			/* lockfunc, lockarg */
1059 		    &sc->ale_cdata.ale_rx_page[i].page_tag);
1060 		if (error != 0) {
1061 			device_printf(sc->ale_dev,
1062 			    "could not create Rx page %d DMA tag.\n", i);
1063 			goto fail;
1064 		}
1065 	}
1066 
1067 	/* Create DMA tag for Tx coalescing message block. */
1068 	error = bus_dma_tag_create(
1069 	    sc->ale_cdata.ale_parent_tag, /* parent */
1070 	    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1071 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1072 	    BUS_SPACE_MAXADDR,		/* highaddr */
1073 	    NULL, NULL,			/* filter, filterarg */
1074 	    ALE_TX_CMB_SZ,		/* maxsize */
1075 	    1,				/* nsegments */
1076 	    ALE_TX_CMB_SZ,		/* maxsegsize */
1077 	    0,				/* flags */
1078 	    NULL, NULL,			/* lockfunc, lockarg */
1079 	    &sc->ale_cdata.ale_tx_cmb_tag);
1080 	if (error != 0) {
1081 		device_printf(sc->ale_dev,
1082 		    "could not create Tx CMB DMA tag.\n");
1083 		goto fail;
1084 	}
1085 
1086 	/* Create DMA tag for Rx coalescing message block. */
1087 	for (i = 0; i < ALE_RX_PAGES; i++) {
1088 		error = bus_dma_tag_create(
1089 		    sc->ale_cdata.ale_parent_tag, /* parent */
1090 		    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1091 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1092 		    BUS_SPACE_MAXADDR,		/* highaddr */
1093 		    NULL, NULL,			/* filter, filterarg */
1094 		    ALE_RX_CMB_SZ,		/* maxsize */
1095 		    1,				/* nsegments */
1096 		    ALE_RX_CMB_SZ,		/* maxsegsize */
1097 		    0,				/* flags */
1098 		    NULL, NULL,			/* lockfunc, lockarg */
1099 		    &sc->ale_cdata.ale_rx_page[i].cmb_tag);
1100 		if (error != 0) {
1101 			device_printf(sc->ale_dev,
1102 			    "could not create Rx page %d CMB DMA tag.\n", i);
1103 			goto fail;
1104 		}
1105 	}
1106 
1107 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1108 	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
1109 	    (void **)&sc->ale_cdata.ale_tx_ring,
1110 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1111 	    &sc->ale_cdata.ale_tx_ring_map);
1112 	if (error != 0) {
1113 		device_printf(sc->ale_dev,
1114 		    "could not allocate DMA'able memory for Tx ring.\n");
1115 		goto fail;
1116 	}
1117 	ctx.ale_busaddr = 0;
1118 	error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
1119 	    sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
1120 	    ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
1121 	if (error != 0 || ctx.ale_busaddr == 0) {
1122 		device_printf(sc->ale_dev,
1123 		    "could not load DMA'able memory for Tx ring.\n");
1124 		goto fail;
1125 	}
1126 	sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
1127 
1128 	/* Rx pages. */
1129 	for (i = 0; i < ALE_RX_PAGES; i++) {
1130 		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
1131 		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
1132 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1133 		    &sc->ale_cdata.ale_rx_page[i].page_map);
1134 		if (error != 0) {
1135 			device_printf(sc->ale_dev,
1136 			    "could not allocate DMA'able memory for "
1137 			    "Rx page %d.\n", i);
1138 			goto fail;
1139 		}
1140 		ctx.ale_busaddr = 0;
1141 		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
1142 		    sc->ale_cdata.ale_rx_page[i].page_map,
1143 		    sc->ale_cdata.ale_rx_page[i].page_addr,
1144 		    sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
1145 		if (error != 0 || ctx.ale_busaddr == 0) {
1146 			device_printf(sc->ale_dev,
1147 			    "could not load DMA'able memory for "
1148 			    "Rx page %d.\n", i);
1149 			goto fail;
1150 		}
1151 		sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
1152 	}
1153 
1154 	/* Tx CMB. */
1155 	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
1156 	    (void **)&sc->ale_cdata.ale_tx_cmb,
1157 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1158 	    &sc->ale_cdata.ale_tx_cmb_map);
1159 	if (error != 0) {
1160 		device_printf(sc->ale_dev,
1161 		    "could not allocate DMA'able memory for Tx CMB.\n");
1162 		goto fail;
1163 	}
1164 	ctx.ale_busaddr = 0;
1165 	error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
1166 	    sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
1167 	    ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1168 	if (error != 0 || ctx.ale_busaddr == 0) {
1169 		device_printf(sc->ale_dev,
1170 		    "could not load DMA'able memory for Tx CMB.\n");
1171 		goto fail;
1172 	}
1173 	sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
1174 
1175 	/* Rx CMB. */
1176 	for (i = 0; i < ALE_RX_PAGES; i++) {
1177 		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1178 		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
1179 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1180 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
1181 		if (error != 0) {
1182 			device_printf(sc->ale_dev, "could not allocate "
1183 			    "DMA'able memory for Rx page %d CMB.\n", i);
1184 			goto fail;
1185 		}
1186 		ctx.ale_busaddr = 0;
1187 		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1188 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
1189 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1190 		    ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1191 		if (error != 0 || ctx.ale_busaddr == 0) {
1192 			device_printf(sc->ale_dev, "could not load DMA'able "
1193 			    "memory for Rx page %d CMB.\n", i);
1194 			goto fail;
1195 		}
1196 		sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
1197 	}
1198 
1199 	/*
1200 	 * Tx descriptors/RXF0/CMB DMA blocks share the same
1201 	 * high address region of 64bit DMA address space.
1202 	 */
1203 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1204 	    (error = ale_check_boundary(sc)) != 0) {
1205 		device_printf(sc->ale_dev, "4GB boundary crossed, "
1206 		    "switching to 32bit DMA addressing mode.\n");
1207 		ale_dma_free(sc);
1208 		/*
1209 		 * Limit max allowable DMA address space to 32bit
1210 		 * and try again.
1211 		 */
1212 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1213 		goto again;
1214 	}
1215 
1216 	/*
1217 	 * Create Tx buffer parent tag.
1218 	 * AR81xx allows 64bit DMA addressing of Tx buffers so it
1219 	 * needs separate parent DMA tag as parent DMA address space
1220 	 * could be restricted to be within 32bit address space by
1221 	 * 4GB boundary crossing.
