xref: /freebsd/sys/dev/ale/if_ale.c (revision a8089ea5aee578e08acab2438e82fc9a9ae50ed8)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/endian.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/module.h>
40 #include <sys/rman.h>
41 #include <sys/queue.h>
42 #include <sys/socket.h>
43 #include <sys/sockio.h>
44 #include <sys/sysctl.h>
45 #include <sys/taskqueue.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_llc.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_vlan_var.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/ip.h>
61 #include <netinet/tcp.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 
66 #include <dev/pci/pcireg.h>
67 #include <dev/pci/pcivar.h>
68 
69 #include <machine/bus.h>
70 #include <machine/in_cksum.h>
71 
72 #include <dev/ale/if_alereg.h>
73 #include <dev/ale/if_alevar.h>
74 
75 /* "device miibus" required.  See GENERIC if you get errors here. */
76 #include "miibus_if.h"
77 
78 /* For more information about Tx checksum offload issues see ale_encap(). */
79 #define	ALE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
80 
81 MODULE_DEPEND(ale, pci, 1, 1, 1);
82 MODULE_DEPEND(ale, ether, 1, 1, 1);
83 MODULE_DEPEND(ale, miibus, 1, 1, 1);
84 
85 /* Tunables. */
86 static int msi_disable = 0;
87 static int msix_disable = 0;
88 TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
89 TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
90 
91 /*
92  * Devices supported by this driver.
93  */
94 static const struct ale_dev {
95 	uint16_t	ale_vendorid;
96 	uint16_t	ale_deviceid;
97 	const char	*ale_name;
98 } ale_devs[] = {
99     { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
100     "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
101 };
102 
103 static int	ale_attach(device_t);
104 static int	ale_check_boundary(struct ale_softc *);
105 static int	ale_detach(device_t);
106 static int	ale_dma_alloc(struct ale_softc *);
107 static void	ale_dma_free(struct ale_softc *);
108 static void	ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
109 static int	ale_encap(struct ale_softc *, struct mbuf **);
110 static void	ale_get_macaddr(struct ale_softc *);
111 static void	ale_init(void *);
112 static void	ale_init_locked(struct ale_softc *);
113 static void	ale_init_rx_pages(struct ale_softc *);
114 static void	ale_init_tx_ring(struct ale_softc *);
115 static void	ale_int_task(void *, int);
116 static int	ale_intr(void *);
117 static int	ale_ioctl(if_t, u_long, caddr_t);
118 static void	ale_mac_config(struct ale_softc *);
119 static int	ale_miibus_readreg(device_t, int, int);
120 static void	ale_miibus_statchg(device_t);
121 static int	ale_miibus_writereg(device_t, int, int, int);
122 static int	ale_mediachange(if_t);
123 static void	ale_mediastatus(if_t, struct ifmediareq *);
124 static void	ale_phy_reset(struct ale_softc *);
125 static int	ale_probe(device_t);
126 static void	ale_reset(struct ale_softc *);
127 static int	ale_resume(device_t);
128 static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
129     uint32_t, uint32_t *);
130 static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
131 static int	ale_rxeof(struct ale_softc *sc, int);
132 static void	ale_rxfilter(struct ale_softc *);
133 static void	ale_rxvlan(struct ale_softc *);
134 static void	ale_setlinkspeed(struct ale_softc *);
135 static void	ale_setwol(struct ale_softc *);
136 static int	ale_shutdown(device_t);
137 static void	ale_start(if_t);
138 static void	ale_start_locked(if_t);
139 static void	ale_stats_clear(struct ale_softc *);
140 static void	ale_stats_update(struct ale_softc *);
141 static void	ale_stop(struct ale_softc *);
142 static void	ale_stop_mac(struct ale_softc *);
143 static int	ale_suspend(device_t);
144 static void	ale_sysctl_node(struct ale_softc *);
145 static void	ale_tick(void *);
146 static void	ale_txeof(struct ale_softc *);
147 static void	ale_watchdog(struct ale_softc *);
148 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
149 static int	sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
150 static int	sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
151 
152 static device_method_t ale_methods[] = {
153 	/* Device interface. */
154 	DEVMETHOD(device_probe,		ale_probe),
155 	DEVMETHOD(device_attach,	ale_attach),
156 	DEVMETHOD(device_detach,	ale_detach),
157 	DEVMETHOD(device_shutdown,	ale_shutdown),
158 	DEVMETHOD(device_suspend,	ale_suspend),
159 	DEVMETHOD(device_resume,	ale_resume),
160 
161 	/* MII interface. */
162 	DEVMETHOD(miibus_readreg,	ale_miibus_readreg),
163 	DEVMETHOD(miibus_writereg,	ale_miibus_writereg),
164 	DEVMETHOD(miibus_statchg,	ale_miibus_statchg),
165 
166 	DEVMETHOD_END
167 };
168 
169 static driver_t ale_driver = {
170 	"ale",
171 	ale_methods,
172 	sizeof(struct ale_softc)
173 };
174 
175 DRIVER_MODULE(ale, pci, ale_driver, NULL, NULL);
176 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ale, ale_devs,
177     nitems(ale_devs));
178 DRIVER_MODULE(miibus, ale, miibus_driver, NULL, NULL);
179 
180 static struct resource_spec ale_res_spec_mem[] = {
181 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
182 	{ -1,			0,		0 }
183 };
184 
185 static struct resource_spec ale_irq_spec_legacy[] = {
186 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
187 	{ -1,			0,		0 }
188 };
189 
190 static struct resource_spec ale_irq_spec_msi[] = {
191 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
192 	{ -1,			0,		0 }
193 };
194 
195 static struct resource_spec ale_irq_spec_msix[] = {
196 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
197 	{ -1,			0,		0 }
198 };
199 
200 static int
201 ale_miibus_readreg(device_t dev, int phy, int reg)
202 {
203 	struct ale_softc *sc;
204 	uint32_t v;
205 	int i;
206 
207 	sc = device_get_softc(dev);
208 
209 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
210 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
211 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
212 		DELAY(5);
213 		v = CSR_READ_4(sc, ALE_MDIO);
214 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
215 			break;
216 	}
217 
218 	if (i == 0) {
219 		device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
220 		return (0);
221 	}
222 
223 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
224 }
225 
226 static int
227 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
228 {
229 	struct ale_softc *sc;
230 	uint32_t v;
231 	int i;
232 
233 	sc = device_get_softc(dev);
234 
235 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
236 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
237 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
238 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
239 		DELAY(5);
240 		v = CSR_READ_4(sc, ALE_MDIO);
241 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
242 			break;
243 	}
244 
245 	if (i == 0)
246 		device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
247 
248 	return (0);
249 }
250 
251 static void
252 ale_miibus_statchg(device_t dev)
253 {
254 	struct ale_softc *sc;
255 	struct mii_data *mii;
256 	if_t ifp;
257 	uint32_t reg;
258 
259 	sc = device_get_softc(dev);
260 	mii = device_get_softc(sc->ale_miibus);
261 	ifp = sc->ale_ifp;
262 	if (mii == NULL || ifp == NULL ||
263 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
264 		return;
265 
266 	sc->ale_flags &= ~ALE_FLAG_LINK;
267 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
268 	    (IFM_ACTIVE | IFM_AVALID)) {
269 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
270 		case IFM_10_T:
271 		case IFM_100_TX:
272 			sc->ale_flags |= ALE_FLAG_LINK;
273 			break;
274 		case IFM_1000_T:
275 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
276 				sc->ale_flags |= ALE_FLAG_LINK;
277 			break;
278 		default:
279 			break;
280 		}
281 	}
282 
283 	/* Stop Rx/Tx MACs. */
284 	ale_stop_mac(sc);
285 
286 	/* Program MACs with resolved speed/duplex/flow-control. */
287 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
288 		ale_mac_config(sc);
289 		/* Reenable Tx/Rx MACs. */
290 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
291 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
292 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
293 	}
294 }
295 
296 static void
297 ale_mediastatus(if_t ifp, struct ifmediareq *ifmr)
298 {
299 	struct ale_softc *sc;
300 	struct mii_data *mii;
301 
302 	sc = if_getsoftc(ifp);
303 	ALE_LOCK(sc);
304 	if ((if_getflags(ifp) & IFF_UP) == 0) {
305 		ALE_UNLOCK(sc);
306 		return;
307 	}
308 	mii = device_get_softc(sc->ale_miibus);
309 
310 	mii_pollstat(mii);
311 	ifmr->ifm_status = mii->mii_media_status;
312 	ifmr->ifm_active = mii->mii_media_active;
313 	ALE_UNLOCK(sc);
314 }
315 
316 static int
317 ale_mediachange(if_t ifp)
318 {
319 	struct ale_softc *sc;
320 	struct mii_data *mii;
321 	struct mii_softc *miisc;
322 	int error;
323 
324 	sc = if_getsoftc(ifp);
325 	ALE_LOCK(sc);
326 	mii = device_get_softc(sc->ale_miibus);
327 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
328 		PHY_RESET(miisc);
329 	error = mii_mediachg(mii);
330 	ALE_UNLOCK(sc);
331 
332 	return (error);
333 }
334 
335 static int
336 ale_probe(device_t dev)
337 {
338 	const struct ale_dev *sp;
339 	int i;
340 	uint16_t vendor, devid;
341 
342 	vendor = pci_get_vendor(dev);
343 	devid = pci_get_device(dev);
344 	sp = ale_devs;
345 	for (i = 0; i < nitems(ale_devs); i++) {
346 		if (vendor == sp->ale_vendorid &&
347 		    devid == sp->ale_deviceid) {
348 			device_set_desc(dev, sp->ale_name);
349 			return (BUS_PROBE_DEFAULT);
350 		}
351 		sp++;
352 	}
353 
354 	return (ENXIO);
355 }
356 
357 static void
358 ale_get_macaddr(struct ale_softc *sc)
359 {
360 	uint32_t ea[2], reg;
361 	int i, vpdc;
362 
363 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
364 	if ((reg & SPI_VPD_ENB) != 0) {
365 		reg &= ~SPI_VPD_ENB;
366 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
367 	}
368 
369 	if (pci_find_cap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
370 		/*
371 		 * PCI VPD capability found, let TWSI reload EEPROM.
372 		 * This will set ethernet address of controller.
373 		 */
374 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
375 		    TWSI_CTRL_SW_LD_START);
376 		for (i = 100; i > 0; i--) {
377 			DELAY(1000);
378 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
379 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
380 				break;
381 		}
382 		if (i == 0)
383 			device_printf(sc->ale_dev,
384 			    "reloading EEPROM timeout!\n");
385 	} else {
386 		if (bootverbose)
387 			device_printf(sc->ale_dev,
388 			    "PCI VPD capability not found!\n");
389 	}
390 
391 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
392 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
393 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
394 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
395 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
396 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
397 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
398 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
399 }
400 
401 static void
402 ale_phy_reset(struct ale_softc *sc)
403 {
404 
405 	/* Reset magic from Linux. */
406 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
407 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
408 	    GPHY_CTRL_PHY_PLL_ON);
409 	DELAY(1000);
410 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
411 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
412 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
413 	DELAY(1000);
414 
415 #define	ATPHY_DBG_ADDR		0x1D
416 #define	ATPHY_DBG_DATA		0x1E
417 
418 	/* Enable hibernation mode. */
419 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
420 	    ATPHY_DBG_ADDR, 0x0B);
421 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
422 	    ATPHY_DBG_DATA, 0xBC00);
423 	/* Set Class A/B for all modes. */
424 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
425 	    ATPHY_DBG_ADDR, 0x00);
426 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
427 	    ATPHY_DBG_DATA, 0x02EF);
428 	/* Enable 10BT power saving. */
429 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
430 	    ATPHY_DBG_ADDR, 0x12);
431 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
432 	    ATPHY_DBG_DATA, 0x4C04);
433 	/* Adjust 1000T power. */
434 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
435 	    ATPHY_DBG_ADDR, 0x04);
436 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
437 	    ATPHY_DBG_ADDR, 0x8BBB);
438 	/* 10BT center tap voltage. */
439 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
440 	    ATPHY_DBG_ADDR, 0x05);
441 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
442 	    ATPHY_DBG_ADDR, 0x2C46);
443 
444 #undef	ATPHY_DBG_ADDR
445 #undef	ATPHY_DBG_DATA
446 	DELAY(1000);
447 }
448 
449 static int
450 ale_attach(device_t dev)
451 {
452 	struct ale_softc *sc;
453 	if_t ifp;
454 	uint16_t burst;
455 	int error, i, msic, msixc, pmc;
456 	uint32_t rxf_len, txf_len;
457 
458 	error = 0;
459 	sc = device_get_softc(dev);
460 	sc->ale_dev = dev;
461 
462 	mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
463 	    MTX_DEF);
464 	callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
465 	NET_TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
466 
467 	/* Map the device. */
468 	pci_enable_busmaster(dev);
469 	sc->ale_res_spec = ale_res_spec_mem;
470 	sc->ale_irq_spec = ale_irq_spec_legacy;
471 	error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
472 	if (error != 0) {
473 		device_printf(dev, "cannot allocate memory resources.\n");
474 		goto fail;
475 	}
476 
477 	/* Set PHY address. */
478 	sc->ale_phyaddr = ALE_PHY_ADDR;
479 
480 	/* Reset PHY. */
481 	ale_phy_reset(sc);
482 
483 	/* Reset the ethernet controller. */
484 	ale_reset(sc);
485 
486 	/* Get PCI and chip id/revision. */
487 	sc->ale_rev = pci_get_revid(dev);
488 	if (sc->ale_rev >= 0xF0) {
489 		/* L2E Rev. B. AR8114 */
490 		sc->ale_flags |= ALE_FLAG_FASTETHER;
491 	} else {
492 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
493 			/* L1E AR8121 */
494 			sc->ale_flags |= ALE_FLAG_JUMBO;
495 		} else {
496 			/* L2E Rev. A. AR8113 */
497 			sc->ale_flags |= ALE_FLAG_FASTETHER;
498 		}
499 	}
500 	/*
501 	 * All known controllers seems to require 4 bytes alignment
502 	 * of Tx buffers to make Tx checksum offload with custom
503 	 * checksum generation method work.
