xref: /freebsd/sys/dev/ale/if_ale.c (revision a3cf0ef5a295c885c895fabfd56470c0d1db322d)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/module.h>
41 #include <sys/rman.h>
42 #include <sys/queue.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_llc.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_vlan_var.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/ip.h>
61 #include <netinet/tcp.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 
66 #include <dev/pci/pcireg.h>
67 #include <dev/pci/pcivar.h>
68 
69 #include <machine/atomic.h>
70 #include <machine/bus.h>
71 #include <machine/in_cksum.h>
72 
73 #include <dev/ale/if_alereg.h>
74 #include <dev/ale/if_alevar.h>
75 
76 /* "device miibus" required.  See GENERIC if you get errors here. */
77 #include "miibus_if.h"
78 
79 /* For more information about Tx checksum offload issues see ale_encap(). */
80 #define	ALE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
81 
82 MODULE_DEPEND(ale, pci, 1, 1, 1);
83 MODULE_DEPEND(ale, ether, 1, 1, 1);
84 MODULE_DEPEND(ale, miibus, 1, 1, 1);
85 
86 /* Tunables. */
87 static int msi_disable = 0;
88 static int msix_disable = 0;
89 TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
90 TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
91 
92 /*
93  * Devices supported by this driver.
94  */
95 static struct ale_dev {
96 	uint16_t	ale_vendorid;
97 	uint16_t	ale_deviceid;
98 	const char	*ale_name;
99 } ale_devs[] = {
100     { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
101     "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
102 };
103 
104 static int	ale_attach(device_t);
105 static int	ale_check_boundary(struct ale_softc *);
106 static int	ale_detach(device_t);
107 static int	ale_dma_alloc(struct ale_softc *);
108 static void	ale_dma_free(struct ale_softc *);
109 static void	ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
110 static int	ale_encap(struct ale_softc *, struct mbuf **);
111 static void	ale_get_macaddr(struct ale_softc *);
112 static void	ale_init(void *);
113 static void	ale_init_locked(struct ale_softc *);
114 static void	ale_init_rx_pages(struct ale_softc *);
115 static void	ale_init_tx_ring(struct ale_softc *);
116 static void	ale_int_task(void *, int);
117 static int	ale_intr(void *);
118 static int	ale_ioctl(struct ifnet *, u_long, caddr_t);
119 static void	ale_link_task(void *, int);
120 static void	ale_mac_config(struct ale_softc *);
121 static int	ale_miibus_readreg(device_t, int, int);
122 static void	ale_miibus_statchg(device_t);
123 static int	ale_miibus_writereg(device_t, int, int, int);
124 static int	ale_mediachange(struct ifnet *);
125 static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
126 static void	ale_phy_reset(struct ale_softc *);
127 static int	ale_probe(device_t);
128 static void	ale_reset(struct ale_softc *);
129 static int	ale_resume(device_t);
130 static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
131     uint32_t, uint32_t *);
132 static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
133 static int	ale_rxeof(struct ale_softc *sc, int);
134 static void	ale_rxfilter(struct ale_softc *);
135 static void	ale_rxvlan(struct ale_softc *);
136 static void	ale_setlinkspeed(struct ale_softc *);
137 static void	ale_setwol(struct ale_softc *);
138 static int	ale_shutdown(device_t);
139 static void	ale_start(struct ifnet *);
140 static void	ale_stats_clear(struct ale_softc *);
141 static void	ale_stats_update(struct ale_softc *);
142 static void	ale_stop(struct ale_softc *);
143 static void	ale_stop_mac(struct ale_softc *);
144 static int	ale_suspend(device_t);
145 static void	ale_sysctl_node(struct ale_softc *);
146 static void	ale_tick(void *);
147 static void	ale_tx_task(void *, int);
148 static void	ale_txeof(struct ale_softc *);
149 static void	ale_watchdog(struct ale_softc *);
150 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
151 static int	sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
152 static int	sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
153 
154 static device_method_t ale_methods[] = {
155 	/* Device interface. */
156 	DEVMETHOD(device_probe,		ale_probe),
157 	DEVMETHOD(device_attach,	ale_attach),
158 	DEVMETHOD(device_detach,	ale_detach),
159 	DEVMETHOD(device_shutdown,	ale_shutdown),
160 	DEVMETHOD(device_suspend,	ale_suspend),
161 	DEVMETHOD(device_resume,	ale_resume),
162 
163 	/* MII interface. */
164 	DEVMETHOD(miibus_readreg,	ale_miibus_readreg),
165 	DEVMETHOD(miibus_writereg,	ale_miibus_writereg),
166 	DEVMETHOD(miibus_statchg,	ale_miibus_statchg),
167 
168 	{ NULL, NULL }
169 };
170 
171 static driver_t ale_driver = {
172 	"ale",
173 	ale_methods,
174 	sizeof(struct ale_softc)
175 };
176 
177 static devclass_t ale_devclass;
178 
179 DRIVER_MODULE(ale, pci, ale_driver, ale_devclass, 0, 0);
180 DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, 0, 0);
181 
182 static struct resource_spec ale_res_spec_mem[] = {
183 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
184 	{ -1,			0,		0 }
185 };
186 
187 static struct resource_spec ale_irq_spec_legacy[] = {
188 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
189 	{ -1,			0,		0 }
190 };
191 
192 static struct resource_spec ale_irq_spec_msi[] = {
193 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
194 	{ -1,			0,		0 }
195 };
196 
197 static struct resource_spec ale_irq_spec_msix[] = {
198 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
199 	{ -1,			0,		0 }
200 };
201 
202 static int
203 ale_miibus_readreg(device_t dev, int phy, int reg)
204 {
205 	struct ale_softc *sc;
206 	uint32_t v;
207 	int i;
208 
209 	sc = device_get_softc(dev);
210 
211 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
212 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
213 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
214 		DELAY(5);
215 		v = CSR_READ_4(sc, ALE_MDIO);
216 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
217 			break;
218 	}
219 
220 	if (i == 0) {
221 		device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
222 		return (0);
223 	}
224 
225 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
226 }
227 
228 static int
229 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
230 {
231 	struct ale_softc *sc;
232 	uint32_t v;
233 	int i;
234 
235 	sc = device_get_softc(dev);
236 
237 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
238 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
239 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
240 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
241 		DELAY(5);
242 		v = CSR_READ_4(sc, ALE_MDIO);
243 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
244 			break;
245 	}
246 
247 	if (i == 0)
248 		device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
249 
250 	return (0);
251 }
252 
253 static void
254 ale_miibus_statchg(device_t dev)
255 {
256 	struct ale_softc *sc;
257 
258 	sc = device_get_softc(dev);
259 
260 	taskqueue_enqueue(taskqueue_swi, &sc->ale_link_task);
261 }
262 
263 static void
264 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
265 {
266 	struct ale_softc *sc;
267 	struct mii_data *mii;
268 
269 	sc = ifp->if_softc;
270 	ALE_LOCK(sc);
271 	mii = device_get_softc(sc->ale_miibus);
272 
273 	mii_pollstat(mii);
274 	ALE_UNLOCK(sc);
275 	ifmr->ifm_status = mii->mii_media_status;
276 	ifmr->ifm_active = mii->mii_media_active;
277 }
278 
279 static int
280 ale_mediachange(struct ifnet *ifp)
281 {
282 	struct ale_softc *sc;
283 	struct mii_data *mii;
284 	struct mii_softc *miisc;
285 	int error;
286 
287 	sc = ifp->if_softc;
288 	ALE_LOCK(sc);
289 	mii = device_get_softc(sc->ale_miibus);
290 	if (mii->mii_instance != 0) {
291 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
292 			mii_phy_reset(miisc);
293 	}
294 	error = mii_mediachg(mii);
295 	ALE_UNLOCK(sc);
296 
297 	return (error);
298 }
299 
300 static int
301 ale_probe(device_t dev)
302 {
303 	struct ale_dev *sp;
304 	int i;
305 	uint16_t vendor, devid;
306 
307 	vendor = pci_get_vendor(dev);
308 	devid = pci_get_device(dev);
309 	sp = ale_devs;
310 	for (i = 0; i < sizeof(ale_devs) / sizeof(ale_devs[0]); i++) {
311 		if (vendor == sp->ale_vendorid &&
312 		    devid == sp->ale_deviceid) {
313 			device_set_desc(dev, sp->ale_name);
314 			return (BUS_PROBE_DEFAULT);
315 		}
316 		sp++;
317 	}
318 
319 	return (ENXIO);
320 }
321 
322 static void
323 ale_get_macaddr(struct ale_softc *sc)
324 {
325 	uint32_t ea[2], reg;
326 	int i, vpdc;
327 
328 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
329 	if ((reg & SPI_VPD_ENB) != 0) {
330 		reg &= ~SPI_VPD_ENB;
331 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
332 	}
333 
334 	if (pci_find_extcap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
335 		/*
336 		 * PCI VPD capability found, let TWSI reload EEPROM.
337 		 * This will set ethernet address of controller.
338 		 */
339 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
340 		    TWSI_CTRL_SW_LD_START);
341 		for (i = 100; i > 0; i--) {
342 			DELAY(1000);
343 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
344 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
345 				break;
346 		}
347 		if (i == 0)
348 			device_printf(sc->ale_dev,
349 			    "reloading EEPROM timeout!\n");
350 	} else {
351 		if (bootverbose)
352 			device_printf(sc->ale_dev,
353 			    "PCI VPD capability not found!\n");
354 	}
355 
356 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
357 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
358 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
359 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
360 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
361 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
362 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
363 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
364 }
365 
366 static void
367 ale_phy_reset(struct ale_softc *sc)
368 {
369 
370 	/* Reset magic from Linux. */
371 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
372 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
373 	    GPHY_CTRL_PHY_PLL_ON);
374 	DELAY(1000);
375 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
376 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
377 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
378 	DELAY(1000);
379 
380 #define	ATPHY_DBG_ADDR		0x1D
381 #define	ATPHY_DBG_DATA		0x1E
382 
383 	/* Enable hibernation mode. */
384 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
385 	    ATPHY_DBG_ADDR, 0x0B);
386 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
387 	    ATPHY_DBG_DATA, 0xBC00);
388 	/* Set Class A/B for all modes. */
389 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
390 	    ATPHY_DBG_ADDR, 0x00);
391 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
392 	    ATPHY_DBG_DATA, 0x02EF);
393 	/* Enable 10BT power saving. */
394 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
395 	    ATPHY_DBG_ADDR, 0x12);
396 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
397 	    ATPHY_DBG_DATA, 0x4C04);
398 	/* Adjust 1000T power. */
399 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
400 	    ATPHY_DBG_ADDR, 0x04);
401 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
402 	    ATPHY_DBG_ADDR, 0x8BBB);
403 	/* 10BT center tap voltage. */
404 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
405 	    ATPHY_DBG_ADDR, 0x05);
406 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
407 	    ATPHY_DBG_ADDR, 0x2C46);
408 
409 #undef	ATPHY_DBG_ADDR
410 #undef	ATPHY_DBG_DATA
411 	DELAY(1000);
412 }
413 
414 static int
415 ale_attach(device_t dev)
416 {
417 	struct ale_softc *sc;
418 	struct ifnet *ifp;
419 	uint16_t burst;
420 	int error, i, msic, msixc, pmc;
421 	uint32_t rxf_len, txf_len;
422 
423 	error = 0;
424 	sc = device_get_softc(dev);
425 	sc->ale_dev = dev;
426 
427 	mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
428 	    MTX_DEF);
429 	callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
430 	TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
431 	TASK_INIT(&sc->ale_link_task, 0, ale_link_task, sc);
432 
433 	/* Map the device. */
434 	pci_enable_busmaster(dev);
435 	sc->ale_res_spec = ale_res_spec_mem;
436 	sc->ale_irq_spec = ale_irq_spec_legacy;
437 	error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
438 	if (error != 0) {
439 		device_printf(dev, "cannot allocate memory resources.\n");
440 		goto fail;
441 	}
442 
443 	/* Set PHY address. */
444 	sc->ale_phyaddr = ALE_PHY_ADDR;
445 
446 	/* Reset PHY. */
447 	ale_phy_reset(sc);
448 
449 	/* Reset the ethernet controller. */
450 	ale_reset(sc);
451 
452 	/* Get PCI and chip id/revision. */
453 	sc->ale_rev = pci_get_revid(dev);
454 	if (sc->ale_rev >= 0xF0) {
455 		/* L2E Rev. B. AR8114 */
456 		sc->ale_flags |= ALE_FLAG_FASTETHER;
457 	} else {
458 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
459 			/* L1E AR8121 */
460 			sc->ale_flags |= ALE_FLAG_JUMBO;
461 		} else {
462 			/* L2E Rev. A. AR8113 */
463 			sc->ale_flags |= ALE_FLAG_FASTETHER;
464 		}
465 	}
466 	/*
467 	 * All known controllers seems to require 4 bytes alignment
468 	 * of Tx buffers to make Tx checksum offload with custom
469 	 * checksum generation method work.