1222 	 */
1223 	error = bus_dma_tag_create(
1224 	    bus_get_dma_tag(sc->ale_dev), /* parent */
1225 	    1, 0,			/* alignment, boundary */
1226 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1227 	    BUS_SPACE_MAXADDR,		/* highaddr */
1228 	    NULL, NULL,			/* filter, filterarg */
1229 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1230 	    0,				/* nsegments */
1231 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1232 	    0,				/* flags */
1233 	    NULL, NULL,			/* lockfunc, lockarg */
1234 	    &sc->ale_cdata.ale_buffer_tag);
1235 	if (error != 0) {
1236 		device_printf(sc->ale_dev,
1237 		    "could not create parent buffer DMA tag.\n");
1238 		goto fail;
1239 	}
1240 
1241 	/* Create DMA tag for Tx buffers. */
1242 	error = bus_dma_tag_create(
1243 	    sc->ale_cdata.ale_buffer_tag, /* parent */
1244 	    1, 0,			/* alignment, boundary */
1245 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1246 	    BUS_SPACE_MAXADDR,		/* highaddr */
1247 	    NULL, NULL,			/* filter, filterarg */
1248 	    ALE_TSO_MAXSIZE,		/* maxsize */
1249 	    ALE_MAXTXSEGS,		/* nsegments */
1250 	    ALE_TSO_MAXSEGSIZE,		/* maxsegsize */
1251 	    0,				/* flags */
1252 	    NULL, NULL,			/* lockfunc, lockarg */
1253 	    &sc->ale_cdata.ale_tx_tag);
1254 	if (error != 0) {
1255 		device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
1256 		goto fail;
1257 	}
1258 
1259 	/* Create DMA maps for Tx buffers. */
1260 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1261 		txd = &sc->ale_cdata.ale_txdesc[i];
1262 		txd->tx_m = NULL;
1263 		txd->tx_dmamap = NULL;
1264 		error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
1265 		    &txd->tx_dmamap);
1266 		if (error != 0) {
1267 			device_printf(sc->ale_dev,
1268 			    "could not create Tx dmamap.\n");
1269 			goto fail;
1270 		}
1271 	}
1272 
1273 fail:
1274 	return (error);
1275 }
1276 
1277 static void
1278 ale_dma_free(struct ale_softc *sc)
1279 {
1280 	struct ale_txdesc *txd;
1281 	int i;
1282 
1283 	/* Tx buffers. */
1284 	if (sc->ale_cdata.ale_tx_tag != NULL) {
1285 		for (i = 0; i < ALE_TX_RING_CNT; i++) {
1286 			txd = &sc->ale_cdata.ale_txdesc[i];
1287 			if (txd->tx_dmamap != NULL) {
1288 				bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
1289 				    txd->tx_dmamap);
1290 				txd->tx_dmamap = NULL;
1291 			}
1292 		}
1293 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
1294 		sc->ale_cdata.ale_tx_tag = NULL;
1295 	}
1296 	/* Tx descriptor ring. */
1297 	if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
1298 		if (sc->ale_cdata.ale_tx_ring_map != NULL)
1299 			bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
1300 			    sc->ale_cdata.ale_tx_ring_map);
1301 		if (sc->ale_cdata.ale_tx_ring_map != NULL &&
1302 		    sc->ale_cdata.ale_tx_ring != NULL)
1303 			bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
1304 			    sc->ale_cdata.ale_tx_ring,
1305 			    sc->ale_cdata.ale_tx_ring_map);
1306 		sc->ale_cdata.ale_tx_ring = NULL;
1307 		sc->ale_cdata.ale_tx_ring_map = NULL;
1308 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
1309 		sc->ale_cdata.ale_tx_ring_tag = NULL;
1310 	}
1311 	/* Rx page block. */
1312 	for (i = 0; i < ALE_RX_PAGES; i++) {
1313 		if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
1314 			if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
1315 				bus_dmamap_unload(
1316 				    sc->ale_cdata.ale_rx_page[i].page_tag,
1317 				    sc->ale_cdata.ale_rx_page[i].page_map);
1318 			if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
1319 			    sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
1320 				bus_dmamem_free(
1321 				    sc->ale_cdata.ale_rx_page[i].page_tag,
1322 				    sc->ale_cdata.ale_rx_page[i].page_addr,
1323 				    sc->ale_cdata.ale_rx_page[i].page_map);
1324 			sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
1325 			sc->ale_cdata.ale_rx_page[i].page_map = NULL;
1326 			bus_dma_tag_destroy(
1327 			    sc->ale_cdata.ale_rx_page[i].page_tag);
1328 			sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
1329 		}
1330 	}
1331 	/* Rx CMB. */
1332 	for (i = 0; i < ALE_RX_PAGES; i++) {
1333 		if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
1334 			if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
1335 				bus_dmamap_unload(
1336 				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1337 				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1338 			if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
1339 			    sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
1340 				bus_dmamem_free(
1341 				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1342 				    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1343 				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1344 			sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
1345 			sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
1346 			bus_dma_tag_destroy(
1347 			    sc->ale_cdata.ale_rx_page[i].cmb_tag);
1348 			sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
1349 		}
1350 	}
1351 	/* Tx CMB. */
1352 	if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
1353 		if (sc->ale_cdata.ale_tx_cmb_map != NULL)
1354 			bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
1355 			    sc->ale_cdata.ale_tx_cmb_map);
1356 		if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
1357 		    sc->ale_cdata.ale_tx_cmb != NULL)
1358 			bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
1359 			    sc->ale_cdata.ale_tx_cmb,
1360 			    sc->ale_cdata.ale_tx_cmb_map);
1361 		sc->ale_cdata.ale_tx_cmb = NULL;
1362 		sc->ale_cdata.ale_tx_cmb_map = NULL;
1363 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
1364 		sc->ale_cdata.ale_tx_cmb_tag = NULL;
1365 	}
1366 	if (sc->ale_cdata.ale_buffer_tag != NULL) {
1367 		bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
1368 		sc->ale_cdata.ale_buffer_tag = NULL;
1369 	}
1370 	if (sc->ale_cdata.ale_parent_tag != NULL) {
1371 		bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
1372 		sc->ale_cdata.ale_parent_tag = NULL;
1373 	}
1374 }
1375 
1376 static int
1377 ale_shutdown(device_t dev)
1378 {
1379 
1380 	return (ale_suspend(dev));
1381 }
1382 
1383 /*
1384  * Note, this driver resets the link speed to 10/100Mbps by
1385  * restarting auto-negotiation in suspend/shutdown phase but we
1386  * don't know whether that auto-negotiation would succeed or not
1387  * as driver has no control after powering off/suspend operation.
1388  * If the renegotiation fail WOL may not work. Running at 1Gbps
1389  * will draw more power than 375mA at 3.3V which is specified in
1390  * PCI specification and that would result in complete
1391  * shutdowning power to ethernet controller.
1392  *
1393  * TODO
1394  * Save current negotiated media speed/duplex/flow-control to
1395  * softc and restore the same link again after resuming. PHY
1396  * handling such as power down/resetting to 100Mbps may be better
1397  * handled in suspend method in phy driver.
1398  */
1399 static void
1400 ale_setlinkspeed(struct ale_softc *sc)
1401 {
1402 	struct mii_data *mii;
1403 	int aneg, i;
1404 
1405 	mii = device_get_softc(sc->ale_miibus);
1406 	mii_pollstat(mii);
1407 	aneg = 0;
1408 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1409 	    (IFM_ACTIVE | IFM_AVALID)) {
1410 		switch IFM_SUBTYPE(mii->mii_media_active) {
1411 		case IFM_10_T:
1412 		case IFM_100_TX:
1413 			return;
1414 		case IFM_1000_T:
1415 			aneg++;
1416 			break;
1417 		default:
1418 			break;
1419 		}
1420 	}
1421 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
1422 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1423 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1424 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1425 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1426 	DELAY(1000);
1427 	if (aneg != 0) {
1428 		/*
1429 		 * Poll link state until ale(4) get a 10/100Mbps link.
1430 		 */
1431 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1432 			mii_pollstat(mii);
1433 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1434 			    == (IFM_ACTIVE | IFM_AVALID)) {
1435 				switch (IFM_SUBTYPE(
1436 				    mii->mii_media_active)) {
1437 				case IFM_10_T:
1438 				case IFM_100_TX:
1439 					ale_mac_config(sc);
1440 					return;
1441 				default:
1442 					break;
1443 				}
1444 			}
1445 			ALE_UNLOCK(sc);
1446 			pause("alelnk", hz);
1447 			ALE_LOCK(sc);
1448 		}
1449 		if (i == MII_ANEGTICKS_GIGE)
1450 			device_printf(sc->ale_dev,
1451 			    "establishing a link failed, WOL may not work!");
1452 	}
1453 	/*
1454 	 * No link, force MAC to have 100Mbps, full-duplex link.
1455 	 * This is the last resort and may/may not work.