504 	 */
505 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
506 	/*
507 	 * All known controllers seems to have issues on Rx checksum
508 	 * offload for fragmented IP datagrams.
509 	 */
510 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
511 	/*
512 	 * Don't use Tx CMB. It is known to cause RRS update failure
513 	 * under certain circumstances. Typical phenomenon of the
514 	 * issue would be unexpected sequence number encountered in
515 	 * Rx handler.
516 	 */
517 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
518 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
519 	    MASTER_CHIP_REV_SHIFT;
520 	if (bootverbose) {
521 		device_printf(dev, "PCI device revision : 0x%04x\n",
522 		    sc->ale_rev);
523 		device_printf(dev, "Chip id/revision : 0x%04x\n",
524 		    sc->ale_chip_rev);
525 	}
526 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
527 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
528 	/*
529 	 * Uninitialized hardware returns an invalid chip id/revision
530 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
531 	 */
532 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
533 	    rxf_len == 0xFFFFFFF) {
534 		device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
535 		    "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
536 		    txf_len, rxf_len);
537 		error = ENXIO;
538 		goto fail;
539 	}
540 	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
541 
542 	/* Allocate IRQ resources. */
543 	msixc = pci_msix_count(dev);
544 	msic = pci_msi_count(dev);
545 	if (bootverbose) {
546 		device_printf(dev, "MSIX count : %d\n", msixc);
547 		device_printf(dev, "MSI count : %d\n", msic);
548 	}
549 
550 	/* Prefer MSIX over MSI. */
551 	if (msix_disable == 0 || msi_disable == 0) {
552 		if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
553 		    pci_alloc_msix(dev, &msixc) == 0) {
554 			if (msixc == ALE_MSIX_MESSAGES) {
555 				device_printf(dev, "Using %d MSIX messages.\n",
556 				    msixc);
557 				sc->ale_flags |= ALE_FLAG_MSIX;
558 				sc->ale_irq_spec = ale_irq_spec_msix;
559 			} else
560 				pci_release_msi(dev);
561 		}
562 		if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
563 		    msic == ALE_MSI_MESSAGES &&
564 		    pci_alloc_msi(dev, &msic) == 0) {
565 			if (msic == ALE_MSI_MESSAGES) {
566 				device_printf(dev, "Using %d MSI messages.\n",
567 				    msic);
568 				sc->ale_flags |= ALE_FLAG_MSI;
569 				sc->ale_irq_spec = ale_irq_spec_msi;
570 			} else
571 				pci_release_msi(dev);
572 		}
573 	}
574 
575 	error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
576 	if (error != 0) {
577 		device_printf(dev, "cannot allocate IRQ resources.\n");
578 		goto fail;
579 	}
580 
581 	/* Get DMA parameters from PCIe device control register. */
582 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
583 		sc->ale_flags |= ALE_FLAG_PCIE;
584 		burst = pci_read_config(dev, i + 0x08, 2);
585 		/* Max read request size. */
586 		sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
587 		    DMA_CFG_RD_BURST_SHIFT;
588 		/* Max payload size. */
589 		sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
590 		    DMA_CFG_WR_BURST_SHIFT;
591 		if (bootverbose) {
592 			device_printf(dev, "Read request size : %d bytes.\n",
593 			    128 << ((burst >> 12) & 0x07));
594 			device_printf(dev, "TLP payload size : %d bytes.\n",
595 			    128 << ((burst >> 5) & 0x07));
596 		}
597 	} else {
598 		sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
599 		sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
600 	}
601 
602 	/* Create device sysctl node. */
603 	ale_sysctl_node(sc);
604 
605 	if ((error = ale_dma_alloc(sc)) != 0)
606 		goto fail;
607 
608 	/* Load station address. */
609 	ale_get_macaddr(sc);
610 
611 	ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
612 	if (ifp == NULL) {
613 		device_printf(dev, "cannot allocate ifnet structure.\n");
614 		error = ENXIO;
615 		goto fail;
616 	}
617 
618 	if_setsoftc(ifp, sc);
619 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
620 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
621 	if_setioctlfn(ifp, ale_ioctl);
622 	if_setstartfn(ifp, ale_start);
623 	if_setinitfn(ifp, ale_init);
624 	if_setsendqlen(ifp, ALE_TX_RING_CNT - 1);
625 	if_setsendqready(ifp);
626 	if_setcapabilities(ifp, IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4);
627 	if_sethwassist(ifp, ALE_CSUM_FEATURES | CSUM_TSO);
628 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
629 		sc->ale_flags |= ALE_FLAG_PMCAP;
630 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST, 0);
631 	}
632 	if_setcapenable(ifp, if_getcapabilities(ifp));
633 
634 	/* Set up MII bus. */
635 	error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange,
636 	    ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY,
637 	    MIIF_DOPAUSE);
638 	if (error != 0) {
639 		device_printf(dev, "attaching PHYs failed\n");
640 		goto fail;
641 	}
642 
643 	ether_ifattach(ifp, sc->ale_eaddr);
644 
645 	/* VLAN capability setup. */
646 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
647 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
648 	if_setcapenable(ifp, if_getcapabilities(ifp));
649 	/*
650 	 * Even though controllers supported by ale(3) have Rx checksum
651 	 * offload bug the workaround for fragmented frames seemed to
652 	 * work so far. However it seems Rx checksum offload does not
653 	 * work under certain conditions. So disable Rx checksum offload
654 	 * until I find more clue about it but allow users to override it.
655 	 */
656 	if_setcapenablebit(ifp, 0, IFCAP_RXCSUM);
657 
658 	/* Tell the upper layer(s) we support long frames. */
659 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
660 
661 	/* Create local taskq. */
662 	sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
663 	    taskqueue_thread_enqueue, &sc->ale_tq);
664 	if (sc->ale_tq == NULL) {
665 		device_printf(dev, "could not create taskqueue.\n");
666 		ether_ifdetach(ifp);
667 		error = ENXIO;
668 		goto fail;
669 	}
670 	taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
671 	    device_get_nameunit(sc->ale_dev));
672 
673 	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
674 		msic = ALE_MSIX_MESSAGES;
675 	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
676 		msic = ALE_MSI_MESSAGES;
677 	else
678 		msic = 1;
679 	for (i = 0; i < msic; i++) {
680 		error = bus_setup_intr(dev, sc->ale_irq[i],
681 		    INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
682 		    &sc->ale_intrhand[i]);
683 		if (error != 0)
684 			break;
685 	}
686 	if (error != 0) {
687 		device_printf(dev, "could not set up interrupt handler.\n");
688 		taskqueue_free(sc->ale_tq);
689 		sc->ale_tq = NULL;
690 		ether_ifdetach(ifp);
691 		goto fail;
692 	}
693 
694 fail:
695 	if (error != 0)
696 		ale_detach(dev);
697 
698 	return (error);
699 }
700 
701 static int
702 ale_detach(device_t dev)
703 {
704 	struct ale_softc *sc;
705 	if_t ifp;
706 	int i, msic;
707 
708 	sc = device_get_softc(dev);
709 
710 	ifp = sc->ale_ifp;
711 	if (device_is_attached(dev)) {
712 		ether_ifdetach(ifp);
713 		ALE_LOCK(sc);
714 		ale_stop(sc);
715 		ALE_UNLOCK(sc);
716 		callout_drain(&sc->ale_tick_ch);
717 		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
718 	}
719 
720 	if (sc->ale_tq != NULL) {
721 		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
722 		taskqueue_free(sc->ale_tq);
723 		sc->ale_tq = NULL;
724 	}
725 
726 	if (sc->ale_miibus != NULL) {
727 		device_delete_child(dev, sc->ale_miibus);
728 		sc->ale_miibus = NULL;
729 	}
730 	bus_generic_detach(dev);
731 	ale_dma_free(sc);
732 
733 	if (ifp != NULL) {
734 		if_free(ifp);
735 		sc->ale_ifp = NULL;
736 	}
737 
738 	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
739 		msic = ALE_MSIX_MESSAGES;
740 	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
741 		msic = ALE_MSI_MESSAGES;
742 	else
743 		msic = 1;
744 	for (i = 0; i < msic; i++) {
745 		if (sc->ale_intrhand[i] != NULL) {
746 			bus_teardown_intr(dev, sc->ale_irq[i],
747 			    sc->ale_intrhand[i]);
748 			sc->ale_intrhand[i] = NULL;
749 		}
750 	}
751 
752 	bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
753 	if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
754 		pci_release_msi(dev);
755 	bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
756 	mtx_destroy(&sc->ale_mtx);
757 
758 	return (0);
759 }
760 
761 #define	ALE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
762 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
763 
764 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
765 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
766 
767 static void
768 ale_sysctl_node(struct ale_softc *sc)
769 {
770 	struct sysctl_ctx_list *ctx;
771 	struct sysctl_oid_list *child, *parent;
772 	struct sysctl_oid *tree;
773 	struct ale_hw_stats *stats;
774 	int error;
775 
776 	stats = &sc->ale_stats;
777 	ctx = device_get_sysctl_ctx(sc->ale_dev);
778 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
779 
780 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
781 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->ale_int_rx_mod,
782 	    0, sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
783 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
784 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->ale_int_tx_mod,
785 	    0, sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
786 	/* Pull in device tunables. */
787 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
788 	error = resource_int_value(device_get_name(sc->ale_dev),
789 	    device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
790 	if (error == 0) {
791 		if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
792 		    sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
793 			device_printf(sc->ale_dev, "int_rx_mod value out of "
794 			    "range; using default: %d\n",
795 			    ALE_IM_RX_TIMER_DEFAULT);
796 			sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
797 		}
798 	}
799 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
800 	error = resource_int_value(device_get_name(sc->ale_dev),
801 	    device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
802 	if (error == 0) {
803 		if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
804 		    sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
805 			device_printf(sc->ale_dev, "int_tx_mod value out of "
806 			    "range; using default: %d\n",
807 			    ALE_IM_TX_TIMER_DEFAULT);
808 			sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
809 		}
810 	}
811 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
812 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
813 	    &sc->ale_process_limit, 0, sysctl_hw_ale_proc_limit, "I",
814 	    "max number of Rx events to process");
815 	/* Pull in device tunables. */
816 	sc->ale_process_limit = ALE_PROC_DEFAULT;
817 	error = resource_int_value(device_get_name(sc->ale_dev),
818 	    device_get_unit(sc->ale_dev), "process_limit",
819 	    &sc->ale_process_limit);
820 	if (error == 0) {
821 		if (sc->ale_process_limit < ALE_PROC_MIN ||
822 		    sc->ale_process_limit > ALE_PROC_MAX) {
823 			device_printf(sc->ale_dev,
824 			    "process_limit value out of range; "
825 			    "using default: %d\n", ALE_PROC_DEFAULT);
826 			sc->ale_process_limit = ALE_PROC_DEFAULT;
827 		}
828 	}
829 
830 	/* Misc statistics. */
831 	ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
832 	    &stats->reset_brk_seq,
833 	    "Controller resets due to broken Rx sequnce number");
834 
835 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
836 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ATE statistics");
837 	parent = SYSCTL_CHILDREN(tree);
838 
839 	/* Rx statistics. */
840 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
841 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
842 	child = SYSCTL_CHILDREN(tree);
843 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
844 	    &stats->rx_frames, "Good frames");
845 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
846 	    &stats->rx_bcast_frames, "Good broadcast frames");
847 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
848 	    &stats->rx_mcast_frames, "Good multicast frames");
849 	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
850 	    &stats->rx_pause_frames, "Pause control frames");
851 	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
852 	    &stats->rx_control_frames, "Control frames");
853 	ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
854 	    &stats->rx_crcerrs, "CRC errors");
855 	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
856 	    &stats->rx_lenerrs, "Frames with length mismatched");
857 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
858 	    &stats->rx_bytes, "Good octets");
859 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
860 	    &stats->rx_bcast_bytes, "Good broadcast octets");
861 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
862 	    &stats->rx_mcast_bytes, "Good multicast octets");
863 	ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
864 	    &stats->rx_runts, "Too short frames");
865 	ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
866 	    &stats->rx_fragments, "Fragmented frames");
867 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
868 	    &stats->rx_pkts_64, "64 bytes frames");
869 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
870 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
871 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
872 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
873 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
874 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
875 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
876 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
877 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
878 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
879 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
880 	    &stats->rx_pkts_1519_max, "1519 to max frames");