470 	 */
471 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
472 	/*
473 	 * All known controllers seems to have issues on Rx checksum
474 	 * offload for fragmented IP datagrams.
475 	 */
476 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
477 	/*
478 	 * Don't use Tx CMB. It is known to cause RRS update failure
479 	 * under certain circumstances. Typical phenomenon of the
480 	 * issue would be unexpected sequence number encountered in
481 	 * Rx handler.
482 	 */
483 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
484 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
485 	    MASTER_CHIP_REV_SHIFT;
486 	if (bootverbose) {
487 		device_printf(dev, "PCI device revision : 0x%04x\n",
488 		    sc->ale_rev);
489 		device_printf(dev, "Chip id/revision : 0x%04x\n",
490 		    sc->ale_chip_rev);
491 	}
492 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
493 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
494 	/*
495 	 * Uninitialized hardware returns an invalid chip id/revision
496 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
497 	 */
498 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
499 	    rxf_len == 0xFFFFFFF) {
500 		device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
501 		    "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
502 		    txf_len, rxf_len);
503 		error = ENXIO;
504 		goto fail;
505 	}
506 	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
507 
508 	/* Allocate IRQ resources. */
509 	msixc = pci_msix_count(dev);
510 	msic = pci_msi_count(dev);
511 	if (bootverbose) {
512 		device_printf(dev, "MSIX count : %d\n", msixc);
513 		device_printf(dev, "MSI count : %d\n", msic);
514 	}
515 
516 	/* Prefer MSIX over MSI. */
517 	if (msix_disable == 0 || msi_disable == 0) {
518 		if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
519 		    pci_alloc_msix(dev, &msixc) == 0) {
520 			if (msic == ALE_MSIX_MESSAGES) {
521 				device_printf(dev, "Using %d MSIX messages.\n",
522 				    msixc);
523 				sc->ale_flags |= ALE_FLAG_MSIX;
524 				sc->ale_irq_spec = ale_irq_spec_msix;
525 			} else
526 				pci_release_msi(dev);
527 		}
528 		if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
529 		    msic == ALE_MSI_MESSAGES &&
530 		    pci_alloc_msi(dev, &msic) == 0) {
531 			if (msic == ALE_MSI_MESSAGES) {
532 				device_printf(dev, "Using %d MSI messages.\n",
533 				    msic);
534 				sc->ale_flags |= ALE_FLAG_MSI;
535 				sc->ale_irq_spec = ale_irq_spec_msi;
536 			} else
537 				pci_release_msi(dev);
538 		}
539 	}
540 
541 	error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
542 	if (error != 0) {
543 		device_printf(dev, "cannot allocate IRQ resources.\n");
544 		goto fail;
545 	}
546 
547 	/* Get DMA parameters from PCIe device control register. */
548 	if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
549 		sc->ale_flags |= ALE_FLAG_PCIE;
550 		burst = pci_read_config(dev, i + 0x08, 2);
551 		/* Max read request size. */
552 		sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
553 		    DMA_CFG_RD_BURST_SHIFT;
554 		/* Max payload size. */
555 		sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
556 		    DMA_CFG_WR_BURST_SHIFT;
557 		if (bootverbose) {
558 			device_printf(dev, "Read request size : %d bytes.\n",
559 			    128 << ((burst >> 12) & 0x07));
560 			device_printf(dev, "TLP payload size : %d bytes.\n",
561 			    128 << ((burst >> 5) & 0x07));
562 		}
563 	} else {
564 		sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
565 		sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
566 	}
567 
568 	/* Create device sysctl node. */
569 	ale_sysctl_node(sc);
570 
571 	if ((error = ale_dma_alloc(sc) != 0))
572 		goto fail;
573 
574 	/* Load station address. */
575 	ale_get_macaddr(sc);
576 
577 	ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
578 	if (ifp == NULL) {
579 		device_printf(dev, "cannot allocate ifnet structure.\n");
580 		error = ENXIO;
581 		goto fail;
582 	}
583 
584 	ifp->if_softc = sc;
585 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
586 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
587 	ifp->if_ioctl = ale_ioctl;
588 	ifp->if_start = ale_start;
589 	ifp->if_init = ale_init;
590 	ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1;
591 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
592 	IFQ_SET_READY(&ifp->if_snd);
593 	ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4;
594 	ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO;
595 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
596 		sc->ale_flags |= ALE_FLAG_PMCAP;
597 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
598 	}
599 	ifp->if_capenable = ifp->if_capabilities;
600 
601 	/* Set up MII bus. */
602 	error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange,
603 	    ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY,
604 	    0);
605 	if (error != 0) {
606 		device_printf(dev, "attaching PHYs failed\n");
607 		goto fail;
608 	}
609 
610 	ether_ifattach(ifp, sc->ale_eaddr);
611 
612 	/* VLAN capability setup. */
613 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
614 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
615 	ifp->if_capenable = ifp->if_capabilities;
616 	/*
617 	 * Even though controllers supported by ale(3) have Rx checksum
618 	 * offload bug the workaround for fragmented frames seemed to
619 	 * work so far. However it seems Rx checksum offload does not
620 	 * work under certain conditions. So disable Rx checksum offload
621 	 * until I find more clue about it but allow users to override it.
622 	 */
623 	ifp->if_capenable &= ~IFCAP_RXCSUM;
624 
625 	/* Tell the upper layer(s) we support long frames. */
626 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
627 
628 	/* Create local taskq. */
629 	TASK_INIT(&sc->ale_tx_task, 1, ale_tx_task, ifp);
630 	sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
631 	    taskqueue_thread_enqueue, &sc->ale_tq);
632 	if (sc->ale_tq == NULL) {
633 		device_printf(dev, "could not create taskqueue.\n");
634 		ether_ifdetach(ifp);
635 		error = ENXIO;
636 		goto fail;
637 	}
638 	taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
639 	    device_get_nameunit(sc->ale_dev));
640 
641 	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
642 		msic = ALE_MSIX_MESSAGES;
643 	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
644 		msic = ALE_MSI_MESSAGES;
645 	else
646 		msic = 1;
647 	for (i = 0; i < msic; i++) {
648 		error = bus_setup_intr(dev, sc->ale_irq[i],
649 		    INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
650 		    &sc->ale_intrhand[i]);
651 		if (error != 0)
652 			break;
653 	}
654 	if (error != 0) {
655 		device_printf(dev, "could not set up interrupt handler.\n");
656 		taskqueue_free(sc->ale_tq);
657 		sc->ale_tq = NULL;
658 		ether_ifdetach(ifp);
659 		goto fail;
660 	}
661 
662 fail:
663 	if (error != 0)
664 		ale_detach(dev);
665 
666 	return (error);
667 }
668 
669 static int
670 ale_detach(device_t dev)
671 {
672 	struct ale_softc *sc;
673 	struct ifnet *ifp;
674 	int i, msic;
675 
676 	sc = device_get_softc(dev);
677 
678 	ifp = sc->ale_ifp;
679 	if (device_is_attached(dev)) {
680 		ALE_LOCK(sc);
681 		sc->ale_flags |= ALE_FLAG_DETACH;
682 		ale_stop(sc);
683 		ALE_UNLOCK(sc);
684 		callout_drain(&sc->ale_tick_ch);
685 		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
686 		taskqueue_drain(sc->ale_tq, &sc->ale_tx_task);
687 		taskqueue_drain(taskqueue_swi, &sc->ale_link_task);
688 		ether_ifdetach(ifp);
689 	}
690 
691 	if (sc->ale_tq != NULL) {
692 		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
693 		taskqueue_free(sc->ale_tq);
694 		sc->ale_tq = NULL;
695 	}
696 
697 	if (sc->ale_miibus != NULL) {
698 		device_delete_child(dev, sc->ale_miibus);
699 		sc->ale_miibus = NULL;
700 	}
701 	bus_generic_detach(dev);
702 	ale_dma_free(sc);
703 
704 	if (ifp != NULL) {
705 		if_free(ifp);
706 		sc->ale_ifp = NULL;
707 	}
708 
709 	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
710 		msic = ALE_MSIX_MESSAGES;
711 	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
712 		msic = ALE_MSI_MESSAGES;
713 	else
714 		msic = 1;
715 	for (i = 0; i < msic; i++) {
716 		if (sc->ale_intrhand[i] != NULL) {
717 			bus_teardown_intr(dev, sc->ale_irq[i],
718 			    sc->ale_intrhand[i]);
719 			sc->ale_intrhand[i] = NULL;
720 		}
721 	}
722 
723 	bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
724 	if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
725 		pci_release_msi(dev);
726 	bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
727 	mtx_destroy(&sc->ale_mtx);
728 
729 	return (0);
730 }
731 
732 #define	ALE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
733 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
734 
735 #if __FreeBSD_version > 800000
736 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
737 	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
738 #else
739 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
740 	    SYSCTL_ADD_ULONG(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
741 #endif
742 
743 static void
744 ale_sysctl_node(struct ale_softc *sc)
745 {
746 	struct sysctl_ctx_list *ctx;
747 	struct sysctl_oid_list *child, *parent;
748 	struct sysctl_oid *tree;
749 	struct ale_hw_stats *stats;
750 	int error;
751 
752 	stats = &sc->ale_stats;
753 	ctx = device_get_sysctl_ctx(sc->ale_dev);
754 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
755 
756 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
757 	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_rx_mod, 0,
758 	    sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
759 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
760 	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_tx_mod, 0,
761 	    sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
762 	/* Pull in device tunables. */
763 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
764 	error = resource_int_value(device_get_name(sc->ale_dev),
765 	    device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
766 	if (error == 0) {
767 		if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
768 		    sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
769 			device_printf(sc->ale_dev, "int_rx_mod value out of "
770 			    "range; using default: %d\n",
771 			    ALE_IM_RX_TIMER_DEFAULT);
772 			sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
773 		}
774 	}
775 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
776 	error = resource_int_value(device_get_name(sc->ale_dev),
777 	    device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
778 	if (error == 0) {
779 		if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
780 		    sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
781 			device_printf(sc->ale_dev, "int_tx_mod value out of "
782 			    "range; using default: %d\n",
783 			    ALE_IM_TX_TIMER_DEFAULT);
784 			sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
785 		}
786 	}
787 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
788 	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_process_limit, 0,
789 	    sysctl_hw_ale_proc_limit, "I",
790 	    "max number of Rx events to process");
791 	/* Pull in device tunables. */
792 	sc->ale_process_limit = ALE_PROC_DEFAULT;
793 	error = resource_int_value(device_get_name(sc->ale_dev),
794 	    device_get_unit(sc->ale_dev), "process_limit",
795 	    &sc->ale_process_limit);
796 	if (error == 0) {
797 		if (sc->ale_process_limit < ALE_PROC_MIN ||
798 		    sc->ale_process_limit > ALE_PROC_MAX) {
799 			device_printf(sc->ale_dev,
800 			    "process_limit value out of range; "
801 			    "using default: %d\n", ALE_PROC_DEFAULT);
802 			sc->ale_process_limit = ALE_PROC_DEFAULT;
803 		}
804 	}
805 
806 	/* Misc statistics. */
807 	ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
808 	    &stats->reset_brk_seq,
809 	    "Controller resets due to broken Rx sequnce number");
810 
811 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
812 	    NULL, "ATE statistics");
813 	parent = SYSCTL_CHILDREN(tree);
814 
815 	/* Rx statistics. */
816 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
817 	    NULL, "Rx MAC statistics");
818 	child = SYSCTL_CHILDREN(tree);
819 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
820 	    &stats->rx_frames, "Good frames");
821 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
822 	    &stats->rx_bcast_frames, "Good broadcast frames");
823 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
824 	    &stats->rx_mcast_frames, "Good multicast frames");
825 	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
826 	    &stats->rx_pause_frames, "Pause control frames");
827 	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
828 	    &stats->rx_control_frames, "Control frames");
829 	ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
830 	    &stats->rx_crcerrs, "CRC errors");
831 	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
832 	    &stats->rx_lenerrs, "Frames with length mismatched");
833 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
834 	    &stats->rx_bytes, "Good octets");
835 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
836 	    &stats->rx_bcast_bytes, "Good broadcast octets");
837 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
838 	    &stats->rx_mcast_bytes, "Good multicast octets");
839 	ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
840 	    &stats->rx_runts, "Too short frames");
841 	ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
842 	    &stats->rx_fragments, "Fragmented frames");
843 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
844 	    &stats->rx_pkts_64, "64 bytes frames");
845 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
846 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
847 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
848 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
849 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
850 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
851 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
852 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
853 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
854 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
