1 /*- 2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/bus.h> 36 #include <sys/endian.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/mbuf.h> 40 #include <sys/module.h> 41 #include <sys/rman.h> 42 #include <sys/queue.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/sysctl.h> 46 #include <sys/taskqueue.h> 47 48 #include <net/bpf.h> 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/ethernet.h> 52 #include <net/if_dl.h> 53 #include <net/if_llc.h> 54 #include <net/if_media.h> 55 #include <net/if_types.h> 56 #include <net/if_vlan_var.h> 57 58 #include <netinet/in.h> 59 #include <netinet/in_systm.h> 60 #include <netinet/ip.h> 61 #include <netinet/tcp.h> 62 63 #include <dev/mii/mii.h> 64 #include <dev/mii/miivar.h> 65 66 #include <dev/pci/pcireg.h> 67 #include <dev/pci/pcivar.h> 68 69 #include <machine/atomic.h> 70 #include <machine/bus.h> 71 #include <machine/in_cksum.h> 72 73 #include <dev/ale/if_alereg.h> 74 #include <dev/ale/if_alevar.h> 75 76 /* "device miibus" required. See GENERIC if you get errors here. */ 77 #include "miibus_if.h" 78 79 /* For more information about Tx checksum offload issues see ale_encap(). */ 80 #define ALE_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 81 82 MODULE_DEPEND(ale, pci, 1, 1, 1); 83 MODULE_DEPEND(ale, ether, 1, 1, 1); 84 MODULE_DEPEND(ale, miibus, 1, 1, 1); 85 86 /* Tunables. */ 87 static int msi_disable = 0; 88 static int msix_disable = 0; 89 TUNABLE_INT("hw.ale.msi_disable", &msi_disable); 90 TUNABLE_INT("hw.ale.msix_disable", &msix_disable); 91 92 /* 93 * Devices supported by this driver. 94 */ 95 static struct ale_dev { 96 uint16_t ale_vendorid; 97 uint16_t ale_deviceid; 98 const char *ale_name; 99 } ale_devs[] = { 100 { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX, 101 "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" }, 102 }; 103 104 static int ale_attach(device_t); 105 static int ale_check_boundary(struct ale_softc *); 106 static int ale_detach(device_t); 107 static int ale_dma_alloc(struct ale_softc *); 108 static void ale_dma_free(struct ale_softc *); 109 static void ale_dmamap_cb(void *, bus_dma_segment_t *, int, int); 110 static int ale_encap(struct ale_softc *, struct mbuf **); 111 static void ale_get_macaddr(struct ale_softc *); 112 static void ale_init(void *); 113 static void ale_init_locked(struct ale_softc *); 114 static void ale_init_rx_pages(struct ale_softc *); 115 static void ale_init_tx_ring(struct ale_softc *); 116 static void ale_int_task(void *, int); 117 static int ale_intr(void *); 118 static int ale_ioctl(struct ifnet *, u_long, caddr_t); 119 static void ale_link_task(void *, int); 120 static void ale_mac_config(struct ale_softc *); 121 static int ale_miibus_readreg(device_t, int, int); 122 static void ale_miibus_statchg(device_t); 123 static int ale_miibus_writereg(device_t, int, int, int); 124 static int ale_mediachange(struct ifnet *); 125 static void ale_mediastatus(struct ifnet *, struct ifmediareq *); 126 static void ale_phy_reset(struct ale_softc *); 127 static int ale_probe(device_t); 128 static void ale_reset(struct ale_softc *); 129 static int ale_resume(device_t); 130 static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **, 131 uint32_t, uint32_t *); 132 static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t); 133 static int ale_rxeof(struct ale_softc *sc, int); 134 static void ale_rxfilter(struct ale_softc *); 135 static void ale_rxvlan(struct ale_softc *); 136 static void ale_setlinkspeed(struct ale_softc *); 137 static void ale_setwol(struct ale_softc *); 138 static int ale_shutdown(device_t); 139 static void ale_start(struct ifnet *); 140 static void ale_stats_clear(struct ale_softc *); 141 static void ale_stats_update(struct ale_softc *); 142 static void ale_stop(struct ale_softc *); 143 static void ale_stop_mac(struct ale_softc *); 144 static int ale_suspend(device_t); 145 static void ale_sysctl_node(struct ale_softc *); 146 static void ale_tick(void *); 147 static void ale_tx_task(void *, int); 148 static void ale_txeof(struct ale_softc *); 149 static void ale_watchdog(struct ale_softc *); 150 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); 151 static int sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS); 152 static int sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS); 153 154 static device_method_t ale_methods[] = { 155 /* Device interface. */ 156 DEVMETHOD(device_probe, ale_probe), 157 DEVMETHOD(device_attach, ale_attach), 158 DEVMETHOD(device_detach, ale_detach), 159 DEVMETHOD(device_shutdown, ale_shutdown), 160 DEVMETHOD(device_suspend, ale_suspend), 161 DEVMETHOD(device_resume, ale_resume), 162 163 /* MII interface. */ 164 DEVMETHOD(miibus_readreg, ale_miibus_readreg), 165 DEVMETHOD(miibus_writereg, ale_miibus_writereg), 166 DEVMETHOD(miibus_statchg, ale_miibus_statchg), 167 168 { NULL, NULL } 169 }; 170 171 static driver_t ale_driver = { 172 "ale", 173 ale_methods, 174 sizeof(struct ale_softc) 175 }; 176 177 static devclass_t ale_devclass; 178 179 DRIVER_MODULE(ale, pci, ale_driver, ale_devclass, 0, 0); 180 DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, 0, 0); 181 182 static struct resource_spec ale_res_spec_mem[] = { 183 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 184 { -1, 0, 0 } 185 }; 186 187 static struct resource_spec ale_irq_spec_legacy[] = { 188 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 189 { -1, 0, 0 } 190 }; 191 192 static struct resource_spec ale_irq_spec_msi[] = { 193 { SYS_RES_IRQ, 1, RF_ACTIVE }, 194 { -1, 0, 0 } 195 }; 196 197 static struct resource_spec ale_irq_spec_msix[] = { 198 { SYS_RES_IRQ, 1, RF_ACTIVE }, 199 { -1, 0, 0 } 200 }; 201 202 static int 203 ale_miibus_readreg(device_t dev, int phy, int reg) 204 { 205 struct ale_softc *sc; 206 uint32_t v; 207 int i; 208 209 sc = device_get_softc(dev); 210 211 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ | 212 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 213 for (i = ALE_PHY_TIMEOUT; i > 0; i--) { 214 DELAY(5); 215 v = CSR_READ_4(sc, ALE_MDIO); 216 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 217 break; 218 } 219 220 if (i == 0) { 221 device_printf(sc->ale_dev, "phy read timeout : %d\n", reg); 222 return (0); 223 } 224 225 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT); 226 } 227 228 static int 229 ale_miibus_writereg(device_t dev, int phy, int reg, int val) 230 { 231 struct ale_softc *sc; 232 uint32_t v; 233 int i; 234 235 sc = device_get_softc(dev); 236 237 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE | 238 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT | 239 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 240 for (i = ALE_PHY_TIMEOUT; i > 0; i--) { 241 DELAY(5); 242 v = CSR_READ_4(sc, ALE_MDIO); 243 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 244 break; 245 } 246 247 if (i == 0) 248 device_printf(sc->ale_dev, "phy write timeout : %d\n", reg); 249 250 return (0); 251 } 252 253 static void 254 ale_miibus_statchg(device_t dev) 255 { 256 struct ale_softc *sc; 257 258 sc = device_get_softc(dev); 259 260 taskqueue_enqueue(taskqueue_swi, &sc->ale_link_task); 261 } 262 263 static void 264 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 265 { 266 struct ale_softc *sc; 267 struct mii_data *mii; 268 269 sc = ifp->if_softc; 270 ALE_LOCK(sc); 271 mii = device_get_softc(sc->ale_miibus); 272 273 mii_pollstat(mii); 274 ALE_UNLOCK(sc); 275 ifmr->ifm_status = mii->mii_media_status; 276 ifmr->ifm_active = mii->mii_media_active; 277 } 278 279 static int 280 ale_mediachange(struct ifnet *ifp) 281 { 282 struct ale_softc *sc; 283 struct mii_data *mii; 284 struct mii_softc *miisc; 285 int error; 286 287 sc = ifp->if_softc; 288 ALE_LOCK(sc); 289 mii = device_get_softc(sc->ale_miibus); 290 if (mii->mii_instance != 0) { 291 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 292 mii_phy_reset(miisc); 293 } 294 error = mii_mediachg(mii); 295 ALE_UNLOCK(sc); 296 297 return (error); 298 } 299 300 static int 301 ale_probe(device_t dev) 302 { 303 struct ale_dev *sp; 304 int i; 305 uint16_t vendor, devid; 306 307 vendor = pci_get_vendor(dev); 308 devid = pci_get_device(dev); 309 sp = ale_devs; 310 for (i = 0; i < sizeof(ale_devs) / sizeof(ale_devs[0]); i++) { 311 if (vendor == sp->ale_vendorid && 312 devid == sp->ale_deviceid) { 313 device_set_desc(dev, sp->ale_name); 314 return (BUS_PROBE_DEFAULT); 315 } 316 sp++; 317 } 318 319 return (ENXIO); 320 } 321 322 static void 323 ale_get_macaddr(struct ale_softc *sc) 324 { 325 uint32_t ea[2], reg; 326 int i, vpdc; 327 328 reg = CSR_READ_4(sc, ALE_SPI_CTRL); 329 if ((reg & SPI_VPD_ENB) != 0) { 330 reg &= ~SPI_VPD_ENB; 331 CSR_WRITE_4(sc, ALE_SPI_CTRL, reg); 332 } 333 334 if (pci_find_extcap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) { 335 /* 336 * PCI VPD capability found, let TWSI reload EEPROM. 337 * This will set ethernet address of controller. 338 */ 339 CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) | 340 TWSI_CTRL_SW_LD_START); 341 for (i = 100; i > 0; i--) { 342 DELAY(1000); 343 reg = CSR_READ_4(sc, ALE_TWSI_CTRL); 344 if ((reg & TWSI_CTRL_SW_LD_START) == 0) 345 break; 346 } 347 if (i == 0) 348 device_printf(sc->ale_dev, 349 "reloading EEPROM timeout!\n"); 350 } else { 351 if (bootverbose) 352 device_printf(sc->ale_dev, 353 "PCI VPD capability not found!\n"); 354 } 355 356 ea[0] = CSR_READ_4(sc, ALE_PAR0); 357 ea[1] = CSR_READ_4(sc, ALE_PAR1); 358 sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF; 359 sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF; 360 sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF; 361 sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF; 362 sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF; 363 sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF; 364 } 365 366 static void 367 ale_phy_reset(struct ale_softc *sc) 368 { 369 370 /* Reset magic from Linux. */ 371 CSR_WRITE_2(sc, ALE_GPHY_CTRL, 372 GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET | 373 GPHY_CTRL_PHY_PLL_ON); 374 DELAY(1000); 375 CSR_WRITE_2(sc, ALE_GPHY_CTRL, 376 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | 377 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON); 378 DELAY(1000); 379 380 #define ATPHY_DBG_ADDR 0x1D 381 #define ATPHY_DBG_DATA 0x1E 382 383 /* Enable hibernation mode. */ 384 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 385 ATPHY_DBG_ADDR, 0x0B); 386 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 387 ATPHY_DBG_DATA, 0xBC00); 388 /* Set Class A/B for all modes. */ 389 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 390 ATPHY_DBG_ADDR, 0x00); 391 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 392 ATPHY_DBG_DATA, 0x02EF); 393 /* Enable 10BT power saving. */ 394 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 395 ATPHY_DBG_ADDR, 0x12); 396 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 397 ATPHY_DBG_DATA, 0x4C04); 398 /* Adjust 1000T power. */ 399 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 400 ATPHY_DBG_ADDR, 0x04); 401 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 402 ATPHY_DBG_ADDR, 0x8BBB); 403 /* 10BT center tap voltage. */ 404 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 405 ATPHY_DBG_ADDR, 0x05); 406 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 407 ATPHY_DBG_ADDR, 0x2C46); 408 409 #undef ATPHY_DBG_ADDR 410 #undef ATPHY_DBG_DATA 411 DELAY(1000); 412 } 413 414 static int 415 ale_attach(device_t dev) 416 { 417 struct ale_softc *sc; 418 struct ifnet *ifp; 419 uint16_t burst; 420 int error, i, msic, msixc, pmc; 421 uint32_t rxf_len, txf_len; 422 423 error = 0; 424 sc = device_get_softc(dev); 425 sc->ale_dev = dev; 426 427 mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 428 MTX_DEF); 429 callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0); 430 TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc); 431 TASK_INIT(&sc->ale_link_task, 0, ale_link_task, sc); 432 433 /* Map the device. */ 434 pci_enable_busmaster(dev); 435 sc->ale_res_spec = ale_res_spec_mem; 436 sc->ale_irq_spec = ale_irq_spec_legacy; 437 error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res); 438 if (error != 0) { 439 device_printf(dev, "cannot allocate memory resources.\n"); 440 goto fail; 441 } 442 443 /* Set PHY address. */ 444 sc->ale_phyaddr = ALE_PHY_ADDR; 445 446 /* Reset PHY. */ 447 ale_phy_reset(sc); 448 449 /* Reset the ethernet controller. */ 450 ale_reset(sc); 451 452 /* Get PCI and chip id/revision. */ 453 sc->ale_rev = pci_get_revid(dev); 454 if (sc->ale_rev >= 0xF0) { 455 /* L2E Rev. B. AR8114 */ 456 sc->ale_flags |= ALE_FLAG_FASTETHER; 457 } else { 458 if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) { 459 /* L1E AR8121 */ 460 sc->ale_flags |= ALE_FLAG_JUMBO; 461 } else { 462 /* L2E Rev. A. AR8113 */ 463 sc->ale_flags |= ALE_FLAG_FASTETHER; 464 } 465 } 466 /* 467 * All known controllers seems to require 4 bytes alignment 468 * of Tx buffers to make Tx checksum offload with custom 469 * checksum generation method work. 470 */ 471 sc->ale_flags |= ALE_FLAG_TXCSUM_BUG; 472 /* 473 * All known controllers seems to have issues on Rx checksum 474 * offload for fragmented IP datagrams. 