1456 	 */
1457 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1458 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1459 	ale_mac_config(sc);
1460 }
1461 
1462 static void
1463 ale_setwol(struct ale_softc *sc)
1464 {
1465 	struct ifnet *ifp;
1466 	uint32_t reg, pmcs;
1467 	uint16_t pmstat;
1468 	int pmc;
1469 
1470 	ALE_LOCK_ASSERT(sc);
1471 
1472 	if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
1473 		/* Disable WOL. */
1474 		CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1475 		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1476 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1477 		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1478 		/* Force PHY power down. */
1479 		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1480 		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1481 		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
1482 		    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
1483 		    GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
1484 		return;
1485 	}
1486 
1487 	ifp = sc->ale_ifp;
1488 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1489 		if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
1490 			ale_setlinkspeed(sc);
1491 	}
1492 
1493 	pmcs = 0;
1494 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1495 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1496 	CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
1497 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1498 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1499 	    MAC_CFG_BCAST);
1500 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1501 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1502 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1503 		reg |= MAC_CFG_RX_ENB;
1504 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1505 
1506 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1507 		/* WOL disabled, PHY power down. */
1508 		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1509 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1510 		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1511 		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1512 		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1513 		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
1514 		    GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
1515 		    GPHY_CTRL_PWDOWN_HW);
1516 	}
1517 	/* Request PME. */
1518 	pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
1519 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1520 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1521 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1522 	pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1523 }
1524 
1525 static int
1526 ale_suspend(device_t dev)
1527 {
1528 	struct ale_softc *sc;
1529 
1530 	sc = device_get_softc(dev);
1531 
1532 	ALE_LOCK(sc);
1533 	ale_stop(sc);
1534 	ale_setwol(sc);
1535 	ALE_UNLOCK(sc);
1536 
1537 	return (0);
1538 }
1539 
1540 static int
1541 ale_resume(device_t dev)
1542 {
1543 	struct ale_softc *sc;
1544 	struct ifnet *ifp;
1545 	int pmc;
1546 	uint16_t pmstat;
1547 
1548 	sc = device_get_softc(dev);
1549 
1550 	ALE_LOCK(sc);
1551 	if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
1552 		/* Disable PME and clear PME status. */
1553 		pmstat = pci_read_config(sc->ale_dev,
1554 		    pmc + PCIR_POWER_STATUS, 2);
1555 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1556 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1557 			pci_write_config(sc->ale_dev,
1558 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
1559 		}
1560 	}
1561 	/* Reset PHY. */
1562 	ale_phy_reset(sc);
1563 	ifp = sc->ale_ifp;
1564 	if ((ifp->if_flags & IFF_UP) != 0) {
1565 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1566 		ale_init_locked(sc);
1567 	}
1568 	ALE_UNLOCK(sc);
1569 
1570 	return (0);
1571 }
1572 
1573 static int
1574 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
1575 {
1576 	struct ale_txdesc *txd, *txd_last;
1577 	struct tx_desc *desc;
1578 	struct mbuf *m;
1579 	struct ip *ip;
1580 	struct tcphdr *tcp;
1581 	bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
1582 	bus_dmamap_t map;
1583 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1584 	int error, i, nsegs, prod, si;
1585 
1586 	ALE_LOCK_ASSERT(sc);
1587 
1588 	M_ASSERTPKTHDR((*m_head));
1589 
1590 	m = *m_head;
1591 	ip = NULL;
1592 	tcp = NULL;
1593 	cflags = vtag = 0;
1594 	ip_off = poff = 0;
1595 	if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1596 		/*
1597 		 * AR81xx requires offset of TCP/UDP payload in its Tx
1598 		 * descriptor to perform hardware Tx checksum offload.
1599 		 * Additionally, TSO requires IP/TCP header size and
1600 		 * modification of IP/TCP header in order to make TSO
1601 		 * engine work. This kind of operation takes many CPU
1602 		 * cycles on FreeBSD so fast host CPU is required to
1603 		 * get smooth TSO performance.
1604 		 */
1605 		struct ether_header *eh;
1606 
1607 		if (M_WRITABLE(m) == 0) {
1608 			/* Get a writable copy. */
1609 			m = m_dup(*m_head, M_DONTWAIT);
1610 			/* Release original mbufs. */
1611 			m_freem(*m_head);
1612 			if (m == NULL) {
1613 				*m_head = NULL;
1614 				return (ENOBUFS);
1615 			}
1616 			*m_head = m;
1617 		}
1618 
1619 		/*
1620 		 * Buggy-controller requires 4 byte aligned Tx buffer
1621 		 * to make custom checksum offload work.
1622 		 */
1623 		if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
1624 		    (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
1625 		    (mtod(m, intptr_t) & 3) != 0) {
1626 			m = m_defrag(*m_head, M_DONTWAIT);
1627 			if (m == NULL) {
1628 				*m_head = NULL;
1629 				return (ENOBUFS);
1630 			}
1631 			*m_head = m;
1632 		}
1633 
1634 		ip_off = sizeof(struct ether_header);
1635 		m = m_pullup(m, ip_off);
1636 		if (m == NULL) {
1637 			*m_head = NULL;
1638 			return (ENOBUFS);
1639 		}
1640 		eh = mtod(m, struct ether_header *);
1641 		/*
1642 		 * Check if hardware VLAN insertion is off.
1643 		 * Additional check for LLC/SNAP frame?
1644 		 */
1645 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1646 			ip_off = sizeof(struct ether_vlan_header);
1647 			m = m_pullup(m, ip_off);
1648 			if (m == NULL) {
1649 				*m_head = NULL;
1650 				return (ENOBUFS);
1651 			}
1652 		}
1653 		m = m_pullup(m, ip_off + sizeof(struct ip));
1654 		if (m == NULL) {
1655 			*m_head = NULL;
1656 			return (ENOBUFS);
1657 		}
1658 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1659 		poff = ip_off + (ip->ip_hl << 2);
1660 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1661 			/*
1662 			 * XXX
1663 			 * AR81xx requires the first descriptor should
1664 			 * not include any TCP playload for TSO case.
1665 			 * (i.e. ethernet header + IP + TCP header only)
1666 			 * m_pullup(9) above will ensure this too.
1667 			 * However it's not correct if the first mbuf
1668 			 * of the chain does not use cluster.
1669 			 */
1670 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1671 			if (m == NULL) {
1672 				*m_head = NULL;
1673 				return (ENOBUFS);
1674 			}
1675 			ip = (struct ip *)(mtod(m, char *) + ip_off);
1676 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1677 			m = m_pullup(m, poff + (tcp->th_off << 2));
1678 			if (m == NULL) {
1679 				*m_head = NULL;
1680 				return (ENOBUFS);
1681 			}
1682 			/*
1683 			 * AR81xx requires IP/TCP header size and offset as
1684 			 * well as TCP pseudo checksum which complicates
1685 			 * TSO configuration. I guess this comes from the
1686 			 * adherence to Microsoft NDIS Large Send
1687 			 * specification which requires insertion of
1688 			 * pseudo checksum by upper stack. The pseudo
1689 			 * checksum that NDIS refers to doesn't include
1690 			 * TCP payload length so ale(4) should recompute
1691 			 * the pseudo checksum here. Hopefully this wouldn't
1692 			 * be much burden on modern CPUs.
1693 			 * Reset IP checksum and recompute TCP pseudo
1694 			 * checksum as NDIS specification said.
1695 			 */
1696 			ip->ip_sum = 0;
1697 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1698 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1699 		}
1700 		*m_head = m;
1701 	}
1702 
1703 	si = prod = sc->ale_cdata.ale_tx_prod;
1704 	txd = &sc->ale_cdata.ale_txdesc[prod];
1705 	txd_last = txd;
1706 	map = txd->tx_dmamap;
1707 
1708 	error =  bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1709 	    *m_head, txsegs, &nsegs, 0);
1710 	if (error == EFBIG) {
1711 		m = m_collapse(*m_head, M_DONTWAIT, ALE_MAXTXSEGS);
1712 		if (m == NULL) {
1713 			m_freem(*m_head);
1714 			*m_head = NULL;
1715 			return (ENOMEM);
1716 		}
1717 		*m_head = m;
1718 		error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1719 		    *m_head, txsegs, &nsegs, 0);
1720 		if (error != 0) {
1721 			m_freem(*m_head);
1722 			*m_head = NULL;
1723 			return (error);
1724 		}
1725 	} else if (error != 0)
1726 		return (error);
1727 	if (nsegs == 0) {
1728 		m_freem(*m_head);
1729 		*m_head = NULL;
1730 		return (EIO);
1731 	}
1732 
1733 	/* Check descriptor overrun. */
1734 	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) {
1735 		bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
1736 		return (ENOBUFS);
1737 	}
1738 	bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
1739 
1740 	m = *m_head;
1741 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1742 		/* Request TSO and set MSS. */
1743 		cflags |= ALE_TD_TSO;
1744 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
1745 		/* Set IP/TCP header size. */
1746 		cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
1747 		cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
1748 	} else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
1749 		/*
1750 		 * AR81xx supports Tx custom checksum offload feature
1751 		 * that offloads single 16bit checksum computation.
1752 		 * So you can choose one among IP, TCP and UDP.
1753 		 * Normally driver sets checksum start/insertion
1754 		 * position from the information of TCP/UDP frame as
1755 		 * TCP/UDP checksum takes more time than that of IP.
1756 		 * However it seems that custom checksum offload
1757 		 * requires 4 bytes aligned Tx buffers due to hardware
1758 		 * bug.