855 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
856 	    &stats->rx_pkts_1519_max, "1519 to max frames");
857 	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
858 	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
859 	ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
860 	    &stats->rx_fifo_oflows, "FIFO overflows");
861 	ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
862 	    &stats->rx_rrs_errs, "Return status write-back errors");
863 	ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
864 	    &stats->rx_alignerrs, "Alignment errors");
865 	ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
866 	    &stats->rx_pkts_filtered,
867 	    "Frames dropped due to address filtering");
868 
869 	/* Tx statistics. */
870 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
871 	    NULL, "Tx MAC statistics");
872 	child = SYSCTL_CHILDREN(tree);
873 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
874 	    &stats->tx_frames, "Good frames");
875 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
876 	    &stats->tx_bcast_frames, "Good broadcast frames");
877 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
878 	    &stats->tx_mcast_frames, "Good multicast frames");
879 	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
880 	    &stats->tx_pause_frames, "Pause control frames");
881 	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
882 	    &stats->tx_control_frames, "Control frames");
883 	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
884 	    &stats->tx_excess_defer, "Frames with excessive derferrals");
885 	ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
886 	    &stats->tx_excess_defer, "Frames with derferrals");
887 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
888 	    &stats->tx_bytes, "Good octets");
889 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
890 	    &stats->tx_bcast_bytes, "Good broadcast octets");
891 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
892 	    &stats->tx_mcast_bytes, "Good multicast octets");
893 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
894 	    &stats->tx_pkts_64, "64 bytes frames");
895 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
896 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
897 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
898 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
899 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
900 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
901 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
902 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
903 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
904 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
905 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
906 	    &stats->tx_pkts_1519_max, "1519 to max frames");
907 	ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
908 	    &stats->tx_single_colls, "Single collisions");
909 	ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
910 	    &stats->tx_multi_colls, "Multiple collisions");
911 	ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
912 	    &stats->tx_late_colls, "Late collisions");
913 	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
914 	    &stats->tx_excess_colls, "Excessive collisions");
915 	ALE_SYSCTL_STAT_ADD32(ctx, child, "abort",
916 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
917 	ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
918 	    &stats->tx_underrun, "FIFO underruns");
919 	ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
920 	    &stats->tx_desc_underrun, "Descriptor write-back errors");
921 	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
922 	    &stats->tx_lenerrs, "Frames with length mismatched");
923 	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
924 	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
925 }
926 
927 #undef ALE_SYSCTL_STAT_ADD32
928 #undef ALE_SYSCTL_STAT_ADD64
929 
930 struct ale_dmamap_arg {
931 	bus_addr_t	ale_busaddr;
932 };
933 
934 static void
935 ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
936 {
937 	struct ale_dmamap_arg *ctx;
938 
939 	if (error != 0)
940 		return;
941 
942 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
943 
944 	ctx = (struct ale_dmamap_arg *)arg;
945 	ctx->ale_busaddr = segs[0].ds_addr;
946 }
947 
948 /*
949  * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
950  * which specifies high address region of DMA blocks. Therefore these
951  * blocks should have the same high address of given 4GB address
952  * space(i.e. crossing 4GB boundary is not allowed).
953  */
954 static int
955 ale_check_boundary(struct ale_softc *sc)
956 {
957 	bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
958 	bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
959 
960 	rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
961 	    sc->ale_pagesize;
962 	rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
963 	    sc->ale_pagesize;
964 	tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
965 	tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
966 	rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
967 	rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
968 
969 	if ((ALE_ADDR_HI(tx_ring_end) !=
970 	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
971 	    (ALE_ADDR_HI(rx_page_end[0]) !=
972 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
973 	    (ALE_ADDR_HI(rx_page_end[1]) !=
974 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
975 	    (ALE_ADDR_HI(tx_cmb_end) !=
976 	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
977 	    (ALE_ADDR_HI(rx_cmb_end[0]) !=
978 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
979 	    (ALE_ADDR_HI(rx_cmb_end[1]) !=
980 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
981 		return (EFBIG);
982 
983 	if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
984 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
985 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
986 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
987 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
988 		return (EFBIG);
989 
990 	return (0);
991 }
992 
993 static int
994 ale_dma_alloc(struct ale_softc *sc)
995 {
996 	struct ale_txdesc *txd;
997 	bus_addr_t lowaddr;
998 	struct ale_dmamap_arg ctx;
999 	int error, guard_size, i;
1000 
1001 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
1002 		guard_size = ALE_JUMBO_FRAMELEN;
1003 	else
1004 		guard_size = ALE_MAX_FRAMELEN;
1005 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
1006 	    ALE_RX_PAGE_ALIGN);
1007 	lowaddr = BUS_SPACE_MAXADDR;
1008 again:
1009 	/* Create parent DMA tag. */
1010 	error = bus_dma_tag_create(
1011 	    bus_get_dma_tag(sc->ale_dev), /* parent */
1012 	    1, 0,			/* alignment, boundary */
1013 	    lowaddr,			/* lowaddr */
1014 	    BUS_SPACE_MAXADDR,		/* highaddr */
1015 	    NULL, NULL,			/* filter, filterarg */
1016 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1017 	    0,				/* nsegments */
1018 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1019 	    0,				/* flags */
1020 	    NULL, NULL,			/* lockfunc, lockarg */
1021 	    &sc->ale_cdata.ale_parent_tag);
1022 	if (error != 0) {
1023 		device_printf(sc->ale_dev,
1024 		    "could not create parent DMA tag.\n");
1025 		goto fail;
1026 	}
1027 
1028 	/* Create DMA tag for Tx descriptor ring. */
1029 	error = bus_dma_tag_create(
1030 	    sc->ale_cdata.ale_parent_tag, /* parent */
1031 	    ALE_TX_RING_ALIGN, 0,	/* alignment, boundary */
1032 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1033 	    BUS_SPACE_MAXADDR,		/* highaddr */
1034 	    NULL, NULL,			/* filter, filterarg */
1035 	    ALE_TX_RING_SZ,		/* maxsize */
1036 	    1,				/* nsegments */
1037 	    ALE_TX_RING_SZ,		/* maxsegsize */
1038 	    0,				/* flags */
1039 	    NULL, NULL,			/* lockfunc, lockarg */
1040 	    &sc->ale_cdata.ale_tx_ring_tag);
1041 	if (error != 0) {
1042 		device_printf(sc->ale_dev,
1043 		    "could not create Tx ring DMA tag.\n");
1044 		goto fail;
1045 	}
1046 
1047 	/* Create DMA tag for Rx pages. */
1048 	for (i = 0; i < ALE_RX_PAGES; i++) {
1049 		error = bus_dma_tag_create(
1050 		    sc->ale_cdata.ale_parent_tag, /* parent */
1051 		    ALE_RX_PAGE_ALIGN, 0,	/* alignment, boundary */
1052 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1053 		    BUS_SPACE_MAXADDR,		/* highaddr */
1054 		    NULL, NULL,			/* filter, filterarg */
1055 		    sc->ale_pagesize,		/* maxsize */
1056 		    1,				/* nsegments */
1057 		    sc->ale_pagesize,		/* maxsegsize */
1058 		    0,				/* flags */
1059 		    NULL, NULL,			/* lockfunc, lockarg */
1060 		    &sc->ale_cdata.ale_rx_page[i].page_tag);
1061 		if (error != 0) {
1062 			device_printf(sc->ale_dev,
1063 			    "could not create Rx page %d DMA tag.\n", i);
1064 			goto fail;
1065 		}
1066 	}
1067 
1068 	/* Create DMA tag for Tx coalescing message block. */
1069 	error = bus_dma_tag_create(
1070 	    sc->ale_cdata.ale_parent_tag, /* parent */
1071 	    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1072 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1073 	    BUS_SPACE_MAXADDR,		/* highaddr */
1074 	    NULL, NULL,			/* filter, filterarg */
1075 	    ALE_TX_CMB_SZ,		/* maxsize */
1076 	    1,				/* nsegments */
1077 	    ALE_TX_CMB_SZ,		/* maxsegsize */
1078 	    0,				/* flags */
1079 	    NULL, NULL,			/* lockfunc, lockarg */
1080 	    &sc->ale_cdata.ale_tx_cmb_tag);
1081 	if (error != 0) {
1082 		device_printf(sc->ale_dev,
1083 		    "could not create Tx CMB DMA tag.\n");
1084 		goto fail;
1085 	}
1086 
1087 	/* Create DMA tag for Rx coalescing message block. */
1088 	for (i = 0; i < ALE_RX_PAGES; i++) {
1089 		error = bus_dma_tag_create(
1090 		    sc->ale_cdata.ale_parent_tag, /* parent */
1091 		    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1092 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1093 		    BUS_SPACE_MAXADDR,		/* highaddr */
1094 		    NULL, NULL,			/* filter, filterarg */
1095 		    ALE_RX_CMB_SZ,		/* maxsize */
1096 		    1,				/* nsegments */
1097 		    ALE_RX_CMB_SZ,		/* maxsegsize */
1098 		    0,				/* flags */
1099 		    NULL, NULL,			/* lockfunc, lockarg */
1100 		    &sc->ale_cdata.ale_rx_page[i].cmb_tag);
1101 		if (error != 0) {
1102 			device_printf(sc->ale_dev,
1103 			    "could not create Rx page %d CMB DMA tag.\n", i);
1104 			goto fail;
1105 		}
1106 	}
1107 
1108 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1109 	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
1110 	    (void **)&sc->ale_cdata.ale_tx_ring,
1111 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1112 	    &sc->ale_cdata.ale_tx_ring_map);
1113 	if (error != 0) {
1114 		device_printf(sc->ale_dev,
1115 		    "could not allocate DMA'able memory for Tx ring.\n");
1116 		goto fail;
1117 	}
1118 	ctx.ale_busaddr = 0;
1119 	error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
1120 	    sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
1121 	    ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
1122 	if (error != 0 || ctx.ale_busaddr == 0) {
1123 		device_printf(sc->ale_dev,
1124 		    "could not load DMA'able memory for Tx ring.\n");
1125 		goto fail;
1126 	}
1127 	sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
1128 
1129 	/* Rx pages. */
1130 	for (i = 0; i < ALE_RX_PAGES; i++) {
1131 		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
1132 		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
1133 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1134 		    &sc->ale_cdata.ale_rx_page[i].page_map);
1135 		if (error != 0) {
1136 			device_printf(sc->ale_dev,
1137 			    "could not allocate DMA'able memory for "
1138 			    "Rx page %d.\n", i);
1139 			goto fail;
1140 		}
1141 		ctx.ale_busaddr = 0;
1142 		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
1143 		    sc->ale_cdata.ale_rx_page[i].page_map,
1144 		    sc->ale_cdata.ale_rx_page[i].page_addr,
1145 		    sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
1146 		if (error != 0 || ctx.ale_busaddr == 0) {
1147 			device_printf(sc->ale_dev,
1148 			    "could not load DMA'able memory for "
1149 			    "Rx page %d.\n", i);
1150 			goto fail;
1151 		}
1152 		sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
1153 	}
1154 
1155 	/* Tx CMB. */
1156 	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
1157 	    (void **)&sc->ale_cdata.ale_tx_cmb,
1158 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1159 	    &sc->ale_cdata.ale_tx_cmb_map);
1160 	if (error != 0) {
1161 		device_printf(sc->ale_dev,
1162 		    "could not allocate DMA'able memory for Tx CMB.\n");
1163 		goto fail;
1164 	}
1165 	ctx.ale_busaddr = 0;
1166 	error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
1167 	    sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
1168 	    ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1169 	if (error != 0 || ctx.ale_busaddr == 0) {
1170 		device_printf(sc->ale_dev,
1171 		    "could not load DMA'able memory for Tx CMB.\n");
1172 		goto fail;
1173 	}
1174 	sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
1175 
1176 	/* Rx CMB. */
1177 	for (i = 0; i < ALE_RX_PAGES; i++) {
1178 		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1179 		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
1180 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1181 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
1182 		if (error != 0) {
1183 			device_printf(sc->ale_dev, "could not allocate "
1184 			    "DMA'able memory for Rx page %d CMB.\n", i);
1185 			goto fail;
1186 		}
1187 		ctx.ale_busaddr = 0;
1188 		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1189 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
1190 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1191 		    ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1192 		if (error != 0 || ctx.ale_busaddr == 0) {
1193 			device_printf(sc->ale_dev, "could not load DMA'able "
1194 			    "memory for Rx page %d CMB.\n", i);
1195 			goto fail;
1196 		}
1197 		sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
1198 	}
1199 
1200 	/*
1201 	 * Tx descriptors/RXF0/CMB DMA blocks share the same
1202 	 * high address region of 64bit DMA address space.