881 	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
882 	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
883 	ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
884 	    &stats->rx_fifo_oflows, "FIFO overflows");
885 	ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
886 	    &stats->rx_rrs_errs, "Return status write-back errors");
887 	ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
888 	    &stats->rx_alignerrs, "Alignment errors");
889 	ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
890 	    &stats->rx_pkts_filtered,
891 	    "Frames dropped due to address filtering");
892 
893 	/* Tx statistics. */
894 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
895 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
896 	child = SYSCTL_CHILDREN(tree);
897 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
898 	    &stats->tx_frames, "Good frames");
899 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
900 	    &stats->tx_bcast_frames, "Good broadcast frames");
901 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
902 	    &stats->tx_mcast_frames, "Good multicast frames");
903 	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
904 	    &stats->tx_pause_frames, "Pause control frames");
905 	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
906 	    &stats->tx_control_frames, "Control frames");
907 	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
908 	    &stats->tx_excess_defer, "Frames with excessive derferrals");
909 	ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
910 	    &stats->tx_excess_defer, "Frames with derferrals");
911 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
912 	    &stats->tx_bytes, "Good octets");
913 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
914 	    &stats->tx_bcast_bytes, "Good broadcast octets");
915 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
916 	    &stats->tx_mcast_bytes, "Good multicast octets");
917 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
918 	    &stats->tx_pkts_64, "64 bytes frames");
919 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
920 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
921 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
922 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
923 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
924 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
925 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
926 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
927 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
928 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
929 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
930 	    &stats->tx_pkts_1519_max, "1519 to max frames");
931 	ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
932 	    &stats->tx_single_colls, "Single collisions");
933 	ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
934 	    &stats->tx_multi_colls, "Multiple collisions");
935 	ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
936 	    &stats->tx_late_colls, "Late collisions");
937 	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
938 	    &stats->tx_excess_colls, "Excessive collisions");
939 	ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
940 	    &stats->tx_underrun, "FIFO underruns");
941 	ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
942 	    &stats->tx_desc_underrun, "Descriptor write-back errors");
943 	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
944 	    &stats->tx_lenerrs, "Frames with length mismatched");
945 	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
946 	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
947 }
948 
949 #undef ALE_SYSCTL_STAT_ADD32
950 #undef ALE_SYSCTL_STAT_ADD64
951 
952 struct ale_dmamap_arg {
953 	bus_addr_t	ale_busaddr;
954 };
955 
956 static void
957 ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
958 {
959 	struct ale_dmamap_arg *ctx;
960 
961 	if (error != 0)
962 		return;
963 
964 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
965 
966 	ctx = (struct ale_dmamap_arg *)arg;
967 	ctx->ale_busaddr = segs[0].ds_addr;
968 }
969 
970 /*
971  * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
972  * which specifies high address region of DMA blocks. Therefore these
973  * blocks should have the same high address of given 4GB address
974  * space(i.e. crossing 4GB boundary is not allowed).
975  */
976 static int
977 ale_check_boundary(struct ale_softc *sc)
978 {
979 	bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
980 	bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
981 
982 	rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
983 	    sc->ale_pagesize;
984 	rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
985 	    sc->ale_pagesize;
986 	tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
987 	tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
988 	rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
989 	rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
990 
991 	if ((ALE_ADDR_HI(tx_ring_end) !=
992 	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
993 	    (ALE_ADDR_HI(rx_page_end[0]) !=
994 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
995 	    (ALE_ADDR_HI(rx_page_end[1]) !=
996 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
997 	    (ALE_ADDR_HI(tx_cmb_end) !=
998 	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
999 	    (ALE_ADDR_HI(rx_cmb_end[0]) !=
1000 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
1001 	    (ALE_ADDR_HI(rx_cmb_end[1]) !=
1002 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
1003 		return (EFBIG);
1004 
1005 	if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
1006 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
1007 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
1008 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
1009 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
1010 		return (EFBIG);
1011 
1012 	return (0);
1013 }
1014 
1015 static int
1016 ale_dma_alloc(struct ale_softc *sc)
1017 {
1018 	struct ale_txdesc *txd;
1019 	bus_addr_t lowaddr;
1020 	struct ale_dmamap_arg ctx;
1021 	int error, guard_size, i;
1022 
1023 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
1024 		guard_size = ALE_JUMBO_FRAMELEN;
1025 	else
1026 		guard_size = ALE_MAX_FRAMELEN;
1027 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
1028 	    ALE_RX_PAGE_ALIGN);
1029 	lowaddr = BUS_SPACE_MAXADDR;
1030 again:
1031 	/* Create parent DMA tag. */
1032 	error = bus_dma_tag_create(
1033 	    bus_get_dma_tag(sc->ale_dev), /* parent */
1034 	    1, 0,			/* alignment, boundary */
1035 	    lowaddr,			/* lowaddr */
1036 	    BUS_SPACE_MAXADDR,		/* highaddr */
1037 	    NULL, NULL,			/* filter, filterarg */
1038 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1039 	    0,				/* nsegments */
1040 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1041 	    0,				/* flags */
1042 	    NULL, NULL,			/* lockfunc, lockarg */
1043 	    &sc->ale_cdata.ale_parent_tag);
1044 	if (error != 0) {
1045 		device_printf(sc->ale_dev,
1046 		    "could not create parent DMA tag.\n");
1047 		goto fail;
1048 	}
1049 
1050 	/* Create DMA tag for Tx descriptor ring. */
1051 	error = bus_dma_tag_create(
1052 	    sc->ale_cdata.ale_parent_tag, /* parent */
1053 	    ALE_TX_RING_ALIGN, 0,	/* alignment, boundary */
1054 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1055 	    BUS_SPACE_MAXADDR,		/* highaddr */
1056 	    NULL, NULL,			/* filter, filterarg */
1057 	    ALE_TX_RING_SZ,		/* maxsize */
1058 	    1,				/* nsegments */
1059 	    ALE_TX_RING_SZ,		/* maxsegsize */
1060 	    0,				/* flags */
1061 	    NULL, NULL,			/* lockfunc, lockarg */
1062 	    &sc->ale_cdata.ale_tx_ring_tag);
1063 	if (error != 0) {
1064 		device_printf(sc->ale_dev,
1065 		    "could not create Tx ring DMA tag.\n");
1066 		goto fail;
1067 	}
1068 
1069 	/* Create DMA tag for Rx pages. */
1070 	for (i = 0; i < ALE_RX_PAGES; i++) {
1071 		error = bus_dma_tag_create(
1072 		    sc->ale_cdata.ale_parent_tag, /* parent */
1073 		    ALE_RX_PAGE_ALIGN, 0,	/* alignment, boundary */
1074 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1075 		    BUS_SPACE_MAXADDR,		/* highaddr */
1076 		    NULL, NULL,			/* filter, filterarg */
1077 		    sc->ale_pagesize,		/* maxsize */
1078 		    1,				/* nsegments */
1079 		    sc->ale_pagesize,		/* maxsegsize */
1080 		    0,				/* flags */
1081 		    NULL, NULL,			/* lockfunc, lockarg */
1082 		    &sc->ale_cdata.ale_rx_page[i].page_tag);
1083 		if (error != 0) {
1084 			device_printf(sc->ale_dev,
1085 			    "could not create Rx page %d DMA tag.\n", i);
1086 			goto fail;
1087 		}
1088 	}
1089 
1090 	/* Create DMA tag for Tx coalescing message block. */
1091 	error = bus_dma_tag_create(
1092 	    sc->ale_cdata.ale_parent_tag, /* parent */
1093 	    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1094 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1095 	    BUS_SPACE_MAXADDR,		/* highaddr */
1096 	    NULL, NULL,			/* filter, filterarg */
1097 	    ALE_TX_CMB_SZ,		/* maxsize */
1098 	    1,				/* nsegments */
1099 	    ALE_TX_CMB_SZ,		/* maxsegsize */
1100 	    0,				/* flags */
1101 	    NULL, NULL,			/* lockfunc, lockarg */
1102 	    &sc->ale_cdata.ale_tx_cmb_tag);
1103 	if (error != 0) {
1104 		device_printf(sc->ale_dev,
1105 		    "could not create Tx CMB DMA tag.\n");
1106 		goto fail;
1107 	}
1108 
1109 	/* Create DMA tag for Rx coalescing message block. */
1110 	for (i = 0; i < ALE_RX_PAGES; i++) {
1111 		error = bus_dma_tag_create(
1112 		    sc->ale_cdata.ale_parent_tag, /* parent */
1113 		    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1114 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1115 		    BUS_SPACE_MAXADDR,		/* highaddr */
1116 		    NULL, NULL,			/* filter, filterarg */
1117 		    ALE_RX_CMB_SZ,		/* maxsize */
1118 		    1,				/* nsegments */
1119 		    ALE_RX_CMB_SZ,		/* maxsegsize */
1120 		    0,				/* flags */
1121 		    NULL, NULL,			/* lockfunc, lockarg */
1122 		    &sc->ale_cdata.ale_rx_page[i].cmb_tag);
1123 		if (error != 0) {
1124 			device_printf(sc->ale_dev,
1125 			    "could not create Rx page %d CMB DMA tag.\n", i);
1126 			goto fail;
1127 		}
1128 	}
1129 
1130 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1131 	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
1132 	    (void **)&sc->ale_cdata.ale_tx_ring,
1133 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1134 	    &sc->ale_cdata.ale_tx_ring_map);
1135 	if (error != 0) {
1136 		device_printf(sc->ale_dev,
1137 		    "could not allocate DMA'able memory for Tx ring.\n");
1138 		goto fail;
1139 	}
1140 	ctx.ale_busaddr = 0;
1141 	error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
1142 	    sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
1143 	    ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
1144 	if (error != 0 || ctx.ale_busaddr == 0) {
1145 		device_printf(sc->ale_dev,
1146 		    "could not load DMA'able memory for Tx ring.\n");
1147 		goto fail;
1148 	}
1149 	sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
1150 
1151 	/* Rx pages. */
1152 	for (i = 0; i < ALE_RX_PAGES; i++) {
1153 		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
1154 		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
1155 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1156 		    &sc->ale_cdata.ale_rx_page[i].page_map);
1157 		if (error != 0) {
1158 			device_printf(sc->ale_dev,
1159 			    "could not allocate DMA'able memory for "
1160 			    "Rx page %d.\n", i);
1161 			goto fail;
1162 		}
1163 		ctx.ale_busaddr = 0;
1164 		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
1165 		    sc->ale_cdata.ale_rx_page[i].page_map,
1166 		    sc->ale_cdata.ale_rx_page[i].page_addr,
1167 		    sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
1168 		if (error != 0 || ctx.ale_busaddr == 0) {
1169 			device_printf(sc->ale_dev,
1170 			    "could not load DMA'able memory for "
1171 			    "Rx page %d.\n", i);
1172 			goto fail;
1173 		}
1174 		sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
1175 	}
1176 
1177 	/* Tx CMB. */
1178 	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
1179 	    (void **)&sc->ale_cdata.ale_tx_cmb,
1180 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1181 	    &sc->ale_cdata.ale_tx_cmb_map);
1182 	if (error != 0) {
1183 		device_printf(sc->ale_dev,
1184 		    "could not allocate DMA'able memory for Tx CMB.\n");
1185 		goto fail;
1186 	}
1187 	ctx.ale_busaddr = 0;
1188 	error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
1189 	    sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
1190 	    ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1191 	if (error != 0 || ctx.ale_busaddr == 0) {
1192 		device_printf(sc->ale_dev,
1193 		    "could not load DMA'able memory for Tx CMB.\n");
1194 		goto fail;
1195 	}
1196 	sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
1197 
1198 	/* Rx CMB. */
1199 	for (i = 0; i < ALE_RX_PAGES; i++) {
1200 		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1201 		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
1202 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1203 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
1204 		if (error != 0) {
1205 			device_printf(sc->ale_dev, "could not allocate "
1206 			    "DMA'able memory for Rx page %d CMB.\n", i);
1207 			goto fail;
1208 		}
1209 		ctx.ale_busaddr = 0;
1210 		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1211 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
1212 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1213 		    ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1214 		if (error != 0 || ctx.ale_busaddr == 0) {
1215 			device_printf(sc->ale_dev, "could not load DMA'able "
1216 			    "memory for Rx page %d CMB.\n", i);
1217 			goto fail;
1218 		}
1219 		sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
1220 	}
1221 
1222 	/*
1223 	 * Tx descriptors/RXF0/CMB DMA blocks share the same
1224 	 * high address region of 64bit DMA address space.