1759 		 * AR81xx also supports explicit Tx checksum computation
1760 		 * if it is told that the size of IP header and TCP
1761 		 * header(for UDP, the header size does not matter
1762 		 * because it's fixed length). However with this scheme
1763 		 * TSO does not work so you have to choose one either
1764 		 * TSO or explicit Tx checksum offload. I chosen TSO
1765 		 * plus custom checksum offload with work-around which
1766 		 * will cover most common usage for this consumer
1767 		 * ethernet controller. The work-around takes a lot of
1768 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
1769 		 * boundary, though.
1770 		 */
1771 		cflags |= ALE_TD_CXSUM;
1772 		/* Set checksum start offset. */
1773 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1774 		/* Set checksum insertion position of TCP/UDP. */
1775 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1776 		    ALE_TD_CSUM_XSUMOFFSET_SHIFT);
1777 	}
1778 
1779 	/* Configure VLAN hardware tag insertion. */
1780 	if ((m->m_flags & M_VLANTAG) != 0) {
1781 		vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1782 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1783 		cflags |= ALE_TD_INSERT_VLAN_TAG;
1784 	}
1785 
1786 	i = 0;
1787 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1788 		/*
1789 		 * Make sure the first fragment contains
1790 		 * only ethernet and IP/TCP header with options.
1791 		 */
1792 		hdrlen =  poff + (tcp->th_off << 2);
1793 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1794 		desc->addr = htole64(txsegs[i].ds_addr);
1795 		desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag);
1796 		desc->flags = htole32(cflags);
1797 		sc->ale_cdata.ale_tx_cnt++;
1798 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1799 		if (m->m_len - hdrlen > 0) {
1800 			/* Handle remaining payload of the first fragment. */
1801 			desc = &sc->ale_cdata.ale_tx_ring[prod];
1802 			desc->addr = htole64(txsegs[i].ds_addr + hdrlen);
1803 			desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) |
1804 			    vtag);
1805 			desc->flags = htole32(cflags);
1806 			sc->ale_cdata.ale_tx_cnt++;
1807 			ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1808 		}
1809 		i = 1;
1810 	}
1811 	for (; i < nsegs; i++) {
1812 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1813 		desc->addr = htole64(txsegs[i].ds_addr);
1814 		desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
1815 		desc->flags = htole32(cflags);
1816 		sc->ale_cdata.ale_tx_cnt++;
1817 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1818 	}
1819 	/* Update producer index. */
1820 	sc->ale_cdata.ale_tx_prod = prod;
1821 	/* Set TSO header on the first descriptor. */
1822 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1823 		desc = &sc->ale_cdata.ale_tx_ring[si];
1824 		desc->flags |= htole32(ALE_TD_TSO_HDR);
1825 	}
1826 
1827 	/* Finally set EOP on the last descriptor. */
1828 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1829 	desc = &sc->ale_cdata.ale_tx_ring[prod];
1830 	desc->flags |= htole32(ALE_TD_EOP);
1831 
1832 	/* Swap dmamap of the first and the last. */
1833 	txd = &sc->ale_cdata.ale_txdesc[prod];
1834 	map = txd_last->tx_dmamap;
1835 	txd_last->tx_dmamap = txd->tx_dmamap;
1836 	txd->tx_dmamap = map;
1837 	txd->tx_m = m;
1838 
1839 	/* Sync descriptors. */
1840 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
1841 	    sc->ale_cdata.ale_tx_ring_map,
1842 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1843 
1844 	return (0);
1845 }
1846 
1847 static void
1848 ale_start(struct ifnet *ifp)
1849 {
1850         struct ale_softc *sc;
1851 
1852 	sc = ifp->if_softc;
1853 	ALE_LOCK(sc);
1854 	ale_start_locked(ifp);
1855 	ALE_UNLOCK(sc);
1856 }
1857 
1858 static void
1859 ale_start_locked(struct ifnet *ifp)
1860 {
1861         struct ale_softc *sc;
1862         struct mbuf *m_head;
1863 	int enq;
1864 
1865 	sc = ifp->if_softc;
1866 
1867 	ALE_LOCK_ASSERT(sc);
1868 
1869 	/* Reclaim transmitted frames. */
1870 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1871 		ale_txeof(sc);
1872 
1873 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1874 	    IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0)
1875 		return;
1876 
1877 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1878 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1879 		if (m_head == NULL)
1880 			break;
1881 		/*
1882 		 * Pack the data into the transmit ring. If we
1883 		 * don't have room, set the OACTIVE flag and wait
1884 		 * for the NIC to drain the ring.
1885 		 */
1886 		if (ale_encap(sc, &m_head)) {
1887 			if (m_head == NULL)
1888 				break;
1889 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1890 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1891 			break;
1892 		}
1893 
1894 		enq++;
1895 		/*
1896 		 * If there's a BPF listener, bounce a copy of this frame
1897 		 * to him.
1898 		 */
1899 		ETHER_BPF_MTAP(ifp, m_head);
1900 	}
1901 
1902 	if (enq > 0) {
1903 		/* Kick. */
1904 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1905 		    sc->ale_cdata.ale_tx_prod);
1906 		/* Set a timeout in case the chip goes out to lunch. */
1907 		sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
1908 	}
1909 }
1910 
1911 static void
1912 ale_watchdog(struct ale_softc *sc)
1913 {
1914 	struct ifnet *ifp;
1915 
1916 	ALE_LOCK_ASSERT(sc);
1917 
1918 	if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
1919 		return;
1920 
1921 	ifp = sc->ale_ifp;
1922 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1923 		if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
1924 		ifp->if_oerrors++;
1925 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1926 		ale_init_locked(sc);
1927 		return;
1928 	}
1929 	if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
1930 	ifp->if_oerrors++;
1931 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1932 	ale_init_locked(sc);
1933 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1934 		ale_start_locked(ifp);
1935 }
1936 
1937 static int
1938 ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1939 {
1940 	struct ale_softc *sc;
1941 	struct ifreq *ifr;
1942 	struct mii_data *mii;
1943 	int error, mask;
1944 
1945 	sc = ifp->if_softc;
1946 	ifr = (struct ifreq *)data;
1947 	error = 0;
1948 	switch (cmd) {
1949 	case SIOCSIFMTU:
1950 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
1951 		    ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
1952 		    ifr->ifr_mtu > ETHERMTU))
1953 			error = EINVAL;
1954 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1955 			ALE_LOCK(sc);
1956 			ifp->if_mtu = ifr->ifr_mtu;
1957 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1958 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1959 				ale_init_locked(sc);
1960 			}
1961 			ALE_UNLOCK(sc);
1962 		}
1963 		break;
1964 	case SIOCSIFFLAGS:
1965 		ALE_LOCK(sc);
1966 		if ((ifp->if_flags & IFF_UP) != 0) {
1967 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1968 				if (((ifp->if_flags ^ sc->ale_if_flags)
1969 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1970 					ale_rxfilter(sc);
1971 			} else {
1972 				ale_init_locked(sc);
1973 			}
1974 		} else {
1975 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1976 				ale_stop(sc);
1977 		}
1978 		sc->ale_if_flags = ifp->if_flags;
1979 		ALE_UNLOCK(sc);
1980 		break;
1981 	case SIOCADDMULTI:
1982 	case SIOCDELMULTI:
1983 		ALE_LOCK(sc);
1984 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1985 			ale_rxfilter(sc);
1986 		ALE_UNLOCK(sc);
1987 		break;
1988 	case SIOCSIFMEDIA:
1989 	case SIOCGIFMEDIA:
1990 		mii = device_get_softc(sc->ale_miibus);
1991 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1992 		break;
1993 	case SIOCSIFCAP:
1994 		ALE_LOCK(sc);
1995 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1996 		if ((mask & IFCAP_TXCSUM) != 0 &&
1997 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1998 			ifp->if_capenable ^= IFCAP_TXCSUM;
1999 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2000 				ifp->if_hwassist |= ALE_CSUM_FEATURES;
2001 			else
2002 				ifp->if_hwassist &= ~ALE_CSUM_FEATURES;
2003 		}
2004 		if ((mask & IFCAP_RXCSUM) != 0 &&
2005 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2006 			ifp->if_capenable ^= IFCAP_RXCSUM;
2007 		if ((mask & IFCAP_TSO4) != 0 &&