1203 	 */
1204 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1205 	    (error = ale_check_boundary(sc)) != 0) {
1206 		device_printf(sc->ale_dev, "4GB boundary crossed, "
1207 		    "switching to 32bit DMA addressing mode.\n");
1208 		ale_dma_free(sc);
1209 		/*
1210 		 * Limit max allowable DMA address space to 32bit
1211 		 * and try again.
1212 		 */
1213 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1214 		goto again;
1215 	}
1216 
1217 	/*
1218 	 * Create Tx buffer parent tag.
1219 	 * AR81xx allows 64bit DMA addressing of Tx buffers so it
1220 	 * needs separate parent DMA tag as parent DMA address space
1221 	 * could be restricted to be within 32bit address space by
1222 	 * 4GB boundary crossing.
1223 	 */
1224 	error = bus_dma_tag_create(
1225 	    bus_get_dma_tag(sc->ale_dev), /* parent */
1226 	    1, 0,			/* alignment, boundary */
1227 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1228 	    BUS_SPACE_MAXADDR,		/* highaddr */
1229 	    NULL, NULL,			/* filter, filterarg */
1230 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1231 	    0,				/* nsegments */
1232 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1233 	    0,				/* flags */
1234 	    NULL, NULL,			/* lockfunc, lockarg */
1235 	    &sc->ale_cdata.ale_buffer_tag);
1236 	if (error != 0) {
1237 		device_printf(sc->ale_dev,
1238 		    "could not create parent buffer DMA tag.\n");
1239 		goto fail;
1240 	}
1241 
1242 	/* Create DMA tag for Tx buffers. */
1243 	error = bus_dma_tag_create(
1244 	    sc->ale_cdata.ale_buffer_tag, /* parent */
1245 	    1, 0,			/* alignment, boundary */
1246 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1247 	    BUS_SPACE_MAXADDR,		/* highaddr */
1248 	    NULL, NULL,			/* filter, filterarg */
1249 	    ALE_TSO_MAXSIZE,		/* maxsize */
1250 	    ALE_MAXTXSEGS,		/* nsegments */
1251 	    ALE_TSO_MAXSEGSIZE,		/* maxsegsize */
1252 	    0,				/* flags */
1253 	    NULL, NULL,			/* lockfunc, lockarg */
1254 	    &sc->ale_cdata.ale_tx_tag);
1255 	if (error != 0) {
1256 		device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
1257 		goto fail;
1258 	}
1259 
1260 	/* Create DMA maps for Tx buffers. */
1261 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1262 		txd = &sc->ale_cdata.ale_txdesc[i];
1263 		txd->tx_m = NULL;
1264 		txd->tx_dmamap = NULL;
1265 		error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
1266 		    &txd->tx_dmamap);
1267 		if (error != 0) {
1268 			device_printf(sc->ale_dev,
1269 			    "could not create Tx dmamap.\n");
1270 			goto fail;
1271 		}
1272 	}
1273 
1274 fail:
1275 	return (error);
1276 }
1277 
1278 static void
1279 ale_dma_free(struct ale_softc *sc)
1280 {
1281 	struct ale_txdesc *txd;
1282 	int i;
1283 
1284 	/* Tx buffers. */
1285 	if (sc->ale_cdata.ale_tx_tag != NULL) {
1286 		for (i = 0; i < ALE_TX_RING_CNT; i++) {
1287 			txd = &sc->ale_cdata.ale_txdesc[i];
1288 			if (txd->tx_dmamap != NULL) {
1289 				bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
1290 				    txd->tx_dmamap);
1291 				txd->tx_dmamap = NULL;
1292 			}
1293 		}
1294 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
1295 		sc->ale_cdata.ale_tx_tag = NULL;
1296 	}
1297 	/* Tx descriptor ring. */
1298 	if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
1299 		if (sc->ale_cdata.ale_tx_ring_map != NULL)
1300 			bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
1301 			    sc->ale_cdata.ale_tx_ring_map);
1302 		if (sc->ale_cdata.ale_tx_ring_map != NULL &&
1303 		    sc->ale_cdata.ale_tx_ring != NULL)
1304 			bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
1305 			    sc->ale_cdata.ale_tx_ring,
1306 			    sc->ale_cdata.ale_tx_ring_map);
1307 		sc->ale_cdata.ale_tx_ring = NULL;
1308 		sc->ale_cdata.ale_tx_ring_map = NULL;
1309 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
1310 		sc->ale_cdata.ale_tx_ring_tag = NULL;
1311 	}
1312 	/* Rx page block. */
1313 	for (i = 0; i < ALE_RX_PAGES; i++) {
1314 		if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
1315 			if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
1316 				bus_dmamap_unload(
1317 				    sc->ale_cdata.ale_rx_page[i].page_tag,
1318 				    sc->ale_cdata.ale_rx_page[i].page_map);
1319 			if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
1320 			    sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
1321 				bus_dmamem_free(
1322 				    sc->ale_cdata.ale_rx_page[i].page_tag,
1323 				    sc->ale_cdata.ale_rx_page[i].page_addr,
1324 				    sc->ale_cdata.ale_rx_page[i].page_map);
1325 			sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
1326 			sc->ale_cdata.ale_rx_page[i].page_map = NULL;
1327 			bus_dma_tag_destroy(
1328 			    sc->ale_cdata.ale_rx_page[i].page_tag);
1329 			sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
1330 		}
1331 	}
1332 	/* Rx CMB. */
1333 	for (i = 0; i < ALE_RX_PAGES; i++) {
1334 		if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
1335 			if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
1336 				bus_dmamap_unload(
1337 				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1338 				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1339 			if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
1340 			    sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
1341 				bus_dmamem_free(
1342 				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1343 				    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1344 				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1345 			sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
1346 			sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
1347 			bus_dma_tag_destroy(
1348 			    sc->ale_cdata.ale_rx_page[i].cmb_tag);
1349 			sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
1350 		}
1351 	}
1352 	/* Tx CMB. */
1353 	if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
1354 		if (sc->ale_cdata.ale_tx_cmb_map != NULL)
1355 			bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
1356 			    sc->ale_cdata.ale_tx_cmb_map);
1357 		if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
1358 		    sc->ale_cdata.ale_tx_cmb != NULL)
1359 			bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
1360 			    sc->ale_cdata.ale_tx_cmb,
1361 			    sc->ale_cdata.ale_tx_cmb_map);
1362 		sc->ale_cdata.ale_tx_cmb = NULL;
1363 		sc->ale_cdata.ale_tx_cmb_map = NULL;
1364 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
1365 		sc->ale_cdata.ale_tx_cmb_tag = NULL;
1366 	}
1367 	if (sc->ale_cdata.ale_buffer_tag != NULL) {
1368 		bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
1369 		sc->ale_cdata.ale_buffer_tag = NULL;
1370 	}
1371 	if (sc->ale_cdata.ale_parent_tag != NULL) {
1372 		bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
1373 		sc->ale_cdata.ale_parent_tag = NULL;
1374 	}
1375 }
1376 
1377 static int
1378 ale_shutdown(device_t dev)
1379 {
1380 
1381 	return (ale_suspend(dev));
1382 }
1383 
1384 /*
1385  * Note, this driver resets the link speed to 10/100Mbps by
1386  * restarting auto-negotiation in suspend/shutdown phase but we
1387  * don't know whether that auto-negotiation would succeed or not
1388  * as driver has no control after powering off/suspend operation.
1389  * If the renegotiation fail WOL may not work. Running at 1Gbps
1390  * will draw more power than 375mA at 3.3V which is specified in
1391  * PCI specification and that would result in complete
1392  * shutdowning power to ethernet controller.
1393  *
1394  * TODO
1395  * Save current negotiated media speed/duplex/flow-control to
1396  * softc and restore the same link again after resuming. PHY
1397  * handling such as power down/resetting to 100Mbps may be better
1398  * handled in suspend method in phy driver.
1399  */
1400 static void
1401 ale_setlinkspeed(struct ale_softc *sc)
1402 {
1403 	struct mii_data *mii;
1404 	int aneg, i;
1405 
1406 	mii = device_get_softc(sc->ale_miibus);
1407 	mii_pollstat(mii);
1408 	aneg = 0;
1409 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1410 	    (IFM_ACTIVE | IFM_AVALID)) {
1411 		switch IFM_SUBTYPE(mii->mii_media_active) {
1412 		case IFM_10_T:
1413 		case IFM_100_TX:
1414 			return;
1415 		case IFM_1000_T:
1416 			aneg++;
1417 			break;
1418 		default:
1419 			break;
1420 		}
1421 	}
1422 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
1423 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1424 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1425 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1426 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1427 	DELAY(1000);
1428 	if (aneg != 0) {
1429 		/*
1430 		 * Poll link state until ale(4) get a 10/100Mbps link.
1431 		 */
1432 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1433 			mii_pollstat(mii);
1434 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1435 			    == (IFM_ACTIVE | IFM_AVALID)) {
1436 				switch (IFM_SUBTYPE(
1437 				    mii->mii_media_active)) {
1438 				case IFM_10_T:
1439 				case IFM_100_TX:
1440 					ale_mac_config(sc);
1441 					return;
1442 				default:
1443 					break;
1444 				}
1445 			}
1446 			ALE_UNLOCK(sc);
1447 			pause("alelnk", hz);
1448 			ALE_LOCK(sc);
1449 		}
1450 		if (i == MII_ANEGTICKS_GIGE)
1451 			device_printf(sc->ale_dev,
1452 			    "establishing a link failed, WOL may not work!");
1453 	}
1454 	/*
1455 	 * No link, force MAC to have 100Mbps, full-duplex link.
1456 	 * This is the last resort and may/may not work.
