1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/bus.h> 38 #include <sys/endian.h> 39 #include <sys/kernel.h> 40 #include <sys/malloc.h> 41 #include <sys/mbuf.h> 42 #include <sys/module.h> 43 #include <sys/rman.h> 44 #include <sys/queue.h> 45 #include <sys/socket.h> 46 #include <sys/sockio.h> 47 #include <sys/sysctl.h> 48 #include <sys/taskqueue.h> 49 50 #include <net/bpf.h> 51 #include <net/if.h> 52 #include <net/if_var.h> 53 #include <net/if_arp.h> 54 #include <net/ethernet.h> 55 #include <net/if_dl.h> 56 #include <net/if_llc.h> 57 #include <net/if_media.h> 58 #include <net/if_types.h> 59 #include <net/if_vlan_var.h> 60 61 #include <netinet/in.h> 62 #include <netinet/in_systm.h> 63 #include <netinet/ip.h> 64 #include <netinet/tcp.h> 65 66 #include <dev/mii/mii.h> 67 #include <dev/mii/miivar.h> 68 69 #include <dev/pci/pcireg.h> 70 #include <dev/pci/pcivar.h> 71 72 #include <machine/bus.h> 73 #include <machine/in_cksum.h> 74 75 #include <dev/ale/if_alereg.h> 76 #include <dev/ale/if_alevar.h> 77 78 /* "device miibus" required. See GENERIC if you get errors here. */ 79 #include "miibus_if.h" 80 81 /* For more information about Tx checksum offload issues see ale_encap(). */ 82 #define ALE_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 83 84 MODULE_DEPEND(ale, pci, 1, 1, 1); 85 MODULE_DEPEND(ale, ether, 1, 1, 1); 86 MODULE_DEPEND(ale, miibus, 1, 1, 1); 87 88 /* Tunables. */ 89 static int msi_disable = 0; 90 static int msix_disable = 0; 91 TUNABLE_INT("hw.ale.msi_disable", &msi_disable); 92 TUNABLE_INT("hw.ale.msix_disable", &msix_disable); 93 94 /* 95 * Devices supported by this driver. 96 */ 97 static const struct ale_dev { 98 uint16_t ale_vendorid; 99 uint16_t ale_deviceid; 100 const char *ale_name; 101 } ale_devs[] = { 102 { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX, 103 "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" }, 104 }; 105 106 static int ale_attach(device_t); 107 static int ale_check_boundary(struct ale_softc *); 108 static int ale_detach(device_t); 109 static int ale_dma_alloc(struct ale_softc *); 110 static void ale_dma_free(struct ale_softc *); 111 static void ale_dmamap_cb(void *, bus_dma_segment_t *, int, int); 112 static int ale_encap(struct ale_softc *, struct mbuf **); 113 static void ale_get_macaddr(struct ale_softc *); 114 static void ale_init(void *); 115 static void ale_init_locked(struct ale_softc *); 116 static void ale_init_rx_pages(struct ale_softc *); 117 static void ale_init_tx_ring(struct ale_softc *); 118 static void ale_int_task(void *, int); 119 static int ale_intr(void *); 120 static int ale_ioctl(struct ifnet *, u_long, caddr_t); 121 static void ale_mac_config(struct ale_softc *); 122 static int ale_miibus_readreg(device_t, int, int); 123 static void ale_miibus_statchg(device_t); 124 static int ale_miibus_writereg(device_t, int, int, int); 125 static int ale_mediachange(struct ifnet *); 126 static void ale_mediastatus(struct ifnet *, struct ifmediareq *); 127 static void ale_phy_reset(struct ale_softc *); 128 static int ale_probe(device_t); 129 static void ale_reset(struct ale_softc *); 130 static int ale_resume(device_t); 131 static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **, 132 uint32_t, uint32_t *); 133 static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t); 134 static int ale_rxeof(struct ale_softc *sc, int); 135 static void ale_rxfilter(struct ale_softc *); 136 static void ale_rxvlan(struct ale_softc *); 137 static void ale_setlinkspeed(struct ale_softc *); 138 static void ale_setwol(struct ale_softc *); 139 static int ale_shutdown(device_t); 140 static void ale_start(struct ifnet *); 141 static void ale_start_locked(struct ifnet *); 142 static void ale_stats_clear(struct ale_softc *); 143 static void ale_stats_update(struct ale_softc *); 144 static void ale_stop(struct ale_softc *); 145 static void ale_stop_mac(struct ale_softc *); 146 static int ale_suspend(device_t); 147 static void ale_sysctl_node(struct ale_softc *); 148 static void ale_tick(void *); 149 static void ale_txeof(struct ale_softc *); 150 static void ale_watchdog(struct ale_softc *); 151 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); 152 static int sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS); 153 static int sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS); 154 155 static device_method_t ale_methods[] = { 156 /* Device interface. */ 157 DEVMETHOD(device_probe, ale_probe), 158 DEVMETHOD(device_attach, ale_attach), 159 DEVMETHOD(device_detach, ale_detach), 160 DEVMETHOD(device_shutdown, ale_shutdown), 161 DEVMETHOD(device_suspend, ale_suspend), 162 DEVMETHOD(device_resume, ale_resume), 163 164 /* MII interface. */ 165 DEVMETHOD(miibus_readreg, ale_miibus_readreg), 166 DEVMETHOD(miibus_writereg, ale_miibus_writereg), 167 DEVMETHOD(miibus_statchg, ale_miibus_statchg), 168 169 DEVMETHOD_END 170 }; 171 172 static driver_t ale_driver = { 173 "ale", 174 ale_methods, 175 sizeof(struct ale_softc) 176 }; 177 178 DRIVER_MODULE(ale, pci, ale_driver, NULL, NULL); 179 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ale, ale_devs, 180 nitems(ale_devs)); 181 DRIVER_MODULE(miibus, ale, miibus_driver, NULL, NULL); 182 183 static struct resource_spec ale_res_spec_mem[] = { 184 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 185 { -1, 0, 0 } 186 }; 187 188 static struct resource_spec ale_irq_spec_legacy[] = { 189 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 190 { -1, 0, 0 } 191 }; 192 193 static struct resource_spec ale_irq_spec_msi[] = { 194 { SYS_RES_IRQ, 1, RF_ACTIVE }, 195 { -1, 0, 0 } 196 }; 197 198 static struct resource_spec ale_irq_spec_msix[] = { 199 { SYS_RES_IRQ, 1, RF_ACTIVE }, 200 { -1, 0, 0 } 201 }; 202 203 static int 204 ale_miibus_readreg(device_t dev, int phy, int reg) 205 { 206 struct ale_softc *sc; 207 uint32_t v; 208 int i; 209 210 sc = device_get_softc(dev); 211 212 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ | 213 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 214 for (i = ALE_PHY_TIMEOUT; i > 0; i--) { 215 DELAY(5); 216 v = CSR_READ_4(sc, ALE_MDIO); 217 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 218 break; 219 } 220 221 if (i == 0) { 222 device_printf(sc->ale_dev, "phy read timeout : %d\n", reg); 223 return (0); 224 } 225 226 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT); 227 } 228 229 static int 230 ale_miibus_writereg(device_t dev, int phy, int reg, int val) 231 { 232 struct ale_softc *sc; 233 uint32_t v; 234 int i; 235 236 sc = device_get_softc(dev); 237 238 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE | 239 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT | 240 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 241 for (i = ALE_PHY_TIMEOUT; i > 0; i--) { 242 DELAY(5); 243 v = CSR_READ_4(sc, ALE_MDIO); 244 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 245 break; 246 } 247 248 if (i == 0) 249 device_printf(sc->ale_dev, "phy write timeout : %d\n", reg); 250 251 return (0); 252 } 253 254 static void 255 ale_miibus_statchg(device_t dev) 256 { 257 struct ale_softc *sc; 258 struct mii_data *mii; 259 struct ifnet *ifp; 260 uint32_t reg; 261 262 sc = device_get_softc(dev); 263 mii = device_get_softc(sc->ale_miibus); 264 ifp = sc->ale_ifp; 265 if (mii == NULL || ifp == NULL || 266 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 267 