2008 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2009 			ifp->if_capenable ^= IFCAP_TSO4;
2010 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2011 				ifp->if_hwassist |= CSUM_TSO;
2012 			else
2013 				ifp->if_hwassist &= ~CSUM_TSO;
2014 		}
2015 
2016 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2017 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2018 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2019 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2020 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2021 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2022 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2023 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2024 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2025 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2026 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2027 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2028 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2029 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2030 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2031 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2032 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
2033 			ale_rxvlan(sc);
2034 		}
2035 		ALE_UNLOCK(sc);
2036 		VLAN_CAPABILITIES(ifp);
2037 		break;
2038 	default:
2039 		error = ether_ioctl(ifp, cmd, data);
2040 		break;
2041 	}
2042 
2043 	return (error);
2044 }
2045 
2046 static void
2047 ale_mac_config(struct ale_softc *sc)
2048 {
2049 	struct mii_data *mii;
2050 	uint32_t reg;
2051 
2052 	ALE_LOCK_ASSERT(sc);
2053 
2054 	mii = device_get_softc(sc->ale_miibus);
2055 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2056 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2057 	    MAC_CFG_SPEED_MASK);
2058 	/* Reprogram MAC with resolved speed/duplex. */
2059 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2060 	case IFM_10_T:
2061 	case IFM_100_TX:
2062 		reg |= MAC_CFG_SPEED_10_100;
2063 		break;
2064 	case IFM_1000_T:
2065 		reg |= MAC_CFG_SPEED_1000;
2066 		break;
2067 	}
2068 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2069 		reg |= MAC_CFG_FULL_DUPLEX;
2070 #ifdef notyet
2071 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2072 			reg |= MAC_CFG_TX_FC;
2073 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2074 			reg |= MAC_CFG_RX_FC;
2075 #endif
2076 	}
2077 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2078 }
2079 
2080 static void
2081 ale_link_task(void *arg, int pending)
2082 {
2083 	struct ale_softc *sc;
2084 	struct mii_data *mii;
2085 	struct ifnet *ifp;
2086 	uint32_t reg;
2087 
2088 	sc = (struct ale_softc *)arg;
2089 
2090 	ALE_LOCK(sc);
2091 	mii = device_get_softc(sc->ale_miibus);
2092 	ifp = sc->ale_ifp;
2093 	if (mii == NULL || ifp == NULL ||
2094 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2095 		ALE_UNLOCK(sc);
2096 		return;
2097 	}
2098 
2099 	sc->ale_flags &= ~ALE_FLAG_LINK;
2100 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2101 	    (IFM_ACTIVE | IFM_AVALID)) {
2102 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2103 		case IFM_10_T:
2104 		case IFM_100_TX:
2105 			sc->ale_flags |= ALE_FLAG_LINK;
2106 			break;
2107 		case IFM_1000_T:
2108 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
2109 				sc->ale_flags |= ALE_FLAG_LINK;
2110 			break;
2111 		default:
2112 			break;
2113 		}
2114 	}
2115 
2116 	/* Stop Rx/Tx MACs. */
2117 	ale_stop_mac(sc);
2118 
2119 	/* Program MACs with resolved speed/duplex/flow-control. */
2120 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
2121 		ale_mac_config(sc);
2122 		/* Reenable Tx/Rx MACs. */
2123 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
2124 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2125 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2126 	}
2127 
2128 	ALE_UNLOCK(sc);
2129 }
2130 
2131 static void
2132 ale_stats_clear(struct ale_softc *sc)
2133 {
2134 	struct smb sb;
2135 	uint32_t *reg;
2136 	int i;
2137 
2138 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2139 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2140 		i += sizeof(uint32_t);
2141 	}
2142 	/* Read Tx statistics. */
2143 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2144 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2145 		i += sizeof(uint32_t);
2146 	}
2147 }
2148 
2149 static void
2150 ale_stats_update(struct ale_softc *sc)
2151 {
2152 	struct ale_hw_stats *stat;
2153 	struct smb sb, *smb;
2154 	struct ifnet *ifp;
2155 	uint32_t *reg;
2156 	int i;
2157 
2158 	ALE_LOCK_ASSERT(sc);
2159 
2160 	ifp = sc->ale_ifp;
2161 	stat = &sc->ale_stats;
2162 	smb = &sb;
2163 
2164 	/* Read Rx statistics. */
2165 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2166 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2167 		i += sizeof(uint32_t);
2168 	}
2169 	/* Read Tx statistics. */
2170 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2171 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2172 		i += sizeof(uint32_t);
2173 	}
2174 
2175 	/* Rx stats. */
2176 	stat->rx_frames += smb->rx_frames;
2177 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2178 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2179 	stat->rx_pause_frames += smb->rx_pause_frames;
2180 	stat->rx_control_frames += smb->rx_control_frames;
2181 	stat->rx_crcerrs += smb->rx_crcerrs;
2182 	stat->rx_lenerrs += smb->rx_lenerrs;
2183 	stat->rx_bytes += smb->rx_bytes;
2184 	stat->rx_runts += smb->rx_runts;
2185 	stat->rx_fragments += smb->rx_fragments;
2186 	stat->rx_pkts_64 += smb->rx_pkts_64;
2187 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2188 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2189 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2190 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2191 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2192 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2193 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2194 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2195 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2196 	stat->rx_alignerrs += smb->rx_alignerrs;
2197 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2198 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2199 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2200 
2201 	/* Tx stats. */
2202 	stat->tx_frames += smb->tx_frames;
2203 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2204 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2205 	stat->tx_pause_frames += smb->tx_pause_frames;
2206 	stat->tx_excess_defer += smb->tx_excess_defer;
2207 	stat->tx_control_frames += smb->tx_control_frames;
2208 	stat->tx_deferred += smb->tx_deferred;
2209 	stat->tx_bytes += smb->tx_bytes;
2210 	stat->tx_pkts_64 += smb->tx_pkts_64;
2211 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2212 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2213 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2214 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2215 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2216 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2217 	stat->tx_single_colls += smb->tx_single_colls;
2218 	stat->tx_multi_colls += smb->tx_multi_colls;
2219 	stat->tx_late_colls += smb->tx_late_colls;
2220 	stat->tx_excess_colls += smb->tx_excess_colls;
2221 	stat->tx_abort += smb->tx_abort;
2222 	stat->tx_underrun += smb->tx_underrun;
2223 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2224 	stat->tx_lenerrs += smb->tx_lenerrs;
2225 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2226 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2227 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2228 
2229 	/* Update counters in ifnet. */
2230 	ifp->if_opackets += smb->tx_frames;
2231 
2232 	ifp->if_collisions += smb->tx_single_colls +
2233 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2234 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
2235 
2236 	/*
2237 	 * XXX
2238 	 * tx_pkts_truncated counter looks suspicious. It constantly
2239 	 * increments with no sign of Tx errors. This may indicate
2240 	 * the counter name is not correct one so I've removed the
2241 	 * counter in output errors.