1457 	 */
1458 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1459 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1460 	ale_mac_config(sc);
1461 }
1462 
1463 static void
1464 ale_setwol(struct ale_softc *sc)
1465 {
1466 	struct ifnet *ifp;
1467 	uint32_t reg, pmcs;
1468 	uint16_t pmstat;
1469 	int pmc;
1470 
1471 	ALE_LOCK_ASSERT(sc);
1472 
1473 	if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
1474 		/* Disable WOL. */
1475 		CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1476 		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1477 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1478 		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1479 		/* Force PHY power down. */
1480 		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1481 		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1482 		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
1483 		    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
1484 		    GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
1485 		return;
1486 	}
1487 
1488 	ifp = sc->ale_ifp;
1489 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1490 		if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
1491 			ale_setlinkspeed(sc);
1492 	}
1493 
1494 	pmcs = 0;
1495 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1496 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1497 	CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
1498 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1499 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1500 	    MAC_CFG_BCAST);
1501 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1502 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1503 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1504 		reg |= MAC_CFG_RX_ENB;
1505 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1506 
1507 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1508 		/* WOL disabled, PHY power down. */
1509 		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1510 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1511 		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1512 		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1513 		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1514 		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
1515 		    GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
1516 		    GPHY_CTRL_PWDOWN_HW);
1517 	}
1518 	/* Request PME. */
1519 	pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
1520 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1521 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1522 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1523 	pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1524 }
1525 
1526 static int
1527 ale_suspend(device_t dev)
1528 {
1529 	struct ale_softc *sc;
1530 
1531 	sc = device_get_softc(dev);
1532 
1533 	ALE_LOCK(sc);
1534 	ale_stop(sc);
1535 	ale_setwol(sc);
1536 	ALE_UNLOCK(sc);
1537 
1538 	return (0);
1539 }
1540 
1541 static int
1542 ale_resume(device_t dev)
1543 {
1544 	struct ale_softc *sc;
1545 	struct ifnet *ifp;
1546 	int pmc;
1547 	uint16_t pmstat;
1548 
1549 	sc = device_get_softc(dev);
1550 
1551 	ALE_LOCK(sc);
1552 	if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
1553 		/* Disable PME and clear PME status. */
1554 		pmstat = pci_read_config(sc->ale_dev,
1555 		    pmc + PCIR_POWER_STATUS, 2);
1556 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1557 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1558 			pci_write_config(sc->ale_dev,
1559 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
1560 		}
1561 	}
1562 	/* Reset PHY. */
1563 	ale_phy_reset(sc);
1564 	ifp = sc->ale_ifp;
1565 	if ((ifp->if_flags & IFF_UP) != 0) {
1566 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1567 		ale_init_locked(sc);
1568 	}
1569 	ALE_UNLOCK(sc);
1570 
1571 	return (0);
1572 }
1573 
1574 static int
1575 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
1576 {
1577 	struct ale_txdesc *txd, *txd_last;
1578 	struct tx_desc *desc;
1579 	struct mbuf *m;
1580 	struct ip *ip;
1581 	struct tcphdr *tcp;
1582 	bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
1583 	bus_dmamap_t map;
1584 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1585 	int error, i, nsegs, prod, si;
1586 
1587 	ALE_LOCK_ASSERT(sc);
1588 
1589 	M_ASSERTPKTHDR((*m_head));
1590 
1591 	m = *m_head;
1592 	ip = NULL;
1593 	tcp = NULL;
1594 	cflags = vtag = 0;
1595 	ip_off = poff = 0;
1596 	if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1597 		/*
1598 		 * AR81xx requires offset of TCP/UDP payload in its Tx
1599 		 * descriptor to perform hardware Tx checksum offload.
1600 		 * Additionally, TSO requires IP/TCP header size and
1601 		 * modification of IP/TCP header in order to make TSO
1602 		 * engine work. This kind of operation takes many CPU
1603 		 * cycles on FreeBSD so fast host CPU is required to
1604 		 * get smooth TSO performance.
1605 		 */
1606 		struct ether_header *eh;
1607 
1608 		if (M_WRITABLE(m) == 0) {
1609 			/* Get a writable copy. */
1610 			m = m_dup(*m_head, M_DONTWAIT);
1611 			/* Release original mbufs. */
1612 			m_freem(*m_head);
1613 			if (m == NULL) {
1614 				*m_head = NULL;
1615 				return (ENOBUFS);
1616 			}
1617 			*m_head = m;
1618 		}
1619 
1620 		/*
1621 		 * Buggy-controller requires 4 byte aligned Tx buffer
1622 		 * to make custom checksum offload work.
1623 		 */
1624 		if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
1625 		    (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
1626 		    (mtod(m, intptr_t) & 3) != 0) {
1627 			m = m_defrag(*m_head, M_DONTWAIT);
1628 			if (m == NULL) {
1629 				*m_head = NULL;
1630 				return (ENOBUFS);
1631 			}
1632 			*m_head = m;
1633 		}
1634 
1635 		ip_off = sizeof(struct ether_header);
1636 		m = m_pullup(m, ip_off);
1637 		if (m == NULL) {
1638 			*m_head = NULL;
1639 			return (ENOBUFS);
1640 		}
1641 		eh = mtod(m, struct ether_header *);
1642 		/*
1643 		 * Check if hardware VLAN insertion is off.
1644 		 * Additional check for LLC/SNAP frame?
1645 		 */
1646 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1647 			ip_off = sizeof(struct ether_vlan_header);
1648 			m = m_pullup(m, ip_off);
1649 			if (m == NULL) {
1650 				*m_head = NULL;
1651 				return (ENOBUFS);
1652 			}
1653 		}
1654 		m = m_pullup(m, ip_off + sizeof(struct ip));
1655 		if (m == NULL) {
1656 			*m_head = NULL;
1657 			return (ENOBUFS);
1658 		}
1659 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1660 		poff = ip_off + (ip->ip_hl << 2);
1661 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1662 			/*
1663 			 * XXX
1664 			 * AR81xx requires the first descriptor should
1665 			 * not include any TCP playload for TSO case.
1666 			 * (i.e. ethernet header + IP + TCP header only)
1667 			 * m_pullup(9) above will ensure this too.
1668 			 * However it's not correct if the first mbuf
1669 			 * of the chain does not use cluster.
1670 			 */
1671 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1672 			if (m == NULL) {
1673 				*m_head = NULL;
1674 				return (ENOBUFS);
1675 			}
1676 			ip = (struct ip *)(mtod(m, char *) + ip_off);
1677 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1678 			m = m_pullup(m, poff + (tcp->th_off << 2));
1679 			if (m == NULL) {
1680 				*m_head = NULL;
1681 				return (ENOBUFS);
1682 			}
1683 			/*
1684 			 * AR81xx requires IP/TCP header size and offset as
1685 			 * well as TCP pseudo checksum which complicates
1686 			 * TSO configuration. I guess this comes from the
1687 			 * adherence to Microsoft NDIS Large Send
1688 			 * specification which requires insertion of
1689 			 * pseudo checksum by upper stack. The pseudo
1690 			 * checksum that NDIS refers to doesn't include
1691 			 * TCP payload length so ale(4) should recompute
1692 			 * the pseudo checksum here. Hopefully this wouldn't
1693 			 * be much burden on modern CPUs.
1694 			 * Reset IP checksum and recompute TCP pseudo
1695 			 * checksum as NDIS specification said.
1696 			 */
1697 			ip->ip_sum = 0;
1698 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1699 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1700 		}
1701 		*m_head = m;
1702 	}
1703 
1704 	si = prod = sc->ale_cdata.ale_tx_prod;
1705 	txd = &sc->ale_cdata.ale_txdesc[prod];
1706 	txd_last = txd;
1707 	map = txd->tx_dmamap;
1708 
1709 	error =  bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1710 	    *m_head, txsegs, &nsegs, 0);
1711 	if (error == EFBIG) {
1712 		m = m_collapse(*m_head, M_DONTWAIT, ALE_MAXTXSEGS);
1713 		if (m == NULL) {
1714 			m_freem(*m_head);
1715 			*m_head = NULL;
1716 			return (ENOMEM);
1717 		}
1718 		*m_head = m;
1719 		error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1720 		    *m_head, txsegs, &nsegs, 0);
1721 		if (error != 0) {
1722 			m_freem(*m_head);
1723 			*m_head = NULL;
1724 			return (error);
1725 		}
1726 	} else if (error != 0)
1727 		return (error);
1728 	if (nsegs == 0) {
1729 		m_freem(*m_head);
1730 		*m_head = NULL;
1731 		return (EIO);
1732 	}
1733 
1734 	/* Check descriptor overrun. */
1735 	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) {
1736 		bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
1737 		return (ENOBUFS);
1738 	}
1739 	bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
1740 
1741 	m = *m_head;
1742 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1743 		/* Request TSO and set MSS. */
1744 		cflags |= ALE_TD_TSO;
1745 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
1746 		/* Set IP/TCP header size. */
1747 		cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
1748 		cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
1749 	} else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
1750 		/*
1751 		 * AR81xx supports Tx custom checksum offload feature
1752 		 * that offloads single 16bit checksum computation.
1753 		 * So you can choose one among IP, TCP and UDP.
1754 		 * Normally driver sets checksum start/insertion
1755 		 * position from the information of TCP/UDP frame as
1756 		 * TCP/UDP checksum takes more time than that of IP.
1757 		 * However it seems that custom checksum offload
1758 		 * requires 4 bytes aligned Tx buffers due to hardware
1759 		 * bug.
1760 		 * AR81xx also supports explicit Tx checksum computation
1761 		 * if it is told that the size of IP header and TCP
1762 		 * header(for UDP, the header size does not matter
1763 		 * because it's fixed length). However with this scheme
1764 		 * TSO does not work so you have to choose one either
1765 		 * TSO or explicit Tx checksum offload. I chosen TSO
1766 		 * plus custom checksum offload with work-around which
1767 		 * will cover most common usage for this consumer
1768 		 * ethernet controller. The work-around takes a lot of
1769 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
1770 		 * boundary, though.
1771 		 */
1772 		cflags |= ALE_TD_CXSUM;
1773 		/* Set checksum start offset. */
1774 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1775 		/* Set checksum insertion position of TCP/UDP. */
1776 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1777 		    ALE_TD_CSUM_XSUMOFFSET_SHIFT);
1778 	}
1779 
1780 	/* Configure VLAN hardware tag insertion. */
1781 	if ((m->m_flags & M_VLANTAG) != 0) {
1782 		vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1783 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1784 		cflags |= ALE_TD_INSERT_VLAN_TAG;
1785 	}
1786 
1787 	i = 0;
1788 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1789 		/*
1790 		 * Make sure the first fragment contains
1791 		 * only ethernet and IP/TCP header with options.
1792 		 */
1793 		hdrlen =  poff + (tcp->th_off << 2);
1794 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1795 		desc->addr = htole64(txsegs[i].ds_addr);
1796 		desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag);
1797 		desc->flags = htole32(cflags);
1798 		sc->ale_cdata.ale_tx_cnt++;
1799 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1800 		if (m->m_len - hdrlen > 0) {
1801 			/* Handle remaining payload of the first fragment. */
1802 			desc = &sc->ale_cdata.ale_tx_ring[prod];
1803 			desc->addr = htole64(txsegs[i].ds_addr + hdrlen);
1804 			desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) |
1805 			    vtag);
1806 			desc->flags = htole32(cflags);
1807 			sc->ale_cdata.ale_tx_cnt++;
1808 			ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1809 		}
1810 		i = 1;
1811 	}
1812 	for (; i < nsegs; i++) {
1813 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1814 		desc->addr = htole64(txsegs[i].ds_addr);
1815 		desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
1816 		desc->flags = htole32(cflags);
1817 		sc->ale_cdata.ale_tx_cnt++;
1818 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1819 	}
1820 	/* Update producer index. */
1821 	sc->ale_cdata.ale_tx_prod = prod;
1822 	/* Set TSO header on the first descriptor. */
1823 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1824 		desc = &sc->ale_cdata.ale_tx_ring[si];
1825 		desc->flags |= htole32(ALE_TD_TSO_HDR);
1826 	}
1827 
1828 	/* Finally set EOP on the last descriptor. */
1829 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1830 	desc = &sc->ale_cdata.ale_tx_ring[prod];
1831 	desc->flags |= htole32(ALE_TD_EOP);
1832 
1833 	/* Swap dmamap of the first and the last. */
1834 	txd = &sc->ale_cdata.ale_txdesc[prod];
1835 	map = txd_last->tx_dmamap;
1836 	txd_last->tx_dmamap = txd->tx_dmamap;
1837 	txd->tx_dmamap = map;
1838 	txd->tx_m = m;
1839 
1840 	/* Sync descriptors. */
1841 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
1842 	    sc->ale_cdata.ale_tx_ring_map,
1843 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1844 
1845 	return (0);
1846 }
1847 
1848 static void
1849 ale_tx_task(void *arg, int pending)
1850 {
1851 	struct ifnet *ifp;
1852 
1853 	ifp = (struct ifnet *)arg;
1854 	ale_start(ifp);
1855 }
1856 
1857 static void
1858 ale_start(struct ifnet *ifp)
1859 {
1860         struct ale_softc *sc;
1861         struct mbuf *m_head;
1862 	int enq;
1863 
1864 	sc = ifp->if_softc;
1865 
1866 	ALE_LOCK(sc);
1867 
1868 	/* Reclaim transmitted frames. */
1869 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1870 		ale_txeof(sc);
1871 
1872 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1873 	    IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0) {
1874 		ALE_UNLOCK(sc);
1875 		return;
1876 	}
1877 
1878 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1879 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1880 		if (m_head == NULL)
1881 			break;
1882 		/*
1883 		 * Pack the data into the transmit ring. If we
1884 		 * don't have room, set the OACTIVE flag and wait
1885 		 * for the NIC to drain the ring.