return; 268 269 sc->ale_flags &= ~ALE_FLAG_LINK; 270 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 271 (IFM_ACTIVE | IFM_AVALID)) { 272 switch (IFM_SUBTYPE(mii->mii_media_active)) { 273 case IFM_10_T: 274 case IFM_100_TX: 275 sc->ale_flags |= ALE_FLAG_LINK; 276 break; 277 case IFM_1000_T: 278 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0) 279 sc->ale_flags |= ALE_FLAG_LINK; 280 break; 281 default: 282 break; 283 } 284 } 285 286 /* Stop Rx/Tx MACs. */ 287 ale_stop_mac(sc); 288 289 /* Program MACs with resolved speed/duplex/flow-control. */ 290 if ((sc->ale_flags & ALE_FLAG_LINK) != 0) { 291 ale_mac_config(sc); 292 /* Reenable Tx/Rx MACs. */ 293 reg = CSR_READ_4(sc, ALE_MAC_CFG); 294 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB; 295 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 296 } 297 } 298 299 static void 300 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 301 { 302 struct ale_softc *sc; 303 struct mii_data *mii; 304 305 sc = ifp->if_softc; 306 ALE_LOCK(sc); 307 if ((ifp->if_flags & IFF_UP) == 0) { 308 ALE_UNLOCK(sc); 309 return; 310 } 311 mii = device_get_softc(sc->ale_miibus); 312 313 mii_pollstat(mii); 314 ifmr->ifm_status = mii->mii_media_status; 315 ifmr->ifm_active = mii->mii_media_active; 316 ALE_UNLOCK(sc); 317 } 318 319 static int 320 ale_mediachange(struct ifnet *ifp) 321 { 322 struct ale_softc *sc; 323 struct mii_data *mii; 324 struct mii_softc *miisc; 325 int error; 326 327 sc = ifp->if_softc; 328 ALE_LOCK(sc); 329 mii = device_get_softc(sc->ale_miibus); 330 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 331 PHY_RESET(miisc); 332 error = mii_mediachg(mii); 333 ALE_UNLOCK(sc); 334 335 return (error); 336 } 337 338 static int 339 ale_probe(device_t dev) 340 { 341 const struct ale_dev *sp; 342 int i; 343 uint16_t vendor, devid; 344 345 vendor = pci_get_vendor(dev); 346 devid = pci_get_device(dev); 347 sp = ale_devs; 348 for (i = 0; i < nitems(ale_devs); i++) { 349 if (vendor == sp->ale_vendorid && 350 devid == sp->ale_deviceid) { 351 device_set_desc(dev, sp->ale_name); 352 return (BUS_PROBE_DEFAULT); 353 } 354 sp++; 355 } 356 357 return (ENXIO); 358 } 359 360 static void 361 ale_get_macaddr(struct ale_softc *sc) 362 { 363 uint32_t ea[2], reg; 364 int i, vpdc; 365 366 reg = CSR_READ_4(sc, ALE_SPI_CTRL); 367 if ((reg & SPI_VPD_ENB) != 0) { 368 reg &= ~SPI_VPD_ENB; 369 CSR_WRITE_4(sc, ALE_SPI_CTRL, reg); 370 } 371 372 if (pci_find_cap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) { 373 /* 374 * PCI VPD capability found, let TWSI reload EEPROM. 375 * This will set ethernet address of controller. 376 */ 377 CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) | 378 TWSI_CTRL_SW_LD_START); 379 for (i = 100; i > 0; i--) { 380 DELAY(1000); 381 reg = CSR_READ_4(sc, ALE_TWSI_CTRL); 382 if ((reg & TWSI_CTRL_SW_LD_START) == 0) 383 break; 384 } 385 if (i == 0) 386 device_printf(sc->ale_dev, 387 "reloading EEPROM timeout!\n"); 388 } else { 389 if (bootverbose) 390 device_printf(sc->ale_dev, 391 "PCI VPD capability not found!\n"); 392 } 393 394 ea[0] = CSR_READ_4(sc, ALE_PAR0); 395 ea[1] = CSR_READ_4(sc, ALE_PAR1); 396 sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF; 397 sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF; 398 sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF; 399 sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF; 400 sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF; 401 sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF; 402 } 403 404 static void 405 ale_phy_reset(struct ale_softc *sc) 406 { 407 408 /* Reset magic from Linux. */ 409 CSR_WRITE_2(sc, ALE_GPHY_CTRL, 410 GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET | 411 GPHY_CTRL_PHY_PLL_ON); 412 DELAY(1000); 413 CSR_WRITE_2(sc, ALE_GPHY_CTRL, 414 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | 415 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON); 416 DELAY(1000); 417 418 #define ATPHY_DBG_ADDR 0x1D 419 #define ATPHY_DBG_DATA 0x1E 420 421 /* Enable hibernation mode. */ 422 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 423 ATPHY_DBG_ADDR, 0x0B); 424 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 425 ATPHY_DBG_DATA, 0xBC00); 426 /* Set Class A/B for all modes. */ 427 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 428 ATPHY_DBG_ADDR, 0x00); 429 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 430 ATPHY_DBG_DATA, 0x02EF); 431 /* Enable 10BT power saving. */ 432 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 433 ATPHY_DBG_ADDR, 0x12); 434 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 435 ATPHY_DBG_DATA, 0x4C04); 436 /* Adjust 1000T power. */ 437 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 438 ATPHY_DBG_ADDR, 0x04); 439 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 440 ATPHY_DBG_ADDR, 0x8BBB); 441 /* 10BT center tap voltage. */ 442 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 443 ATPHY_DBG_ADDR, 0x05); 444 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 445 ATPHY_DBG_ADDR, 0x2C46); 446 447 #undef ATPHY_DBG_ADDR 448 #undef ATPHY_DBG_DATA 449 DELAY(1000); 450 } 451 452 static int 453 ale_attach(device_t dev) 454 { 455 struct ale_softc *sc; 456 struct ifnet *ifp; 457 uint16_t burst; 458 int error, i, msic, msixc, pmc; 459 uint32_t rxf_len, txf_len; 460 461 error = 0; 462 sc = device_get_softc(dev); 463 sc->ale_dev = dev; 464 465 mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 466 MTX_DEF); 467 callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0); 468 NET_TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc); 469 470 /* Map the device. */ 471 pci_enable_busmaster(dev); 472 sc->ale_res_spec = ale_res_spec_mem; 473 sc->ale_irq_spec = ale_irq_spec_legacy; 474 error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res); 475 if (error != 0) { 476 device_printf(dev, "cannot allocate memory resources.\n"); 477 goto fail; 478 } 479 480 /* Set PHY address. */ 481 sc->ale_phyaddr = ALE_PHY_ADDR; 482 483 /* Reset PHY. */ 484 ale_phy_reset(sc); 485 486 /* Reset the ethernet controller. */ 487 ale_reset(sc); 488 489 /* Get PCI and chip id/revision. */ 490 sc->ale_rev = pci_get_revid(dev); 491 if (sc->ale_rev >= 0xF0) { 492 /* L2E Rev. B. AR8114 */ 493 sc->ale_flags |= ALE_FLAG_FASTETHER; 494 } else { 495 if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) { 496 /* L1E AR8121 */ 497 sc->ale_flags |= ALE_FLAG_JUMBO; 498 } else { 499 /* L2E Rev. A. AR8113 */ 500 sc->ale_flags |= ALE_FLAG_FASTETHER; 501 } 502 } 503 /* 504 * All known controllers seems to require 4 bytes alignment 505 * of Tx buffers to make Tx checksum offload with custom 506 * checksum generation method work. 507 */ 508 sc->ale_flags |= ALE_FLAG_TXCSUM_BUG; 509 /* 510 * All known controllers seems to have issues on Rx checksum 511 * offload for fragmented IP datagrams. 512 */ 513 sc->ale_flags |= ALE_FLAG_RXCSUM_BUG; 514 /* 515 * Don't use Tx CMB. It is known to cause RRS update failure 516 * under certain circumstances. Typical phenomenon of the 517 * issue would be unexpected sequence number encountered in 518 * Rx handler. 