2242 	 */
2243 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
2244 	    smb->tx_underrun;
2245 
2246 	ifp->if_ipackets += smb->rx_frames;
2247 
2248 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2249 	    smb->rx_runts + smb->rx_pkts_truncated +
2250 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2251 	    smb->rx_alignerrs;
2252 }
2253 
2254 static int
2255 ale_intr(void *arg)
2256 {
2257 	struct ale_softc *sc;
2258 	uint32_t status;
2259 
2260 	sc = (struct ale_softc *)arg;
2261 
2262 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2263 	if ((status & ALE_INTRS) == 0)
2264 		return (FILTER_STRAY);
2265 	/* Disable interrupts. */
2266 	CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
2267 	taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2268 
2269 	return (FILTER_HANDLED);
2270 }
2271 
2272 static void
2273 ale_int_task(void *arg, int pending)
2274 {
2275 	struct ale_softc *sc;
2276 	struct ifnet *ifp;
2277 	uint32_t status;
2278 	int more;
2279 
2280 	sc = (struct ale_softc *)arg;
2281 
2282 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2283 	ALE_LOCK(sc);
2284 	if (sc->ale_morework != 0)
2285 		status |= INTR_RX_PKT;
2286 	if ((status & ALE_INTRS) == 0)
2287 		goto done;
2288 
2289 	/* Acknowledge interrupts but still disable interrupts. */
2290 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
2291 
2292 	ifp = sc->ale_ifp;
2293 	more = 0;
2294 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2295 		more = ale_rxeof(sc, sc->ale_process_limit);
2296 		if (more == EAGAIN)
2297 			sc->ale_morework = 1;
2298 		else if (more == EIO) {
2299 			sc->ale_stats.reset_brk_seq++;
2300 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2301 			ale_init_locked(sc);
2302 			ALE_UNLOCK(sc);
2303 			return;
2304 		}
2305 
2306 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2307 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2308 				device_printf(sc->ale_dev,
2309 				    "DMA read error! -- resetting\n");
2310 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2311 				device_printf(sc->ale_dev,
2312 				    "DMA write error! -- resetting\n");
2313 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2314 			ale_init_locked(sc);
2315 			ALE_UNLOCK(sc);
2316 			return;
2317 		}
2318 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2319 			ale_start_locked(ifp);
2320 	}
2321 
2322 	if (more == EAGAIN ||
2323 	    (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
2324 		ALE_UNLOCK(sc);
2325 		taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2326 		return;
2327 	}
2328 
2329 done:
2330 	ALE_UNLOCK(sc);
2331 
2332 	/* Re-enable interrupts. */
2333 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
2334 }
2335 
2336 static void
2337 ale_txeof(struct ale_softc *sc)
2338 {
2339 	struct ifnet *ifp;
2340 	struct ale_txdesc *txd;
2341 	uint32_t cons, prod;
2342 	int prog;
2343 
2344 	ALE_LOCK_ASSERT(sc);
2345 
2346 	ifp = sc->ale_ifp;
2347 
2348 	if (sc->ale_cdata.ale_tx_cnt == 0)
2349 		return;
2350 
2351 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2352 	    sc->ale_cdata.ale_tx_ring_map,
2353 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2354 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
2355 		bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2356 		    sc->ale_cdata.ale_tx_cmb_map,
2357 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2358 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
2359 	} else
2360 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
2361 	cons = sc->ale_cdata.ale_tx_cons;
2362 	/*
2363 	 * Go through our Tx list and free mbufs for those
2364 	 * frames which have been transmitted.
2365 	 */
2366 	for (prog = 0; cons != prod; prog++,
2367 	    ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
2368 		if (sc->ale_cdata.ale_tx_cnt <= 0)
2369 			break;
2370 		prog++;
2371 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2372 		sc->ale_cdata.ale_tx_cnt--;
2373 		txd = &sc->ale_cdata.ale_txdesc[cons];
2374 		if (txd->tx_m != NULL) {
2375 			/* Reclaim transmitted mbufs. */
2376 			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2377 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2378 			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2379 			    txd->tx_dmamap);
2380 			m_freem(txd->tx_m);
2381 			txd->tx_m = NULL;
2382 		}
2383 	}
2384 
2385 	if (prog > 0) {
2386 		sc->ale_cdata.ale_tx_cons = cons;
2387 		/*
2388 		 * Unarm watchdog timer only when there is no pending
2389 		 * Tx descriptors in queue.
2390 		 */
2391 		if (sc->ale_cdata.ale_tx_cnt == 0)
2392 			sc->ale_watchdog_timer = 0;
2393 	}
2394 }
2395 
2396 static void
2397 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
2398     uint32_t length, uint32_t *prod)
2399 {
2400 	struct ale_rx_page *rx_page;
2401 
2402 	rx_page = *page;
2403 	/* Update consumer position. */
2404 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
2405 	    ALE_RX_PAGE_ALIGN);
2406 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
2407 		/*
2408 		 * End of Rx page reached, let hardware reuse
2409 		 * this page.
2410 		 */
2411 		rx_page->cons = 0;
2412 		*rx_page->cmb_addr = 0;
2413 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2414 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2415 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
2416 		    RXF_VALID);
2417 		/* Switch to alternate Rx page. */
2418 		sc->ale_cdata.ale_rx_curp ^= 1;
2419 		rx_page = *page =
2420 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2421 		/* Page flipped, sync CMB and Rx page. */
2422 		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2423 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2424 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2425 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2426 		/* Sync completed, cache updated producer index. */
2427 		*prod = *rx_page->cmb_addr;
2428 	}
2429 }
2430 
2431 
2432 /*
2433  * It seems that AR81xx controller can compute partial checksum.
2434  * The partial checksum value can be used to accelerate checksum
2435  * computation for fragmented TCP/UDP packets. Upper network stack
2436  * already takes advantage of the partial checksum value in IP
2437  * reassembly stage. But I'm not sure the correctness of the
2438  * partial hardware checksum assistance due to lack of data sheet.
2439  * In addition, the Rx feature of controller that requires copying
2440  * for every frames effectively nullifies one of most nice offload
2441  * capability of controller.
2442  */
2443 static void
2444 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
2445 {
2446 	struct ifnet *ifp;
2447 	struct ip *ip;
2448 	char *p;
2449 
2450 	ifp = sc->ale_ifp;
2451 	m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2452 	if ((status & ALE_RD_IPCSUM_NOK) == 0)
2453 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2454 
2455 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
2456 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
2457 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
2458 		    ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
2459 			m->m_pkthdr.csum_flags |=
2460 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2461 			m->m_pkthdr.csum_data = 0xffff;
2462 		}
2463 	} else {
2464 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
2465 		    (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
2466 			p = mtod(m, char *);
2467 			p += ETHER_HDR_LEN;
2468 			if ((status & ALE_RD_802_3) != 0)
2469 				p += LLC_SNAPFRAMELEN;
2470 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 &&
2471 			    (status & ALE_RD_VLAN) != 0)
2472 				p += ETHER_VLAN_ENCAP_LEN;
2473 			ip = (struct ip *)p;
2474 			if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
2475 				return;
2476 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2477 			    CSUM_PSEUDO_HDR;
2478 			m->m_pkthdr.csum_data = 0xffff;
2479 		}
2480 	}
2481 	/*
2482 	 * Don't mark bad checksum for TCP/UDP frames
2483 	 * as fragmented frames may always have set
2484 	 * bad checksummed bit of frame status.
2485 	 */
2486 }
2487 
2488 /* Process received frames. */
2489 static int
2490 ale_rxeof(struct ale_softc *sc, int count)
2491 {
2492 	struct ale_rx_page *rx_page;
2493 	struct rx_rs *rs;
2494 	struct ifnet *ifp;
2495 	struct mbuf *m;
2496 	uint32_t length, prod, seqno, status, vtags;
2497 	int prog;
2498 
2499 	ifp = sc->ale_ifp;
2500 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2501 	bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2502 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2503 	bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2504 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2505 	/*
2506 	 * Don't directly access producer index as hardware may
2507 	 * update it while Rx handler is in progress. It would
2508 	 * be even better if there is a way to let hardware
2509 	 * know how far driver processed its received frames.
2510 	 * Alternatively, hardware could provide a way to disable
2511 	 * CMB updates until driver acknowledges the end of CMB
2512 	 * access.
2513 	 */
2514 	prod = *rx_page->cmb_addr;
2515 	for (prog = 0; prog < count; prog++) {
2516 		if (rx_page->cons >= prod)
2517 			break;
2518 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
2519 		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
2520 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
2521 			/*
2522 			 * Normally I believe this should not happen unless
2523 			 * severe driver bug or corrupted memory. However
2524 			 * it seems to happen under certain conditions which
2525 			 * is triggered by abrupt Rx events such as initiation
2526 			 * of bulk transfer of remote host. It's not easy to
2527 			 * reproduce this and I doubt it could be related
2528 			 * with FIFO overflow of hardware or activity of Tx
2529 			 * CMB updates. I also remember similar behaviour
2530 			 * seen on RealTek 8139 which uses resembling Rx
2531 			 * scheme.
2532 			 */
2533 			if (bootverbose)
2534 				device_printf(sc->ale_dev,
2535 				    "garbled seq: %u, expected: %u -- "
2536 				    "resetting!\n", seqno,
2537 				    sc->ale_cdata.ale_rx_seqno);
2538 			return (EIO);
2539 		}
2540 		/* Frame received. */
2541 		sc->ale_cdata.ale_rx_seqno++;
2542 		length = ALE_RX_BYTES(le32toh(rs->length));
2543 		status = le32toh(rs->flags);
2544 		if ((status & ALE_RD_ERROR) != 0) {
2545 			/*
2546 			 * We want to pass the following frames to upper
2547 			 * layer regardless of error status of Rx return
2548 			 * status.
2549 			 *
2550 			 *  o IP/TCP/UDP checksum is bad.
2551 			 *  o frame length and protocol specific length
2552 			 *     does not match.