1886 		 */
1887 		if (ale_encap(sc, &m_head)) {
1888 			if (m_head == NULL)
1889 				break;
1890 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1891 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1892 			break;
1893 		}
1894 
1895 		enq++;
1896 		/*
1897 		 * If there's a BPF listener, bounce a copy of this frame
1898 		 * to him.
1899 		 */
1900 		ETHER_BPF_MTAP(ifp, m_head);
1901 	}
1902 
1903 	if (enq > 0) {
1904 		/* Kick. */
1905 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1906 		    sc->ale_cdata.ale_tx_prod);
1907 		/* Set a timeout in case the chip goes out to lunch. */
1908 		sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
1909 	}
1910 
1911 	ALE_UNLOCK(sc);
1912 }
1913 
1914 static void
1915 ale_watchdog(struct ale_softc *sc)
1916 {
1917 	struct ifnet *ifp;
1918 
1919 	ALE_LOCK_ASSERT(sc);
1920 
1921 	if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
1922 		return;
1923 
1924 	ifp = sc->ale_ifp;
1925 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1926 		if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
1927 		ifp->if_oerrors++;
1928 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1929 		ale_init_locked(sc);
1930 		return;
1931 	}
1932 	if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
1933 	ifp->if_oerrors++;
1934 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1935 	ale_init_locked(sc);
1936 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1937 		taskqueue_enqueue(sc->ale_tq, &sc->ale_tx_task);
1938 }
1939 
1940 static int
1941 ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1942 {
1943 	struct ale_softc *sc;
1944 	struct ifreq *ifr;
1945 	struct mii_data *mii;
1946 	int error, mask;
1947 
1948 	sc = ifp->if_softc;
1949 	ifr = (struct ifreq *)data;
1950 	error = 0;
1951 	switch (cmd) {
1952 	case SIOCSIFMTU:
1953 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
1954 		    ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
1955 		    ifr->ifr_mtu > ETHERMTU))
1956 			error = EINVAL;
1957 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1958 			ALE_LOCK(sc);
1959 			ifp->if_mtu = ifr->ifr_mtu;
1960 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1961 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1962 				ale_init_locked(sc);
1963 			}
1964 			ALE_UNLOCK(sc);
1965 		}
1966 		break;
1967 	case SIOCSIFFLAGS:
1968 		ALE_LOCK(sc);
1969 		if ((ifp->if_flags & IFF_UP) != 0) {
1970 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1971 				if (((ifp->if_flags ^ sc->ale_if_flags)
1972 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1973 					ale_rxfilter(sc);
1974 			} else {
1975 				if ((sc->ale_flags & ALE_FLAG_DETACH) == 0)
1976 					ale_init_locked(sc);
1977 			}
1978 		} else {
1979 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1980 				ale_stop(sc);
1981 		}
1982 		sc->ale_if_flags = ifp->if_flags;
1983 		ALE_UNLOCK(sc);
1984 		break;
1985 	case SIOCADDMULTI:
1986 	case SIOCDELMULTI:
1987 		ALE_LOCK(sc);
1988 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1989 			ale_rxfilter(sc);
1990 		ALE_UNLOCK(sc);
1991 		break;
1992 	case SIOCSIFMEDIA:
1993 	case SIOCGIFMEDIA:
1994 		mii = device_get_softc(sc->ale_miibus);
1995 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1996 		break;
1997 	case SIOCSIFCAP:
1998 		ALE_LOCK(sc);
1999 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2000 		if ((mask & IFCAP_TXCSUM) != 0 &&
2001 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2002 			ifp->if_capenable ^= IFCAP_TXCSUM;
2003 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2004 				ifp->if_hwassist |= ALE_CSUM_FEATURES;
2005 			else
2006 				ifp->if_hwassist &= ~ALE_CSUM_FEATURES;
2007 		}
2008 		if ((mask & IFCAP_RXCSUM) != 0 &&
2009 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2010 			ifp->if_capenable ^= IFCAP_RXCSUM;
2011 		if ((mask & IFCAP_TSO4) != 0 &&
2012 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2013 			ifp->if_capenable ^= IFCAP_TSO4;
2014 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2015 				ifp->if_hwassist |= CSUM_TSO;
2016 			else
2017 				ifp->if_hwassist &= ~CSUM_TSO;
2018 		}
2019 
2020 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2021 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2022 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2023 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2024 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2025 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2026 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2027 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2028 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2029 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2030 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2031 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2032 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2033 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2034 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2035 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2036 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
2037 			ale_rxvlan(sc);
2038 		}
2039 		ALE_UNLOCK(sc);
2040 		VLAN_CAPABILITIES(ifp);
2041 		break;
2042 	default:
2043 		error = ether_ioctl(ifp, cmd, data);
2044 		break;
2045 	}
2046 
2047 	return (error);
2048 }
2049 
2050 static void
2051 ale_mac_config(struct ale_softc *sc)
2052 {
2053 	struct mii_data *mii;
2054 	uint32_t reg;
2055 
2056 	ALE_LOCK_ASSERT(sc);
2057 
2058 	mii = device_get_softc(sc->ale_miibus);
2059 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2060 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2061 	    MAC_CFG_SPEED_MASK);
2062 	/* Reprogram MAC with resolved speed/duplex. */
2063 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2064 	case IFM_10_T:
2065 	case IFM_100_TX:
2066 		reg |= MAC_CFG_SPEED_10_100;
2067 		break;
2068 	case IFM_1000_T:
2069 		reg |= MAC_CFG_SPEED_1000;
2070 		break;
2071 	}
2072 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2073 		reg |= MAC_CFG_FULL_DUPLEX;
2074 #ifdef notyet
2075 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2076 			reg |= MAC_CFG_TX_FC;
2077 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2078 			reg |= MAC_CFG_RX_FC;
2079 #endif
2080 	}
2081 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2082 }
2083 
2084 static void
2085 ale_link_task(void *arg, int pending)
2086 {
2087 	struct ale_softc *sc;
2088 	struct mii_data *mii;
2089 	struct ifnet *ifp;
2090 	uint32_t reg;
2091 
2092 	sc = (struct ale_softc *)arg;
2093 
2094 	ALE_LOCK(sc);
2095 	mii = device_get_softc(sc->ale_miibus);
2096 	ifp = sc->ale_ifp;
2097 	if (mii == NULL || ifp == NULL ||
2098 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2099 		ALE_UNLOCK(sc);
2100 		return;
2101 	}
2102 
2103 	sc->ale_flags &= ~ALE_FLAG_LINK;
2104 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2105 	    (IFM_ACTIVE | IFM_AVALID)) {
2106 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2107 		case IFM_10_T:
2108 		case IFM_100_TX:
2109 			sc->ale_flags |= ALE_FLAG_LINK;
2110 			break;
2111 		case IFM_1000_T:
2112 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
2113 				sc->ale_flags |= ALE_FLAG_LINK;
2114 			break;
2115 		default:
2116 			break;
2117 		}
2118 	}
2119 
2120 	/* Stop Rx/Tx MACs. */
2121 	ale_stop_mac(sc);
2122 
2123 	/* Program MACs with resolved speed/duplex/flow-control. */
2124 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
2125 		ale_mac_config(sc);
2126 		/* Reenable Tx/Rx MACs. */
2127 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
2128 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2129 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2130 	}
2131 
2132 	ALE_UNLOCK(sc);
2133 }
2134 
2135 static void
2136 ale_stats_clear(struct ale_softc *sc)
2137 {
2138 	struct smb sb;
2139 	uint32_t *reg;
2140 	int i;
2141 
2142 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2143 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2144 		i += sizeof(uint32_t);
2145 	}
2146 	/* Read Tx statistics. */
2147 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2148 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2149 		i += sizeof(uint32_t);
2150 	}
2151 }
2152 
2153 static void
2154 ale_stats_update(struct ale_softc *sc)
2155 {
2156 	struct ale_hw_stats *stat;
2157 	struct smb sb, *smb;
2158 	struct ifnet *ifp;
2159 	uint32_t *reg;
2160 	int i;
2161 
2162 	ALE_LOCK_ASSERT(sc);
2163 
2164 	ifp = sc->ale_ifp;
2165 	stat = &sc->ale_stats;
2166 	smb = &sb;
2167 
2168 	/* Read Rx statistics. */
2169 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2170 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2171 		i += sizeof(uint32_t);
2172 	}
2173 	/* Read Tx statistics. */
2174 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2175 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2176 		i += sizeof(uint32_t);
2177 	}
2178 
2179 	/* Rx stats. */
2180 	stat->rx_frames += smb->rx_frames;
2181 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2182 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2183 	stat->rx_pause_frames += smb->rx_pause_frames;
2184 	stat->rx_control_frames += smb->rx_control_frames;
2185 	stat->rx_crcerrs += smb->rx_crcerrs;
2186 	stat->rx_lenerrs += smb->rx_lenerrs;
2187 	stat->rx_bytes += smb->rx_bytes;
2188 	stat->rx_runts += smb->rx_runts;
2189 	stat->rx_fragments += smb->rx_fragments;
2190 	stat->rx_pkts_64 += smb->rx_pkts_64;
2191 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2192 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2193 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2194 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2195 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2196 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2197 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2198 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2199 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2200 	stat->rx_alignerrs += smb->rx_alignerrs;
2201 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2202 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2203 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2204 
2205 	/* Tx stats. */
2206 	stat->tx_frames += smb->tx_frames;
2207 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2208 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2209 	stat->tx_pause_frames += smb->tx_pause_frames;
2210 	stat->tx_excess_defer += smb->tx_excess_defer;
2211 	stat->tx_control_frames += smb->tx_control_frames;
2212 	stat->tx_deferred += smb->tx_deferred;
2213 	stat->tx_bytes += smb->tx_bytes;
2214 	stat->tx_pkts_64 += smb->tx_pkts_64;
2215 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2216 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2217 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2218 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2219 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2220 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2221 	stat->tx_single_colls += smb->tx_single_colls;
2222 	stat->tx_multi_colls += smb->tx_multi_colls;
2223 	stat->tx_late_colls += smb->tx_late_colls;
2224 	stat->tx_excess_colls += smb->tx_excess_colls;
2225 	stat->tx_abort += smb->tx_abort;
2226 	stat->tx_underrun += smb->tx_underrun;
2227 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2228 	stat->tx_lenerrs += smb->tx_lenerrs;
2229 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2230 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2231 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2232 
2233 	/* Update counters in ifnet. */
2234 	ifp->if_opackets += smb->tx_frames;
2235 
2236 	ifp->if_collisions += smb->tx_single_colls +
2237 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2238 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
2239 
2240 	/*
2241 	 * XXX
2242 	 * tx_pkts_truncated counter looks suspicious. It constantly
2243 	 * increments with no sign of Tx errors. This may indicate
2244 	 * the counter name is not correct one so I've removed the
2245 	 * counter in output errors.