1225 	 */
1226 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1227 	    (error = ale_check_boundary(sc)) != 0) {
1228 		device_printf(sc->ale_dev, "4GB boundary crossed, "
1229 		    "switching to 32bit DMA addressing mode.\n");
1230 		ale_dma_free(sc);
1231 		/*
1232 		 * Limit max allowable DMA address space to 32bit
1233 		 * and try again.
1234 		 */
1235 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1236 		goto again;
1237 	}
1238 
1239 	/*
1240 	 * Create Tx buffer parent tag.
1241 	 * AR81xx allows 64bit DMA addressing of Tx buffers so it
1242 	 * needs separate parent DMA tag as parent DMA address space
1243 	 * could be restricted to be within 32bit address space by
1244 	 * 4GB boundary crossing.
1245 	 */
1246 	error = bus_dma_tag_create(
1247 	    bus_get_dma_tag(sc->ale_dev), /* parent */
1248 	    1, 0,			/* alignment, boundary */
1249 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1250 	    BUS_SPACE_MAXADDR,		/* highaddr */
1251 	    NULL, NULL,			/* filter, filterarg */
1252 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1253 	    0,				/* nsegments */
1254 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1255 	    0,				/* flags */
1256 	    NULL, NULL,			/* lockfunc, lockarg */
1257 	    &sc->ale_cdata.ale_buffer_tag);
1258 	if (error != 0) {
1259 		device_printf(sc->ale_dev,
1260 		    "could not create parent buffer DMA tag.\n");
1261 		goto fail;
1262 	}
1263 
1264 	/* Create DMA tag for Tx buffers. */
1265 	error = bus_dma_tag_create(
1266 	    sc->ale_cdata.ale_buffer_tag, /* parent */
1267 	    1, 0,			/* alignment, boundary */
1268 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1269 	    BUS_SPACE_MAXADDR,		/* highaddr */
1270 	    NULL, NULL,			/* filter, filterarg */
1271 	    ALE_TSO_MAXSIZE,		/* maxsize */
1272 	    ALE_MAXTXSEGS,		/* nsegments */
1273 	    ALE_TSO_MAXSEGSIZE,		/* maxsegsize */
1274 	    0,				/* flags */
1275 	    NULL, NULL,			/* lockfunc, lockarg */
1276 	    &sc->ale_cdata.ale_tx_tag);
1277 	if (error != 0) {
1278 		device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
1279 		goto fail;
1280 	}
1281 
1282 	/* Create DMA maps for Tx buffers. */
1283 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1284 		txd = &sc->ale_cdata.ale_txdesc[i];
1285 		txd->tx_m = NULL;
1286 		txd->tx_dmamap = NULL;
1287 		error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
1288 		    &txd->tx_dmamap);
1289 		if (error != 0) {
1290 			device_printf(sc->ale_dev,
1291 			    "could not create Tx dmamap.\n");
1292 			goto fail;
1293 		}
1294 	}
1295 
1296 fail:
1297 	return (error);
1298 }
1299 
1300 static void
1301 ale_dma_free(struct ale_softc *sc)
1302 {
1303 	struct ale_txdesc *txd;
1304 	int i;
1305 
1306 	/* Tx buffers. */
1307 	if (sc->ale_cdata.ale_tx_tag != NULL) {
1308 		for (i = 0; i < ALE_TX_RING_CNT; i++) {
1309 			txd = &sc->ale_cdata.ale_txdesc[i];
1310 			if (txd->tx_dmamap != NULL) {
1311 				bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
1312 				    txd->tx_dmamap);
1313 				txd->tx_dmamap = NULL;
1314 			}
1315 		}
1316 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
1317 		sc->ale_cdata.ale_tx_tag = NULL;
1318 	}
1319 	/* Tx descriptor ring. */
1320 	if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
1321 		if (sc->ale_cdata.ale_tx_ring_paddr != 0)
1322 			bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
1323 			    sc->ale_cdata.ale_tx_ring_map);
1324 		if (sc->ale_cdata.ale_tx_ring != NULL)
1325 			bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
1326 			    sc->ale_cdata.ale_tx_ring,
1327 			    sc->ale_cdata.ale_tx_ring_map);
1328 		sc->ale_cdata.ale_tx_ring_paddr = 0;
1329 		sc->ale_cdata.ale_tx_ring = NULL;
1330 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
1331 		sc->ale_cdata.ale_tx_ring_tag = NULL;
1332 	}
1333 	/* Rx page block. */
1334 	for (i = 0; i < ALE_RX_PAGES; i++) {
1335 		if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
1336 			if (sc->ale_cdata.ale_rx_page[i].page_paddr != 0)
1337 				bus_dmamap_unload(
1338 				    sc->ale_cdata.ale_rx_page[i].page_tag,
1339 				    sc->ale_cdata.ale_rx_page[i].page_map);
1340 			if (sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
1341 				bus_dmamem_free(
1342 				    sc->ale_cdata.ale_rx_page[i].page_tag,
1343 				    sc->ale_cdata.ale_rx_page[i].page_addr,
1344 				    sc->ale_cdata.ale_rx_page[i].page_map);
1345 			sc->ale_cdata.ale_rx_page[i].page_paddr = 0;
1346 			sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
1347 			bus_dma_tag_destroy(
1348 			    sc->ale_cdata.ale_rx_page[i].page_tag);
1349 			sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
1350 		}
1351 	}
1352 	/* Rx CMB. */
1353 	for (i = 0; i < ALE_RX_PAGES; i++) {
1354 		if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
1355 			if (sc->ale_cdata.ale_rx_page[i].cmb_paddr != 0)
1356 				bus_dmamap_unload(
1357 				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1358 				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1359 			if (sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
1360 				bus_dmamem_free(
1361 				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1362 				    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1363 				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1364 			sc->ale_cdata.ale_rx_page[i].cmb_paddr = 0;
1365 			sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
1366 			bus_dma_tag_destroy(
1367 			    sc->ale_cdata.ale_rx_page[i].cmb_tag);
1368 			sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
1369 		}
1370 	}
1371 	/* Tx CMB. */
1372 	if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
1373 		if (sc->ale_cdata.ale_tx_cmb_paddr != 0)
1374 			bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
1375 			    sc->ale_cdata.ale_tx_cmb_map);
1376 		if (sc->ale_cdata.ale_tx_cmb != NULL)
1377 			bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
1378 			    sc->ale_cdata.ale_tx_cmb,
1379 			    sc->ale_cdata.ale_tx_cmb_map);
1380 		sc->ale_cdata.ale_tx_cmb_paddr = 0;
1381 		sc->ale_cdata.ale_tx_cmb = NULL;
1382 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
1383 		sc->ale_cdata.ale_tx_cmb_tag = NULL;
1384 	}
1385 	if (sc->ale_cdata.ale_buffer_tag != NULL) {
1386 		bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
1387 		sc->ale_cdata.ale_buffer_tag = NULL;
1388 	}
1389 	if (sc->ale_cdata.ale_parent_tag != NULL) {
1390 		bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
1391 		sc->ale_cdata.ale_parent_tag = NULL;
1392 	}
1393 }
1394 
1395 static int
1396 ale_shutdown(device_t dev)
1397 {
1398 
1399 	return (ale_suspend(dev));
1400 }
1401 
1402 /*
1403  * Note, this driver resets the link speed to 10/100Mbps by
1404  * restarting auto-negotiation in suspend/shutdown phase but we
1405  * don't know whether that auto-negotiation would succeed or not
1406  * as driver has no control after powering off/suspend operation.
1407  * If the renegotiation fail WOL may not work. Running at 1Gbps
1408  * will draw more power than 375mA at 3.3V which is specified in
1409  * PCI specification and that would result in complete
1410  * shutdowning power to ethernet controller.
1411  *
1412  * TODO
1413  * Save current negotiated media speed/duplex/flow-control to
1414  * softc and restore the same link again after resuming. PHY
1415  * handling such as power down/resetting to 100Mbps may be better
1416  * handled in suspend method in phy driver.
1417  */
1418 static void
1419 ale_setlinkspeed(struct ale_softc *sc)
1420 {
1421 	struct mii_data *mii;
1422 	int aneg, i;
1423 
1424 	mii = device_get_softc(sc->ale_miibus);
1425 	mii_pollstat(mii);
1426 	aneg = 0;
1427 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1428 	    (IFM_ACTIVE | IFM_AVALID)) {
1429 		switch IFM_SUBTYPE(mii->mii_media_active) {
1430 		case IFM_10_T:
1431 		case IFM_100_TX:
1432 			return;
1433 		case IFM_1000_T:
1434 			aneg++;
1435 			break;
1436 		default:
1437 			break;
1438 		}
1439 	}
1440 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
1441 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1442 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1443 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1444 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1445 	DELAY(1000);
1446 	if (aneg != 0) {
1447 		/*
1448 		 * Poll link state until ale(4) get a 10/100Mbps link.
1449 		 */
1450 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1451 			mii_pollstat(mii);
1452 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1453 			    == (IFM_ACTIVE | IFM_AVALID)) {
1454 				switch (IFM_SUBTYPE(
1455 				    mii->mii_media_active)) {
1456 				case IFM_10_T:
1457 				case IFM_100_TX:
1458 					ale_mac_config(sc);
1459 					return;
1460 				default:
1461 					break;
1462 				}
1463 			}
1464 			ALE_UNLOCK(sc);
1465 			pause("alelnk", hz);
1466 			ALE_LOCK(sc);
1467 		}
1468 		if (i == MII_ANEGTICKS_GIGE)
1469 			device_printf(sc->ale_dev,
1470 			    "establishing a link failed, WOL may not work!");
1471 	}
1472 	/*
1473 	 * No link, force MAC to have 100Mbps, full-duplex link.
1474 	 * This is the last resort and may/may not work.