2553 			 */
2554 			if ((status & (ALE_RD_CRC | ALE_RD_CODE |
2555 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
2556 			    ALE_RD_TRUNC)) != 0) {
2557 				ale_rx_update_page(sc, &rx_page, length, &prod);
2558 				continue;
2559 			}
2560 		}
2561 		/*
2562 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
2563 		 * from hardware limitation). For jumbo frames we could
2564 		 * get a slightly better performance if driver use
2565 		 * m_getjcl(9) with proper buffer size argument. However
2566 		 * that would make code more complicated and I don't
2567 		 * think users would expect good Rx performance numbers
2568 		 * on these low-end consumer ethernet controller.
2569 		 */
2570 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
2571 		    ETHER_ALIGN, ifp, NULL);
2572 		if (m == NULL) {
2573 			ifp->if_iqdrops++;
2574 			ale_rx_update_page(sc, &rx_page, length, &prod);
2575 			continue;
2576 		}
2577 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2578 		    (status & ALE_RD_IPV4) != 0)
2579 			ale_rxcsum(sc, m, status);
2580 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2581 		    (status & ALE_RD_VLAN) != 0) {
2582 			vtags = ALE_RX_VLAN(le32toh(rs->vtags));
2583 			m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
2584 			m->m_flags |= M_VLANTAG;
2585 		}
2586 
2587 		/* Pass it to upper layer. */
2588 		ALE_UNLOCK(sc);
2589 		(*ifp->if_input)(ifp, m);
2590 		ALE_LOCK(sc);
2591 
2592 		ale_rx_update_page(sc, &rx_page, length, &prod);
2593 	}
2594 
2595 	return (count > 0 ? 0 : EAGAIN);
2596 }
2597 
2598 static void
2599 ale_tick(void *arg)
2600 {
2601 	struct ale_softc *sc;
2602 	struct mii_data *mii;
2603 
2604 	sc = (struct ale_softc *)arg;
2605 
2606 	ALE_LOCK_ASSERT(sc);
2607 
2608 	mii = device_get_softc(sc->ale_miibus);
2609 	mii_tick(mii);
2610 	ale_stats_update(sc);
2611 	/*
2612 	 * Reclaim Tx buffers that have been transferred. It's not
2613 	 * needed here but it would release allocated mbuf chains
2614 	 * faster and limit the maximum delay to a hz.
2615 	 */
2616 	ale_txeof(sc);
2617 	ale_watchdog(sc);
2618 	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2619 }
2620 
2621 static void
2622 ale_reset(struct ale_softc *sc)
2623 {
2624 	uint32_t reg;
2625 	int i;
2626 
2627 	/* Initialize PCIe module. From Linux. */
2628 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2629 
2630 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
2631 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2632 		DELAY(10);
2633 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
2634 			break;
2635 	}
2636 	if (i == 0)
2637 		device_printf(sc->ale_dev, "master reset timeout!\n");
2638 
2639 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2640 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
2641 			break;
2642 		DELAY(10);
2643 	}
2644 
2645 	if (i == 0)
2646 		device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
2647 }
2648 
2649 static void
2650 ale_init(void *xsc)
2651 {
2652 	struct ale_softc *sc;
2653 
2654 	sc = (struct ale_softc *)xsc;
2655 	ALE_LOCK(sc);
2656 	ale_init_locked(sc);
2657 	ALE_UNLOCK(sc);
2658 }
2659 
2660 static void
2661 ale_init_locked(struct ale_softc *sc)
2662 {
2663 	struct ifnet *ifp;
2664 	struct mii_data *mii;
2665 	uint8_t eaddr[ETHER_ADDR_LEN];
2666 	bus_addr_t paddr;
2667 	uint32_t reg, rxf_hi, rxf_lo;
2668 
2669 	ALE_LOCK_ASSERT(sc);
2670 
2671 	ifp = sc->ale_ifp;
2672 	mii = device_get_softc(sc->ale_miibus);
2673 
2674 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2675 		return;
2676 	/*
2677 	 * Cancel any pending I/O.
2678 	 */
2679 	ale_stop(sc);
2680 	/*
2681 	 * Reset the chip to a known state.
2682 	 */
2683 	ale_reset(sc);
2684 	/* Initialize Tx descriptors, DMA memory blocks. */
2685 	ale_init_rx_pages(sc);
2686 	ale_init_tx_ring(sc);
2687 
2688 	/* Reprogram the station address. */
2689 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2690 	CSR_WRITE_4(sc, ALE_PAR0,
2691 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2692 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
2693 	/*
2694 	 * Clear WOL status and disable all WOL feature as WOL
2695 	 * would interfere Rx operation under normal environments.
2696 	 */
2697 	CSR_READ_4(sc, ALE_WOL_CFG);
2698 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
2699 	/*
2700 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
2701 	 * the same high address part of DMAable region.
2702 	 */
2703 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
2704 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
2705 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
2706 	CSR_WRITE_4(sc, ALE_TPD_CNT,
2707 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
2708 	/* Set Rx page base address, note we use single queue. */
2709 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
2710 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
2711 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
2712 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
2713 	/* Set Tx/Rx CMB addresses. */
2714 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
2715 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
2716 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
2717 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
2718 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
2719 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
2720 	/* Mark RXF0 is valid. */
2721 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
2722 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
2723 	/*
2724 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
2725 	 * multi-queue yet.
2726 	 */
2727 
2728 	/* Set Rx page size, excluding guard frame size. */
2729 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
2730 	/* Tell hardware that we're ready to load DMA blocks. */
2731 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
2732 
2733 	/* Set Rx/Tx interrupt trigger threshold. */
2734 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
2735 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
2736 	/*
2737 	 * XXX
2738 	 * Set interrupt trigger timer, its purpose and relation
2739 	 * with interrupt moderation mechanism is not clear yet.
2740 	 */
2741 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
2742 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
2743 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
2744 
2745 	/* Configure interrupt moderation timer. */
2746 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
2747 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
2748 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
2749 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
2750 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
2751 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2752 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
2753 		reg |= MASTER_IM_RX_TIMER_ENB;
2754 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
2755 		reg |= MASTER_IM_TX_TIMER_ENB;
2756 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
2757 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
2758 
2759 	/* Set Maximum frame size of controller. */
2760 	if (ifp->if_mtu < ETHERMTU)
2761 		sc->ale_max_frame_size = ETHERMTU;
2762 	else
2763 		sc->ale_max_frame_size = ifp->if_mtu;
2764 	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2765 	    ETHER_CRC_LEN;
2766 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
2767 	/* Configure IPG/IFG parameters. */
2768 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
2769 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2770 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2771 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2772 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2773 	/* Set parameters for half-duplex media. */
2774 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
2775 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2776 	    HDPX_CFG_LCOL_MASK) |
2777 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2778 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2779 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2780 	    HDPX_CFG_ABEBT_MASK) |
2781 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2782 	    HDPX_CFG_JAMIPG_MASK));
2783 
2784 	/* Configure Tx jumbo frame parameters. */
2785 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2786 		if (ifp->if_mtu < ETHERMTU)
2787 			reg = sc->ale_max_frame_size;
2788 		else if (ifp->if_mtu < 6 * 1024)
2789 			reg = (sc->ale_max_frame_size * 2) / 3;
2790 		else
2791 			reg = sc->ale_max_frame_size / 2;
2792 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
2793 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
2794 		    TX_JUMBO_THRESH_UNIT_SHIFT);
2795 	}
2796 	/* Configure TxQ. */
2797 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
2798 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
2799 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2800 	    TXQ_CFG_TPD_BURST_MASK;
2801 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
2802 
2803 	/* Configure Rx jumbo frame & flow control parameters. */
2804 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2805 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
2806 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
2807 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
2808 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
2809 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
2810 		    RX_JUMBO_LKAH_MASK));
2811 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
2812 		rxf_hi = (reg * 7) / 10;
2813 		rxf_lo = (reg * 3)/ 10;
2814 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
2815 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2816 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
2817 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2818 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
2819 	}
2820 
2821 	/* Disable RSS. */
2822 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
2823 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
2824 
2825 	/* Configure RxQ. */
2826 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
2827 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2828 
2829 	/* Configure DMA parameters. */
2830 	reg = 0;
2831 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
2832 		reg |= DMA_CFG_TXCMB_ENB;
2833 	CSR_WRITE_4(sc, ALE_DMA_CFG,
2834 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
2835 	    sc->ale_dma_rd_burst | reg |
2836 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
2837 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2838 	    DMA_CFG_RD_DELAY_CNT_MASK) |
2839 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2840 	    DMA_CFG_WR_DELAY_CNT_MASK));
2841 
2842 	/*
2843 	 * Hardware can be configured to issue SMB interrupt based
2844 	 * on programmed interval. Since there is a callout that is
2845 	 * invoked for every hz in driver we use that instead of
2846 	 * relying on periodic SMB interrupt.