475 */ 476 sc->ale_flags |= ALE_FLAG_RXCSUM_BUG; 477 /* 478 * Don't use Tx CMB. It is known to cause RRS update failure 479 * under certain circumstances. Typical phenomenon of the 480 * issue would be unexpected sequence number encountered in 481 * Rx handler. 482 */ 483 sc->ale_flags |= ALE_FLAG_TXCMB_BUG; 484 sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >> 485 MASTER_CHIP_REV_SHIFT; 486 if (bootverbose) { 487 device_printf(dev, "PCI device revision : 0x%04x\n", 488 sc->ale_rev); 489 device_printf(dev, "Chip id/revision : 0x%04x\n", 490 sc->ale_chip_rev); 491 } 492 txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN); 493 rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN); 494 /* 495 * Uninitialized hardware returns an invalid chip id/revision 496 * as well as 0xFFFFFFFF for Tx/Rx fifo length. 497 */ 498 if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF || 499 rxf_len == 0xFFFFFFF) { 500 device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO " 501 "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev, 502 txf_len, rxf_len); 503 error = ENXIO; 504 goto fail; 505 } 506 device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len); 507 508 /* Allocate IRQ resources. */ 509 msixc = pci_msix_count(dev); 510 msic = pci_msi_count(dev); 511 if (bootverbose) { 512 device_printf(dev, "MSIX count : %d\n", msixc); 513 device_printf(dev, "MSI count : %d\n", msic); 514 } 515 516 /* Prefer MSIX over MSI. */ 517 if (msix_disable == 0 || msi_disable == 0) { 518 if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES && 519 pci_alloc_msix(dev, &msixc) == 0) { 520 if (msic == ALE_MSIX_MESSAGES) { 521 device_printf(dev, "Using %d MSIX messages.\n", 522 msixc); 523 sc->ale_flags |= ALE_FLAG_MSIX; 524 sc->ale_irq_spec = ale_irq_spec_msix; 525 } else 526 pci_release_msi(dev); 527 } 528 if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 && 529 msic == ALE_MSI_MESSAGES && 530 pci_alloc_msi(dev, &msic) == 0) { 531 if (msic == ALE_MSI_MESSAGES) { 532 device_printf(dev, "Using %d MSI messages.\n", 533 msic); 534 sc->ale_flags |= ALE_FLAG_MSI; 535 sc->ale_irq_spec = ale_irq_spec_msi; 536 } else 537 pci_release_msi(dev); 538 } 539 } 540 541 error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq); 542 if (error != 0) { 543 device_printf(dev, "cannot allocate IRQ resources.\n"); 544 goto fail; 545 } 546 547 /* Get DMA parameters from PCIe device control register. */ 548 if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) { 549 sc->ale_flags |= ALE_FLAG_PCIE; 550 burst = pci_read_config(dev, i + 0x08, 2); 551 /* Max read request size. */ 552 sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) << 553 DMA_CFG_RD_BURST_SHIFT; 554 /* Max payload size. */ 555 sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) << 556 DMA_CFG_WR_BURST_SHIFT; 557 if (bootverbose) { 558 device_printf(dev, "Read request size : %d bytes.\n", 559 128 << ((burst >> 12) & 0x07)); 560 device_printf(dev, "TLP payload size : %d bytes.\n", 561 128 << ((burst >> 5) & 0x07)); 562 } 563 } else { 564 sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128; 565 sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128; 566 } 567 568 /* Create device sysctl node. */ 569 ale_sysctl_node(sc); 570 571 if ((error = ale_dma_alloc(sc) != 0)) 572 goto fail; 573 574 /* Load station address. */ 575 ale_get_macaddr(sc); 576 577 ifp = sc->ale_ifp = if_alloc(IFT_ETHER); 578 if (ifp == NULL) { 579 device_printf(dev, "cannot allocate ifnet structure.\n"); 580 error = ENXIO; 581 goto fail; 582 } 583 584 ifp->if_softc = sc; 585 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 586 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 587 ifp->if_ioctl = ale_ioctl; 588 ifp->if_start = ale_start; 589 ifp->if_init = ale_init; 590 ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1; 591 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 592 IFQ_SET_READY(&ifp->if_snd); 593 ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4; 594 ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO; 595 if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) { 596 sc->ale_flags |= ALE_FLAG_PMCAP; 597 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST; 598 } 599 ifp->if_capenable = ifp->if_capabilities; 600 601 /* Set up MII bus. */ 602 error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange, 603 ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY, 604 0); 605 if (error != 0) { 606 device_printf(dev, "attaching PHYs failed\n"); 607 goto fail; 608 } 609 610 ether_ifattach(ifp, sc->ale_eaddr); 611 612 /* VLAN capability setup. */ 613 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | 614 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO; 615 ifp->if_capenable = ifp->if_capabilities; 616 /* 617 * Even though controllers supported by ale(3) have Rx checksum 618 * offload bug the workaround for fragmented frames seemed to 619 * work so far. However it seems Rx checksum offload does not 620 * work under certain conditions. So disable Rx checksum offload 621 * until I find more clue about it but allow users to override it. 622 */ 623 ifp->if_capenable &= ~IFCAP_RXCSUM; 624 625 /* Tell the upper layer(s) we support long frames. */ 626 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 627 628 /* Create local taskq. */ 629 TASK_INIT(&sc->ale_tx_task, 1, ale_tx_task, ifp); 630 sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK, 631 taskqueue_thread_enqueue, &sc->ale_tq); 632 if (sc->ale_tq == NULL) { 633 device_printf(dev, "could not create taskqueue.\n"); 634 ether_ifdetach(ifp); 635 error = ENXIO; 636 goto fail; 637 } 638 taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq", 639 device_get_nameunit(sc->ale_dev)); 640 641 if ((sc->ale_flags & ALE_FLAG_MSIX) != 0) 642 msic = ALE_MSIX_MESSAGES; 643 else if ((sc->ale_flags & ALE_FLAG_MSI) != 0) 644 msic = ALE_MSI_MESSAGES; 645 else 646 msic = 1; 647 for (i = 0; i < msic; i++) { 648 error = bus_setup_intr(dev, sc->ale_irq[i], 649 INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc, 650 &sc->ale_intrhand[i]); 651 if (error != 0) 652 break; 653 } 654 if (error != 0) { 655 device_printf(dev, "could not set up interrupt handler.\n"); 656 taskqueue_free(sc->ale_tq); 657 sc->ale_tq = NULL; 658 ether_ifdetach(ifp); 659 goto fail; 660 } 661 662 fail: 663 if (error != 0) 664 ale_detach(dev); 665 666 return (error); 667 } 668 669 static int 670 ale_detach(device_t dev) 671 { 672 struct ale_softc *sc; 673 struct ifnet *ifp; 674 int i, msic; 675 676 sc = device_get_softc(dev); 677 678 ifp = sc->ale_ifp; 679 if (device_is_attached(dev)) { 680 ALE_LOCK(sc); 681 sc->ale_flags |= ALE_FLAG_DETACH; 682 ale_stop(sc); 683 ALE_UNLOCK(sc); 684 callout_drain(&sc->ale_tick_ch); 685 taskqueue_drain(sc->ale_tq, &sc->ale_int_task); 686 taskqueue_drain(sc->ale_tq, &sc->ale_tx_task); 687 taskqueue_drain(taskqueue_swi, &sc->ale_link_task); 688 ether_ifdetach(ifp); 689 } 690 691 if (sc->ale_tq != NULL) { 692 taskqueue_drain(sc->ale_tq, &sc->ale_int_task); 693 taskqueue_free(sc->ale_tq); 694 sc->ale_tq = NULL; 695 } 696 697 if (sc->ale_miibus != NULL) { 698 device_delete_child(dev, sc->ale_miibus); 699 sc->ale_miibus = NULL; 700 } 701 bus_generic_detach(dev); 702 ale_dma_free(sc); 703 704 if (ifp != NULL) { 705 if_free(ifp); 706 sc->ale_ifp = NULL; 707 } 708 709 if ((sc->ale_flags & ALE_FLAG_MSIX) != 0) 710 msic = ALE_MSIX_MESSAGES; 711 else if ((sc->ale_flags & ALE_FLAG_MSI) != 0) 712 msic = ALE_MSI_MESSAGES; 713 else 714 msic = 1; 715 for (i = 0; i < msic; i++) { 716 if (sc->ale_intrhand[i] != NULL) { 717 bus_teardown_intr(dev, sc->ale_irq[i], 718 sc->ale_intrhand[i]); 719 sc->ale_intrhand[i] = NULL; 720 } 721 } 722 723 bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq); 724 if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0) 725 pci_release_msi(dev); 726 bus_release_resources(dev, sc->ale_res_spec, sc->ale_res); 727 mtx_destroy(&sc->ale_mtx); 728 729 return (0); 730 } 731 732 #define ALE_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 733 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 734 735 #if __FreeBSD_version > 800000 736 #define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 737 SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 738 #else 739 #define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 740 SYSCTL_ADD_ULONG(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 741 #endif 742 743 static void 744 ale_sysctl_node(struct ale_softc *sc) 745 { 746 struct sysctl_ctx_list *ctx; 747 struct sysctl_oid_list *child, *parent; 748 struct sysctl_oid *tree; 749 struct ale_hw_stats *stats; 750 int error; 751 752 stats = &sc->ale_stats; 753 ctx = device_get_sysctl_ctx(sc->ale_dev); 754 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev)); 755 756 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod", 757 CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_rx_mod, 0, 758 sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation"); 759 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod", 760 CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_tx_mod, 0, 761 sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation"); 762 /* Pull in device tunables. */ 763 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT; 764 error = resource_int_value(device_get_name(sc->ale_dev), 765 device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod); 766 if (error == 0) { 767 if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN || 768 sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) { 769 device_printf(sc->ale_dev, "int_rx_mod value out of " 770 "range; using default: %d\n", 771 ALE_IM_RX_TIMER_DEFAULT); 772 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT; 773 } 774 } 775 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT; 776 error = resource_int_value(device_get_name(sc->ale_dev), 777 device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod); 778 if (error == 0) { 779 if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN || 780 sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) { 781 device_printf(sc->ale_dev, "int_tx_mod value out of " 782 "range; using default: %d\n", 783 ALE_IM_TX_TIMER_DEFAULT); 784 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT; 785 } 786 } 787 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit", 788 CTLTYPE_INT | CTLFLAG_RW, &sc->ale_process_limit, 0, 789 sysctl_hw_ale_proc_limit, "I", 790 "max number of Rx events to process"); 791 /* Pull in device tunables. */ 792 sc->ale_process_limit = ALE_PROC_DEFAULT; 793 error = resource_int_value(device_get_name(sc->ale_dev), 794 device_get_unit(sc->ale_dev), "process_limit", 795 &sc->ale_process_limit); 796 if (error == 0) { 797 if (sc->ale_process_limit < ALE_PROC_MIN || 798 sc->ale_process_limit > ALE_PROC_MAX) { 799 device_printf(sc->ale_dev, 800 "process_limit value out of range; " 801 "using default: %d\n", ALE_PROC_DEFAULT); 802 sc->ale_process_limit = ALE_PROC_DEFAULT; 803 } 804 } 805 806 /* Misc statistics. */ 807 ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq", 808 &stats->reset_brk_seq, 809 "Controller resets due to broken Rx sequnce number"); 810 811 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 812 NULL, "ATE statistics"); 813 parent = SYSCTL_CHILDREN(tree); 814 815 /* Rx statistics. */ 816 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD, 817 NULL, "Rx MAC statistics"); 818 child = SYSCTL_CHILDREN(tree); 819 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames", 820 &stats->rx_frames, "Good frames"); 821 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames", 822 &stats->rx_bcast_frames, "Good broadcast frames"); 823 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames", 824 &stats->rx_mcast_frames, "Good multicast frames"); 825 ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames", 826 &stats->rx_pause_frames, "Pause control frames"); 827 ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames", 828 &stats->rx_control_frames, "Control frames"); 829 ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs", 830 &stats->rx_crcerrs, "CRC errors"); 831 ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs", 832 &stats->rx_lenerrs, "Frames with length mismatched"); 833 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets", 834 &stats->rx_bytes, "Good octets"); 835 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets", 836 &stats->rx_bcast_bytes, "Good broadcast octets"); 837 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets", 838 &stats->rx_mcast_bytes, "Good multicast octets"); 839 ALE_SYSCTL_STAT_ADD32(ctx, child, "runts", 840 &stats->rx_runts, "Too