2246 	 */
2247 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
2248 	    smb->tx_underrun;
2249 
2250 	ifp->if_ipackets += smb->rx_frames;
2251 
2252 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2253 	    smb->rx_runts + smb->rx_pkts_truncated +
2254 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2255 	    smb->rx_alignerrs;
2256 }
2257 
2258 static int
2259 ale_intr(void *arg)
2260 {
2261 	struct ale_softc *sc;
2262 	uint32_t status;
2263 
2264 	sc = (struct ale_softc *)arg;
2265 
2266 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2267 	if ((status & ALE_INTRS) == 0)
2268 		return (FILTER_STRAY);
2269 	/* Disable interrupts. */
2270 	CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
2271 	taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2272 
2273 	return (FILTER_HANDLED);
2274 }
2275 
2276 static void
2277 ale_int_task(void *arg, int pending)
2278 {
2279 	struct ale_softc *sc;
2280 	struct ifnet *ifp;
2281 	uint32_t status;
2282 	int more;
2283 
2284 	sc = (struct ale_softc *)arg;
2285 
2286 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2287 	more = atomic_readandclear_int(&sc->ale_morework);
2288 	if (more != 0)
2289 		status |= INTR_RX_PKT;
2290 	if ((status & ALE_INTRS) == 0)
2291 		goto done;
2292 
2293 	/* Acknowledge interrupts but still disable interrupts. */
2294 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
2295 
2296 	ifp = sc->ale_ifp;
2297 	more = 0;
2298 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2299 		more = ale_rxeof(sc, sc->ale_process_limit);
2300 		if (more == EAGAIN)
2301 			atomic_set_int(&sc->ale_morework, 1);
2302 		else if (more == EIO) {
2303 			ALE_LOCK(sc);
2304 			sc->ale_stats.reset_brk_seq++;
2305 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2306 			ale_init_locked(sc);
2307 			ALE_UNLOCK(sc);
2308 			return;
2309 		}
2310 
2311 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2312 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2313 				device_printf(sc->ale_dev,
2314 				    "DMA read error! -- resetting\n");
2315 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2316 				device_printf(sc->ale_dev,
2317 				    "DMA write error! -- resetting\n");
2318 			ALE_LOCK(sc);
2319 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2320 			ale_init_locked(sc);
2321 			ALE_UNLOCK(sc);
2322 			return;
2323 		}
2324 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2325 			taskqueue_enqueue(sc->ale_tq, &sc->ale_tx_task);
2326 	}
2327 
2328 	if (more == EAGAIN ||
2329 	    (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
2330 		taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2331 		return;
2332 	}
2333 
2334 done:
2335 	/* Re-enable interrupts. */
2336 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
2337 }
2338 
2339 static void
2340 ale_txeof(struct ale_softc *sc)
2341 {
2342 	struct ifnet *ifp;
2343 	struct ale_txdesc *txd;
2344 	uint32_t cons, prod;
2345 	int prog;
2346 
2347 	ALE_LOCK_ASSERT(sc);
2348 
2349 	ifp = sc->ale_ifp;
2350 
2351 	if (sc->ale_cdata.ale_tx_cnt == 0)
2352 		return;
2353 
2354 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2355 	    sc->ale_cdata.ale_tx_ring_map,
2356 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2357 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
2358 		bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2359 		    sc->ale_cdata.ale_tx_cmb_map,
2360 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2361 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
2362 	} else
2363 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
2364 	cons = sc->ale_cdata.ale_tx_cons;
2365 	/*
2366 	 * Go through our Tx list and free mbufs for those
2367 	 * frames which have been transmitted.
2368 	 */
2369 	for (prog = 0; cons != prod; prog++,
2370 	    ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
2371 		if (sc->ale_cdata.ale_tx_cnt <= 0)
2372 			break;
2373 		prog++;
2374 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2375 		sc->ale_cdata.ale_tx_cnt--;
2376 		txd = &sc->ale_cdata.ale_txdesc[cons];
2377 		if (txd->tx_m != NULL) {
2378 			/* Reclaim transmitted mbufs. */
2379 			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2380 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2381 			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2382 			    txd->tx_dmamap);
2383 			m_freem(txd->tx_m);
2384 			txd->tx_m = NULL;
2385 		}
2386 	}
2387 
2388 	if (prog > 0) {
2389 		sc->ale_cdata.ale_tx_cons = cons;
2390 		/*
2391 		 * Unarm watchdog timer only when there is no pending
2392 		 * Tx descriptors in queue.
2393 		 */
2394 		if (sc->ale_cdata.ale_tx_cnt == 0)
2395 			sc->ale_watchdog_timer = 0;
2396 	}
2397 }
2398 
2399 static void
2400 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
2401     uint32_t length, uint32_t *prod)
2402 {
2403 	struct ale_rx_page *rx_page;
2404 
2405 	rx_page = *page;
2406 	/* Update consumer position. */
2407 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
2408 	    ALE_RX_PAGE_ALIGN);
2409 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
2410 		/*
2411 		 * End of Rx page reached, let hardware reuse
2412 		 * this page.
2413 		 */
2414 		rx_page->cons = 0;
2415 		*rx_page->cmb_addr = 0;
2416 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2417 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2418 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
2419 		    RXF_VALID);
2420 		/* Switch to alternate Rx page. */
2421 		sc->ale_cdata.ale_rx_curp ^= 1;
2422 		rx_page = *page =
2423 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2424 		/* Page flipped, sync CMB and Rx page. */
2425 		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2426 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2427 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2428 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2429 		/* Sync completed, cache updated producer index. */
2430 		*prod = *rx_page->cmb_addr;
2431 	}
2432 }
2433 
2434 
2435 /*
2436  * It seems that AR81xx controller can compute partial checksum.
2437  * The partial checksum value can be used to accelerate checksum
2438  * computation for fragmented TCP/UDP packets. Upper network stack
2439  * already takes advantage of the partial checksum value in IP
2440  * reassembly stage. But I'm not sure the correctness of the
2441  * partial hardware checksum assistance due to lack of data sheet.
2442  * In addition, the Rx feature of controller that requires copying
2443  * for every frames effectively nullifies one of most nice offload
2444  * capability of controller.
2445  */
2446 static void
2447 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
2448 {
2449 	struct ifnet *ifp;
2450 	struct ip *ip;
2451 	char *p;
2452 
2453 	ifp = sc->ale_ifp;
2454 	m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2455 	if ((status & ALE_RD_IPCSUM_NOK) == 0)
2456 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2457 
2458 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
2459 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
2460 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
2461 		    ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
2462 			m->m_pkthdr.csum_flags |=
2463 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2464 			m->m_pkthdr.csum_data = 0xffff;
2465 		}
2466 	} else {
2467 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
2468 		    (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
2469 			p = mtod(m, char *);
2470 			p += ETHER_HDR_LEN;
2471 			if ((status & ALE_RD_802_3) != 0)
2472 				p += LLC_SNAPFRAMELEN;
2473 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 &&
2474 			    (status & ALE_RD_VLAN) != 0)
2475 				p += ETHER_VLAN_ENCAP_LEN;
2476 			ip = (struct ip *)p;
2477 			if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
2478 				return;
2479 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2480 			    CSUM_PSEUDO_HDR;
2481 			m->m_pkthdr.csum_data = 0xffff;
2482 		}
2483 	}
2484 	/*
2485 	 * Don't mark bad checksum for TCP/UDP frames
2486 	 * as fragmented frames may always have set
2487 	 * bad checksummed bit of frame status.
2488 	 */
2489 }
2490 
2491 /* Process received frames. */
2492 static int
2493 ale_rxeof(struct ale_softc *sc, int count)
2494 {
2495 	struct ale_rx_page *rx_page;
2496 	struct rx_rs *rs;
2497 	struct ifnet *ifp;
2498 	struct mbuf *m;
2499 	uint32_t length, prod, seqno, status, vtags;
2500 	int prog;
2501 
2502 	ifp = sc->ale_ifp;
2503 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2504 	bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2505 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2506 	bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2507 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2508 	/*
2509 	 * Don't directly access producer index as hardware may
2510 	 * update it while Rx handler is in progress. It would
2511 	 * be even better if there is a way to let hardware
2512 	 * know how far driver processed its received frames.
2513 	 * Alternatively, hardware could provide a way to disable
2514 	 * CMB updates until driver acknowledges the end of CMB
2515 	 * access.
2516 	 */
2517 	prod = *rx_page->cmb_addr;
2518 	for (prog = 0; prog < count; prog++) {
2519 		if (rx_page->cons >= prod)
2520 			break;
2521 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
2522 		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
2523 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
2524 			/*
2525 			 * Normally I believe this should not happen unless
2526 			 * severe driver bug or corrupted memory. However
2527 			 * it seems to happen under certain conditions which
2528 			 * is triggered by abrupt Rx events such as initiation
2529 			 * of bulk transfer of remote host. It's not easy to
2530 			 * reproduce this and I doubt it could be related
2531 			 * with FIFO overflow of hardware or activity of Tx
2532 			 * CMB updates. I also remember similar behaviour
2533 			 * seen on RealTek 8139 which uses resembling Rx
2534 			 * scheme.
2535 			 */
2536 			if (bootverbose)
2537 				device_printf(sc->ale_dev,
2538 				    "garbled seq: %u, expected: %u -- "
2539 				    "resetting!\n", seqno,
2540 				    sc->ale_cdata.ale_rx_seqno);
2541 			return (EIO);
2542 		}
2543 		/* Frame received. */
2544 		sc->ale_cdata.ale_rx_seqno++;
2545 		length = ALE_RX_BYTES(le32toh(rs->length));
2546 		status = le32toh(rs->flags);
2547 		if ((status & ALE_RD_ERROR) != 0) {
2548 			/*
2549 			 * We want to pass the following frames to upper
2550 			 * layer regardless of error status of Rx return
2551 			 * status.
2552 			 *
2553 			 *  o IP/TCP/UDP checksum is bad.
2554 			 *  o frame length and protocol specific length
2555 			 *     does not match.
2556 			 */
2557 			if ((status & (ALE_RD_CRC | ALE_RD_CODE |
2558 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
2559 			    ALE_RD_TRUNC)) != 0) {
2560 				ale_rx_update_page(sc, &rx_page, length, &prod);
2561 				continue;
2562 			}
2563 		}
2564 		/*
2565 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
2566 		 * from hardware limitation). For jumbo frames we could
2567 		 * get a slightly better performance if driver use
2568 		 * m_getjcl(9) with proper buffer size argument. However
2569 		 * that would make code more complicated and I don't
2570 		 * think users would expect good Rx performance numbers
2571 		 * on these low-end consumer ethernet controller.
2572 		 */
2573 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
2574 		    ETHER_ALIGN, ifp, NULL);
2575 		if (m == NULL) {
2576 			ifp->if_iqdrops++;
2577 			ale_rx_update_page(sc, &rx_page, length, &prod);
2578 			continue;
2579 		}
2580 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2581 		    (status & ALE_RD_IPV4) != 0)
2582 			ale_rxcsum(sc, m, status);
2583 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2584 		    (status & ALE_RD_VLAN) != 0) {
2585 			vtags = ALE_RX_VLAN(le32toh(rs->vtags));
2586 			m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
2587 			m->m_flags |= M_VLANTAG;
2588 		}
2589 
2590 		/* Pass it to upper layer. */
2591 		(*ifp->if_input)(ifp, m);
2592 
2593 		ale_rx_update_page(sc, &rx_page, length, &prod);
2594 	}
2595 
2596 	return (count > 0 ? 0 : EAGAIN);
2597 }
2598 
2599 static void
2600 ale_tick(void *arg)
2601 {
2602 	struct ale_softc *sc;
2603 	struct mii_data *mii;
2604 
2605 	sc = (struct ale_softc *)arg;
2606 
2607 	ALE_LOCK_ASSERT(sc);
2608 
2609 	mii = device_get_softc(sc->ale_miibus);
2610 	mii_tick(mii);
2611 	ale_stats_update(sc);
2612 	/*
2613 	 * Reclaim Tx buffers that have been transferred. It's not
2614 	 * needed here but it would release allocated mbuf chains
2615 	 * faster and limit the maximum delay to a hz.
2616 	 */
2617 	ale_txeof(sc);
2618 	ale_watchdog(sc);
2619 	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2620 }
2621 
2622 static void
2623 ale_reset(struct ale_softc *sc)
2624 {
2625 	uint32_t reg;
2626 	int i;
2627 
2628 	/* Initialize PCIe module. From Linux. */
2629 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2630 
2631 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
2632 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2633 		DELAY(10);
2634 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
2635 			break;
2636 	}
2637 	if (i == 0)
2638 		device_printf(sc->ale_dev, "master reset timeout!\n");
2639 
2640 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2641 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
2642 			break;
2643 		DELAY(10);
2644 	}
2645 
2646 	if (i == 0)
2647 		device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
2648 }
2649 
2650 static void
2651 ale_init(void *xsc)
2652 {
2653 	struct ale_softc *sc;
2654 
2655 	sc = (struct ale_softc *)xsc;
2656 	ALE_LOCK(sc);
2657 	ale_init_locked(sc);
2658 	ALE_UNLOCK(sc);
2659 }
2660 
2661 static void
2662 ale_init_locked(struct ale_softc *sc)
2663 {
2664 	struct ifnet *ifp;
2665 	struct mii_data *mii;
2666 	uint8_t eaddr[ETHER_ADDR_LEN];
2667 	bus_addr_t paddr;
2668 	uint32_t reg, rxf_hi, rxf_lo;
2669 
2670 	ALE_LOCK_ASSERT(sc);
2671 
2672 	ifp = sc->ale_ifp;
2673 	mii = device_get_softc(sc->ale_miibus);
2674 
2675 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2676 		return;
2677 	/*
2678 	 * Cancel any pending I/O.
2679 	 */
2680 	ale_stop(sc);
2681 	/*
2682 	 * Reset the chip to a known state.