1475 	 */
1476 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1477 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1478 	ale_mac_config(sc);
1479 }
1480 
1481 static void
1482 ale_setwol(struct ale_softc *sc)
1483 {
1484 	if_t ifp;
1485 	uint32_t reg, pmcs;
1486 	uint16_t pmstat;
1487 	int pmc;
1488 
1489 	ALE_LOCK_ASSERT(sc);
1490 
1491 	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
1492 		/* Disable WOL. */
1493 		CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1494 		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1495 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1496 		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1497 		/* Force PHY power down. */
1498 		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1499 		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1500 		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
1501 		    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
1502 		    GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
1503 		return;
1504 	}
1505 
1506 	ifp = sc->ale_ifp;
1507 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
1508 		if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
1509 			ale_setlinkspeed(sc);
1510 	}
1511 
1512 	pmcs = 0;
1513 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
1514 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1515 	CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
1516 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1517 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1518 	    MAC_CFG_BCAST);
1519 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) != 0)
1520 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1521 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1522 		reg |= MAC_CFG_RX_ENB;
1523 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1524 
1525 	if ((if_getcapenable(ifp) & IFCAP_WOL) == 0) {
1526 		/* WOL disabled, PHY power down. */
1527 		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1528 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1529 		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1530 		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1531 		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1532 		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
1533 		    GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
1534 		    GPHY_CTRL_PWDOWN_HW);
1535 	}
1536 	/* Request PME. */
1537 	pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
1538 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1539 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1540 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1541 	pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1542 }
1543 
1544 static int
1545 ale_suspend(device_t dev)
1546 {
1547 	struct ale_softc *sc;
1548 
1549 	sc = device_get_softc(dev);
1550 
1551 	ALE_LOCK(sc);
1552 	ale_stop(sc);
1553 	ale_setwol(sc);
1554 	ALE_UNLOCK(sc);
1555 
1556 	return (0);
1557 }
1558 
1559 static int
1560 ale_resume(device_t dev)
1561 {
1562 	struct ale_softc *sc;
1563 	if_t ifp;
1564 	int pmc;
1565 	uint16_t pmstat;
1566 
1567 	sc = device_get_softc(dev);
1568 
1569 	ALE_LOCK(sc);
1570 	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
1571 		/* Disable PME and clear PME status. */
1572 		pmstat = pci_read_config(sc->ale_dev,
1573 		    pmc + PCIR_POWER_STATUS, 2);
1574 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1575 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1576 			pci_write_config(sc->ale_dev,
1577 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
1578 		}
1579 	}
1580 	/* Reset PHY. */
1581 	ale_phy_reset(sc);
1582 	ifp = sc->ale_ifp;
1583 	if ((if_getflags(ifp) & IFF_UP) != 0) {
1584 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1585 		ale_init_locked(sc);
1586 	}
1587 	ALE_UNLOCK(sc);
1588 
1589 	return (0);
1590 }
1591 
1592 static int
1593 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
1594 {
1595 	struct ale_txdesc *txd, *txd_last;
1596 	struct tx_desc *desc;
1597 	struct mbuf *m;
1598 	struct ip *ip;
1599 	struct tcphdr *tcp;
1600 	bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
1601 	bus_dmamap_t map;
1602 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1603 	int error, i, nsegs, prod, si;
1604 
1605 	ALE_LOCK_ASSERT(sc);
1606 
1607 	M_ASSERTPKTHDR((*m_head));
1608 
1609 	m = *m_head;
1610 	ip = NULL;
1611 	tcp = NULL;
1612 	cflags = vtag = 0;
1613 	ip_off = poff = 0;
1614 	if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1615 		/*
1616 		 * AR81xx requires offset of TCP/UDP payload in its Tx
1617 		 * descriptor to perform hardware Tx checksum offload.
1618 		 * Additionally, TSO requires IP/TCP header size and
1619 		 * modification of IP/TCP header in order to make TSO
1620 		 * engine work. This kind of operation takes many CPU
1621 		 * cycles on FreeBSD so fast host CPU is required to
1622 		 * get smooth TSO performance.
1623 		 */
1624 		struct ether_header *eh;
1625 
1626 		if (M_WRITABLE(m) == 0) {
1627 			/* Get a writable copy. */
1628 			m = m_dup(*m_head, M_NOWAIT);
1629 			/* Release original mbufs. */
1630 			m_freem(*m_head);
1631 			if (m == NULL) {
1632 				*m_head = NULL;
1633 				return (ENOBUFS);
1634 			}
1635 			*m_head = m;
1636 		}
1637 
1638 		/*
1639 		 * Buggy-controller requires 4 byte aligned Tx buffer
1640 		 * to make custom checksum offload work.
1641 		 */
1642 		if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
1643 		    (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
1644 		    (mtod(m, intptr_t) & 3) != 0) {
1645 			m = m_defrag(*m_head, M_NOWAIT);
1646 			if (m == NULL) {
1647 				m_freem(*m_head);
1648 				*m_head = NULL;
1649 				return (ENOBUFS);
1650 			}
1651 			*m_head = m;
1652 		}
1653 
1654 		ip_off = sizeof(struct ether_header);
1655 		m = m_pullup(m, ip_off);
1656 		if (m == NULL) {
1657 			*m_head = NULL;
1658 			return (ENOBUFS);
1659 		}
1660 		eh = mtod(m, struct ether_header *);
1661 		/*
1662 		 * Check if hardware VLAN insertion is off.
1663 		 * Additional check for LLC/SNAP frame?
1664 		 */
1665 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1666 			ip_off = sizeof(struct ether_vlan_header);
1667 			m = m_pullup(m, ip_off);
1668 			if (m == NULL) {
1669 				*m_head = NULL;
1670 				return (ENOBUFS);
1671 			}
1672 		}
1673 		m = m_pullup(m, ip_off + sizeof(struct ip));
1674 		if (m == NULL) {
1675 			*m_head = NULL;
1676 			return (ENOBUFS);
1677 		}
1678 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1679 		poff = ip_off + (ip->ip_hl << 2);
1680 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1681 			/*
1682 			 * XXX
1683 			 * AR81xx requires the first descriptor should
1684 			 * not include any TCP playload for TSO case.
1685 			 * (i.e. ethernet header + IP + TCP header only)
1686 			 * m_pullup(9) above will ensure this too.
1687 			 * However it's not correct if the first mbuf
1688 			 * of the chain does not use cluster.
1689 			 */
1690 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1691 			if (m == NULL) {
1692 				*m_head = NULL;
1693 				return (ENOBUFS);
1694 			}
1695 			ip = (struct ip *)(mtod(m, char *) + ip_off);
1696 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1697 			m = m_pullup(m, poff + (tcp->th_off << 2));
1698 			if (m == NULL) {
1699 				*m_head = NULL;
1700 				return (ENOBUFS);
1701 			}
1702 			/*
1703 			 * AR81xx requires IP/TCP header size and offset as
1704 			 * well as TCP pseudo checksum which complicates
1705 			 * TSO configuration. I guess this comes from the
1706 			 * adherence to Microsoft NDIS Large Send
1707 			 * specification which requires insertion of
1708 			 * pseudo checksum by upper stack. The pseudo
1709 			 * checksum that NDIS refers to doesn't include
1710 			 * TCP payload length so ale(4) should recompute
1711 			 * the pseudo checksum here. Hopefully this wouldn't
1712 			 * be much burden on modern CPUs.
1713 			 * Reset IP checksum and recompute TCP pseudo
1714 			 * checksum as NDIS specification said.
1715 			 */
1716 			ip->ip_sum = 0;
1717 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1718 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1719 		}
1720 		*m_head = m;
1721 	}
1722 
1723 	si = prod = sc->ale_cdata.ale_tx_prod;
1724 	txd = &sc->ale_cdata.ale_txdesc[prod];
1725 	txd_last = txd;
1726 	map = txd->tx_dmamap;
1727 
1728 	error =  bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1729 	    *m_head, txsegs, &nsegs, 0);
1730 	if (error == EFBIG) {
1731 		m = m_collapse(*m_head, M_NOWAIT, ALE_MAXTXSEGS);
1732 		if (m == NULL) {
1733 			m_freem(*m_head);
1734 			*m_head = NULL;
1735 			return (ENOMEM);
1736 		}
1737 		*m_head = m;
1738 		error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1739 		    *m_head, txsegs, &nsegs, 0);
1740 		if (error != 0) {
1741 			m_freem(*m_head);
1742 			*m_head = NULL;
1743 			return (error);
1744 		}
1745 	} else if (error != 0)
1746 		return (error);
1747 	if (nsegs == 0) {
1748 		m_freem(*m_head);
1749 		*m_head = NULL;
1750 		return (EIO);
1751 	}
1752 
1753 	/* Check descriptor overrun. */
1754 	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) {
1755 		bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
1756 		return (ENOBUFS);
1757 	}
1758 	bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
1759 
1760 	m = *m_head;
1761 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1762 		/* Request TSO and set MSS. */
1763 		cflags |= ALE_TD_TSO;
1764 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
1765 		/* Set IP/TCP header size. */
1766 		cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
1767 		cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
1768 	} else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
1769 		/*
1770 		 * AR81xx supports Tx custom checksum offload feature
1771 		 * that offloads single 16bit checksum computation.
1772 		 * So you can choose one among IP, TCP and UDP.
1773 		 * Normally driver sets checksum start/insertion
1774 		 * position from the information of TCP/UDP frame as
1775 		 * TCP/UDP checksum takes more time than that of IP.
1776 		 * However it seems that custom checksum offload
1777 		 * requires 4 bytes aligned Tx buffers due to hardware
1778 		 * bug.
1779 		 * AR81xx also supports explicit Tx checksum computation
1780 		 * if it is told that the size of IP header and TCP
1781 		 * header(for UDP, the header size does not matter
1782 		 * because it's fixed length). However with this scheme
1783 		 * TSO does not work so you have to choose one either
1784 		 * TSO or explicit Tx checksum offload. I chosen TSO
1785 		 * plus custom checksum offload with work-around which
1786 		 * will cover most common usage for this consumer
1787 		 * ethernet controller. The work-around takes a lot of
1788 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
1789 		 * boundary, though.
1790 		 */
1791 		cflags |= ALE_TD_CXSUM;
1792 		/* Set checksum start offset. */
1793 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1794 		/* Set checksum insertion position of TCP/UDP. */
1795 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1796 		    ALE_TD_CSUM_XSUMOFFSET_SHIFT);
1797 	}
1798 
1799 	/* Configure VLAN hardware tag insertion. */
1800 	if ((m->m_flags & M_VLANTAG) != 0) {
1801 		vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1802 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1803 		cflags |= ALE_TD_INSERT_VLAN_TAG;
1804 	}
1805 
1806 	i = 0;
1807 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1808 		/*
1809 		 * Make sure the first fragment contains
1810 		 * only ethernet and IP/TCP header with options.
1811 		 */
1812 		hdrlen =  poff + (tcp->th_off << 2);
1813 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1814 		desc->addr = htole64(txsegs[i].ds_addr);
1815 		desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag);
1816 		desc->flags = htole32(cflags);
1817 		sc->ale_cdata.ale_tx_cnt++;
1818 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1819 		if (m->m_len - hdrlen > 0) {
1820 			/* Handle remaining payload of the first fragment. */
1821 			desc = &sc->ale_cdata.ale_tx_ring[prod];
1822 			desc->addr = htole64(txsegs[i].ds_addr + hdrlen);
1823 			desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) |
1824 			    vtag);
1825 			desc->flags = htole32(cflags);
1826 			sc->ale_cdata.ale_tx_cnt++;
1827 			ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1828 		}
1829 		i = 1;
1830 	}
1831 	for (; i < nsegs; i++) {
1832 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1833 		desc->addr = htole64(txsegs[i].ds_addr);
1834 		desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
1835 		desc->flags = htole32(cflags);
1836 		sc->ale_cdata.ale_tx_cnt++;
1837 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1838 	}
1839 	/* Update producer index. */
1840 	sc->ale_cdata.ale_tx_prod = prod;
1841 	/* Set TSO header on the first descriptor. */
1842 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1843 		desc = &sc->ale_cdata.ale_tx_ring[si];
1844 		desc->flags |= htole32(ALE_TD_TSO_HDR);
1845 	}
1846 
1847 	/* Finally set EOP on the last descriptor. */
1848 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1849 	desc = &sc->ale_cdata.ale_tx_ring[prod];
1850 	desc->flags |= htole32(ALE_TD_EOP);
1851 
1852 	/* Swap dmamap of the first and the last. */
1853 	txd = &sc->ale_cdata.ale_txdesc[prod];
1854 	map = txd_last->tx_dmamap;
1855 	txd_last->tx_dmamap = txd->tx_dmamap;
1856 	txd->tx_dmamap = map;
1857 	txd->tx_m = m;
1858 
1859 	/* Sync descriptors. */
1860 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
1861 	    sc->ale_cdata.ale_tx_ring_map,
1862 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1863 
1864 	return (0);
1865 }
1866 
1867 static void
1868 ale_start(if_t ifp)
1869 {
1870         struct ale_softc *sc;
1871 
1872 	sc = if_getsoftc(ifp);
1873 	ALE_LOCK(sc);
1874 	ale_start_locked(ifp);
1875 	ALE_UNLOCK(sc);
1876 }
1877 
1878 static void
1879 ale_start_locked(if_t ifp)
1880 {
1881         struct ale_softc *sc;
1882         struct mbuf *m_head;
1883 	int enq;
1884 
1885 	sc = if_getsoftc(ifp);
1886 
1887 	ALE_LOCK_ASSERT(sc);
1888 
1889 	/* Reclaim transmitted frames. */
1890 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1891 		ale_txeof(sc);
1892 
1893 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1894 	    IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0)
1895 		return;
1896 
1897 	for (enq = 0; !if_sendq_empty(ifp); ) {
1898 		m_head = if_dequeue(ifp);
1899 		if (m_head == NULL)
1900 			break;
1901 		/*
1902 		 * Pack the data into the transmit ring. If we
1903 		 * don't have room, set the OACTIVE flag and wait
1904 		 * for the NIC to drain the ring.