2847 	 */
2848 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
2849 	/* Clear MAC statistics. */
2850 	ale_stats_clear(sc);
2851 
2852 	/*
2853 	 * Configure Tx/Rx MACs.
2854 	 *  - Auto-padding for short frames.
2855 	 *  - Enable CRC generation.
2856 	 *  Actual reconfiguration of MAC for resolved speed/duplex
2857 	 *  is followed after detection of link establishment.
2858 	 *  AR81xx always does checksum computation regardless of
2859 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
2860 	 *  cause Rx handling issue for fragmented IP datagrams due
2861 	 *  to silicon bug.
2862 	 */
2863 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2864 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2865 	    MAC_CFG_PREAMBLE_MASK);
2866 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
2867 		reg |= MAC_CFG_SPEED_10_100;
2868 	else
2869 		reg |= MAC_CFG_SPEED_1000;
2870 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2871 
2872 	/* Set up the receive filter. */
2873 	ale_rxfilter(sc);
2874 	ale_rxvlan(sc);
2875 
2876 	/* Acknowledge all pending interrupts and clear it. */
2877 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
2878 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2879 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
2880 
2881 	sc->ale_flags &= ~ALE_FLAG_LINK;
2882 	/* Switch to the current media. */
2883 	mii_mediachg(mii);
2884 
2885 	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2886 
2887 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2888 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2889 }
2890 
2891 static void
2892 ale_stop(struct ale_softc *sc)
2893 {
2894 	struct ifnet *ifp;
2895 	struct ale_txdesc *txd;
2896 	uint32_t reg;
2897 	int i;
2898 
2899 	ALE_LOCK_ASSERT(sc);
2900 	/*
2901 	 * Mark the interface down and cancel the watchdog timer.
2902 	 */
2903 	ifp = sc->ale_ifp;
2904 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2905 	sc->ale_flags &= ~ALE_FLAG_LINK;
2906 	callout_stop(&sc->ale_tick_ch);
2907 	sc->ale_watchdog_timer = 0;
2908 	ale_stats_update(sc);
2909 	/* Disable interrupts. */
2910 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
2911 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2912 	/* Disable queue processing and DMA. */
2913 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
2914 	reg &= ~TXQ_CFG_ENB;
2915 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
2916 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
2917 	reg &= ~RXQ_CFG_ENB;
2918 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
2919 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
2920 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
2921 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
2922 	DELAY(1000);
2923 	/* Stop Rx/Tx MACs. */
2924 	ale_stop_mac(sc);
2925 	/* Disable interrupts which might be touched in taskq handler. */
2926 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2927 
2928 	/*
2929 	 * Free TX mbufs still in the queues.
2930 	 */
2931 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2932 		txd = &sc->ale_cdata.ale_txdesc[i];
2933 		if (txd->tx_m != NULL) {
2934 			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2935 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2936 			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2937 			    txd->tx_dmamap);
2938 			m_freem(txd->tx_m);
2939 			txd->tx_m = NULL;
2940 		}
2941         }
2942 }
2943 
2944 static void
2945 ale_stop_mac(struct ale_softc *sc)
2946 {
2947 	uint32_t reg;
2948 	int i;
2949 
2950 	ALE_LOCK_ASSERT(sc);
2951 
2952 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2953 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2954 		reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2955 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2956 	}
2957 
2958 	for (i = ALE_TIMEOUT; i > 0; i--) {
2959 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
2960 		if (reg == 0)
2961 			break;
2962 		DELAY(10);
2963 	}
2964 	if (i == 0)
2965 		device_printf(sc->ale_dev,
2966 		    "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
2967 }
2968 
2969 static void
2970 ale_init_tx_ring(struct ale_softc *sc)
2971 {
2972 	struct ale_txdesc *txd;
2973 	int i;
2974 
2975 	ALE_LOCK_ASSERT(sc);
2976 
2977 	sc->ale_cdata.ale_tx_prod = 0;
2978 	sc->ale_cdata.ale_tx_cons = 0;
2979 	sc->ale_cdata.ale_tx_cnt = 0;
2980 
2981 	bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
2982 	bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
2983 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2984 		txd = &sc->ale_cdata.ale_txdesc[i];
2985 		txd->tx_m = NULL;
2986 	}
2987 	*sc->ale_cdata.ale_tx_cmb = 0;
2988 	bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2989 	    sc->ale_cdata.ale_tx_cmb_map,
2990 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2991 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2992 	    sc->ale_cdata.ale_tx_ring_map,
2993 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2994 }
2995 
2996 static void
2997 ale_init_rx_pages(struct ale_softc *sc)
2998 {
2999 	struct ale_rx_page *rx_page;
3000 	int i;
3001 
3002 	ALE_LOCK_ASSERT(sc);
3003 
3004 	sc->ale_morework = 0;
3005 	sc->ale_cdata.ale_rx_seqno = 0;
3006 	sc->ale_cdata.ale_rx_curp = 0;
3007 
3008 	for (i = 0; i < ALE_RX_PAGES; i++) {
3009 		rx_page = &sc->ale_cdata.ale_rx_page[i];
3010 		bzero(rx_page->page_addr, sc->ale_pagesize);
3011 		bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
3012 		rx_page->cons = 0;
3013 		*rx_page->cmb_addr = 0;
3014 		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
3015 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3016 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
3017 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3018 	}
3019 }
3020 
3021 static void
3022 ale_rxvlan(struct ale_softc *sc)
3023 {
3024 	struct ifnet *ifp;
3025 	uint32_t reg;
3026 
3027 	ALE_LOCK_ASSERT(sc);
3028 
3029 	ifp = sc->ale_ifp;
3030 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
3031 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3032 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3033 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3034 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
3035 }
3036 
3037 static void
3038 ale_rxfilter(struct ale_softc *sc)
3039 {
3040 	struct ifnet *ifp;
3041 	struct ifmultiaddr *ifma;
3042 	uint32_t crc;
3043 	uint32_t mchash[2];
3044 	uint32_t rxcfg;
3045 
3046 	ALE_LOCK_ASSERT(sc);
3047 
3048 	ifp = sc->ale_ifp;
3049 
3050 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
3051 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3052 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3053 		rxcfg |= MAC_CFG_BCAST;
3054 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3055 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3056 			rxcfg |= MAC_CFG_PROMISC;
3057 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3058 			rxcfg |= MAC_CFG_ALLMULTI;
3059 		CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
3060 		CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
3061 		CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3062 		return;
3063 	}
3064 
3065 	/* Program new filter. */
3066 	bzero(mchash, sizeof(mchash));
3067 
3068 	if_maddr_rlock(ifp);
3069 	TAILQ_FOREACH(ifma, &sc->ale_ifp->if_multiaddrs, ifma_link) {
3070 		if (ifma->ifma_addr->sa_family != AF_LINK)
3071 			continue;
3072 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3073 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3074 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3075 	}
3076 	if_maddr_runlock(ifp);
3077 
3078 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
3079 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
3080 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3081 }
3082 
3083 static int
3084 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3085 {
3086 	int error, value;
3087 
3088 	if (arg1 == NULL)
3089 		return (EINVAL);
3090 	value = *(int *)arg1;
3091 	error = sysctl_handle_int(oidp, &value, 0, req);
3092 	if (error || req->newptr == NULL)
3093 		return (error);
3094 	if (value < low || value > high)
3095 		return (EINVAL);
3096         *(int *)arg1 = value;
3097 
3098         return (0);
3099 }
3100 
3101 static int
3102 sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
3103 {
3104 	return (sysctl_int_range(oidp, arg1, arg2, req,
3105 	    ALE_PROC_MIN, ALE_PROC_MAX));
3106 }
3107 
3108 static int
3109 sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
3110 {
3111 
3112 	return (sysctl_int_range(oidp, arg1, arg2, req,
3113 	    ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
3114 }
3115