519 */ 520 sc->ale_flags |= ALE_FLAG_TXCMB_BUG; 521 sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >> 522 MASTER_CHIP_REV_SHIFT; 523 if (bootverbose) { 524 device_printf(dev, "PCI device revision : 0x%04x\n", 525 sc->ale_rev); 526 device_printf(dev, "Chip id/revision : 0x%04x\n", 527 sc->ale_chip_rev); 528 } 529 txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN); 530 rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN); 531 /* 532 * Uninitialized hardware returns an invalid chip id/revision 533 * as well as 0xFFFFFFFF for Tx/Rx fifo length. 534 */ 535 if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF || 536 rxf_len == 0xFFFFFFF) { 537 device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO " 538 "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev, 539 txf_len, rxf_len); 540 error = ENXIO; 541 goto fail; 542 } 543 device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len); 544 545 /* Allocate IRQ resources. */ 546 msixc = pci_msix_count(dev); 547 msic = pci_msi_count(dev); 548 if (bootverbose) { 549 device_printf(dev, "MSIX count : %d\n", msixc); 550 device_printf(dev, "MSI count : %d\n", msic); 551 } 552 553 /* Prefer MSIX over MSI. */ 554 if (msix_disable == 0 || msi_disable == 0) { 555 if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES && 556 pci_alloc_msix(dev, &msixc) == 0) { 557 if (msixc == ALE_MSIX_MESSAGES) { 558 device_printf(dev, "Using %d MSIX messages.\n", 559 msixc); 560 sc->ale_flags |= ALE_FLAG_MSIX; 561 sc->ale_irq_spec = ale_irq_spec_msix; 562 } else 563 pci_release_msi(dev); 564 } 565 if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 && 566 msic == ALE_MSI_MESSAGES && 567 pci_alloc_msi(dev, &msic) == 0) { 568 if (msic == ALE_MSI_MESSAGES) { 569 device_printf(dev, "Using %d MSI messages.\n", 570 msic); 571 sc->ale_flags |= ALE_FLAG_MSI; 572 sc->ale_irq_spec = ale_irq_spec_msi; 573 } else 574 pci_release_msi(dev); 575 } 576 } 577 578 error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq); 579 if (error != 0) { 580 device_printf(dev, "cannot allocate IRQ resources.\n"); 581 goto fail; 582 } 583 584 /* Get DMA parameters from PCIe device control register. */ 585 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 586 sc->ale_flags |= ALE_FLAG_PCIE; 587 burst = pci_read_config(dev, i + 0x08, 2); 588 /* Max read request size. */ 589 sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) << 590 DMA_CFG_RD_BURST_SHIFT; 591 /* Max payload size. */ 592 sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) << 593 DMA_CFG_WR_BURST_SHIFT; 594 if (bootverbose) { 595 device_printf(dev, "Read request size : %d bytes.\n", 596 128 << ((burst >> 12) & 0x07)); 597 device_printf(dev, "TLP payload size : %d bytes.\n", 598 128 << ((burst >> 5) & 0x07)); 599 } 600 } else { 601 sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128; 602 sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128; 603 } 604 605 /* Create device sysctl node. */ 606 ale_sysctl_node(sc); 607 608 if ((error = ale_dma_alloc(sc)) != 0) 609 goto fail; 610 611 /* Load station address. */ 612 ale_get_macaddr(sc); 613 614 ifp = sc->ale_ifp = if_alloc(IFT_ETHER); 615 if (ifp == NULL) { 616 device_printf(dev, "cannot allocate ifnet structure.\n"); 617 error = ENXIO; 618 goto fail; 619 } 620 621 ifp->if_softc = sc; 622 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 623 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 624 ifp->if_ioctl = ale_ioctl; 625 ifp->if_start = ale_start; 626 ifp->if_init = ale_init; 627 ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1; 628 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 629 IFQ_SET_READY(&ifp->if_snd); 630 ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4; 631 ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO; 632 if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) { 633 sc->ale_flags |= ALE_FLAG_PMCAP; 634 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST; 635 } 636 ifp->if_capenable = ifp->if_capabilities; 637 638 /* Set up MII bus. */ 639 error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange, 640 ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY, 641 MIIF_DOPAUSE); 642 if (error != 0) { 643 device_printf(dev, "attaching PHYs failed\n"); 644 goto fail; 645 } 646 647 ether_ifattach(ifp, sc->ale_eaddr); 648 649 /* VLAN capability setup. */ 650 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | 651 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO; 652 ifp->if_capenable = ifp->if_capabilities; 653 /* 654 * Even though controllers supported by ale(3) have Rx checksum 655 * offload bug the workaround for fragmented frames seemed to 656 * work so far. However it seems Rx checksum offload does not 657 * work under certain conditions. So disable Rx checksum offload 658 * until I find more clue about it but allow users to override it. 659 */ 660 ifp->if_capenable &= ~IFCAP_RXCSUM; 661 662 /* Tell the upper layer(s) we support long frames. */ 663 ifp->if_hdrlen = sizeof(struct ether_vlan_header); 664 665 /* Create local taskq. */ 666 sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK, 667 taskqueue_thread_enqueue, &sc->ale_tq); 668 if (sc->ale_tq == NULL) { 669 device_printf(dev, "could not create taskqueue.\n"); 670 ether_ifdetach(ifp); 671 error = ENXIO; 672 goto fail; 673 } 674 taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq", 675 device_get_nameunit(sc->ale_dev)); 676 677 if ((sc->ale_flags & ALE_FLAG_MSIX) != 0) 678 msic = ALE_MSIX_MESSAGES; 679 else if ((sc->ale_flags & ALE_FLAG_MSI) != 0) 680 msic = ALE_MSI_MESSAGES; 681 else 682 msic = 1; 683 for (i = 0; i < msic; i++) { 684 error = bus_setup_intr(dev, sc->ale_irq[i], 685 INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc, 686 &sc->ale_intrhand[i]); 687 if (error != 0) 688 break; 689 } 690 if (error != 0) { 691 device_printf(dev, "could not set up interrupt handler.\n"); 692 taskqueue_free(sc->ale_tq); 693 sc->ale_tq = NULL; 694 ether_ifdetach(ifp); 695 goto fail; 696 } 697 698 fail: 699 if (error != 0) 700 ale_detach(dev); 701 702 return (error); 703 } 704 705 static int 706 ale_detach(device_t dev) 707 { 708 struct ale_softc *sc; 709 struct ifnet *ifp; 710 int i, msic; 711 712 sc = device_get_softc(dev); 713 714 ifp = sc->ale_ifp; 715 if (device_is_attached(dev)) { 716 ether_ifdetach(ifp); 717 ALE_LOCK(sc); 718 ale_stop(sc); 719 ALE_UNLOCK(sc); 720 callout_drain(&sc->ale_tick_ch); 721 taskqueue_drain(sc->ale_tq, &sc->ale_int_task); 722 } 723 724 if (sc->ale_tq != NULL) { 725 taskqueue_drain(sc->ale_tq, &sc->ale_int_task); 726 taskqueue_free(sc->ale_tq); 727 sc->ale_tq = NULL; 728 } 729 730 if (sc->ale_miibus != NULL) { 731 device_delete_child(dev, sc->ale_miibus); 732 sc->ale_miibus = NULL; 733 } 734 bus_generic_detach(dev); 735 ale_dma_free(sc); 736 737 if (ifp != NULL) { 738 if_free(ifp); 739 sc->ale_ifp = NULL; 740 } 741 742 if ((sc->ale_flags & ALE_FLAG_MSIX) != 0) 743 msic = ALE_MSIX_MESSAGES; 744 else if ((sc->ale_flags & ALE_FLAG_MSI) != 0) 745 msic = ALE_MSI_MESSAGES; 746 else 747 msic = 1; 748 for (i = 0; i < msic; i++) { 749 if (sc->ale_intrhand[i] != NULL) { 750 bus_teardown_intr(dev, sc->ale_irq[i], 751 sc->ale_intrhand[i]); 752 sc->ale_intrhand[i] = NULL; 753 } 754 } 755 756 bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq); 757 if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0) 758 pci_release_msi(dev); 759 bus_release_resources(dev, sc->ale_res_spec, sc->ale_res); 760 mtx_destroy(&sc->ale_mtx); 761 762 return (0); 763 } 764 765 #define ALE_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 766 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 