1905 		 */
1906 		if (ale_encap(sc, &m_head)) {
1907 			if (m_head == NULL)
1908 				break;
1909 			if_sendq_prepend(ifp, m_head);
1910 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1911 			break;
1912 		}
1913 
1914 		enq++;
1915 		/*
1916 		 * If there's a BPF listener, bounce a copy of this frame
1917 		 * to him.
1918 		 */
1919 		ETHER_BPF_MTAP(ifp, m_head);
1920 	}
1921 
1922 	if (enq > 0) {
1923 		/* Kick. */
1924 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1925 		    sc->ale_cdata.ale_tx_prod);
1926 		/* Set a timeout in case the chip goes out to lunch. */
1927 		sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
1928 	}
1929 }
1930 
1931 static void
1932 ale_watchdog(struct ale_softc *sc)
1933 {
1934 	if_t ifp;
1935 
1936 	ALE_LOCK_ASSERT(sc);
1937 
1938 	if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
1939 		return;
1940 
1941 	ifp = sc->ale_ifp;
1942 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1943 		if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
1944 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1945 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1946 		ale_init_locked(sc);
1947 		return;
1948 	}
1949 	if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
1950 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1951 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1952 	ale_init_locked(sc);
1953 	if (!if_sendq_empty(ifp))
1954 		ale_start_locked(ifp);
1955 }
1956 
1957 static int
1958 ale_ioctl(if_t ifp, u_long cmd, caddr_t data)
1959 {
1960 	struct ale_softc *sc;
1961 	struct ifreq *ifr;
1962 	struct mii_data *mii;
1963 	int error, mask;
1964 
1965 	sc = if_getsoftc(ifp);
1966 	ifr = (struct ifreq *)data;
1967 	error = 0;
1968 	switch (cmd) {
1969 	case SIOCSIFMTU:
1970 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
1971 		    ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
1972 		    ifr->ifr_mtu > ETHERMTU))
1973 			error = EINVAL;
1974 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1975 			ALE_LOCK(sc);
1976 			if_setmtu(ifp, ifr->ifr_mtu);
1977 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1978 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1979 				ale_init_locked(sc);
1980 			}
1981 			ALE_UNLOCK(sc);
1982 		}
1983 		break;
1984 	case SIOCSIFFLAGS:
1985 		ALE_LOCK(sc);
1986 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1987 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1988 				if (((if_getflags(ifp) ^ sc->ale_if_flags)
1989 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1990 					ale_rxfilter(sc);
1991 			} else {
1992 				ale_init_locked(sc);
1993 			}
1994 		} else {
1995 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1996 				ale_stop(sc);
1997 		}
1998 		sc->ale_if_flags = if_getflags(ifp);
1999 		ALE_UNLOCK(sc);
2000 		break;
2001 	case SIOCADDMULTI:
2002 	case SIOCDELMULTI:
2003 		ALE_LOCK(sc);
2004 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2005 			ale_rxfilter(sc);
2006 		ALE_UNLOCK(sc);
2007 		break;
2008 	case SIOCSIFMEDIA:
2009 	case SIOCGIFMEDIA:
2010 		mii = device_get_softc(sc->ale_miibus);
2011 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2012 		break;
2013 	case SIOCSIFCAP:
2014 		ALE_LOCK(sc);
2015 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2016 		if ((mask & IFCAP_TXCSUM) != 0 &&
2017 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
2018 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2019 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
2020 				if_sethwassistbits(ifp, ALE_CSUM_FEATURES, 0);
2021 			else
2022 				if_sethwassistbits(ifp, 0, ALE_CSUM_FEATURES);
2023 		}
2024 		if ((mask & IFCAP_RXCSUM) != 0 &&
2025 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
2026 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2027 		if ((mask & IFCAP_TSO4) != 0 &&
2028 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
2029 			if_togglecapenable(ifp, IFCAP_TSO4);
2030 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
2031 				if_sethwassistbits(ifp, CSUM_TSO, 0);
2032 			else
2033 				if_sethwassistbits(ifp, 0, CSUM_TSO);
2034 		}
2035 
2036 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2037 		    (if_getcapabilities(ifp) & IFCAP_WOL_MCAST) != 0)
2038 			if_togglecapenable(ifp, IFCAP_WOL_MCAST);
2039 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2040 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
2041 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2042 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2043 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2044 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2045 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2046 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
2047 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2048 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2049 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2050 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2051 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
2052 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
2053 			ale_rxvlan(sc);
2054 		}
2055 		ALE_UNLOCK(sc);
2056 		VLAN_CAPABILITIES(ifp);
2057 		break;
2058 	default:
2059 		error = ether_ioctl(ifp, cmd, data);
2060 		break;
2061 	}
2062 
2063 	return (error);
2064 }
2065 
2066 static void
2067 ale_mac_config(struct ale_softc *sc)
2068 {
2069 	struct mii_data *mii;
2070 	uint32_t reg;
2071 
2072 	ALE_LOCK_ASSERT(sc);
2073 
2074 	mii = device_get_softc(sc->ale_miibus);
2075 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2076 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2077 	    MAC_CFG_SPEED_MASK);
2078 	/* Reprogram MAC with resolved speed/duplex. */
2079 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2080 	case IFM_10_T:
2081 	case IFM_100_TX:
2082 		reg |= MAC_CFG_SPEED_10_100;
2083 		break;
2084 	case IFM_1000_T:
2085 		reg |= MAC_CFG_SPEED_1000;
2086 		break;
2087 	}
2088 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2089 		reg |= MAC_CFG_FULL_DUPLEX;
2090 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2091 			reg |= MAC_CFG_TX_FC;
2092 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2093 			reg |= MAC_CFG_RX_FC;
2094 	}
2095 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2096 }
2097 
2098 static void
2099 ale_stats_clear(struct ale_softc *sc)
2100 {
2101 	struct smb sb;
2102 	uint32_t *reg;
2103 	int i;
2104 
2105 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2106 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2107 		i += sizeof(uint32_t);
2108 	}
2109 	/* Read Tx statistics. */
2110 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2111 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2112 		i += sizeof(uint32_t);
2113 	}
2114 }
2115 
2116 static void
2117 ale_stats_update(struct ale_softc *sc)
2118 {
2119 	struct ale_hw_stats *stat;
2120 	struct smb sb, *smb;
2121 	if_t ifp;
2122 	uint32_t *reg;
2123 	int i;
2124 
2125 	ALE_LOCK_ASSERT(sc);
2126 
2127 	ifp = sc->ale_ifp;
2128 	stat = &sc->ale_stats;
2129 	smb = &sb;
2130 
2131 	/* Read Rx statistics. */
2132 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2133 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2134 		i += sizeof(uint32_t);
2135 	}
2136 	/* Read Tx statistics. */
2137 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2138 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2139 		i += sizeof(uint32_t);
2140 	}
2141 
2142 	/* Rx stats. */
2143 	stat->rx_frames += smb->rx_frames;
2144 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2145 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2146 	stat->rx_pause_frames += smb->rx_pause_frames;
2147 	stat->rx_control_frames += smb->rx_control_frames;
2148 	stat->rx_crcerrs += smb->rx_crcerrs;
2149 	stat->rx_lenerrs += smb->rx_lenerrs;
2150 	stat->rx_bytes += smb->rx_bytes;
2151 	stat->rx_runts += smb->rx_runts;
2152 	stat->rx_fragments += smb->rx_fragments;
2153 	stat->rx_pkts_64 += smb->rx_pkts_64;
2154 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2155 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2156 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2157 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2158 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2159 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2160 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2161 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2162 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2163 	stat->rx_alignerrs += smb->rx_alignerrs;
2164 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2165 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2166 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2167 
2168 	/* Tx stats. */
2169 	stat->tx_frames += smb->tx_frames;
2170 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2171 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2172 	stat->tx_pause_frames += smb->tx_pause_frames;
2173 	stat->tx_excess_defer += smb->tx_excess_defer;
2174 	stat->tx_control_frames += smb->tx_control_frames;
2175 	stat->tx_deferred += smb->tx_deferred;
2176 	stat->tx_bytes += smb->tx_bytes;
2177 	stat->tx_pkts_64 += smb->tx_pkts_64;
2178 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2179 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2180 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2181 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2182 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2183 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2184 	stat->tx_single_colls += smb->tx_single_colls;
2185 	stat->tx_multi_colls += smb->tx_multi_colls;
2186 	stat->tx_late_colls += smb->tx_late_colls;
2187 	stat->tx_excess_colls += smb->tx_excess_colls;
2188 	stat->tx_underrun += smb->tx_underrun;
2189 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2190 	stat->tx_lenerrs += smb->tx_lenerrs;
2191 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2192 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2193 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2194 
2195 	/* Update counters in ifnet. */
2196 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2197 
2198 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2199 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2200 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2201 
2202 	if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_late_colls +
2203 	    smb->tx_excess_colls + smb->tx_underrun + smb->tx_pkts_truncated);
2204 
2205 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2206 
2207 	if_inc_counter(ifp, IFCOUNTER_IERRORS,
2208 	    smb->rx_crcerrs + smb->rx_lenerrs +
2209 	    smb->rx_runts + smb->rx_pkts_truncated +
2210 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2211 	    smb->rx_alignerrs);
2212 }
2213 
2214 static int
2215 ale_intr(void *arg)
2216 {
2217 	struct ale_softc *sc;
2218 	uint32_t status;
2219 
2220 	sc = (struct ale_softc *)arg;
2221 
2222 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2223 	if ((status & ALE_INTRS) == 0)
2224 		return (FILTER_STRAY);
2225 	/* Disable interrupts. */
2226 	CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
2227 	taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2228 
2229 	return (FILTER_HANDLED);
2230 }
2231 
2232 static void
2233 ale_int_task(void *arg, int pending)
2234 {
2235 	struct ale_softc *sc;
2236 	if_t ifp;
2237 	uint32_t status;
2238 	int more;
2239 
2240 	sc = (struct ale_softc *)arg;
2241 
2242 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2243 	ALE_LOCK(sc);
2244 	if (sc->ale_morework != 0)
2245 		status |= INTR_RX_PKT;
2246 	if ((status & ALE_INTRS) == 0)
2247 		goto done;
2248 
2249 	/* Acknowledge interrupts but still disable interrupts. */
2250 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
2251 
2252 	ifp = sc->ale_ifp;
2253 	more = 0;
2254 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2255 		more = ale_rxeof(sc, sc->ale_process_limit);
2256 		if (more == EAGAIN)
2257 			sc->ale_morework = 1;
2258 		else if (more == EIO) {
2259 			sc->ale_stats.reset_brk_seq++;
2260 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2261 			ale_init_locked(sc);
2262 			ALE_UNLOCK(sc);
2263 			return;
2264 		}
2265 
2266 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2267 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2268 				device_printf(sc->ale_dev,
2269 				    "DMA read error! -- resetting\n");
2270 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2271 				device_printf(sc->ale_dev,
2272 				    "DMA write error! -- resetting\n");
2273 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2274 			ale_init_locked(sc);
2275 			ALE_UNLOCK(sc);
2276 			return;
2277 		}
2278 		if (!if_sendq_empty(ifp))
2279 			ale_start_locked(ifp);
2280 	}
2281 
2282 	if (more == EAGAIN ||
2283 	    (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
2284 		ALE_UNLOCK(sc);
2285 		taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2286 		return;
2287 	}
2288 
2289 done:
2290 	ALE_UNLOCK(sc);
2291 
2292 	/* Re-enable interrupts. */
2293 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
2294 }
2295 
2296 static void
2297 ale_txeof(struct ale_softc *sc)
2298 {
2299 	if_t ifp;
2300 	struct ale_txdesc *txd;
2301 	uint32_t cons, prod;
2302 	int prog;
2303 
2304 	ALE_LOCK_ASSERT(sc);
2305 
2306 	ifp = sc->ale_ifp;
2307 
2308 	if (sc->ale_cdata.ale_tx_cnt == 0)
2309 		return;
2310 
2311 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2312 	    sc->ale_cdata.ale_tx_ring_map,
2313 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2314 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
2315 		bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2316 		    sc->ale_cdata.ale_tx_cmb_map,
2317 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2318 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
2319 	} else
2320 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
2321 	cons = sc->ale_cdata.ale_tx_cons;
2322 	/*
2323 	 * Go through our Tx list and free mbufs for those
2324 	 * frames which have been transmitted.