short frames"); 841 ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments", 842 &stats->rx_fragments, "Fragmented frames"); 843 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64", 844 &stats->rx_pkts_64, "64 bytes frames"); 845 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127", 846 &stats->rx_pkts_65_127, "65 to 127 bytes frames"); 847 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255", 848 &stats->rx_pkts_128_255, "128 to 255 bytes frames"); 849 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511", 850 &stats->rx_pkts_256_511, "256 to 511 bytes frames"); 851 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023", 852 &stats->rx_pkts_512_1023, "512 to 1023 bytes frames"); 853 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518", 854 &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames"); 855 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max", 856 &stats->rx_pkts_1519_max, "1519 to max frames"); 857 ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs", 858 &stats->rx_pkts_truncated, "Truncated frames due to MTU size"); 859 ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows", 860 &stats->rx_fifo_oflows, "FIFO overflows"); 861 ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs", 862 &stats->rx_rrs_errs, "Return status write-back errors"); 863 ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs", 864 &stats->rx_alignerrs, "Alignment errors"); 865 ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered", 866 &stats->rx_pkts_filtered, 867 "Frames dropped due to address filtering"); 868 869 /* Tx statistics. */ 870 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD, 871 NULL, "Tx MAC statistics"); 872 child = SYSCTL_CHILDREN(tree); 873 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames", 874 &stats->tx_frames, "Good frames"); 875 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames", 876 &stats->tx_bcast_frames, "Good broadcast frames"); 877 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames", 878 &stats->tx_mcast_frames, "Good multicast frames"); 879 ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames", 880 &stats->tx_pause_frames, "Pause control frames"); 881 ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames", 882 &stats->tx_control_frames, "Control frames"); 883 ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers", 884 &stats->tx_excess_defer, "Frames with excessive derferrals"); 885 ALE_SYSCTL_STAT_ADD32(ctx, child, "defers", 886 &stats->tx_excess_defer, "Frames with derferrals"); 887 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets", 888 &stats->tx_bytes, "Good octets"); 889 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets", 890 &stats->tx_bcast_bytes, "Good broadcast octets"); 891 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets", 892 &stats->tx_mcast_bytes, "Good multicast octets"); 893 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64", 894 &stats->tx_pkts_64, "64 bytes frames"); 895 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127", 896 &stats->tx_pkts_65_127, "65 to 127 bytes frames"); 897 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255", 898 &stats->tx_pkts_128_255, "128 to 255 bytes frames"); 899 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511", 900 &stats->tx_pkts_256_511, "256 to 511 bytes frames"); 901 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023", 902 &stats->tx_pkts_512_1023, "512 to 1023 bytes frames"); 903 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518", 904 &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames"); 905 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max", 906 &stats->tx_pkts_1519_max, "1519 to max frames"); 907 ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls", 908 &stats->tx_single_colls, "Single collisions"); 909 ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls", 910 &stats->tx_multi_colls, "Multiple collisions"); 911 ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls", 912 &stats->tx_late_colls, "Late collisions"); 913 ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls", 914 &stats->tx_excess_colls, "Excessive collisions"); 915 ALE_SYSCTL_STAT_ADD32(ctx, child, "abort", 916 &stats->tx_abort, "Aborted frames due to Excessive collisions"); 917 ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns", 918 &stats->tx_underrun, "FIFO underruns"); 919 ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns", 920 &stats->tx_desc_underrun, "Descriptor write-back errors"); 921 ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs", 922 &stats->tx_lenerrs, "Frames with length mismatched"); 923 ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs", 924 &stats->tx_pkts_truncated, "Truncated frames due to MTU size"); 925 } 926 927 #undef ALE_SYSCTL_STAT_ADD32 928 #undef ALE_SYSCTL_STAT_ADD64 929 930 struct ale_dmamap_arg { 931 bus_addr_t ale_busaddr; 932 }; 933 934 static void 935 ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 936 { 937 struct ale_dmamap_arg *ctx; 938 939 if (error != 0) 940 return; 941 942 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 943 944 ctx = (struct ale_dmamap_arg *)arg; 945 ctx->ale_busaddr = segs[0].ds_addr; 946 } 947 948 /* 949 * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register 950 * which specifies high address region of DMA blocks. Therefore these 951 * blocks should have the same high address of given 4GB address 952 * space(i.e. crossing 4GB boundary is not allowed). 953 */ 954 static int 955 ale_check_boundary(struct ale_softc *sc) 956 { 957 bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end; 958 bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end; 959 960 rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr + 961 sc->ale_pagesize; 962 rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr + 963 sc->ale_pagesize; 964 tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ; 965 tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ; 966 rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ; 967 rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ; 968 969 if ((ALE_ADDR_HI(tx_ring_end) != 970 ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) || 971 (ALE_ADDR_HI(rx_page_end[0]) != 972 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) || 973 (ALE_ADDR_HI(rx_page_end[1]) != 974 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) || 975 (ALE_ADDR_HI(tx_cmb_end) != 976 ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) || 977 (ALE_ADDR_HI(rx_cmb_end[0]) != 978 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) || 979 (ALE_ADDR_HI(rx_cmb_end[1]) != 980 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr))) 981 return (EFBIG); 982 983 if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) || 984 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) || 985 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) || 986 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) || 987 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end))) 988 return (EFBIG); 989 990 return (0); 991 } 992 993 static int 994 ale_dma_alloc(struct ale_softc *sc) 995 { 996 struct ale_txdesc *txd; 997 bus_addr_t lowaddr; 998 struct ale_dmamap_arg ctx; 999 int error, guard_size, i; 1000 1001 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) 1002 guard_size = ALE_JUMBO_FRAMELEN; 1003 else 1004 guard_size = ALE_MAX_FRAMELEN; 1005 sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ, 1006 ALE_RX_PAGE_ALIGN); 1007 lowaddr = BUS_SPACE_MAXADDR; 1008 again: 1009 /* Create parent DMA tag. */ 1010 error = bus_dma_tag_create( 1011 bus_get_dma_tag(sc->ale_dev), /* parent */ 1012 1, 0, /* alignment, boundary */ 1013 lowaddr, /* lowaddr */ 1014 BUS_SPACE_MAXADDR, /* highaddr */ 1015 NULL, NULL, /* filter, filterarg */ 1016 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1017 0, /* nsegments */ 1018 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1019 0, /* flags */ 1020 NULL, NULL, /* lockfunc, lockarg */ 1021 &sc->ale_cdata.ale_parent_tag); 1022 if (error != 0) { 1023 device_printf(sc->ale_dev, 1024 "could not create parent DMA tag.\n"); 1025 goto fail; 1026 } 1027 1028 /* Create DMA tag for Tx descriptor ring. */ 1029 error = bus_dma_tag_create( 1030 sc->ale_cdata.ale_parent_tag, /* parent */ 1031 ALE_TX_RING_ALIGN, 0, /* alignment, boundary */ 1032 BUS_SPACE_MAXADDR, /* lowaddr */ 1033 BUS_SPACE_MAXADDR, /* highaddr */ 1034 NULL, NULL, /* filter, filterarg */ 1035 ALE_TX_RING_SZ, /* maxsize */ 1036 1, /* nsegments */ 1037 ALE_TX_RING_SZ, /* maxsegsize */ 1038 0, /* flags */ 1039 NULL, NULL, /* lockfunc, lockarg */ 1040 &sc->ale_cdata.ale_tx_ring_tag); 1041 if (error != 0) { 1042 device_printf(sc->ale_dev, 1043 "could not create Tx ring DMA tag.\n"); 1044 goto fail; 1045 } 1046 1047 /* Create DMA tag for Rx pages. */ 1048 for (i = 0; i < ALE_RX_PAGES; i++) { 1049 error = bus_dma_tag_create( 1050 sc->ale_cdata.ale_parent_tag, /* parent */ 1051 ALE_RX_PAGE_ALIGN, 0, /* alignment, boundary */ 1052 BUS_SPACE_MAXADDR, /* lowaddr */ 1053 BUS_SPACE_MAXADDR, /* highaddr */ 1054 NULL, NULL, /* filter, filterarg */ 1055 sc->ale_pagesize, /* maxsize */ 1056 1, /* nsegments */ 1057 sc->ale_pagesize, /* maxsegsize */ 1058 0, /* flags */ 1059 NULL, NULL, /* lockfunc, lockarg */ 1060 &sc->ale_cdata.ale_rx_page[i].page_tag); 1061 if (error != 0) { 1062 device_printf(sc->ale_dev, 1063 "could not create Rx page %d DMA tag.\n", i); 1064 goto fail; 1065 } 1066 } 1067 1068 /* Create DMA tag for Tx coalescing message block. */ 1069 error = bus_dma_tag_create( 1070 sc->ale_cdata.ale_parent_tag, /* parent */ 1071 ALE_CMB_ALIGN, 0, /* alignment, boundary */ 1072 BUS_SPACE_MAXADDR, /* lowaddr */ 1073 BUS_SPACE_MAXADDR, /* highaddr */ 1074 NULL, NULL, /* filter, filterarg */ 1075 ALE_TX_CMB_SZ, /* maxsize */ 1076 1, /* nsegments */ 1077 ALE_TX_CMB_SZ, /* maxsegsize */ 1078 0, /* flags */ 1079 NULL, NULL, /* lockfunc, lockarg */ 1080 &sc->ale_cdata.ale_tx_cmb_tag); 1081 if (error != 0) { 1082 device_printf(sc->ale_dev, 1083 "could not create Tx CMB DMA tag.\n"); 1084 goto fail; 1085 } 1086 1087 /* Create DMA tag for Rx coalescing message block. */ 1088 for (i = 0; i < ALE_RX_PAGES; i++) { 1089 error = bus_dma_tag_create( 1090 sc->ale_cdata.ale_parent_tag, /* parent */ 1091 ALE_CMB_ALIGN, 0, /* alignment, boundary */ 1092 BUS_SPACE_MAXADDR, /* lowaddr */ 1093 BUS_SPACE_MAXADDR, /* highaddr */ 1094 NULL, NULL, /* filter, filterarg */ 1095 ALE_RX_CMB_SZ, /* maxsize */ 1096 1, /* nsegments */ 1097 ALE_RX_CMB_SZ, /* maxsegsize */ 1098 0, /* flags */ 1099 NULL, NULL, /* lockfunc, lockarg */ 1100 &sc->ale_cdata.ale_rx_page[i].cmb_tag); 1101 if (error != 0) { 1102 device_printf(sc->ale_dev, 1103 "could not create Rx page %d CMB DMA tag.\n", i); 1104 goto fail; 1105 } 1106 } 1107 1108 /* Allocate DMA'able memory and load the DMA map for Tx ring. */ 1109 error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag, 1110 (void **)&sc->ale_cdata.ale_tx_ring, 1111 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1112 &sc->ale_cdata.ale_tx_ring_map); 1113 if (error != 0) { 1114 device_printf(sc->ale_dev, 1115 "could not allocate DMA'able memory for Tx ring.\n"); 1116 goto fail; 1117 } 1118 ctx.ale_busaddr = 0; 1119 error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag, 1120 sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring, 1121 ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0); 1122 if (error != 0 || ctx.ale_busaddr == 0) { 1123 device_printf(sc->ale_dev, 1124 "could not load DMA'able memory for Tx ring.\n"); 1125 goto fail; 1126 } 1127 sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr; 1128 1129 /* Rx pages. */ 1130 for (i = 0; i < ALE_RX_PAGES; i++) { 1131 error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag, 1132 (void **)&sc->ale_cdata.ale_rx_page[i].page_addr, 1133 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1134 &sc->ale_cdata.ale_rx_page[i].page_map); 1135 if (error != 0) { 1136 device_printf(sc->ale_dev, 1137 "could not allocate DMA'able memory for " 1138 "Rx page %d.\n", i); 1139 goto fail; 1140 } 1141 ctx.ale_busaddr = 0; 1142 error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag, 1143 sc->ale_cdata.ale_rx_page[i].page_map, 1144 sc->ale_cdata.ale_rx_page[i].page_addr, 1145 sc->ale_pagesize, ale_dmamap_cb, &ctx, 0); 1146 if (error != 0 || ctx.ale_busaddr == 0) { 1147 device_printf(sc->ale_dev, 1148 "could not load DMA'able memory for " 1149 "Rx page %d.\n", i); 1150 goto fail; 1151 } 1152 sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr; 1153 } 1154 1155 /* Tx CMB. */ 1156 error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag, 1157 (void **)&sc->ale_cdata.ale_tx_cmb, 1158 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1159 &sc->ale_cdata.ale_tx_cmb_map); 1160 if (error != 0) { 1161 device_printf(sc->ale_dev, 1162 "could not allocate DMA'able memory for Tx CMB.