767 768 #define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 769 SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 770 771 static void 772 ale_sysctl_node(struct ale_softc *sc) 773 { 774 struct sysctl_ctx_list *ctx; 775 struct sysctl_oid_list *child, *parent; 776 struct sysctl_oid *tree; 777 struct ale_hw_stats *stats; 778 int error; 779 780 stats = &sc->ale_stats; 781 ctx = device_get_sysctl_ctx(sc->ale_dev); 782 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev)); 783 784 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod", 785 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->ale_int_rx_mod, 786 0, sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation"); 787 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod", 788 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->ale_int_tx_mod, 789 0, sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation"); 790 /* Pull in device tunables. */ 791 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT; 792 error = resource_int_value(device_get_name(sc->ale_dev), 793 device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod); 794 if (error == 0) { 795 if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN || 796 sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) { 797 device_printf(sc->ale_dev, "int_rx_mod value out of " 798 "range; using default: %d\n", 799 ALE_IM_RX_TIMER_DEFAULT); 800 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT; 801 } 802 } 803 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT; 804 error = resource_int_value(device_get_name(sc->ale_dev), 805 device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod); 806 if (error == 0) { 807 if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN || 808 sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) { 809 device_printf(sc->ale_dev, "int_tx_mod value out of " 810 "range; using default: %d\n", 811 ALE_IM_TX_TIMER_DEFAULT); 812 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT; 813 } 814 } 815 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit", 816 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 817 &sc->ale_process_limit, 0, sysctl_hw_ale_proc_limit, "I", 818 "max number of Rx events to process"); 819 /* Pull in device tunables. */ 820 sc->ale_process_limit = ALE_PROC_DEFAULT; 821 error = resource_int_value(device_get_name(sc->ale_dev), 822 device_get_unit(sc->ale_dev), "process_limit", 823 &sc->ale_process_limit); 824 if (error == 0) { 825 if (sc->ale_process_limit < ALE_PROC_MIN || 826 sc->ale_process_limit > ALE_PROC_MAX) { 827 device_printf(sc->ale_dev, 828 "process_limit value out of range; " 829 "using default: %d\n", ALE_PROC_DEFAULT); 830 sc->ale_process_limit = ALE_PROC_DEFAULT; 831 } 832 } 833 834 /* Misc statistics. */ 835 ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq", 836 &stats->reset_brk_seq, 837 "Controller resets due to broken Rx sequnce number"); 838 839 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", 840 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ATE statistics"); 841 parent = SYSCTL_CHILDREN(tree); 842 843 /* Rx statistics. */ 844 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", 845 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics"); 846 child = SYSCTL_CHILDREN(tree); 847 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames", 848 &stats->rx_frames, "Good frames"); 849 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames", 850 &stats->rx_bcast_frames, "Good broadcast frames"); 851 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames", 852 &stats->rx_mcast_frames, "Good multicast frames"); 853 ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames", 854 &stats->rx_pause_frames, "Pause control frames"); 855 ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames", 856 &stats->rx_control_frames, "Control frames"); 857 ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs", 858 &stats->rx_crcerrs, "CRC errors"); 859 ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs", 860 &stats->rx_lenerrs, "Frames with length mismatched"); 861 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets", 862 &stats->rx_bytes, "Good octets"); 863 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets", 864 &stats->rx_bcast_bytes, "Good broadcast octets"); 865 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets", 866 &stats->rx_mcast_bytes, "Good multicast octets"); 867 ALE_SYSCTL_STAT_ADD32(ctx, child, "runts", 868 &stats->rx_runts, "Too short frames"); 869 ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments", 870 &stats->rx_fragments, "Fragmented frames"); 871 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64", 872 &stats->rx_pkts_64, "64 bytes frames"); 873 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127", 874 &stats->rx_pkts_65_127, "65 to 127 bytes frames"); 875 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255", 876 &stats->rx_pkts_128_255, "128 to 255 bytes frames"); 877 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511", 878 &stats->rx_pkts_256_511, "256 to 511 bytes frames"); 879 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023", 880 &stats->rx_pkts_512_1023, "512 to 1023 bytes frames"); 881 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518", 882 &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames"); 883 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max", 884 &stats->rx_pkts_1519_max, "1519 to max frames"); 885 ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs", 886 &stats->rx_pkts_truncated, "Truncated frames due to MTU size"); 887 ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows", 888 &stats->rx_fifo_oflows, "FIFO overflows"); 889 ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs", 890 &stats->rx_rrs_errs, "Return status write-back errors"); 891 ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs", 892 &stats->rx_alignerrs, "Alignment errors"); 893 ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered", 894 &stats->rx_pkts_filtered, 895 "Frames dropped due to address filtering"); 896 897 /* Tx statistics. */ 898 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", 899 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics"); 900 child = SYSCTL_CHILDREN(tree); 901 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames", 902 &stats->tx_frames, "Good frames"); 903 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames", 904 &stats->tx_bcast_frames, "Good broadcast frames"); 905 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames", 906 &stats->tx_mcast_frames, "Good multicast frames"); 907 ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames", 908 &stats->tx_pause_frames, "Pause control frames"); 909 ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames", 910 &stats->tx_control_frames, "Control frames"); 911 ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers", 912 &stats->tx_excess_defer, "Frames with excessive derferrals"); 913 ALE_SYSCTL_STAT_ADD32(ctx, child, "defers", 914 &stats->tx_excess_defer, "Frames with derferrals"); 915 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets", 916 &stats->tx_bytes, "Good octets"); 917 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets", 918 &stats->tx_bcast_bytes, "Good broadcast octets"); 919 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets", 