2325 	 */
2326 	for (prog = 0; cons != prod; prog++,
2327 	    ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
2328 		if (sc->ale_cdata.ale_tx_cnt <= 0)
2329 			break;
2330 		prog++;
2331 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2332 		sc->ale_cdata.ale_tx_cnt--;
2333 		txd = &sc->ale_cdata.ale_txdesc[cons];
2334 		if (txd->tx_m != NULL) {
2335 			/* Reclaim transmitted mbufs. */
2336 			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2337 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2338 			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2339 			    txd->tx_dmamap);
2340 			m_freem(txd->tx_m);
2341 			txd->tx_m = NULL;
2342 		}
2343 	}
2344 
2345 	if (prog > 0) {
2346 		sc->ale_cdata.ale_tx_cons = cons;
2347 		/*
2348 		 * Unarm watchdog timer only when there is no pending
2349 		 * Tx descriptors in queue.
2350 		 */
2351 		if (sc->ale_cdata.ale_tx_cnt == 0)
2352 			sc->ale_watchdog_timer = 0;
2353 	}
2354 }
2355 
2356 static void
2357 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
2358     uint32_t length, uint32_t *prod)
2359 {
2360 	struct ale_rx_page *rx_page;
2361 
2362 	rx_page = *page;
2363 	/* Update consumer position. */
2364 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
2365 	    ALE_RX_PAGE_ALIGN);
2366 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
2367 		/*
2368 		 * End of Rx page reached, let hardware reuse
2369 		 * this page.
2370 		 */
2371 		rx_page->cons = 0;
2372 		*rx_page->cmb_addr = 0;
2373 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2374 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2375 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
2376 		    RXF_VALID);
2377 		/* Switch to alternate Rx page. */
2378 		sc->ale_cdata.ale_rx_curp ^= 1;
2379 		rx_page = *page =
2380 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2381 		/* Page flipped, sync CMB and Rx page. */
2382 		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2383 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2384 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2385 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2386 		/* Sync completed, cache updated producer index. */
2387 		*prod = *rx_page->cmb_addr;
2388 	}
2389 }
2390 
2391 /*
2392  * It seems that AR81xx controller can compute partial checksum.
2393  * The partial checksum value can be used to accelerate checksum
2394  * computation for fragmented TCP/UDP packets. Upper network stack
2395  * already takes advantage of the partial checksum value in IP
2396  * reassembly stage. But I'm not sure the correctness of the
2397  * partial hardware checksum assistance due to lack of data sheet.
2398  * In addition, the Rx feature of controller that requires copying
2399  * for every frames effectively nullifies one of most nice offload
2400  * capability of controller.
2401  */
2402 static void
2403 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
2404 {
2405 	if_t ifp;
2406 	struct ip *ip;
2407 	char *p;
2408 
2409 	ifp = sc->ale_ifp;
2410 	m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2411 	if ((status & ALE_RD_IPCSUM_NOK) == 0)
2412 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2413 
2414 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
2415 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
2416 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
2417 		    ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
2418 			m->m_pkthdr.csum_flags |=
2419 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2420 			m->m_pkthdr.csum_data = 0xffff;
2421 		}
2422 	} else {
2423 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
2424 		    (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
2425 			p = mtod(m, char *);
2426 			p += ETHER_HDR_LEN;
2427 			if ((status & ALE_RD_802_3) != 0)
2428 				p += LLC_SNAPFRAMELEN;
2429 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0 &&
2430 			    (status & ALE_RD_VLAN) != 0)
2431 				p += ETHER_VLAN_ENCAP_LEN;
2432 			ip = (struct ip *)p;
2433 			if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
2434 				return;
2435 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2436 			    CSUM_PSEUDO_HDR;
2437 			m->m_pkthdr.csum_data = 0xffff;
2438 		}
2439 	}
2440 	/*
2441 	 * Don't mark bad checksum for TCP/UDP frames
2442 	 * as fragmented frames may always have set
2443 	 * bad checksummed bit of frame status.
2444 	 */
2445 }
2446 
2447 /* Process received frames. */
2448 static int
2449 ale_rxeof(struct ale_softc *sc, int count)
2450 {
2451 	struct ale_rx_page *rx_page;
2452 	struct rx_rs *rs;
2453 	if_t ifp;
2454 	struct mbuf *m;
2455 	uint32_t length, prod, seqno, status, vtags;
2456 	int prog;
2457 
2458 	ifp = sc->ale_ifp;
2459 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2460 	bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2461 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2462 	bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2463 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2464 	/*
2465 	 * Don't directly access producer index as hardware may
2466 	 * update it while Rx handler is in progress. It would
2467 	 * be even better if there is a way to let hardware
2468 	 * know how far driver processed its received frames.
2469 	 * Alternatively, hardware could provide a way to disable
2470 	 * CMB updates until driver acknowledges the end of CMB
2471 	 * access.
2472 	 */
2473 	prod = *rx_page->cmb_addr;
2474 	for (prog = 0; prog < count; prog++) {
2475 		if (rx_page->cons >= prod)
2476 			break;
2477 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
2478 		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
2479 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
2480 			/*
2481 			 * Normally I believe this should not happen unless
2482 			 * severe driver bug or corrupted memory. However
2483 			 * it seems to happen under certain conditions which
2484 			 * is triggered by abrupt Rx events such as initiation
2485 			 * of bulk transfer of remote host. It's not easy to
2486 			 * reproduce this and I doubt it could be related
2487 			 * with FIFO overflow of hardware or activity of Tx
2488 			 * CMB updates. I also remember similar behaviour
2489 			 * seen on RealTek 8139 which uses resembling Rx
2490 			 * scheme.
2491 			 */
2492 			if (bootverbose)
2493 				device_printf(sc->ale_dev,
2494 				    "garbled seq: %u, expected: %u -- "
2495 				    "resetting!\n", seqno,
2496 				    sc->ale_cdata.ale_rx_seqno);
2497 			return (EIO);
2498 		}
2499 		/* Frame received. */
2500 		sc->ale_cdata.ale_rx_seqno++;
2501 		length = ALE_RX_BYTES(le32toh(rs->length));
2502 		status = le32toh(rs->flags);
2503 		if ((status & ALE_RD_ERROR) != 0) {
2504 			/*
2505 			 * We want to pass the following frames to upper
2506 			 * layer regardless of error status of Rx return
2507 			 * status.
2508 			 *
2509 			 *  o IP/TCP/UDP checksum is bad.
2510 			 *  o frame length and protocol specific length
2511 			 *     does not match.
2512 			 */
2513 			if ((status & (ALE_RD_CRC | ALE_RD_CODE |
2514 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
2515 			    ALE_RD_TRUNC)) != 0) {
2516 				ale_rx_update_page(sc, &rx_page, length, &prod);
2517 				continue;
2518 			}
2519 		}
2520 		/*
2521 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
2522 		 * from hardware limitation). For jumbo frames we could
2523 		 * get a slightly better performance if driver use
2524 		 * m_getjcl(9) with proper buffer size argument. However
2525 		 * that would make code more complicated and I don't
2526 		 * think users would expect good Rx performance numbers
2527 		 * on these low-end consumer ethernet controller.
2528 		 */
2529 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
2530 		    ETHER_ALIGN, ifp, NULL);
2531 		if (m == NULL) {
2532 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2533 			ale_rx_update_page(sc, &rx_page, length, &prod);
2534 			continue;
2535 		}
2536 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
2537 		    (status & ALE_RD_IPV4) != 0)
2538 			ale_rxcsum(sc, m, status);
2539 		if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
2540 		    (status & ALE_RD_VLAN) != 0) {
2541 			vtags = ALE_RX_VLAN(le32toh(rs->vtags));
2542 			m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
2543 			m->m_flags |= M_VLANTAG;
2544 		}
2545 
2546 		/* Pass it to upper layer. */
2547 		ALE_UNLOCK(sc);
2548 		if_input(ifp, m);
2549 		ALE_LOCK(sc);
2550 
2551 		ale_rx_update_page(sc, &rx_page, length, &prod);
2552 	}
2553 
2554 	return (count > 0 ? 0 : EAGAIN);
2555 }
2556 
2557 static void
2558 ale_tick(void *arg)
2559 {
2560 	struct ale_softc *sc;
2561 	struct mii_data *mii;
2562 
2563 	sc = (struct ale_softc *)arg;
2564 
2565 	ALE_LOCK_ASSERT(sc);
2566 
2567 	mii = device_get_softc(sc->ale_miibus);
2568 	mii_tick(mii);
2569 	ale_stats_update(sc);
2570 	/*
2571 	 * Reclaim Tx buffers that have been transferred. It's not
2572 	 * needed here but it would release allocated mbuf chains
2573 	 * faster and limit the maximum delay to a hz.
2574 	 */
2575 	ale_txeof(sc);
2576 	ale_watchdog(sc);
2577 	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2578 }
2579 
2580 static void
2581 ale_reset(struct ale_softc *sc)
2582 {
2583 	uint32_t reg;
2584 	int i;
2585 
2586 	/* Initialize PCIe module. From Linux. */
2587 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2588 
2589 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
2590 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2591 		DELAY(10);
2592 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
2593 			break;
2594 	}
2595 	if (i == 0)
2596 		device_printf(sc->ale_dev, "master reset timeout!\n");
2597 
2598 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2599 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
2600 			break;
2601 		DELAY(10);
2602 	}
2603 
2604 	if (i == 0)
2605 		device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
2606 }
2607 
2608 static void
2609 ale_init(void *xsc)
2610 {
2611 	struct ale_softc *sc;
2612 
2613 	sc = (struct ale_softc *)xsc;
2614 	ALE_LOCK(sc);
2615 	ale_init_locked(sc);
2616 	ALE_UNLOCK(sc);
2617 }
2618 
2619 static void
2620 ale_init_locked(struct ale_softc *sc)
2621 {
2622 	if_t ifp;
2623 	struct mii_data *mii;
2624 	uint8_t eaddr[ETHER_ADDR_LEN];
2625 	bus_addr_t paddr;
2626 	uint32_t reg, rxf_hi, rxf_lo;
2627 
2628 	ALE_LOCK_ASSERT(sc);
2629 
2630 	ifp = sc->ale_ifp;
2631 	mii = device_get_softc(sc->ale_miibus);
2632 
2633 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2634 		return;
2635 	/*
2636 	 * Cancel any pending I/O.
2637 	 */
2638 	ale_stop(sc);
2639 	/*
2640 	 * Reset the chip to a known state.