\n"); 1163 goto fail; 1164 } 1165 ctx.ale_busaddr = 0; 1166 error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag, 1167 sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb, 1168 ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0); 1169 if (error != 0 || ctx.ale_busaddr == 0) { 1170 device_printf(sc->ale_dev, 1171 "could not load DMA'able memory for Tx CMB.\n"); 1172 goto fail; 1173 } 1174 sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr; 1175 1176 /* Rx CMB. */ 1177 for (i = 0; i < ALE_RX_PAGES; i++) { 1178 error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag, 1179 (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr, 1180 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1181 &sc->ale_cdata.ale_rx_page[i].cmb_map); 1182 if (error != 0) { 1183 device_printf(sc->ale_dev, "could not allocate " 1184 "DMA'able memory for Rx page %d CMB.\n", i); 1185 goto fail; 1186 } 1187 ctx.ale_busaddr = 0; 1188 error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag, 1189 sc->ale_cdata.ale_rx_page[i].cmb_map, 1190 sc->ale_cdata.ale_rx_page[i].cmb_addr, 1191 ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0); 1192 if (error != 0 || ctx.ale_busaddr == 0) { 1193 device_printf(sc->ale_dev, "could not load DMA'able " 1194 "memory for Rx page %d CMB.\n", i); 1195 goto fail; 1196 } 1197 sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr; 1198 } 1199 1200 /* 1201 * Tx descriptors/RXF0/CMB DMA blocks share the same 1202 * high address region of 64bit DMA address space. 1203 */ 1204 if (lowaddr != BUS_SPACE_MAXADDR_32BIT && 1205 (error = ale_check_boundary(sc)) != 0) { 1206 device_printf(sc->ale_dev, "4GB boundary crossed, " 1207 "switching to 32bit DMA addressing mode.\n"); 1208 ale_dma_free(sc); 1209 /* 1210 * Limit max allowable DMA address space to 32bit 1211 * and try again. 1212 */ 1213 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1214 goto again; 1215 } 1216 1217 /* 1218 * Create Tx buffer parent tag. 1219 * AR81xx allows 64bit DMA addressing of Tx buffers so it 1220 * needs separate parent DMA tag as parent DMA address space 1221 * could be restricted to be within 32bit address space by 1222 * 4GB boundary crossing. 1223 */ 1224 error = bus_dma_tag_create( 1225 bus_get_dma_tag(sc->ale_dev), /* parent */ 1226 1, 0, /* alignment, boundary */ 1227 BUS_SPACE_MAXADDR, /* lowaddr */ 1228 BUS_SPACE_MAXADDR, /* highaddr */ 1229 NULL, NULL, /* filter, filterarg */ 1230 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1231 0, /* nsegments */ 1232 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1233 0, /* flags */ 1234 NULL, NULL, /* lockfunc, lockarg */ 1235 &sc->ale_cdata.ale_buffer_tag); 1236 if (error != 0) { 1237 device_printf(sc->ale_dev, 1238 "could not create parent buffer DMA tag.\n"); 1239 goto fail; 1240 } 1241 1242 /* Create DMA tag for Tx buffers. */ 1243 error = bus_dma_tag_create( 1244 sc->ale_cdata.ale_buffer_tag, /* parent */ 1245 1, 0, /* alignment, boundary */ 1246 BUS_SPACE_MAXADDR, /* lowaddr */ 1247 BUS_SPACE_MAXADDR, /* highaddr */ 1248 NULL, NULL, /* filter, filterarg */ 1249 ALE_TSO_MAXSIZE, /* maxsize */ 1250 ALE_MAXTXSEGS, /* nsegments */ 1251 ALE_TSO_MAXSEGSIZE, /* maxsegsize */ 1252 0, /* flags */ 1253 NULL, NULL, /* lockfunc, lockarg */ 1254 &sc->ale_cdata.ale_tx_tag); 1255 if (error != 0) { 1256 device_printf(sc->ale_dev, "could not create Tx DMA tag.\n"); 1257 goto fail; 1258 } 1259 1260 /* Create DMA maps for Tx buffers. */ 1261 for (i = 0; i < ALE_TX_RING_CNT; i++) { 1262 txd = &sc->ale_cdata.ale_txdesc[i]; 1263 txd->tx_m = NULL; 1264 txd->tx_dmamap = NULL; 1265 error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0, 1266 &txd->tx_dmamap); 1267 if (error != 0) { 1268 device_printf(sc->ale_dev, 1269 "could not create Tx dmamap.\n"); 1270 goto fail; 1271 } 1272 } 1273 1274 fail: 1275 return (error); 1276 } 1277 1278 static void 1279 ale_dma_free(struct ale_softc *sc) 1280 { 1281 struct ale_txdesc *txd; 1282 int i; 1283 1284 /* Tx buffers. */ 1285 if (sc->ale_cdata.ale_tx_tag != NULL) { 1286 for (i = 0; i < ALE_TX_RING_CNT; i++) { 1287 txd = &sc->ale_cdata.ale_txdesc[i]; 1288 if (txd->tx_dmamap != NULL) { 1289 bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag, 1290 txd->tx_dmamap); 1291 txd->tx_dmamap = NULL; 1292 } 1293 } 1294 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag); 1295 sc->ale_cdata.ale_tx_tag = NULL; 1296 } 1297 /* Tx descriptor ring. */ 1298 if (sc->ale_cdata.ale_tx_ring_tag != NULL) { 1299 if (sc->ale_cdata.ale_tx_ring_map != NULL) 1300 bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag, 1301 sc->ale_cdata.ale_tx_ring_map); 1302 if (sc->ale_cdata.ale_tx_ring_map != NULL && 1303 sc->ale_cdata.ale_tx_ring != NULL) 1304 bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag, 1305 sc->ale_cdata.ale_tx_ring, 1306 sc->ale_cdata.ale_tx_ring_map); 1307 sc->ale_cdata.ale_tx_ring = NULL; 1308 sc->ale_cdata.ale_tx_ring_map = NULL; 1309 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag); 1310 sc->ale_cdata.ale_tx_ring_tag = NULL; 1311 } 1312 /* Rx page block. */ 1313 for (i = 0; i < ALE_RX_PAGES; i++) { 1314 if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) { 1315 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL) 1316 bus_dmamap_unload( 1317 sc->ale_cdata.ale_rx_page[i].page_tag, 1318 sc->ale_cdata.ale_rx_page[i].page_map); 1319 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL && 1320 sc->ale_cdata.ale_rx_page[i].page_addr != NULL) 1321 bus_dmamem_free( 1322 sc->ale_cdata.ale_rx_page[i].page_tag, 1323 sc->ale_cdata.ale_rx_page[i].page_addr, 1324 sc->ale_cdata.ale_rx_page[i].page_map); 1325 sc->ale_cdata.ale_rx_page[i].page_addr = NULL; 1326 sc->ale_cdata.ale_rx_page[i].page_map = NULL; 1327 bus_dma_tag_destroy( 1328 sc->ale_cdata.ale_rx_page[i].page_tag); 1329 sc->ale_cdata.ale_rx_page[i].page_tag = NULL; 1330 } 1331 } 1332 /* Rx CMB. */ 1333 for (i = 0; i < ALE_RX_PAGES; i++) { 1334 if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) { 1335 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL) 1336 bus_dmamap_unload( 1337 sc->ale_cdata.ale_rx_page[i].cmb_tag, 1338 sc->ale_cdata.ale_rx_page[i].cmb_map); 1339 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL && 1340 sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL) 1341 bus_dmamem_free( 1342 sc->ale_cdata.ale_rx_page[i].cmb_tag, 1343 sc->ale_cdata.ale_rx_page[i].cmb_addr, 1344 sc->ale_cdata.ale_rx_page[i].cmb_map); 1345 sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL; 1346 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL; 1347 bus_dma_tag_destroy( 1348 sc->ale_cdata.ale_rx_page[i].cmb_tag); 1349 sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL; 1350 } 1351 } 1352 /* Tx CMB. */ 1353 if (sc->ale_cdata.ale_tx_cmb_tag != NULL) { 1354 if (sc->ale_cdata.ale_tx_cmb_map != NULL) 1355 bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag, 1356 sc->ale_cdata.ale_tx_cmb_map); 1357 if (sc->ale_cdata.ale_tx_cmb_map != NULL && 1358 sc->ale_cdata.ale_tx_cmb != NULL) 1359 bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag, 1360 sc->ale_cdata.ale_tx_cmb, 1361 sc->ale_cdata.ale_tx_cmb_map); 1362 sc->ale_cdata.ale_tx_cmb = NULL; 1363 sc->ale_cdata.ale_tx_cmb_map = NULL; 1364 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag); 1365 sc->ale_cdata.ale_tx_cmb_tag = NULL; 1366 } 1367 if (sc->ale_cdata.ale_buffer_tag != NULL) { 1368 bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag); 1369 sc->ale_cdata.ale_buffer_tag = NULL; 1370 } 1371 if (sc->ale_cdata.ale_parent_tag != NULL) { 1372 bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag); 1373 sc->ale_cdata.ale_parent_tag = NULL; 1374 } 1375 } 1376 1377 static int 1378 ale_shutdown(device_t dev) 1379 { 1380 1381 return (ale_suspend(dev)); 1382 } 1383 1384 /* 1385 * Note, this driver resets the link speed to 10/100Mbps by 1386 * restarting auto-negotiation in suspend/shutdown phase but we 1387 * don't know whether that auto-negotiation would succeed or not 1388 * as driver has no control after powering off/suspend operation. 1389 * If the renegotiation fail WOL may not work. Running at 1Gbps 1390 * will draw more power than 375mA at 3.3V which is specified in 1391 * PCI specification and that would result in complete 1392 * shutdowning power to ethernet controller. 1393 * 1394 * TODO 1395 * Save current negotiated media speed/duplex/flow-control to 1396 * softc and restore the same link again after resuming. PHY 1397 * handling such as power down/resetting to 100Mbps may be better 1398 * handled in suspend method in phy driver. 1399 */ 1400 static void 1401 ale_setlinkspeed(struct ale_softc *sc) 1402 { 1403 struct mii_data *mii; 1404 int aneg, i; 1405 1406 mii = device_get_softc(sc->ale_miibus); 1407 mii_pollstat(mii); 1408 aneg = 0; 1409 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 1410 (IFM_ACTIVE | IFM_AVALID)) { 1411 switch IFM_SUBTYPE(mii->mii_media_active) { 1412 case IFM_10_T: 1413 case IFM_100_TX: 1414 return; 1415 case IFM_1000_T: 1416 aneg++; 1417 break; 1418 default: 1419 break; 1420 } 1421 } 1422 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0); 1423 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 1424 MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA); 1425 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 1426 MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG); 1427 DELAY(1000); 1428 if (aneg != 0) { 1429 /* 1430 * Poll link state until ale(4) get a 10/100Mbps link. 1431 */ 1432 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { 1433 mii_pollstat(mii); 1434 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) 1435 == (IFM_ACTIVE | IFM_AVALID)) { 1436 switch (IFM_SUBTYPE( 1437 mii->mii_media_active)) { 1438 case IFM_10_T: 1439 case IFM_100_TX: 1440 ale_mac_config(sc); 1441 return; 1442 default: 1443 break; 1444 } 1445 } 1446 ALE_UNLOCK(sc); 1447 pause("alelnk", hz); 1448 ALE_LOCK(sc); 1449 } 1450 if (i == MII_ANEGTICKS_GIGE) 1451 device_printf(sc->ale_dev, 1452 "establishing a link failed, WOL may not work!"); 1453 } 1454 /* 1455 * No link, force MAC to have 100Mbps, full-duplex link. 1456 * This is the last resort and may/may not work. 1457 */ 1458 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; 1459 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; 1460 ale_mac_config(sc); 1461 } 1462 1463 static void 1464 ale_setwol(struct ale_softc *sc) 1465 { 1466 struct ifnet *ifp; 1467 uint32_t reg, pmcs; 1468 uint16_t pmstat; 1469 int pmc; 1470 1471 ALE_LOCK_ASSERT(sc); 1472 1473 if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) != 0) { 1474 /* Disable WOL. */ 1475 CSR_WRITE_4(sc, ALE_WOL_CFG, 0); 1476 reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC); 1477 reg |= PCIE_PHYMISC_FORCE_RCV_DET; 1478 CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg); 1479 /* Force PHY power down. */ 1480 CSR_WRITE_2(sc, ALE_GPHY_CTRL, 1481 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | 1482 GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON | 1483 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ | 1484 GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW); 1485 return; 1486 } 1487 1488 ifp = sc->ale_ifp; 1489 if ((ifp->if_capenable & IFCAP_WOL) != 0) { 1490 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0) 1491 ale_setlinkspeed(sc); 1492 } 1493 1494 pmcs = 0; 1495 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 1496 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB; 1497 CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs); 1498 reg = CSR_READ_4(sc, ALE_MAC_CFG); 1499 reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI | 1500 MAC_CFG_BCAST); 1501 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) 1502 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST; 1503 if ((ifp->if_capenable & IFCAP_WOL) != 0) 1504 reg |= MAC_CFG_RX_ENB; 1505 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 1506 1507 if ((ifp->if_capenable & IFCAP_WOL) == 0) { 1508 /* WOL disabled, PHY power down. */ 1509 reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC); 1510 reg |= PCIE_PHYMISC_FORCE_RCV_DET; 1511 CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg); 1512 CSR_WRITE_2(sc, ALE_GPHY_CTRL, 1513 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | 1514 GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET | 1515 GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS | 1516 GPHY_CTRL_PWDOWN_HW); 1517 } 1518 /* Request PME. */ 1519 pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2); 1520 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 1521 if ((ifp->if_capenable & IFCAP_WOL) != 0) 1522 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 1523 pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1524 } 1525 1526 static int 1527 ale_suspend(device_t dev) 1528 { 1529 struct ale_softc *sc; 1530 1531 sc = device_get_softc(dev); 1532 1533 ALE_LOCK(sc); 1534 ale_stop(sc); 1535 ale_setwol(sc); 1536 ALE_UNLOCK(sc); 1537 1538 return (0); 1539 } 1540 1541 static int 1542 ale_resume(device_t dev) 1543 { 1544 struct ale_softc *sc; 1545 struct ifnet *ifp; 1546 int pmc; 1547 uint16_t pmstat; 1548 1549 sc = device_get_softc(dev); 1550 1551 ALE_LOCK(sc); 1552 if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) == 0) { 1553 /* Disable PME and clear PME status. */ 1554 pmstat = pci_read_config(sc->ale_dev, 1555 pmc + PCIR_POWER_STATUS, 2); 1556 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) { 1557 pmstat &= ~PCIM_PSTAT_PMEENABLE; 1558 pci_write_config(sc->ale_dev, 1559 pmc + PCIR_POWER_STATUS, pmstat, 2); 1560 } 1561 } 1562 /* Reset PHY. */ 1563 ale_phy_reset(sc); 1564 ifp = sc->ale_ifp; 1565 if ((ifp->if_flags & IFF_UP) != 0) { 1566 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1567 ale_init_locked(sc); 1568 } 1569 ALE_UNLOCK(sc); 1570 1571 return (0); 1572 } 1573 1574 static int 1575 ale_encap(struct ale_softc *sc, struct mbuf **m_head) 1576 { 1577 struct ale_txdesc *txd, *txd_last; 1578 struct tx_desc *desc; 1579 struct mbuf *m; 1580 struct ip *ip; 1581 struct tcphdr *tcp; 1582 bus_dma_segment_t txsegs[ALE_MAXTXSEGS]; 1583 bus_dmamap_t map; 1584 uint32_t cflags, hdrlen, ip_off, poff, vtag; 1585 int error, i, nsegs, prod, si; 1586 1587 ALE_LOCK_ASSERT(sc); 1588 1589 M_ASSERTPKTHDR((*m_head)); 1590 1591 m = *m_head; 1592 ip = NULL; 1593 tcp = NULL; 1594 cflags = vtag = 0; 1595 ip_off = poff = 0; 1596 if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) { 1597 /* 1598 * AR81xx requires offset of TCP/UDP payload in its Tx 1599 * descriptor to perform hardware Tx checksum offload. 