920 &stats->tx_mcast_bytes, "Good multicast octets"); 921 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64", 922 &stats->tx_pkts_64, "64 bytes frames"); 923 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127", 924 &stats->tx_pkts_65_127, "65 to 127 bytes frames"); 925 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255", 926 &stats->tx_pkts_128_255, "128 to 255 bytes frames"); 927 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511", 928 &stats->tx_pkts_256_511, "256 to 511 bytes frames"); 929 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023", 930 &stats->tx_pkts_512_1023, "512 to 1023 bytes frames"); 931 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518", 932 &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames"); 933 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max", 934 &stats->tx_pkts_1519_max, "1519 to max frames"); 935 ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls", 936 &stats->tx_single_colls, "Single collisions"); 937 ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls", 938 &stats->tx_multi_colls, "Multiple collisions"); 939 ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls", 940 &stats->tx_late_colls, "Late collisions"); 941 ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls", 942 &stats->tx_excess_colls, "Excessive collisions"); 943 ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns", 944 &stats->tx_underrun, "FIFO underruns"); 945 ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns", 946 &stats->tx_desc_underrun, "Descriptor write-back errors"); 947 ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs", 948 &stats->tx_lenerrs, "Frames with length mismatched"); 949 ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs", 950 &stats->tx_pkts_truncated, "Truncated frames due to MTU size"); 951 } 952 953 #undef ALE_SYSCTL_STAT_ADD32 954 #undef ALE_SYSCTL_STAT_ADD64 955 956 struct ale_dmamap_arg { 957 bus_addr_t ale_busaddr; 958 }; 959 960 static void 961 ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 962 { 963 struct ale_dmamap_arg *ctx; 964 965 if (error != 0) 966 return; 967 968 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 969 970 ctx = (struct ale_dmamap_arg *)arg; 971 ctx->ale_busaddr = segs[0].ds_addr; 972 } 973 974 /* 975 * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register 976 * which specifies high address region of DMA blocks. Therefore these 977 * blocks should have the same high address of given 4GB address 978 * space(i.e. crossing 4GB boundary is not allowed). 979 */ 980 static int 981 ale_check_boundary(struct ale_softc *sc) 982 { 983 bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end; 984 bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end; 985 986 rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr + 987 sc->ale_pagesize; 988 rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr + 989 sc->ale_pagesize; 990 tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ; 991 tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ; 992 rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ; 993 rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ; 994 995 if ((ALE_ADDR_HI(tx_ring_end) != 996 ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) || 997 (ALE_ADDR_HI(rx_page_end[0]) != 998 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) || 999 (ALE_ADDR_HI(rx_page_end[1]) != 1000 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) || 1001 (ALE_ADDR_HI(tx_cmb_end) != 1002 ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) || 1003 (ALE_ADDR_HI(rx_cmb_end[0]) != 1004 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) || 1005 (ALE_ADDR_HI(rx_cmb_end[1]) != 1006 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr))) 1007 return (EFBIG); 1008 1009 if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) || 1010 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) || 1011 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) || 1012 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) || 1013 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end))) 1014 return (EFBIG); 1015 1016 return (0); 1017 } 1018 1019 static int 1020 ale_dma_alloc(struct ale_softc *sc) 1021 { 1022 struct ale_txdesc *txd; 1023 bus_addr_t lowaddr; 1024 struct ale_dmamap_arg ctx; 1025 int error, guard_size, i; 1026 1027 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) 1028 guard_size = ALE_JUMBO_FRAMELEN; 1029 else 1030 guard_size = ALE_MAX_FRAMELEN; 1031 sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ, 1032 ALE_RX_PAGE_ALIGN); 1033 lowaddr = BUS_SPACE_MAXADDR; 1034 again: 1035 /* Create parent DMA tag. */ 1036 error = bus_dma_tag_create( 1037 bus_get_dma_tag(sc->ale_dev), /* parent */ 1038 1, 0, /* alignment, boundary */ 1039 lowaddr, /* lowaddr */ 1040 BUS_SPACE_MAXADDR, /* highaddr */ 1041 NULL, NULL, /* filter, filterarg */ 1042 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1043 0, /* nsegments */ 1044 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1045 0, /* flags */ 1046 NULL, NULL, /* lockfunc, lockarg */ 1047 &sc->ale_cdata.ale_parent_tag); 1048 if (error != 0) { 1049 device_printf(sc->ale_dev, 1050 "could not create parent DMA tag.\n"); 1051 goto fail; 1052 } 1053 1054 /* Create DMA tag for Tx descriptor ring. */ 1055 error = bus_dma_tag_create( 1056 sc->ale_cdata.ale_parent_tag, /* parent */ 1057 ALE_TX_RING_ALIGN, 0, /* alignment, boundary */ 1058 BUS_SPACE_MAXADDR, /* lowaddr */ 1059 BUS_SPACE_MAXADDR, /* highaddr */ 1060 NULL, NULL, /* filter, filterarg */ 1061 ALE_TX_RING_SZ, /* maxsize */ 1062 1, /* nsegments */ 1063 ALE_TX_RING_SZ, /* maxsegsize */ 1064 0, /* flags */ 1065 NULL, NULL, /* lockfunc, lockarg */ 1066 &sc->ale_cdata.ale_tx_ring_tag); 1067 if (error != 0) { 1068 device_printf(sc->ale_dev, 1069 "could not create Tx ring DMA tag.\n"); 1070 goto fail; 1071 } 1072 1073 /* Create DMA tag for Rx pages. */ 1074 for (i = 0; i < ALE_RX_PAGES; i++) { 1075 error = bus_dma_tag_create( 1076 sc->ale_cdata.ale_parent_tag, /* parent */ 1077 ALE_RX_PAGE_ALIGN, 0, /* alignment, boundary */ 1078 BUS_SPACE_MAXADDR, /* lowaddr */ 1079 BUS_SPACE_MAXADDR, /* highaddr */ 1080 NULL, NULL, /* filter, filterarg */ 1081 sc->ale_pagesize, /* maxsize */ 1082 1, /* nsegments */ 1083 sc->ale_pagesize, /* maxsegsize */ 1084 0, /* flags */ 1085 NULL, NULL, /* lockfunc, lockarg */ 1086 &sc->ale_cdata.ale_rx_page[i].page_tag); 1087 if (error != 0) { 1088 device_printf(sc->ale_dev, 1089 "could not create Rx page %d DMA tag.\n", i); 1090 goto fail; 1091 } 1092 } 1093 1094 /* Create DMA tag for Tx coalescing message block. */ 1095 error = bus_dma_tag_create( 1096 sc->ale_cdata.ale_parent_tag, /* parent */ 1097 ALE_CMB_ALIGN, 0, /* alignment, boundary */ 1098 BUS_SPACE_MAXADDR, /* lowaddr */ 1099 BUS_SPACE_MAXADDR, /* highaddr */ 1100 NULL, NULL, /* filter, filterarg */ 1101 ALE_TX_CMB_SZ, /* maxsize */ 1102 1, /* nsegments */ 1103 ALE_TX_CMB_SZ, /* maxsegsize */ 1104 0, /* flags */ 1105 NULL, NULL, /* lockfunc, lockarg */ 1106 &sc->ale_cdata.ale_tx_cmb_tag); 1107 if (error != 0) { 1108 device_printf(sc->ale_dev, 1109 "could not create Tx CMB DMA tag.