2683 	 */
2684 	ale_reset(sc);
2685 	/* Initialize Tx descriptors, DMA memory blocks. */
2686 	ale_init_rx_pages(sc);
2687 	ale_init_tx_ring(sc);
2688 
2689 	/* Reprogram the station address. */
2690 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2691 	CSR_WRITE_4(sc, ALE_PAR0,
2692 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2693 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
2694 	/*
2695 	 * Clear WOL status and disable all WOL feature as WOL
2696 	 * would interfere Rx operation under normal environments.
2697 	 */
2698 	CSR_READ_4(sc, ALE_WOL_CFG);
2699 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
2700 	/*
2701 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
2702 	 * the same high address part of DMAable region.
2703 	 */
2704 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
2705 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
2706 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
2707 	CSR_WRITE_4(sc, ALE_TPD_CNT,
2708 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
2709 	/* Set Rx page base address, note we use single queue. */
2710 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
2711 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
2712 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
2713 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
2714 	/* Set Tx/Rx CMB addresses. */
2715 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
2716 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
2717 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
2718 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
2719 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
2720 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
2721 	/* Mark RXF0 is valid. */
2722 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
2723 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
2724 	/*
2725 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
2726 	 * multi-queue yet.
2727 	 */
2728 
2729 	/* Set Rx page size, excluding guard frame size. */
2730 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
2731 	/* Tell hardware that we're ready to load DMA blocks. */
2732 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
2733 
2734 	/* Set Rx/Tx interrupt trigger threshold. */
2735 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
2736 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
2737 	/*
2738 	 * XXX
2739 	 * Set interrupt trigger timer, its purpose and relation
2740 	 * with interrupt moderation mechanism is not clear yet.
2741 	 */
2742 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
2743 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
2744 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
2745 
2746 	/* Configure interrupt moderation timer. */
2747 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
2748 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
2749 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
2750 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
2751 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
2752 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2753 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
2754 		reg |= MASTER_IM_RX_TIMER_ENB;
2755 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
2756 		reg |= MASTER_IM_TX_TIMER_ENB;
2757 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
2758 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
2759 
2760 	/* Set Maximum frame size of controller. */
2761 	if (ifp->if_mtu < ETHERMTU)
2762 		sc->ale_max_frame_size = ETHERMTU;
2763 	else
2764 		sc->ale_max_frame_size = ifp->if_mtu;
2765 	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2766 	    ETHER_CRC_LEN;
2767 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
2768 	/* Configure IPG/IFG parameters. */
2769 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
2770 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2771 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2772 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2773 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2774 	/* Set parameters for half-duplex media. */
2775 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
2776 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2777 	    HDPX_CFG_LCOL_MASK) |
2778 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2779 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2780 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2781 	    HDPX_CFG_ABEBT_MASK) |
2782 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2783 	    HDPX_CFG_JAMIPG_MASK));
2784 
2785 	/* Configure Tx jumbo frame parameters. */
2786 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2787 		if (ifp->if_mtu < ETHERMTU)
2788 			reg = sc->ale_max_frame_size;
2789 		else if (ifp->if_mtu < 6 * 1024)
2790 			reg = (sc->ale_max_frame_size * 2) / 3;
2791 		else
2792 			reg = sc->ale_max_frame_size / 2;
2793 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
2794 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
2795 		    TX_JUMBO_THRESH_UNIT_SHIFT);
2796 	}
2797 	/* Configure TxQ. */
2798 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
2799 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
2800 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2801 	    TXQ_CFG_TPD_BURST_MASK;
2802 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
2803 
2804 	/* Configure Rx jumbo frame & flow control parameters. */
2805 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2806 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
2807 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
2808 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
2809 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
2810 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
2811 		    RX_JUMBO_LKAH_MASK));
2812 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
2813 		rxf_hi = (reg * 7) / 10;
2814 		rxf_lo = (reg * 3)/ 10;
2815 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
2816 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2817 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
2818 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2819 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
2820 	}
2821 
2822 	/* Disable RSS. */
2823 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
2824 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
2825 
2826 	/* Configure RxQ. */
2827 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
2828 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2829 
2830 	/* Configure DMA parameters. */
2831 	reg = 0;
2832 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
2833 		reg |= DMA_CFG_TXCMB_ENB;
2834 	CSR_WRITE_4(sc, ALE_DMA_CFG,
2835 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
2836 	    sc->ale_dma_rd_burst | reg |
2837 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
2838 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2839 	    DMA_CFG_RD_DELAY_CNT_MASK) |
2840 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2841 	    DMA_CFG_WR_DELAY_CNT_MASK));
2842 
2843 	/*
2844 	 * Hardware can be configured to issue SMB interrupt based
2845 	 * on programmed interval. Since there is a callout that is
2846 	 * invoked for every hz in driver we use that instead of
2847 	 * relying on periodic SMB interrupt.
2848 	 */
2849 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
2850 	/* Clear MAC statistics. */
2851 	ale_stats_clear(sc);
2852 
2853 	/*
2854 	 * Configure Tx/Rx MACs.
2855 	 *  - Auto-padding for short frames.
2856 	 *  - Enable CRC generation.
2857 	 *  Actual reconfiguration of MAC for resolved speed/duplex
2858 	 *  is followed after detection of link establishment.
2859 	 *  AR81xx always does checksum computation regardless of
2860 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
2861 	 *  cause Rx handling issue for fragmented IP datagrams due
2862 	 *  to silicon bug.
2863 	 */
2864 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2865 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2866 	    MAC_CFG_PREAMBLE_MASK);
2867 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
2868 		reg |= MAC_CFG_SPEED_10_100;
2869 	else
2870 		reg |= MAC_CFG_SPEED_1000;
2871 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2872 
2873 	/* Set up the receive filter. */
2874 	ale_rxfilter(sc);
2875 	ale_rxvlan(sc);
2876 
2877 	/* Acknowledge all pending interrupts and clear it. */
2878 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
2879 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2880 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
2881 
2882 	sc->ale_flags &= ~ALE_FLAG_LINK;
2883 	/* Switch to the current media. */
2884 	mii_mediachg(mii);
2885 
2886 	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2887 
2888 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2889 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2890 }
2891 
2892 static void
2893 ale_stop(struct ale_softc *sc)
2894 {
2895 	struct ifnet *ifp;
2896 	struct ale_txdesc *txd;
2897 	uint32_t reg;
2898 	int i;
2899 
2900 	ALE_LOCK_ASSERT(sc);
2901 	/*
2902 	 * Mark the interface down and cancel the watchdog timer.
2903 	 */
2904 	ifp = sc->ale_ifp;
2905 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2906 	sc->ale_flags &= ~ALE_FLAG_LINK;
2907 	callout_stop(&sc->ale_tick_ch);
2908 	sc->ale_watchdog_timer = 0;
2909 	ale_stats_update(sc);
2910 	/* Disable interrupts. */
2911 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
2912 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2913 	/* Disable queue processing and DMA. */
2914 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
2915 	reg &= ~TXQ_CFG_ENB;
2916 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
2917 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
2918 	reg &= ~RXQ_CFG_ENB;
2919 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
2920 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
2921 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
2922 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
2923 	DELAY(1000);
2924 	/* Stop Rx/Tx MACs. */
2925 	ale_stop_mac(sc);
2926 	/* Disable interrupts which might be touched in taskq handler. */
2927 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2928 
2929 	/*
2930 	 * Free TX mbufs still in the queues.
2931 	 */
2932 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2933 		txd = &sc->ale_cdata.ale_txdesc[i];
2934 		if (txd->tx_m != NULL) {
2935 			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2936 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2937 			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2938 			    txd->tx_dmamap);
2939 			m_freem(txd->tx_m);
2940 			txd->tx_m = NULL;
2941 		}
2942         }
2943 }
2944 
2945 static void
2946 ale_stop_mac(struct ale_softc *sc)
2947 {
2948 	uint32_t reg;
2949 	int i;
2950 
2951 	ALE_LOCK_ASSERT(sc);
2952 
2953 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2954 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2955 		reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2956 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2957 	}
2958 
2959 	for (i = ALE_TIMEOUT; i > 0; i--) {
2960 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
2961 		if (reg == 0)
2962 			break;
2963 		DELAY(10);
2964 	}
2965 	if (i == 0)
2966 		device_printf(sc->ale_dev,
2967 		    "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
2968 }
2969 
2970 static void
2971 ale_init_tx_ring(struct ale_softc *sc)
2972 {
2973 	struct ale_txdesc *txd;
2974 	int i;
2975 
2976 	ALE_LOCK_ASSERT(sc);
2977 
2978 	sc->ale_cdata.ale_tx_prod = 0;
2979 	sc->ale_cdata.ale_tx_cons = 0;
2980 	sc->ale_cdata.ale_tx_cnt = 0;
2981 
2982 	bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
2983 	bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
2984 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2985 		txd = &sc->ale_cdata.ale_txdesc[i];
2986 		txd->tx_m = NULL;
2987 	}
2988 	*sc->ale_cdata.ale_tx_cmb = 0;
2989 	bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2990 	    sc->ale_cdata.ale_tx_cmb_map,
2991 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2992 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2993 	    sc->ale_cdata.ale_tx_ring_map,
2994 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2995 }
2996 
2997 static void
2998 ale_init_rx_pages(struct ale_softc *sc)
2999 {
3000 	struct ale_rx_page *rx_page;
3001 	int i;
3002 
3003 	ALE_LOCK_ASSERT(sc);
3004 
3005 	atomic_set_int(&sc->ale_morework, 0);
3006 	sc->ale_cdata.ale_rx_seqno = 0;
3007 	sc->ale_cdata.ale_rx_curp = 0;
3008 
3009 	for (i = 0; i < ALE_RX_PAGES; i++) {
3010 		rx_page = &sc->ale_cdata.ale_rx_page[i];
3011 		bzero(rx_page->page_addr, sc->ale_pagesize);
3012 		bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
3013 		rx_page->cons = 0;
3014 		*rx_page->cmb_addr = 0;
3015 		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
3016 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3017 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
3018 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3019 	}
3020 }
3021 
3022 static void
3023 ale_rxvlan(struct ale_softc *sc)
3024 {
3025 	struct ifnet *ifp;
3026 	uint32_t reg;
3027 
3028 	ALE_LOCK_ASSERT(sc);
3029 
3030 	ifp = sc->ale_ifp;
3031 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
3032 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3033 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3034 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3035 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
3036 }
3037 
3038 static void
3039 ale_rxfilter(struct ale_softc *sc)
3040 {
3041 	struct ifnet *ifp;
3042 	struct ifmultiaddr *ifma;
3043 	uint32_t crc;
3044 	uint32_t mchash[2];
3045 	uint32_t rxcfg;
3046 
3047 	ALE_LOCK_ASSERT(sc);
3048 
3049 	ifp = sc->ale_ifp;
3050 
3051 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
3052 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3053 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3054 		rxcfg |= MAC_CFG_BCAST;
3055 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3056 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3057 			rxcfg |= MAC_CFG_PROMISC;
3058 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3059 			rxcfg |= MAC_CFG_ALLMULTI;
3060 		CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
3061 		CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
3062 		CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3063 		return;
3064 	}
3065 
3066 	/* Program new filter. */
3067 	bzero(mchash, sizeof(mchash));
3068 
3069 	if_maddr_rlock(ifp);
3070 	TAILQ_FOREACH(ifma, &sc->ale_ifp->if_multiaddrs, ifma_link) {
3071 		if (ifma->ifma_addr->sa_family != AF_LINK)
3072 			continue;
3073 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3074 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3075 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3076 	}
3077 	if_maddr_runlock(ifp);
3078 
3079 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
3080 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
3081 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3082 }
3083 
3084 static int
3085 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3086 {
3087 	int error, value;
3088 
3089 	if (arg1 == NULL)
3090 		return (EINVAL);
3091 	value = *(int *)arg1;
3092 	error = sysctl_handle_int(oidp, &value, 0, req);
3093 	if (error || req->newptr == NULL)
3094 		return (error);
3095 	if (value < low || value > high)
3096 		return (EINVAL);
3097         *(int *)arg1 = value;
3098 
3099         return (0);
3100 }
3101 
3102 static int
3103 sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
3104 {
3105 	return (sysctl_int_range(oidp, arg1, arg2, req,
3106 	    ALE_PROC_MIN, ALE_PROC_MAX));
3107 }
3108 
3109 static int
3110 sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
3111 {
3112 
3113 	return (sysctl_int_range(oidp, arg1, arg2, req,
3114 	    ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
3115 }
3116