1600 * Additionally, TSO requires IP/TCP header size and 1601 * modification of IP/TCP header in order to make TSO 1602 * engine work. This kind of operation takes many CPU 1603 * cycles on FreeBSD so fast host CPU is required to 1604 * get smooth TSO performance. 1605 */ 1606 struct ether_header *eh; 1607 1608 if (M_WRITABLE(m) == 0) { 1609 /* Get a writable copy. */ 1610 m = m_dup(*m_head, M_DONTWAIT); 1611 /* Release original mbufs. */ 1612 m_freem(*m_head); 1613 if (m == NULL) { 1614 *m_head = NULL; 1615 return (ENOBUFS); 1616 } 1617 *m_head = m; 1618 } 1619 1620 /* 1621 * Buggy-controller requires 4 byte aligned Tx buffer 1622 * to make custom checksum offload work. 1623 */ 1624 if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 && 1625 (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 && 1626 (mtod(m, intptr_t) & 3) != 0) { 1627 m = m_defrag(*m_head, M_DONTWAIT); 1628 if (m == NULL) { 1629 *m_head = NULL; 1630 return (ENOBUFS); 1631 } 1632 *m_head = m; 1633 } 1634 1635 ip_off = sizeof(struct ether_header); 1636 m = m_pullup(m, ip_off); 1637 if (m == NULL) { 1638 *m_head = NULL; 1639 return (ENOBUFS); 1640 } 1641 eh = mtod(m, struct ether_header *); 1642 /* 1643 * Check if hardware VLAN insertion is off. 1644 * Additional check for LLC/SNAP frame? 1645 */ 1646 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 1647 ip_off = sizeof(struct ether_vlan_header); 1648 m = m_pullup(m, ip_off); 1649 if (m == NULL) { 1650 *m_head = NULL; 1651 return (ENOBUFS); 1652 } 1653 } 1654 m = m_pullup(m, ip_off + sizeof(struct ip)); 1655 if (m == NULL) { 1656 *m_head = NULL; 1657 return (ENOBUFS); 1658 } 1659 ip = (struct ip *)(mtod(m, char *) + ip_off); 1660 poff = ip_off + (ip->ip_hl << 2); 1661 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1662 /* 1663 * XXX 1664 * AR81xx requires the first descriptor should 1665 * not include any TCP playload for TSO case. 1666 * (i.e. ethernet header + IP + TCP header only) 1667 * m_pullup(9) above will ensure this too. 1668 * However it's not correct if the first mbuf 1669 * of the chain does not use cluster. 1670 */ 1671 m = m_pullup(m, poff + sizeof(struct tcphdr)); 1672 if (m == NULL) { 1673 *m_head = NULL; 1674 return (ENOBUFS); 1675 } 1676 ip = (struct ip *)(mtod(m, char *) + ip_off); 1677 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1678 m = m_pullup(m, poff + (tcp->th_off << 2)); 1679 if (m == NULL) { 1680 *m_head = NULL; 1681 return (ENOBUFS); 1682 } 1683 /* 1684 * AR81xx requires IP/TCP header size and offset as 1685 * well as TCP pseudo checksum which complicates 1686 * TSO configuration. I guess this comes from the 1687 * adherence to Microsoft NDIS Large Send 1688 * specification which requires insertion of 1689 * pseudo checksum by upper stack. The pseudo 1690 * checksum that NDIS refers to doesn't include 1691 * TCP payload length so ale(4) should recompute 1692 * the pseudo checksum here. Hopefully this wouldn't 1693 * be much burden on modern CPUs. 1694 * Reset IP checksum and recompute TCP pseudo 1695 * checksum as NDIS specification said. 1696 */ 1697 ip->ip_sum = 0; 1698 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, 1699 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 1700 } 1701 *m_head = m; 1702 } 1703 1704 si = prod = sc->ale_cdata.ale_tx_prod; 1705 txd = &sc->ale_cdata.ale_txdesc[prod]; 1706 txd_last = txd; 1707 map = txd->tx_dmamap; 1708 1709 error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map, 1710 *m_head, txsegs, &nsegs, 0); 1711 if (error == EFBIG) { 1712 m = m_collapse(*m_head, M_DONTWAIT, ALE_MAXTXSEGS); 1713 if (m == NULL) { 1714 m_freem(*m_head); 1715 *m_head = NULL; 1716 return (ENOMEM); 1717 } 1718 *m_head = m; 1719 error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map, 1720 *m_head, txsegs, &nsegs, 0); 1721 if (error != 0) { 1722 m_freem(*m_head); 1723 *m_head = NULL; 1724 return (error); 1725 } 1726 } else if (error != 0) 1727 return (error); 1728 if (nsegs == 0) { 1729 m_freem(*m_head); 1730 *m_head = NULL; 1731 return (EIO); 1732 } 1733 1734 /* Check descriptor overrun. */ 1735 if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) { 1736 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map); 1737 return (ENOBUFS); 1738 } 1739 bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE); 1740 1741 m = *m_head; 1742 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1743 /* Request TSO and set MSS. */ 1744 cflags |= ALE_TD_TSO; 1745 cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT); 1746 /* Set IP/TCP header size. */ 1747 cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT; 1748 cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT; 1749 } else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) { 1750 /* 1751 * AR81xx supports Tx custom checksum offload feature 1752 * that offloads single 16bit checksum computation. 1753 * So you can choose one among IP, TCP and UDP. 1754 * Normally driver sets checksum start/insertion 1755 * position from the information of TCP/UDP frame as 1756 * TCP/UDP checksum takes more time than that of IP. 1757 * However it seems that custom checksum offload 1758 * requires 4 bytes aligned Tx buffers due to hardware 1759 * bug. 1760 * AR81xx also supports explicit Tx checksum computation 1761 * if it is told that the size of IP header and TCP 1762 * header(for UDP, the header size does not matter 1763 * because it's fixed length). However with this scheme 1764 * TSO does not work so you have to choose one either 1765 * TSO or explicit Tx checksum offload. I chosen TSO 1766 * plus custom checksum offload with work-around which 1767 * will cover most common usage for this consumer 1768 * ethernet controller. The work-around takes a lot of 1769 * CPU cycles if Tx buffer is not aligned on 4 bytes 1770 * boundary, though. 1771 */ 1772 cflags |= ALE_TD_CXSUM; 1773 /* Set checksum start offset. */ 1774 cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT); 1775 /* Set checksum insertion position of TCP/UDP. */ 1776 cflags |= ((poff + m->m_pkthdr.csum_data) << 1777 ALE_TD_CSUM_XSUMOFFSET_SHIFT); 1778 } 1779 1780 /* Configure VLAN hardware tag insertion. */ 1781 if ((m->m_flags & M_VLANTAG) != 0) { 1782 vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag); 1783 vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK); 1784 cflags |= ALE_TD_INSERT_VLAN_TAG; 1785 } 1786 1787 i = 0; 1788 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1789 /* 1790 * Make sure the first fragment contains 1791 * only ethernet and IP/TCP header with options. 1792 */ 1793 hdrlen = poff + (tcp->th_off << 2); 1794 desc = &sc->ale_cdata.ale_tx_ring[prod]; 1795 desc->addr = htole64(txsegs[i].ds_addr); 1796 desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag); 1797 desc->flags = htole32(cflags); 1798 sc->ale_cdata.ale_tx_cnt++; 1799 ALE_DESC_INC(prod, ALE_TX_RING_CNT); 1800 if (m->m_len - hdrlen > 0) { 1801 /* Handle remaining payload of the first fragment. */ 1802 desc = &sc->ale_cdata.ale_tx_ring[prod]; 1803 desc->addr = htole64(txsegs[i].ds_addr + hdrlen); 1804 desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) | 1805 vtag); 1806 desc->flags = htole32(cflags); 1807 sc->ale_cdata.ale_tx_cnt++; 1808 ALE_DESC_INC(prod, ALE_TX_RING_CNT); 1809 } 1810 i = 1; 1811 } 1812 for (; i < nsegs; i++) { 1813 desc = &sc->ale_cdata.ale_tx_ring[prod]; 1814 desc->addr = htole64(txsegs[i].ds_addr); 1815 desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag); 1816 desc->flags = htole32(cflags); 1817 sc->ale_cdata.ale_tx_cnt++; 1818 ALE_DESC_INC(prod, ALE_TX_RING_CNT); 1819 } 1820 /* Update producer index. */ 1821 sc->ale_cdata.ale_tx_prod = prod; 1822 /* Set TSO header on the first descriptor. */ 1823 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1824 desc = &sc->ale_cdata.ale_tx_ring[si]; 1825 desc->flags |= htole32(ALE_TD_TSO_HDR); 1826 } 1827 1828 /* Finally set EOP on the last descriptor. */ 1829 prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT; 1830 desc = &sc->ale_cdata.ale_tx_ring[prod]; 1831 desc->flags |= htole32(ALE_TD_EOP); 1832 1833 /* Swap dmamap of the first and the last. */ 1834 txd = &sc->ale_cdata.ale_txdesc[prod]; 1835 map = txd_last->tx_dmamap; 1836 txd_last->tx_dmamap = txd->tx_dmamap; 1837 txd->tx_dmamap = map; 1838 txd->tx_m = m; 1839 1840 /* Sync descriptors. */ 1841 bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag, 1842 sc->ale_cdata.ale_tx_ring_map, 1843 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1844 1845 return (0); 1846 } 1847 1848 static void 1849 ale_tx_task(void *arg, int pending) 1850 { 1851 struct ifnet *ifp; 1852 1853 ifp = (struct ifnet *)arg; 1854 ale_start(ifp); 1855 } 1856 1857 static void 1858 ale_start(struct ifnet *ifp) 1859 { 1860 struct ale_softc *sc; 1861 struct mbuf *m_head; 1862 int enq; 1863 1864 sc = ifp->if_softc; 1865 1866 ALE_LOCK(sc); 1867 1868 /* Reclaim transmitted frames. */ 1869 if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT) 1870 ale_txeof(sc); 1871 1872 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1873 IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0) { 1874 ALE_UNLOCK(sc); 1875 return; 1876 } 1877 1878 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) { 1879 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 1880 if (m_head == NULL) 1881 break; 1882 /* 1883 * Pack the data into the transmit ring. If we 1884 * don't have room, set the OACTIVE flag and wait 1885 * for the NIC to drain the ring. 1886 */ 1887 if (ale_encap(sc, &m_head)) { 1888 if (m_head == NULL) 1889 break; 1890 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 1891 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1892 break; 1893 } 1894 1895 enq++; 1896 /* 1897 * If there's a BPF listener, bounce a copy of this frame 1898 * to him. 1899 */ 1900 ETHER_BPF_MTAP(ifp, m_head); 1901 } 1902 1903 if (enq > 0) { 1904 /* Kick. */ 1905 CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX, 1906 sc->ale_cdata.ale_tx_prod); 1907 /* Set a timeout in case the chip goes out to lunch. */ 1908 sc->ale_watchdog_timer = ALE_TX_TIMEOUT; 1909 } 1910 1911 ALE_UNLOCK(sc); 1912 } 1913 1914 static void 1915 ale_watchdog(struct ale_softc *sc) 1916 { 1917 struct ifnet *ifp; 1918 1919 ALE_LOCK_ASSERT(sc); 1920 1921 if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer) 1922 return; 1923 1924 ifp = sc->ale_ifp; 1925 if ((sc->ale_flags & ALE_FLAG_LINK) == 0) { 1926 if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n"); 1927 ifp->if_oerrors++; 1928 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1929 ale_init_locked(sc); 1930 return; 1931 } 1932 if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n"); 1933 ifp->if_oerrors++; 1934 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1935 ale_init_locked(sc); 1936 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1937 taskqueue_enqueue(sc->ale_tq, &sc->ale_tx_task); 1938 } 1939 1940 static int 1941 ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1942 { 1943 struct ale_softc *sc; 1944 struct ifreq *ifr; 1945 struct mii_data *mii; 1946 int error, mask; 1947 1948 sc = ifp->if_softc; 1949 ifr = (struct ifreq *)data; 1950 error = 0; 1951 switch (cmd) { 1952 case SIOCSIFMTU: 1953 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU || 1954 ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 && 1955 ifr->ifr_mtu > ETHERMTU)) 1956 error = EINVAL; 1957 else if (ifp->if_mtu != ifr->ifr_mtu) { 1958 ALE_LOCK(sc); 1959 ifp->if_mtu = ifr->ifr_mtu; 1960 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1961 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1962 ale_init_locked(sc); 1963 } 1964 ALE_UNLOCK(sc); 1965 } 1966 break; 1967 case SIOCSIFFLAGS: 1968 ALE_LOCK(sc); 1969 if ((ifp->if_flags & IFF_UP) != 0) { 1970 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1971 if (((ifp->if_flags ^ sc->ale_if_flags) 1972 & (IFF_PROMISC | IFF_ALLMULTI)) != 0) 1973 ale_rxfilter(sc); 1974 } else { 1975 if ((sc->ale_flags & ALE_FLAG_DETACH) == 0) 1976 ale_init_locked(sc); 1977 } 1978 } else { 1979 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1980 ale_stop(sc); 1981 } 1982 sc->ale_if_flags = ifp->if_flags; 1983 ALE_UNLOCK(sc); 1984 break; 1985 case SIOCADDMULTI: 1986 case SIOCDELMULTI: 1987 ALE_LOCK(sc); 1988 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1989 ale_rxfilter(sc); 1990 ALE_UNLOCK(sc); 1991 break; 1992 case SIOCSIFMEDIA: 1993 case SIOCGIFMEDIA: 1994 mii = device_get_softc(sc->ale_miibus); 1995 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 1996 break; 1997 case SIOCSIFCAP: 1998 ALE_LOCK(sc); 1999 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2000 if ((mask & IFCAP_TXCSUM) != 0 && 2001 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { 2002 ifp->if_capenable ^= IFCAP_TXCSUM; 2003 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 2004 ifp->if_hwassist |= ALE_CSUM_FEATURES; 2005 else 2006 ifp->if_hwassist &= ~ALE_CSUM_FEATURES; 2007 } 2008 if ((mask & IFCAP_RXCSUM) != 0 && 2009 (ifp->if_capabilities & IFCAP_RXCSUM) != 0) 2010 ifp->if_capenable ^= IFCAP_RXCSUM; 2011 if ((mask & IFCAP_TSO4) != 0 && 2012 (ifp->if_capabilities & IFCAP_TSO4) != 0) { 2013 ifp->if_capenable ^= IFCAP_TSO4; 2014 if ((ifp->if_capenable & IFCAP_TSO4) != 0) 2015 ifp->if_hwassist |= CSUM_TSO; 2016 else 2017 ifp->if_hwassist &= ~CSUM_TSO; 2018 } 2019 2020 if ((mask & IFCAP_WOL_MCAST) != 0 && 2021 (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0) 2022 ifp->if_capenable ^= IFCAP_WOL_MCAST; 2023 if ((mask & IFCAP_WOL_MAGIC) != 0 && 2024 (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0) 2025 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 2026 if ((mask & IFCAP_VLAN_HWCSUM) != 0 && 2027 (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0) 2028 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 2029 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 2030 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 2031 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 2032 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 2033 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 2034 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2035 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 2036 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO; 2037 ale_rxvlan(sc); 2038 } 2039 ALE_UNLOCK(sc); 2040 VLAN_CAPABILITIES(ifp); 2041 break; 2042 default: 2043 error = ether_ioctl(ifp, cmd, data); 2044 break; 2045 } 2046 2047 return (error); 2048 } 2049 2050 static void 2051 ale_mac_config(struct ale_softc *sc) 2052 { 2053 struct mii_data *mii; 2054 uint32_t reg; 2055 2056 ALE_LOCK_ASSERT(sc); 2057 2058 mii = device_get_softc(sc->ale_miibus); 2059 reg = CSR_READ_4(sc, ALE_MAC_CFG); 2060 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC | 2061 MAC_CFG_SPEED_MASK); 2062 /* Reprogram MAC with resolved speed/duplex. */ 2063 switch (IFM_SUBTYPE(mii->mii_media_active)) { 2064 case IFM_10_T: 2065 case IFM_100_TX: 2066 reg |= MAC_CFG_SPEED_10_100; 2067 break; 2068 case IFM_1000_T: 2069 reg |= MAC_CFG_SPEED_1000; 2070 break; 2071 } 2072 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 2073 reg |= MAC_CFG_FULL_DUPLEX; 2074 #ifdef notyet 2075 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 2076 reg |= MAC_CFG_TX_FC; 2077 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 2078 reg |= MAC_CFG_RX_FC; 2079 #endif 2080 } 2081 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 2082 } 2083 2084 static void 2085 ale_link_task(void *arg, int pending) 2086 { 2087 struct ale_softc *sc; 2088 struct mii_data *mii; 2089 struct ifnet *ifp; 2090 uint32_t reg; 2091 2092 sc = (struct ale_softc *)arg; 2093 2094 ALE_LOCK(sc); 2095 mii = device_get_softc(sc->ale_miibus); 2096 ifp = sc->ale_ifp; 2097 if (mii == NULL || ifp == NULL || 2098 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2099 ALE_UNLOCK(sc); 2100 return; 2101 } 2102 2103 sc->ale_flags &= ~ALE_FLAG_LINK; 2104 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 2105 (IFM_ACTIVE | IFM_AVALID)) { 2106 switch (IFM_SUBTYPE(mii->mii_media_active)) { 2107 case IFM_10_T: 2108 case IFM_100_TX: 2109 sc->ale_flags |= ALE_FLAG_LINK; 2110 break; 2111 case IFM_1000_T: 2112 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0) 2113 sc->ale_flags |= ALE_FLAG_LINK; 2114 break; 2115 default: 2116 break; 2117 } 2118 } 2119 2120 /* Stop Rx/Tx MACs. */ 2121 ale_stop_mac(sc); 2122 2123 /* Program MACs with resolved speed/duplex/flow-control. */ 2124 if ((sc->ale_flags & ALE_FLAG_LINK) != 0) { 2125 ale_mac_config(sc); 2126 /* Reenable Tx/Rx MACs. */ 2127 reg = CSR_READ_4(sc, ALE_MAC_CFG); 2128 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB; 2129 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 2130 } 2131 2132 ALE_UNLOCK(sc); 2133 } 2134 2135 static void 2136 ale_stats_clear(struct ale_softc *sc) 2137 { 2138 struct smb sb; 2139 uint32_t *reg; 2140 int i; 2141 2142 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) { 2143 CSR_READ_4(sc, ALE_RX_MIB_BASE + i); 2144 i += sizeof(uint32_t); 2145 } 2146 /* Read Tx statistics. */ 2147 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) { 2148 CSR_READ_4(sc, ALE_TX_MIB_BASE + i); 2149 i += sizeof(uint32_t); 2150 } 2151 } 2152 2153 static void 2154 ale_stats_update(struct ale_softc *sc) 2155 { 2156 struct ale_hw_stats *stat; 2157 struct smb sb, *smb; 2158 struct ifnet *ifp; 2159 uint32_t *reg; 2160 int i; 2161 2162 ALE_LOCK_ASSERT(sc); 2163 2164 ifp = sc->ale_ifp; 2165 stat = &sc->ale_stats; 2166 smb = &sb; 2167 2168 /* Read Rx statistics. */ 2169 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) { 2170 *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i); 2171 i += sizeof(uint32_t); 2172 } 2173 /* Read Tx statistics. */ 2174 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) { 2175 *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i); 2176 i += sizeof(uint32_t); 2177 } 2178 2179 /* Rx stats. */ 2180 stat->rx_frames += smb->rx_frames; 2181 stat->rx_bcast_frames += smb->rx_bcast_frames; 2182 stat->rx_mcast_frames += smb->rx_mcast_frames; 2183 stat->rx_pause_frames += smb->rx_pause_frames; 2184 stat->rx_control_frames += smb->rx_control_frames; 2185 stat->rx_crcerrs += smb->rx_crcerrs; 2186 stat->rx_lenerrs += smb->rx_lenerrs; 2187 stat->rx_bytes += smb->rx_bytes; 2188 stat->rx_runts += smb->rx_runts; 2189 stat->rx_fragments += smb->rx_fragments; 2190 stat->rx_pkts_64 += smb->rx_pkts_64; 2191 stat->rx_pkts_65_127 += smb->rx_pkts_65_127; 2192 stat->rx_pkts_128_255 += smb->rx_pkts_128_255; 2193 stat->rx_pkts_256_511 += smb->rx_pkts_256_511; 2194 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023; 2195 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518; 2196 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max; 2197 stat->rx_pkts_truncated += smb->rx_pkts_truncated; 2198 stat->rx_fifo_oflows += smb->rx_fifo_oflows; 2199 stat->rx_rrs_errs += smb->rx_rrs_errs; 2200 stat->rx_alignerrs += smb->rx_alignerrs; 2201 stat->rx_bcast_bytes += smb->rx_bcast_bytes; 2202 stat->rx_mcast_bytes += smb->rx_mcast_bytes; 2203 stat->rx_pkts_filtered += smb->rx_pkts_filtered; 2204 2205 /* Tx stats. */ 2206 stat->tx_frames += smb->tx_frames; 2207 stat->tx_bcast_frames += smb->tx_bcast_frames; 2208 stat->tx_mcast_frames += smb->tx_mcast_frames; 2209 stat->tx_pause_frames += smb->tx_pause_frames; 2210 stat->tx_excess_defer += smb->tx_excess_defer; 2211 stat->tx_control_frames += smb->tx_control_frames; 2212 stat->tx_deferred += smb->tx_deferred; 2213 stat->tx_bytes += smb->tx_bytes; 2214 stat->tx_pkts_64 += smb->tx_pkts_64; 2215 stat->tx_pkts_65_127 += smb->tx_pkts_65_127; 2216 stat->tx_pkts_128_255 += smb->tx_pkts_128_255; 2217 stat->tx_pkts_256_511 += smb->tx_pkts_256_511; 2218 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023; 2219 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518; 2220 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max; 2221 stat->tx_single_colls += smb->tx_single_colls; 2222 stat->tx_multi_colls += smb->tx_multi_colls; 2223 stat->tx_late_colls += smb->tx_late_colls; 2224 stat->tx_excess_colls += smb->tx_excess_colls; 2225 stat->tx_abort += smb->tx_abort; 2226 stat->tx_underrun += smb->tx_underrun; 2227 stat->tx_desc_underrun += smb->tx_desc_underrun; 2228 stat->tx_lenerrs += smb->tx_lenerrs; 2229 stat->tx_pkts_truncated += smb->tx_pkts_truncated; 2230 stat->tx_bcast_bytes += smb->tx_bcast_bytes; 2231 stat->tx_mcast_bytes += smb->tx_mcast_bytes; 2232 2233 /* Update counters in ifnet. */ 2234 ifp->if_opackets += smb->tx_frames; 2235 2236 ifp->if_collisions += smb->tx_single_colls + 2237 smb->tx_multi_colls * 2 + smb->tx_late_colls + 2238 smb->tx_abort * HDPX_CFG_RETRY_DEFAULT; 2239 2240 /* 2241 * XXX 2242 * tx_pkts_truncated counter looks suspicious. It constantly 2243 * increments with no sign of Tx errors. This may indicate 2244 * the counter name is not correct one so I've removed the 2245 * counter in output errors. 2246 */ 2247 ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls + 2248 smb->tx_underrun; 2249 2250 ifp->if_ipackets += smb->rx_frames; 2251 2252 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs + 2253 smb->rx_runts + smb->rx_pkts_truncated + 2254 smb->rx_fifo_oflows + smb->rx_rrs_errs + 2255 smb->rx_alignerrs; 2256 } 2257 2258 static int 2259 ale_intr(void *arg) 2260 { 2261 struct ale_softc *sc; 2262 uint32_t status; 2263 2264 sc = (struct ale_softc *)arg; 2265 2266 status = CSR_READ_4(sc, ALE_INTR_STATUS); 2267 if ((status & ALE_INTRS) == 0) 2268 return (FILTER_STRAY); 2269 /* Disable interrupts. */ 2270 CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT); 2271 taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task); 2272 2273 return (FILTER_HANDLED); 2274 } 2275 2276 static void 2277 ale_int_task(void *arg, int pending) 2278 { 2279 struct ale_softc *sc; 2280 struct ifnet *ifp; 2281 uint32_t status; 2282 int more; 2283 2284 sc = (struct ale_softc *)arg; 2285 2286 status = CSR_READ_4(sc, ALE_INTR_STATUS); 2287 more = atomic_readandclear_int(&sc->ale_morework); 2288 if (more != 0) 2289 status |= INTR_RX_PKT; 2290 if ((status & ALE_INTRS) == 0) 2291 goto done; 2292 2293 /* Acknowledge interrupts but still disable interrupts. */ 2294 CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT); 2295 2296 ifp = sc->ale_ifp; 2297 more = 0; 2298 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2299 more = ale_rxeof(sc, sc->ale_process_limit); 2300 if (more == EAGAIN) 2301 atomic_set_int(&sc->ale_morework, 1); 2302 else if (more == EIO) { 2303 ALE_LOCK(sc); 2304 sc->ale_stats.reset_brk_seq++; 2305 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2306 ale_init_locked(sc); 2307 ALE_UNLOCK(sc); 2308 return; 2309 } 2310 2311 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) { 2312 if ((status & INTR_DMA_RD_TO_RST) != 0) 2313 device_printf(sc->ale_dev, 2314 "DMA read error! -- resetting\n"); 2315 if ((status & INTR_DMA_WR_TO_RST) != 0) 2316 device_printf(sc->ale_dev, 2317 "DMA write error! -- resetting\n"); 2318 ALE_LOCK(sc); 2319 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2320 ale_init_locked(sc); 2321 ALE_UNLOCK(sc); 2322 return; 2323 } 2324 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2325 taskqueue_enqueue(sc->ale_tq, &sc->ale_tx_task); 2326 } 2327 2328 if (more == EAGAIN || 2329 (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) { 2330 taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task); 2331 return; 2332 } 2333 2334 done: 2335 /* Re-enable interrupts. */ 2336 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF); 2337 } 2338 2339 static void 2340 ale_txeof(struct ale_softc *sc) 2341 { 2342 struct ifnet *ifp; 2343 struct ale_txdesc *txd; 2344 uint32_t cons, prod; 2345 int prog; 2346 2347 ALE_LOCK_ASSERT(sc); 2348 2349 ifp = sc->ale_ifp; 2350 2351 if (sc->ale_cdata.ale_tx_cnt == 0) 2352 return; 2353 2354 bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag, 2355 sc->ale_cdata.ale_tx_ring_map, 2356 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2357 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) { 2358 bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag, 2359 sc->ale_cdata.ale_tx_cmb_map, 2360 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2361 prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK; 2362 } else 2363 prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX); 2364 cons = sc->ale_cdata.ale_tx_cons; 2365 /* 2366 * Go through our Tx list and free mbufs for those 2367 * frames which have been transmitted. 