2641 	 */
2642 	ale_reset(sc);
2643 	/* Initialize Tx descriptors, DMA memory blocks. */
2644 	ale_init_rx_pages(sc);
2645 	ale_init_tx_ring(sc);
2646 
2647 	/* Reprogram the station address. */
2648 	bcopy(if_getlladdr(ifp), eaddr, ETHER_ADDR_LEN);
2649 	CSR_WRITE_4(sc, ALE_PAR0,
2650 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2651 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
2652 	/*
2653 	 * Clear WOL status and disable all WOL feature as WOL
2654 	 * would interfere Rx operation under normal environments.
2655 	 */
2656 	CSR_READ_4(sc, ALE_WOL_CFG);
2657 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
2658 	/*
2659 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
2660 	 * the same high address part of DMAable region.
2661 	 */
2662 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
2663 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
2664 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
2665 	CSR_WRITE_4(sc, ALE_TPD_CNT,
2666 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
2667 	/* Set Rx page base address, note we use single queue. */
2668 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
2669 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
2670 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
2671 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
2672 	/* Set Tx/Rx CMB addresses. */
2673 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
2674 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
2675 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
2676 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
2677 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
2678 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
2679 	/* Mark RXF0 is valid. */
2680 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
2681 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
2682 	/*
2683 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
2684 	 * multi-queue yet.
2685 	 */
2686 
2687 	/* Set Rx page size, excluding guard frame size. */
2688 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
2689 	/* Tell hardware that we're ready to load DMA blocks. */
2690 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
2691 
2692 	/* Set Rx/Tx interrupt trigger threshold. */
2693 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
2694 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
2695 	/*
2696 	 * XXX
2697 	 * Set interrupt trigger timer, its purpose and relation
2698 	 * with interrupt moderation mechanism is not clear yet.
2699 	 */
2700 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
2701 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
2702 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
2703 
2704 	/* Configure interrupt moderation timer. */
2705 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
2706 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
2707 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
2708 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
2709 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
2710 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2711 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
2712 		reg |= MASTER_IM_RX_TIMER_ENB;
2713 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
2714 		reg |= MASTER_IM_TX_TIMER_ENB;
2715 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
2716 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
2717 
2718 	/* Set Maximum frame size of controller. */
2719 	if (if_getmtu(ifp) < ETHERMTU)
2720 		sc->ale_max_frame_size = ETHERMTU;
2721 	else
2722 		sc->ale_max_frame_size = if_getmtu(ifp);
2723 	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2724 	    ETHER_CRC_LEN;
2725 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
2726 	/* Configure IPG/IFG parameters. */
2727 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
2728 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2729 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2730 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2731 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2732 	/* Set parameters for half-duplex media. */
2733 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
2734 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2735 	    HDPX_CFG_LCOL_MASK) |
2736 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2737 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2738 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2739 	    HDPX_CFG_ABEBT_MASK) |
2740 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2741 	    HDPX_CFG_JAMIPG_MASK));
2742 
2743 	/* Configure Tx jumbo frame parameters. */
2744 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2745 		if (if_getmtu(ifp) < ETHERMTU)
2746 			reg = sc->ale_max_frame_size;
2747 		else if (if_getmtu(ifp) < 6 * 1024)
2748 			reg = (sc->ale_max_frame_size * 2) / 3;
2749 		else
2750 			reg = sc->ale_max_frame_size / 2;
2751 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
2752 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
2753 		    TX_JUMBO_THRESH_UNIT_SHIFT);
2754 	}
2755 	/* Configure TxQ. */
2756 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
2757 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
2758 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2759 	    TXQ_CFG_TPD_BURST_MASK;
2760 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
2761 
2762 	/* Configure Rx jumbo frame & flow control parameters. */
2763 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2764 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
2765 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
2766 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
2767 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
2768 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
2769 		    RX_JUMBO_LKAH_MASK));
2770 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
2771 		rxf_hi = (reg * 7) / 10;
2772 		rxf_lo = (reg * 3)/ 10;
2773 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
2774 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2775 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
2776 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2777 		    RX_FIFO_PAUSE_THRESH_HI_MASK));
2778 	}
2779 
2780 	/* Disable RSS. */
2781 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
2782 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
2783 
2784 	/* Configure RxQ. */
2785 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
2786 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2787 
2788 	/* Configure DMA parameters. */
2789 	reg = 0;
2790 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
2791 		reg |= DMA_CFG_TXCMB_ENB;
2792 	CSR_WRITE_4(sc, ALE_DMA_CFG,
2793 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
2794 	    sc->ale_dma_rd_burst | reg |
2795 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
2796 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2797 	    DMA_CFG_RD_DELAY_CNT_MASK) |
2798 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2799 	    DMA_CFG_WR_DELAY_CNT_MASK));
2800 
2801 	/*
2802 	 * Hardware can be configured to issue SMB interrupt based
2803 	 * on programmed interval. Since there is a callout that is
2804 	 * invoked for every hz in driver we use that instead of
2805 	 * relying on periodic SMB interrupt.
2806 	 */
2807 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
2808 	/* Clear MAC statistics. */
2809 	ale_stats_clear(sc);
2810 
2811 	/*
2812 	 * Configure Tx/Rx MACs.
2813 	 *  - Auto-padding for short frames.
2814 	 *  - Enable CRC generation.
2815 	 *  Actual reconfiguration of MAC for resolved speed/duplex
2816 	 *  is followed after detection of link establishment.
2817 	 *  AR81xx always does checksum computation regardless of
2818 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
2819 	 *  cause Rx handling issue for fragmented IP datagrams due
2820 	 *  to silicon bug.
2821 	 */
2822 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2823 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2824 	    MAC_CFG_PREAMBLE_MASK);
2825 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
2826 		reg |= MAC_CFG_SPEED_10_100;
2827 	else
2828 		reg |= MAC_CFG_SPEED_1000;
2829 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2830 
2831 	/* Set up the receive filter. */
2832 	ale_rxfilter(sc);
2833 	ale_rxvlan(sc);
2834 
2835 	/* Acknowledge all pending interrupts and clear it. */
2836 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
2837 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2838 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
2839 
2840 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2841 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2842 
2843 	sc->ale_flags &= ~ALE_FLAG_LINK;
2844 	/* Switch to the current media. */
2845 	mii_mediachg(mii);
2846 
2847 	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2848 }
2849 
2850 static void
2851 ale_stop(struct ale_softc *sc)
2852 {
2853 	if_t ifp;
2854 	struct ale_txdesc *txd;
2855 	uint32_t reg;
2856 	int i;
2857 
2858 	ALE_LOCK_ASSERT(sc);
2859 	/*
2860 	 * Mark the interface down and cancel the watchdog timer.
2861 	 */
2862 	ifp = sc->ale_ifp;
2863 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2864 	sc->ale_flags &= ~ALE_FLAG_LINK;
2865 	callout_stop(&sc->ale_tick_ch);
2866 	sc->ale_watchdog_timer = 0;
2867 	ale_stats_update(sc);
2868 	/* Disable interrupts. */
2869 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
2870 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2871 	/* Disable queue processing and DMA. */
2872 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
2873 	reg &= ~TXQ_CFG_ENB;
2874 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
2875 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
2876 	reg &= ~RXQ_CFG_ENB;
2877 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
2878 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
2879 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
2880 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
2881 	DELAY(1000);
2882 	/* Stop Rx/Tx MACs. */
2883 	ale_stop_mac(sc);
2884 	/* Disable interrupts which might be touched in taskq handler. */
2885 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2886 
2887 	/*
2888 	 * Free TX mbufs still in the queues.
2889 	 */
2890 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2891 		txd = &sc->ale_cdata.ale_txdesc[i];
2892 		if (txd->tx_m != NULL) {
2893 			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2894 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2895 			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2896 			    txd->tx_dmamap);
2897 			m_freem(txd->tx_m);
2898 			txd->tx_m = NULL;
2899 		}
2900         }
2901 }
2902 
2903 static void
2904 ale_stop_mac(struct ale_softc *sc)
2905 {
2906 	uint32_t reg;
2907 	int i;
2908 
2909 	ALE_LOCK_ASSERT(sc);
2910 
2911 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2912 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2913 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2914 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2915 	}
2916 
2917 	for (i = ALE_TIMEOUT; i > 0; i--) {
2918 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
2919 		if (reg == 0)
2920 			break;
2921 		DELAY(10);
2922 	}
2923 	if (i == 0)
2924 		device_printf(sc->ale_dev,
2925 		    "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
2926 }
2927 
2928 static void
2929 ale_init_tx_ring(struct ale_softc *sc)
2930 {
2931 	struct ale_txdesc *txd;
2932 	int i;
2933 
2934 	ALE_LOCK_ASSERT(sc);
2935 
2936 	sc->ale_cdata.ale_tx_prod = 0;
2937 	sc->ale_cdata.ale_tx_cons = 0;
2938 	sc->ale_cdata.ale_tx_cnt = 0;
2939 
2940 	bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
2941 	bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
2942 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2943 		txd = &sc->ale_cdata.ale_txdesc[i];
2944 		txd->tx_m = NULL;
2945 	}
2946 	*sc->ale_cdata.ale_tx_cmb = 0;
2947 	bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2948 	    sc->ale_cdata.ale_tx_cmb_map,
2949 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2950 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2951 	    sc->ale_cdata.ale_tx_ring_map,
2952 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2953 }
2954 
2955 static void
2956 ale_init_rx_pages(struct ale_softc *sc)
2957 {
2958 	struct ale_rx_page *rx_page;
2959 	int i;
2960 
2961 	ALE_LOCK_ASSERT(sc);
2962 
2963 	sc->ale_morework = 0;
2964 	sc->ale_cdata.ale_rx_seqno = 0;
2965 	sc->ale_cdata.ale_rx_curp = 0;
2966 
2967 	for (i = 0; i < ALE_RX_PAGES; i++) {
2968 		rx_page = &sc->ale_cdata.ale_rx_page[i];
2969 		bzero(rx_page->page_addr, sc->ale_pagesize);
2970 		bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
2971 		rx_page->cons = 0;
2972 		*rx_page->cmb_addr = 0;
2973 		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2974 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2975 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2976 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2977 	}
2978 }
2979 
2980 static void
2981 ale_rxvlan(struct ale_softc *sc)
2982 {
2983 	if_t ifp;
2984 	uint32_t reg;
2985 
2986 	ALE_LOCK_ASSERT(sc);
2987 
2988 	ifp = sc->ale_ifp;
2989 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2990 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2991 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
2992 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2993 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2994 }
2995 
2996 static u_int
2997 ale_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2998 {
2999 	uint32_t crc, *mchash = arg;
3000 
3001 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
3002 	mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3003 
3004 	return (1);
3005 }
3006 
3007 static void
3008 ale_rxfilter(struct ale_softc *sc)
3009 {
3010 	if_t ifp;
3011 	uint32_t mchash[2];
3012 	uint32_t rxcfg;
3013 
3014 	ALE_LOCK_ASSERT(sc);
3015 
3016 	ifp = sc->ale_ifp;
3017 
3018 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
3019 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3020 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
3021 		rxcfg |= MAC_CFG_BCAST;
3022 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3023 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
3024 			rxcfg |= MAC_CFG_PROMISC;
3025 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
3026 			rxcfg |= MAC_CFG_ALLMULTI;
3027 		CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
3028 		CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
3029 		CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3030 		return;
3031 	}
3032 
3033 	/* Program new filter. */
3034 	bzero(mchash, sizeof(mchash));
3035 	if_foreach_llmaddr(ifp, ale_hash_maddr, &mchash);
3036 
3037 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
3038 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
3039 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3040 }
3041 
3042 static int
3043 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3044 {
3045 	int error, value;
3046 
3047 	if (arg1 == NULL)
3048 		return (EINVAL);
3049 	value = *(int *)arg1;
3050 	error = sysctl_handle_int(oidp, &value, 0, req);
3051 	if (error || req->newptr == NULL)
3052 		return (error);
3053 	if (value < low || value > high)
3054 		return (EINVAL);
3055         *(int *)arg1 = value;
3056 
3057         return (0);
3058 }
3059 
3060 static int
3061 sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
3062 {
3063 	return (sysctl_int_range(oidp, arg1, arg2, req,
3064 	    ALE_PROC_MIN, ALE_PROC_MAX));
3065 }
3066 
3067 static int
3068 sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
3069 {
3070 
3071 	return (sysctl_int_range(oidp, arg1, arg2, req,
3072 	    ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
3073 }
3074