\n"); 1110 goto fail; 1111 } 1112 1113 /* Create DMA tag for Rx coalescing message block. */ 1114 for (i = 0; i < ALE_RX_PAGES; i++) { 1115 error = bus_dma_tag_create( 1116 sc->ale_cdata.ale_parent_tag, /* parent */ 1117 ALE_CMB_ALIGN, 0, /* alignment, boundary */ 1118 BUS_SPACE_MAXADDR, /* lowaddr */ 1119 BUS_SPACE_MAXADDR, /* highaddr */ 1120 NULL, NULL, /* filter, filterarg */ 1121 ALE_RX_CMB_SZ, /* maxsize */ 1122 1, /* nsegments */ 1123 ALE_RX_CMB_SZ, /* maxsegsize */ 1124 0, /* flags */ 1125 NULL, NULL, /* lockfunc, lockarg */ 1126 &sc->ale_cdata.ale_rx_page[i].cmb_tag); 1127 if (error != 0) { 1128 device_printf(sc->ale_dev, 1129 "could not create Rx page %d CMB DMA tag.\n", i); 1130 goto fail; 1131 } 1132 } 1133 1134 /* Allocate DMA'able memory and load the DMA map for Tx ring. */ 1135 error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag, 1136 (void **)&sc->ale_cdata.ale_tx_ring, 1137 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1138 &sc->ale_cdata.ale_tx_ring_map); 1139 if (error != 0) { 1140 device_printf(sc->ale_dev, 1141 "could not allocate DMA'able memory for Tx ring.\n"); 1142 goto fail; 1143 } 1144 ctx.ale_busaddr = 0; 1145 error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag, 1146 sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring, 1147 ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0); 1148 if (error != 0 || ctx.ale_busaddr == 0) { 1149 device_printf(sc->ale_dev, 1150 "could not load DMA'able memory for Tx ring.\n"); 1151 goto fail; 1152 } 1153 sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr; 1154 1155 /* Rx pages. */ 1156 for (i = 0; i < ALE_RX_PAGES; i++) { 1157 error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag, 1158 (void **)&sc->ale_cdata.ale_rx_page[i].page_addr, 1159 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1160 &sc->ale_cdata.ale_rx_page[i].page_map); 1161 if (error != 0) { 1162 device_printf(sc->ale_dev, 1163 "could not allocate DMA'able memory for " 1164 "Rx page %d.\n", i); 1165 goto fail; 1166 } 1167 ctx.ale_busaddr = 0; 1168 error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag, 1169 sc->ale_cdata.ale_rx_page[i].page_map, 1170 sc->ale_cdata.ale_rx_page[i].page_addr, 1171 sc->ale_pagesize, ale_dmamap_cb, &ctx, 0); 1172 if (error != 0 || ctx.ale_busaddr == 0) { 1173 device_printf(sc->ale_dev, 1174 "could not load DMA'able memory for " 1175 "Rx page %d.\n", i); 1176 goto fail; 1177 } 1178 sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr; 1179 } 1180 1181 /* Tx CMB. */ 1182 error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag, 1183 (void **)&sc->ale_cdata.ale_tx_cmb, 1184 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1185 &sc->ale_cdata.ale_tx_cmb_map); 1186 if (error != 0) { 1187 device_printf(sc->ale_dev, 1188 "could not allocate DMA'able memory for Tx CMB.\n"); 1189 goto fail; 1190 } 1191 ctx.ale_busaddr = 0; 1192 error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag, 1193 sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb, 1194 ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0); 1195 if (error != 0 || ctx.ale_busaddr == 0) { 1196 device_printf(sc->ale_dev, 1197 "could not load DMA'able memory for Tx CMB.\n"); 1198 goto fail; 1199 } 1200 sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr; 1201 1202 /* Rx CMB. */ 1203 for (i = 0; i < ALE_RX_PAGES; i++) { 1204 error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag, 1205 (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr, 1206 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1207 &sc->ale_cdata.ale_rx_page[i].cmb_map); 1208 if (error != 0) { 1209 device_printf(sc->ale_dev, "could not allocate " 1210 "DMA'able memory for Rx page %d CMB.\n", i); 1211 goto fail; 1212 } 1213 ctx.ale_busaddr = 0; 1214 error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag, 1215 sc->ale_cdata.ale_rx_page[i].cmb_map, 1216 sc->ale_cdata.ale_rx_page[i].cmb_addr, 1217 ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0); 1218 if (error != 0 || ctx.ale_busaddr == 0) { 1219 device_printf(sc->ale_dev, "could not load DMA'able " 1220 "memory for Rx page %d CMB.\n", i); 1221 goto fail; 1222 } 1223 sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr; 1224 } 1225 1226 /* 1227 * Tx descriptors/RXF0/CMB DMA blocks share the same 1228 * high address region of 64bit DMA address space. 1229 */ 1230 if (lowaddr != BUS_SPACE_MAXADDR_32BIT && 1231 (error = ale_check_boundary(sc)) != 0) { 1232 device_printf(sc->ale_dev, "4GB boundary crossed, " 1233 "switching to 32bit DMA addressing mode.\n"); 1234 ale_dma_free(sc); 1235 /* 1236 * Limit max allowable DMA address space to 32bit 1237 * and try again. 1238 */ 1239 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1240 goto again; 1241 } 1242 1243 /* 1244 * Create Tx buffer parent tag. 1245 * AR81xx allows 64bit DMA addressing of Tx buffers so it 1246 * needs separate parent DMA tag as parent DMA address space 1247 * could be restricted to be within 32bit address space by 1248 * 4GB boundary crossing. 1249 */ 1250 error = bus_dma_tag_create( 1251 bus_get_dma_tag(sc->ale_dev), /* parent */ 1252 1, 0, /* alignment, boundary */ 1253 BUS_SPACE_MAXADDR, /* lowaddr */ 1254 BUS_SPACE_MAXADDR, /* highaddr */ 1255 NULL, NULL, /* filter, filterarg */ 1256 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1257 0, /* nsegments */ 1258 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1259 0, /* flags */ 1260 NULL, NULL, /* lockfunc, lockarg */ 1261 &sc->ale_cdata.ale_buffer_tag); 1262 if (error != 0) { 1263 device_printf(sc->ale_dev, 1264 "could not create parent buffer DMA tag.\n"); 1265 goto fail; 1266 } 1267 1268 /* Create DMA tag for Tx buffers. */ 1269 error = bus_dma_tag_create( 1270 sc->ale_cdata.ale_buffer_tag, /* parent */ 1271 1, 0, /* alignment, boundary */ 1272 BUS_SPACE_MAXADDR, /* lowaddr */ 1273 BUS_SPACE_MAXADDR, /* highaddr */ 1274 NULL, NULL, /* filter, filterarg */ 1275 ALE_TSO_MAXSIZE, /* maxsize */ 1276 ALE_MAXTXSEGS, /* nsegments */ 1277 ALE_TSO_MAXSEGSIZE, /* maxsegsize */ 1278 0, /* flags */ 1279 NULL, NULL, /* lockfunc, lockarg */ 1280 &sc->ale_cdata.ale_tx_tag); 1281 if (error != 0) { 1282 device_printf(sc->ale_dev, "could not create Tx DMA tag.\n"); 1283 goto fail; 1284 } 1285 1286 /* Create DMA maps for Tx buffers. */ 1287 for (i = 0; i < ALE_TX_RING_CNT; i++) { 1288 txd = &sc->ale_cdata.ale_txdesc[i]; 1289 txd->tx_m = NULL; 1290 txd->tx_dmamap = NULL; 1291 error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0, 1292 &txd->tx_dmamap); 1293 if (error != 0) { 1294 device_printf(sc->ale_dev, 1295 "could not create Tx dmamap.