2368 */ 2369 for (prog = 0; cons != prod; prog++, 2370 ALE_DESC_INC(cons, ALE_TX_RING_CNT)) { 2371 if (sc->ale_cdata.ale_tx_cnt <= 0) 2372 break; 2373 prog++; 2374 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2375 sc->ale_cdata.ale_tx_cnt--; 2376 txd = &sc->ale_cdata.ale_txdesc[cons]; 2377 if (txd->tx_m != NULL) { 2378 /* Reclaim transmitted mbufs. */ 2379 bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, 2380 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2381 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, 2382 txd->tx_dmamap); 2383 m_freem(txd->tx_m); 2384 txd->tx_m = NULL; 2385 } 2386 } 2387 2388 if (prog > 0) { 2389 sc->ale_cdata.ale_tx_cons = cons; 2390 /* 2391 * Unarm watchdog timer only when there is no pending 2392 * Tx descriptors in queue. 2393 */ 2394 if (sc->ale_cdata.ale_tx_cnt == 0) 2395 sc->ale_watchdog_timer = 0; 2396 } 2397 } 2398 2399 static void 2400 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page, 2401 uint32_t length, uint32_t *prod) 2402 { 2403 struct ale_rx_page *rx_page; 2404 2405 rx_page = *page; 2406 /* Update consumer position. */ 2407 rx_page->cons += roundup(length + sizeof(struct rx_rs), 2408 ALE_RX_PAGE_ALIGN); 2409 if (rx_page->cons >= ALE_RX_PAGE_SZ) { 2410 /* 2411 * End of Rx page reached, let hardware reuse 2412 * this page. 2413 */ 2414 rx_page->cons = 0; 2415 *rx_page->cmb_addr = 0; 2416 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map, 2417 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2418 CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp, 2419 RXF_VALID); 2420 /* Switch to alternate Rx page. */ 2421 sc->ale_cdata.ale_rx_curp ^= 1; 2422 rx_page = *page = 2423 &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp]; 2424 /* Page flipped, sync CMB and Rx page. */ 2425 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map, 2426 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2427 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map, 2428 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2429 /* Sync completed, cache updated producer index. */ 2430 *prod = *rx_page->cmb_addr; 2431 } 2432 } 2433 2434 2435 /* 2436 * It seems that AR81xx controller can compute partial checksum. 2437 * The partial checksum value can be used to accelerate checksum 2438 * computation for fragmented TCP/UDP packets. Upper network stack 2439 * already takes advantage of the partial checksum value in IP 2440 * reassembly stage. But I'm not sure the correctness of the 2441 * partial hardware checksum assistance due to lack of data sheet. 2442 * In addition, the Rx feature of controller that requires copying 2443 * for every frames effectively nullifies one of most nice offload 2444 * capability of controller. 2445 */ 2446 static void 2447 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status) 2448 { 2449 struct ifnet *ifp; 2450 struct ip *ip; 2451 char *p; 2452 2453 ifp = sc->ale_ifp; 2454 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 2455 if ((status & ALE_RD_IPCSUM_NOK) == 0) 2456 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2457 2458 if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) { 2459 if (((status & ALE_RD_IPV4_FRAG) == 0) && 2460 ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) && 2461 ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) { 2462 m->m_pkthdr.csum_flags |= 2463 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2464 m->m_pkthdr.csum_data = 0xffff; 2465 } 2466 } else { 2467 if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 && 2468 (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) { 2469 p = mtod(m, char *); 2470 p += ETHER_HDR_LEN; 2471 if ((status & ALE_RD_802_3) != 0) 2472 p += LLC_SNAPFRAMELEN; 2473 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 && 2474 (status & ALE_RD_VLAN) != 0) 2475 p += ETHER_VLAN_ENCAP_LEN; 2476 ip = (struct ip *)p; 2477 if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0) 2478 return; 2479 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 2480 CSUM_PSEUDO_HDR; 2481 m->m_pkthdr.csum_data = 0xffff; 2482 } 2483 } 2484 /* 2485 * Don't mark bad checksum for TCP/UDP frames 2486 * as fragmented frames may always have set 2487 * bad checksummed bit of frame status. 2488 */ 2489 } 2490 2491 /* Process received frames. */ 2492 static int 2493 ale_rxeof(struct ale_softc *sc, int count) 2494 { 2495 struct ale_rx_page *rx_page; 2496 struct rx_rs *rs; 2497 struct ifnet *ifp; 2498 struct mbuf *m; 2499 uint32_t length, prod, seqno, status, vtags; 2500 int prog; 2501 2502 ifp = sc->ale_ifp; 2503 rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp]; 2504 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map, 2505 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2506 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map, 2507 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2508 /* 2509 * Don't directly access producer index as hardware may 2510 * update it while Rx handler is in progress. It would 2511 * be even better if there is a way to let hardware 2512 * know how far driver processed its received frames. 2513 * Alternatively, hardware could provide a way to disable 2514 * CMB updates until driver acknowledges the end of CMB 2515 * access. 2516 */ 2517 prod = *rx_page->cmb_addr; 2518 for (prog = 0; prog < count; prog++) { 2519 if (rx_page->cons >= prod) 2520 break; 2521 rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons); 2522 seqno = ALE_RX_SEQNO(le32toh(rs->seqno)); 2523 if (sc->ale_cdata.ale_rx_seqno != seqno) { 2524 /* 2525 * Normally I believe this should not happen unless 2526 * severe driver bug or corrupted memory. However 2527 * it seems to happen under certain conditions which 2528 * is triggered by abrupt Rx events such as initiation 2529 * of bulk transfer of remote host. It's not easy to 2530 * reproduce this and I doubt it could be related 2531 * with FIFO overflow of hardware or activity of Tx 2532 * CMB updates. I also remember similar behaviour 2533 * seen on RealTek 8139 which uses resembling Rx 2534 * scheme. 2535 */ 2536 if (bootverbose) 2537 device_printf(sc->ale_dev, 2538 "garbled seq: %u, expected: %u -- " 2539 "resetting!\n", seqno, 2540 sc->ale_cdata.ale_rx_seqno); 2541 return (EIO); 2542 } 2543 /* Frame received. */ 2544 sc->ale_cdata.ale_rx_seqno++; 2545 length = ALE_RX_BYTES(le32toh(rs->length)); 2546 status = le32toh(rs->flags); 2547 if ((status & ALE_RD_ERROR) != 0) { 2548 /* 2549 * We want to pass the following frames to upper 2550 * layer regardless of error status of Rx return 2551 * status. 2552 * 2553 * o IP/TCP/UDP checksum is bad. 2554 * o frame length and protocol specific length 2555 * does not match. 2556 */ 2557 if ((status & (ALE_RD_CRC | ALE_RD_CODE | 2558 ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW | 2559 ALE_RD_TRUNC)) != 0) { 2560 ale_rx_update_page(sc, &rx_page, length, &prod); 2561 continue; 2562 } 2563 } 2564 /* 2565 * m_devget(9) is major bottle-neck of ale(4)(It comes 2566 * from hardware limitation). For jumbo frames we could 2567 * get a slightly better performance if driver use 2568 * m_getjcl(9) with proper buffer size argument. However 2569 * that would make code more complicated and I don't 2570 * think users would expect good Rx performance numbers 2571 * on these low-end consumer ethernet controller. 2572 */ 2573 m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN, 2574 ETHER_ALIGN, ifp, NULL); 2575 if (m == NULL) { 2576 ifp->if_iqdrops++; 2577 ale_rx_update_page(sc, &rx_page, length, &prod); 2578 continue; 2579 } 2580 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 && 2581 (status & ALE_RD_IPV4) != 0) 2582 ale_rxcsum(sc, m, status); 2583 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && 2584 (status & ALE_RD_VLAN) != 0) { 2585 vtags = ALE_RX_VLAN(le32toh(rs->vtags)); 2586 m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags); 2587 m->m_flags |= M_VLANTAG; 2588 } 2589 2590 /* Pass it to upper layer. */ 2591 (*ifp->if_input)(ifp, m); 2592 2593 ale_rx_update_page(sc, &rx_page, length, &prod); 2594 } 2595 2596 return (count > 0 ? 0 : EAGAIN); 2597 } 2598 2599 static void 2600 ale_tick(void *arg) 2601 { 2602 struct ale_softc *sc; 2603 struct mii_data *mii; 2604 2605 sc = (struct ale_softc *)arg; 2606 2607 ALE_LOCK_ASSERT(sc); 2608 2609 mii = device_get_softc(sc->ale_miibus); 2610 mii_tick(mii); 2611 ale_stats_update(sc); 2612 /* 2613 * Reclaim Tx buffers that have been transferred. It's not 2614 * needed here but it would release allocated mbuf chains 2615 * faster and limit the maximum delay to a hz. 2616 */ 2617 ale_txeof(sc); 2618 ale_watchdog(sc); 2619 callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc); 2620 } 2621 2622 static void 2623 ale_reset(struct ale_softc *sc) 2624 { 2625 uint32_t reg; 2626 int i; 2627 2628 /* Initialize PCIe module. From Linux. */ 2629 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000); 2630 2631 CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET); 2632 for (i = ALE_RESET_TIMEOUT; i > 0; i--) { 2633 DELAY(10); 2634 if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0) 2635 break; 2636 } 2637 if (i == 0) 2638 device_printf(sc->ale_dev, "master reset timeout!\n"); 2639 2640 for (i = ALE_RESET_TIMEOUT; i > 0; i--) { 2641 if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0) 2642 break; 2643 DELAY(10); 2644 } 2645 2646 if (i == 0) 2647 device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg); 2648 } 2649 2650 static void 2651 ale_init(void *xsc) 2652 { 2653 struct ale_softc *sc; 2654 2655 sc = (struct ale_softc *)xsc; 2656 ALE_LOCK(sc); 2657 ale_init_locked(sc); 2658 ALE_UNLOCK(sc); 2659 } 2660 2661 static void 2662 ale_init_locked(struct ale_softc *sc) 2663 { 2664 struct ifnet *ifp; 2665 struct mii_data *mii; 2666 uint8_t eaddr[ETHER_ADDR_LEN]; 2667 bus_addr_t paddr; 2668 uint32_t reg, rxf_hi, rxf_lo; 2669 2670 ALE_LOCK_ASSERT(sc); 2671 2672 ifp = sc->ale_ifp; 2673 mii = device_get_softc(sc->ale_miibus); 2674 2675 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2676 return; 2677 /* 2678 * Cancel any pending I/O. 2679 */ 2680 ale_stop(sc); 2681 /* 2682 * Reset the chip to a known state. 2683 */ 2684 ale_reset(sc); 2685 /* Initialize Tx descriptors, DMA memory blocks. */ 2686 ale_init_rx_pages(sc); 2687 ale_init_tx_ring(sc); 2688 2689 /* Reprogram the station address. */ 2690 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN); 2691 CSR_WRITE_4(sc, ALE_PAR0, 2692 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]); 2693 CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]); 2694 /* 2695 * Clear WOL status and disable all WOL feature as WOL 2696 * would interfere Rx operation under normal environments. 2697 */ 2698 CSR_READ_4(sc, ALE_WOL_CFG); 2699 CSR_WRITE_4(sc, ALE_WOL_CFG, 0); 2700 /* 2701 * Set Tx descriptor/RXF0/CMB base addresses. They share 2702 * the same high address part of DMAable region. 2703 */ 2704 paddr = sc->ale_cdata.ale_tx_ring_paddr; 2705 CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr)); 2706 CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr)); 2707 CSR_WRITE_4(sc, ALE_TPD_CNT, 2708 (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK); 2709 /* Set Rx page base address, note we use single queue. */ 2710 paddr = sc->ale_cdata.ale_rx_page[0].page_paddr; 2711 CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr)); 2712 paddr = sc->ale_cdata.ale_rx_page[1].page_paddr; 2713 CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr)); 2714 /* Set Tx/Rx CMB addresses. */ 2715 paddr = sc->ale_cdata.ale_tx_cmb_paddr; 2716 CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr)); 2717 paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr; 2718 CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr)); 2719 paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr; 2720 CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr)); 2721 /* Mark RXF0 is valid. */ 2722 CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID); 2723 CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID); 2724 /* 2725 * No need to initialize RFX1/RXF2/RXF3. We don't use 2726 * multi-queue yet. 2727 */ 2728 2729 /* Set Rx page size, excluding guard frame size. */ 2730 CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ); 2731 /* Tell hardware that we're ready to load DMA blocks. */ 2732 CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD); 2733 2734 /* Set Rx/Tx interrupt trigger threshold. */ 2735 CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) | 2736 (4 << INT_TRIG_TX_THRESH_SHIFT)); 2737 /* 2738 * XXX 2739 * Set interrupt trigger timer, its purpose and relation 2740 * with interrupt moderation mechanism is not clear yet. 2741 */ 2742 CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER, 2743 ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) | 2744 (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT))); 2745 2746 /* Configure interrupt moderation timer. */ 2747 reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT; 2748 reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT; 2749 CSR_WRITE_4(sc, ALE_IM_TIMER, reg); 2750 reg = CSR_READ_4(sc, ALE_MASTER_CFG); 2751 reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK); 2752 reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB); 2753 if (ALE_USECS(sc->ale_int_rx_mod) != 0) 2754 reg |= MASTER_IM_RX_TIMER_ENB; 2755 if (ALE_USECS(sc->ale_int_tx_mod) != 0) 2756 reg |= MASTER_IM_TX_TIMER_ENB; 2757 CSR_WRITE_4(sc, ALE_MASTER_CFG, reg); 2758 CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000)); 2759 2760 /* Set Maximum frame size of controller. */ 2761 if (ifp->if_mtu < ETHERMTU) 2762 sc->ale_max_frame_size = ETHERMTU; 2763 else 2764 sc->ale_max_frame_size = ifp->if_mtu; 2765 sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 2766 ETHER_CRC_LEN; 2767 CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size); 2768 /* Configure IPG/IFG parameters. */ 2769 CSR_WRITE_4(sc, ALE_IPG_IFG_CFG, 2770 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) | 2771 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) | 2772 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) | 2773 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK)); 2774 /* Set parameters for half-duplex media. */ 2775 CSR_WRITE_4(sc, ALE_HDPX_CFG, 2776 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) & 2777 HDPX_CFG_LCOL_MASK) | 2778 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) & 2779 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN | 2780 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) & 2781 HDPX_CFG_ABEBT_MASK) | 2782 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) & 2783 HDPX_CFG_JAMIPG_MASK)); 2784 2785 /* Configure Tx jumbo frame parameters. */ 2786 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) { 2787 if (ifp->if_mtu < ETHERMTU) 2788 reg = sc->ale_max_frame_size; 2789 else if (ifp->if_mtu < 6 * 1024) 2790 reg = (sc->ale_max_frame_size * 2) / 3; 2791 else 2792 reg = sc->ale_max_frame_size / 2; 2793 CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH, 2794 roundup(reg, TX_JUMBO_THRESH_UNIT) >> 2795 TX_JUMBO_THRESH_UNIT_SHIFT); 2796 } 2797 /* Configure TxQ. */ 2798 reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT)) 2799 << TXQ_CFG_TX_FIFO_BURST_SHIFT; 2800 reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) & 2801 TXQ_CFG_TPD_BURST_MASK; 2802 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB); 2803 2804 /* Configure Rx jumbo frame & flow control parameters. */ 2805 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) { 2806 reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT); 2807 CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH, 2808 (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) << 2809 RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) | 2810 ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) & 2811 RX_JUMBO_LKAH_MASK)); 2812 reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN); 2813 rxf_hi = (reg * 7) / 10; 2814 rxf_lo = (reg * 3)/ 10; 2815 CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH, 2816 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) & 2817 RX_FIFO_PAUSE_THRESH_LO_MASK) | 2818 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) & 2819 RX_FIFO_PAUSE_THRESH_HI_MASK)); 2820 } 2821 2822 /* Disable RSS. */ 2823 CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0); 2824 CSR_WRITE_4(sc, ALE_RSS_CPU, 0); 2825 2826 /* Configure RxQ. */ 2827 CSR_WRITE_4(sc, ALE_RXQ_CFG, 2828 RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB); 2829 2830 /* Configure DMA parameters. */ 2831 reg = 0; 2832 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) 2833 reg |= DMA_CFG_TXCMB_ENB; 2834 CSR_WRITE_4(sc, ALE_DMA_CFG, 2835 DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 | 2836 sc->ale_dma_rd_burst | reg | 2837 sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB | 2838 ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) & 2839 DMA_CFG_RD_DELAY_CNT_MASK) | 2840 ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) & 2841 DMA_CFG_WR_DELAY_CNT_MASK)); 2842 2843 /* 2844 * Hardware can be configured to issue SMB interrupt based 2845 * on programmed interval. Since there is a callout that is 2846 * invoked for every hz in driver we use that instead of 2847 * relying on periodic SMB interrupt. 2848 */ 2849 CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0)); 2850 /* Clear MAC statistics. */ 2851 ale_stats_clear(sc); 2852 2853 /* 2854 * Configure Tx/Rx MACs. 2855 * - Auto-padding for short frames. 2856 * - Enable CRC generation. 2857 * Actual reconfiguration of MAC for resolved speed/duplex 2858 * is followed after detection of link establishment. 2859 * AR81xx always does checksum computation regardless of 2860 * MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will 2861 * cause Rx handling issue for fragmented IP datagrams due 2862 * to silicon bug. 2863 */ 2864 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX | 2865 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) & 2866 MAC_CFG_PREAMBLE_MASK); 2867 if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0) 2868 reg |= MAC_CFG_SPEED_10_100; 2869 else 2870 reg |= MAC_CFG_SPEED_1000; 2871 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 2872 2873 /* Set up the receive filter. */ 2874 ale_rxfilter(sc); 2875 ale_rxvlan(sc); 2876 2877 /* Acknowledge all pending interrupts and clear it. */ 2878 CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS); 2879 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF); 2880 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0); 2881 2882 sc->ale_flags &= ~ALE_FLAG_LINK; 2883 /* Switch to the current media. */ 2884 mii_mediachg(mii); 2885 2886 callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc); 2887 2888 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2889 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2890 } 2891 2892 static void 2893 ale_stop(struct ale_softc *sc) 2894 { 2895 struct ifnet *ifp; 2896 struct ale_txdesc *txd; 2897 uint32_t reg; 2898 int i; 2899 2900 ALE_LOCK_ASSERT(sc); 2901 /* 2902 * Mark the interface down and cancel the watchdog timer. 2903 */ 2904 ifp = sc->ale_ifp; 2905 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2906 sc->ale_flags &= ~ALE_FLAG_LINK; 2907 callout_stop(&sc->ale_tick_ch); 2908 sc->ale_watchdog_timer = 0; 2909 ale_stats_update(sc); 2910 /* Disable interrupts. */ 2911 CSR_WRITE_4(sc, ALE_INTR_MASK, 0); 2912 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF); 2913 /* Disable queue processing and DMA. */ 2914 reg = CSR_READ_4(sc, ALE_TXQ_CFG); 2915 reg &= ~TXQ_CFG_ENB; 2916 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg); 2917 reg = CSR_READ_4(sc, ALE_RXQ_CFG); 2918 reg &= ~RXQ_CFG_ENB; 2919 CSR_WRITE_4(sc, ALE_RXQ_CFG, reg); 2920 reg = CSR_READ_4(sc, ALE_DMA_CFG); 2921 reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB); 2922 CSR_WRITE_4(sc, ALE_DMA_CFG, reg); 2923 DELAY(1000); 2924 /* Stop Rx/Tx MACs. */ 2925 ale_stop_mac(sc); 2926 /* Disable interrupts which might be touched in taskq handler. */ 2927 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF); 2928 2929 /* 2930 * Free TX mbufs still in the queues. 2931 */ 2932 for (i = 0; i < ALE_TX_RING_CNT; i++) { 2933 txd = &sc->ale_cdata.ale_txdesc[i]; 2934 if (txd->tx_m != NULL) { 2935 bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, 2936 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2937 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, 2938 txd->tx_dmamap); 2939 m_freem(txd->tx_m); 2940 txd->tx_m = NULL; 2941 } 2942 } 2943 } 2944 2945 static void 2946 ale_stop_mac(struct ale_softc *sc) 2947 { 2948 uint32_t reg; 2949 int i; 2950 2951 ALE_LOCK_ASSERT(sc); 2952 2953 reg = CSR_READ_4(sc, ALE_MAC_CFG); 2954 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) { 2955 reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB; 2956 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 2957 } 2958 2959 for (i = ALE_TIMEOUT; i > 0; i--) { 2960 reg = CSR_READ_4(sc, ALE_IDLE_STATUS); 2961 if (reg == 0) 2962 break; 2963 DELAY(10); 2964 } 2965 if (i == 0) 2966 device_printf(sc->ale_dev, 2967 "could not disable Tx/Rx MAC(0x%08x)!\n", reg); 2968 } 2969 2970 static void 2971 ale_init_tx_ring(struct ale_softc *sc) 2972 { 2973 struct ale_txdesc *txd; 2974 int i; 2975 2976 ALE_LOCK_ASSERT(sc); 2977 2978 sc->ale_cdata.ale_tx_prod = 0; 2979 sc->ale_cdata.ale_tx_cons = 0; 2980 sc->ale_cdata.ale_tx_cnt = 0; 2981 2982 bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ); 2983 bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ); 2984 for (i = 0; i < ALE_TX_RING_CNT; i++) { 2985 txd = &sc->ale_cdata.ale_txdesc[i]; 2986 txd->tx_m = NULL; 2987 } 2988 *sc->ale_cdata.ale_tx_cmb = 0; 2989 bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag, 2990 sc->ale_cdata.ale_tx_cmb_map, 2991 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2992 bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag, 2993 sc->ale_cdata.ale_tx_ring_map, 2994 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2995 } 2996 2997 static void 2998 ale_init_rx_pages(struct ale_softc *sc) 2999 { 3000 struct ale_rx_page *rx_page; 3001 int i; 3002 3003 ALE_LOCK_ASSERT(sc); 3004 3005 atomic_set_int(&sc->ale_morework, 0); 3006 sc->ale_cdata.ale_rx_seqno = 0; 3007 sc->ale_cdata.ale_rx_curp = 0; 3008 3009 for (i = 0; i < ALE_RX_PAGES; i++) { 3010 rx_page = &sc->ale_cdata.ale_rx_page[i]; 3011 bzero(rx_page->page_addr, sc->ale_pagesize); 3012 bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ); 3013 rx_page->cons = 0; 3014 *rx_page->cmb_addr = 0; 3015 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map, 3016 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3017 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map, 3018 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3019 } 3020 } 3021 3022 static void 3023 ale_rxvlan(struct ale_softc *sc) 3024 { 3025 struct ifnet *ifp; 3026 uint32_t reg; 3027 3028 ALE_LOCK_ASSERT(sc); 3029 3030 ifp = sc->ale_ifp; 3031 reg = CSR_READ_4(sc, ALE_MAC_CFG); 3032 reg &= ~MAC_CFG_VLAN_TAG_STRIP; 3033 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 3034 reg |= MAC_CFG_VLAN_TAG_STRIP; 3035 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 3036 } 3037 3038 static void 3039 ale_rxfilter(struct ale_softc *sc) 3040 { 3041 struct ifnet *ifp; 3042 struct ifmultiaddr *ifma; 3043 uint32_t crc; 3044 uint32_t mchash[2]; 3045 uint32_t rxcfg; 3046 3047 ALE_LOCK_ASSERT(sc); 3048 3049 ifp = sc->ale_ifp; 3050 3051 rxcfg = CSR_READ_4(sc, ALE_MAC_CFG); 3052 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC); 3053 if ((ifp->if_flags & IFF_BROADCAST) != 0) 3054 rxcfg |= MAC_CFG_BCAST; 3055 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 3056 if ((ifp->if_flags & IFF_PROMISC) != 0) 3057 rxcfg |= MAC_CFG_PROMISC; 3058 if ((ifp->if_flags & IFF_ALLMULTI) != 0) 3059 rxcfg |= MAC_CFG_ALLMULTI; 3060 CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF); 3061 CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF); 3062 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg); 3063 return; 3064 } 3065 3066 /* Program new filter. */ 3067 bzero(mchash, sizeof(mchash)); 3068 3069 if_maddr_rlock(ifp); 3070 TAILQ_FOREACH(ifma, &sc->ale_ifp->if_multiaddrs, ifma_link) { 3071 if (ifma->ifma_addr->sa_family != AF_LINK) 3072 continue; 3073 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) 3074 ifma->ifma_addr), ETHER_ADDR_LEN); 3075 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); 3076 } 3077 if_maddr_runlock(ifp); 3078 3079 CSR_WRITE_4(sc, ALE_MAR0, mchash[0]); 3080 CSR_WRITE_4(sc, ALE_MAR1, mchash[1]); 3081 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg); 3082 } 3083 3084 static int 3085 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3086 { 3087 int error, value; 3088 3089 if (arg1 == NULL) 3090 return (EINVAL); 3091 value = *(int *)arg1; 3092 error = sysctl_handle_int(oidp, &value, 0, req); 3093 if (error || req->newptr == NULL) 3094 return (error); 3095 if (value < low || value > high) 3096 return (EINVAL); 3097 *(int *)arg1 = value; 3098 3099 return (0); 3100 } 3101 3102 static int 3103 sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS) 3104 { 3105 return (sysctl_int_range(oidp, arg1, arg2, req, 3106 ALE_PROC_MIN, ALE_PROC_MAX)); 3107 } 3108 3109 static int 3110 sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS) 3111 { 3112 3113 return (sysctl_int_range(oidp, arg1, arg2, req, 3114 ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX)); 3115 } 3116