\n"); 1296 goto fail; 1297 } 1298 } 1299 1300 fail: 1301 return (error); 1302 } 1303 1304 static void 1305 ale_dma_free(struct ale_softc *sc) 1306 { 1307 struct ale_txdesc *txd; 1308 int i; 1309 1310 /* Tx buffers. */ 1311 if (sc->ale_cdata.ale_tx_tag != NULL) { 1312 for (i = 0; i < ALE_TX_RING_CNT; i++) { 1313 txd = &sc->ale_cdata.ale_txdesc[i]; 1314 if (txd->tx_dmamap != NULL) { 1315 bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag, 1316 txd->tx_dmamap); 1317 txd->tx_dmamap = NULL; 1318 } 1319 } 1320 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag); 1321 sc->ale_cdata.ale_tx_tag = NULL; 1322 } 1323 /* Tx descriptor ring. */ 1324 if (sc->ale_cdata.ale_tx_ring_tag != NULL) { 1325 if (sc->ale_cdata.ale_tx_ring_paddr != 0) 1326 bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag, 1327 sc->ale_cdata.ale_tx_ring_map); 1328 if (sc->ale_cdata.ale_tx_ring != NULL) 1329 bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag, 1330 sc->ale_cdata.ale_tx_ring, 1331 sc->ale_cdata.ale_tx_ring_map); 1332 sc->ale_cdata.ale_tx_ring_paddr = 0; 1333 sc->ale_cdata.ale_tx_ring = NULL; 1334 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag); 1335 sc->ale_cdata.ale_tx_ring_tag = NULL; 1336 } 1337 /* Rx page block. */ 1338 for (i = 0; i < ALE_RX_PAGES; i++) { 1339 if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) { 1340 if (sc->ale_cdata.ale_rx_page[i].page_paddr != 0) 1341 bus_dmamap_unload( 1342 sc->ale_cdata.ale_rx_page[i].page_tag, 1343 sc->ale_cdata.ale_rx_page[i].page_map); 1344 if (sc->ale_cdata.ale_rx_page[i].page_addr != NULL) 1345 bus_dmamem_free( 1346 sc->ale_cdata.ale_rx_page[i].page_tag, 1347 sc->ale_cdata.ale_rx_page[i].page_addr, 1348 sc->ale_cdata.ale_rx_page[i].page_map); 1349 sc->ale_cdata.ale_rx_page[i].page_paddr = 0; 1350 sc->ale_cdata.ale_rx_page[i].page_addr = NULL; 1351 bus_dma_tag_destroy( 1352 sc->ale_cdata.ale_rx_page[i].page_tag); 1353 sc->ale_cdata.ale_rx_page[i].page_tag = NULL; 1354 } 1355 } 1356 /* Rx CMB. */ 1357 for (i = 0; i < ALE_RX_PAGES; i++) { 1358 if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) { 1359 if (sc->ale_cdata.ale_rx_page[i].cmb_paddr != 0) 1360 bus_dmamap_unload( 1361 sc->ale_cdata.ale_rx_page[i].cmb_tag, 1362 sc->ale_cdata.ale_rx_page[i].cmb_map); 1363 if (sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL) 1364 bus_dmamem_free( 1365 sc->ale_cdata.ale_rx_page[i].cmb_tag, 1366 sc->ale_cdata.ale_rx_page[i].cmb_addr, 1367 sc->ale_cdata.ale_rx_page[i].cmb_map); 1368 sc->ale_cdata.ale_rx_page[i].cmb_paddr = 0; 1369 sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL; 1370 bus_dma_tag_destroy( 1371 sc->ale_cdata.ale_rx_page[i].cmb_tag); 1372 sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL; 1373 } 1374 } 1375 /* Tx CMB. */ 1376 if (sc->ale_cdata.ale_tx_cmb_tag != NULL) { 1377 if (sc->ale_cdata.ale_tx_cmb_paddr != 0) 1378 bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag, 1379 sc->ale_cdata.ale_tx_cmb_map); 1380 if (sc->ale_cdata.ale_tx_cmb != NULL) 1381 bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag, 1382 sc->ale_cdata.ale_tx_cmb, 1383 sc->ale_cdata.ale_tx_cmb_map); 1384 sc->ale_cdata.ale_tx_cmb_paddr = 0; 1385 sc->ale_cdata.ale_tx_cmb = NULL; 1386 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag); 1387 sc->ale_cdata.ale_tx_cmb_tag = NULL; 1388 } 1389 if (sc->ale_cdata.ale_buffer_tag != NULL) { 1390 bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag); 1391 sc->ale_cdata.ale_buffer_tag = NULL; 1392 } 1393 if (sc->ale_cdata.ale_parent_tag != NULL) { 1394 bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag); 1395 sc->ale_cdata.ale_parent_tag = NULL; 1396 } 1397 } 1398 1399 static int 1400 ale_shutdown(device_t dev) 1401 { 1402 1403 return (ale_suspend(dev)); 1404 } 1405 1406 /* 1407 * Note, this driver resets the link speed to 10/100Mbps by 1408 * restarting auto-negotiation in suspend/shutdown phase but we 1409 * don't know whether that auto-negotiation would succeed or not 1410 * as driver has no control after powering off/suspend operation. 1411 * If the renegotiation fail WOL may not work. Running at 1Gbps 1412 * will draw more power than 375mA at 3.3V which is specified in 1413 * PCI specification and that would result in complete 1414 * shutdowning power to ethernet controller. 1415 * 1416 * TODO 1417 * Save current negotiated media speed/duplex/flow-control to 1418 * softc and restore the same link again after resuming. PHY 1419 * handling such as power down/resetting to 100Mbps may be better 1420 * handled in suspend method in phy driver. 1421 */ 1422 static void 1423 ale_setlinkspeed(struct ale_softc *sc) 1424 { 1425 struct mii_data *mii; 1426 int aneg, i; 1427 1428 mii = device_get_softc(sc->ale_miibus); 1429 mii_pollstat(mii); 1430 aneg = 0; 1431 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 1432 (IFM_ACTIVE | IFM_AVALID)) { 1433 switch IFM_SUBTYPE(mii->mii_media_active) { 1434 case IFM_10_T: 1435 case IFM_100_TX: 1436 return; 1437 case IFM_1000_T: 1438 aneg++; 1439 break; 1440 default: 1441 break; 1442 } 1443 } 1444 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0); 1445 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 1446 MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA); 1447 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 1448 MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG); 1449 DELAY(1000); 1450 if (aneg != 0) { 1451 /* 1452 * Poll link state until ale(4) get a 10/100Mbps link. 1453 */ 1454 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { 1455 mii_pollstat(mii); 1456 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) 1457 == (IFM_ACTIVE | IFM_AVALID)) { 1458 switch (IFM_SUBTYPE( 1459 mii->mii_media_active)) { 1460 case IFM_10_T: 1461 case IFM_100_TX: 1462 ale_mac_config(sc); 1463 return; 1464 default: 1465 break; 1466 } 1467 } 1468 ALE_UNLOCK(sc); 1469 pause("alelnk", hz); 1470 ALE_LOCK(sc); 1471 } 1472 if (i == MII_ANEGTICKS_GIGE) 1473 device_printf(sc->ale_dev, 1474 "establishing a link failed, WOL may not work!"); 1475 } 1476 /* 1477 * No link, force MAC to have 100Mbps, full-duplex link. 1478 * This is the last resort and may/may not work. 1479 */ 1480 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; 1481 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; 1482 ale_mac_config(sc); 1483 } 1484 1485 static void 1486 ale_setwol(struct ale_softc *sc) 1487 { 1488 struct ifnet *ifp; 1489 uint32_t reg, pmcs; 1490 uint16_t pmstat; 1491 int pmc; 1492 1493 ALE_LOCK_ASSERT(sc); 1494 1495 if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) != 0) { 1496 /* Disable WOL. */ 1497 CSR_WRITE_4(sc, ALE_WOL_CFG, 0); 1498 reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC); 1499 reg |= PCIE_PHYMISC_FORCE_RCV_DET; 1500 CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg); 1501 /* Force PHY power down. */ 1502 CSR_WRITE_2(sc, ALE_GPHY_CTRL, 1503 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | 1504 GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON | 1505 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ | 1506 GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW); 1507 return; 1508 } 1509 1510 ifp = sc->ale_ifp; 1511 if ((ifp->if_capenable & IFCAP_WOL) != 0) { 1512 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0) 1513 ale_setlinkspeed(sc); 1514 } 1515 1516 pmcs = 0; 1517 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 1518 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB; 1519 CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs); 1520 reg = CSR_READ_4(sc, ALE_MAC_CFG); 1521 reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI | 1522 MAC_CFG_BCAST); 1523 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) 1524 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST; 1525 if ((ifp->if_capenable & IFCAP_WOL) != 0) 1526 reg |= MAC_CFG_RX_ENB; 1527 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 1528 1529 if ((ifp->if_capenable & IFCAP_WOL) == 0) { 1530 /* WOL disabled, PHY power down. */ 1531 reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC); 1532 reg |= PCIE_PHYMISC_FORCE_RCV_DET; 1533 CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg); 1534 CSR_WRITE_2(sc, ALE_GPHY_CTRL, 1535 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | 1536 GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET | 1537 GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS | 1538 GPHY_CTRL_PWDOWN_HW); 1539 } 1540 /* Request PME. */ 1541 pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2); 1542 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 1543 if ((ifp->if_capenable & IFCAP_WOL) != 0) 1544 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 1545 pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1546 } 1547 1548 static int 1549 ale_suspend(device_t dev) 1550 { 1551 struct ale_softc *sc; 1552 1553 sc = device_get_softc(dev); 1554 1555 ALE_LOCK(sc); 1556 ale_stop(sc); 1557 ale_setwol(sc); 1558 ALE_UNLOCK(sc); 1559 1560 return (0); 1561 } 1562 1563 static int 1564 ale_resume(device_t dev) 1565 { 1566 struct ale_softc *sc; 1567 struct ifnet *ifp; 1568 int pmc; 1569 uint16_t pmstat; 1570 1571 sc = device_get_softc(dev); 1572 1573 ALE_LOCK(sc); 1574 if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) == 0) { 1575 /* Disable PME and clear PME status. */ 1576 pmstat = pci_read_config(sc->ale_dev, 1577 pmc + PCIR_POWER_STATUS, 2); 1578 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) { 1579 pmstat &= ~PCIM_PSTAT_PMEENABLE; 1580 pci_write_config(sc->ale_dev, 1581 pmc + PCIR_POWER_STATUS, pmstat, 2); 1582 } 1583 } 1584 /* Reset PHY. */ 1585 ale_phy_reset(sc); 1586 ifp = sc->ale_ifp; 1587 if ((ifp->if_flags & IFF_UP) != 0) { 1588 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1589 ale_init_locked(sc); 1590 } 1591 ALE_UNLOCK(sc); 1592 1593 return (0); 1594 } 1595 1596 static int 1597 ale_encap(struct ale_softc *sc, struct mbuf **m_head) 1598 { 1599 struct ale_txdesc *txd, *txd_last; 1600 struct tx_desc *desc; 1601 struct mbuf *m; 1602 struct ip *ip; 1603 struct tcphdr *tcp; 1604 bus_dma_segment_t txsegs[ALE_MAXTXSEGS]; 1605 bus_dmamap_t map; 1606 uint32_t cflags, hdrlen, ip_off, poff, vtag; 1607 int error, i, nsegs, prod, si; 1608 1609 ALE_LOCK_ASSERT(sc); 1610 1611 M_ASSERTPKTHDR((*m_head)); 1612 1613 m = *m_head; 1614 ip = NULL; 1615 tcp = NULL; 1616 cflags = vtag = 0; 1617 ip_off = poff = 0; 1618 if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) { 1619 /* 1620 * AR81xx requires offset of TCP/UDP payload in its Tx 1621 * descriptor to perform hardware Tx checksum offload. 1622 * Additionally, TSO requires IP/TCP header size and 1623 * modification of IP/TCP header in order to make TSO 1624 * engine work. This kind of operation takes many CPU 1625 * cycles on FreeBSD so fast host CPU is required to 1626 * get smooth TSO performance. 1627 */ 1628 struct ether_header *eh; 1629 1630 if (M_WRITABLE(m) == 0) { 1631 /* Get a writable copy. */ 1632 m = m_dup(*m_head, M_NOWAIT); 1633 /* Release original mbufs. */ 1634 m_freem(*m_head); 1635 if (m == NULL) { 1636 *m_head = NULL; 1637 return (ENOBUFS); 1638 } 1639 *m_head = m; 1640 } 1641 1642 /* 1643 * Buggy-controller requires 4 byte aligned Tx buffer 1644 * to make custom checksum offload work. 1645 */ 1646 if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 && 1647 (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 && 1648 (mtod(m, intptr_t) & 3) != 0) { 1649 m = m_defrag(*m_head, M_NOWAIT); 1650 if (m == NULL) { 1651 m_freem(*m_head); 1652 *m_head = NULL; 1653 return (ENOBUFS); 1654 } 1655 *m_head = m; 1656 } 1657 1658 ip_off = sizeof(struct ether_header); 1659 m = m_pullup(m, ip_off); 1660 if (m == NULL) { 1661 *m_head = NULL; 1662 return (ENOBUFS); 1663 } 1664 eh = mtod(m, struct ether_header *); 1665 /* 1666 * Check if hardware VLAN insertion is off. 1667 * Additional check for LLC/SNAP frame? 1668 */ 1669 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 1670 ip_off = sizeof(struct ether_vlan_header); 1671 m = m_pullup(m, ip_off); 1672 if (m == NULL) { 1673 *m_head = NULL; 1674 return (ENOBUFS); 1675 } 1676 } 1677 m = m_pullup(m, ip_off + sizeof(struct ip)); 1678 if (m == NULL) { 1679 *m_head = NULL; 1680 return (ENOBUFS); 1681 } 1682 ip = (struct ip *)(mtod(m, char *) + ip_off); 1683 poff = ip_off + (ip->ip_hl << 2); 1684 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1685 /* 1686 * XXX 1687 * AR81xx requires the first descriptor should 1688 * not include any TCP playload for TSO case. 1689 * (i.e. ethernet header + IP + TCP header only) 1690 * m_pullup(9) above will ensure this too. 1691 * However it's not correct if the first mbuf 1692 * of the chain does not use cluster. 1693 */ 1694 m = m_pullup(m, poff + sizeof(struct tcphdr)); 1695 if (m == NULL) { 1696 *m_head = NULL; 1697 return (ENOBUFS); 1698 } 1699 ip = (struct ip *)(mtod(m, char *) + ip_off); 1700 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1701 m = m_pullup(m, poff + (tcp->th_off << 2)); 1702 if (m == NULL) { 1703 *m_head = NULL; 1704 return (ENOBUFS); 1705 } 1706 /* 1707 * AR81xx requires IP/TCP header size and offset as 1708 * well as TCP pseudo checksum which complicates 1709 * TSO configuration. I guess this comes from the 1710 * adherence to Microsoft NDIS Large Send 1711 * specification which requires insertion of 1712 * pseudo checksum by upper stack. The pseudo 1713 * checksum that NDIS refers to doesn't include 1714 * TCP payload length so ale(4) should recompute 1715 * the pseudo checksum here. Hopefully this wouldn't 1716 * be much burden on modern CPUs. 1717 * Reset IP checksum and recompute TCP pseudo 1718 * checksum as NDIS specification said. 1719 */ 1720 ip->ip_sum = 0; 1721 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, 1722 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 1723 } 1724 *m_head = m; 1725 } 1726 1727 si = prod = sc->ale_cdata.ale_tx_prod; 1728 txd = &sc->ale_cdata.ale_txdesc[prod]; 1729 txd_last = txd; 1730 map = txd->tx_dmamap; 1731 1732 error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map, 1733 *m_head, txsegs, &nsegs, 0); 1734 if (error == EFBIG) { 1735 m = m_collapse(*m_head, M_NOWAIT, ALE_MAXTXSEGS); 1736 if (m == NULL) { 1737 m_freem(*m_head); 1738 *m_head = NULL; 1739 return (ENOMEM); 1740 } 1741 *m_head = m; 1742 error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map, 1743 *m_head, txsegs, &nsegs, 0); 1744 if (error != 0) { 1745 m_freem(*m_head); 1746 *m_head = NULL; 1747 return (error); 1748 } 1749 } else if (error != 0) 1750 return (error); 1751 if (nsegs == 0) { 1752 m_freem(*m_head); 1753 *m_head = NULL; 1754 return (EIO); 1755 } 1756 1757 /* Check descriptor overrun. */ 1758 if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) { 1759 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map); 1760 return (ENOBUFS); 1761 } 1762 bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE); 1763 1764 m = *m_head; 1765 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1766 /* Request TSO and set MSS. */ 1767 cflags |= ALE_TD_TSO; 1768 cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT); 1769 /* Set IP/TCP header size. */ 1770 cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT; 1771 cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT; 1772 } else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) { 1773 /* 1774 * AR81xx supports Tx custom checksum offload feature 1775 * that offloads single 16bit checksum computation. 1776 * So you can choose one among IP, TCP and UDP. 1777 * Normally driver sets checksum start/insertion 1778 * position from the information of TCP/UDP frame as 1779 * TCP/UDP checksum takes more time than that of IP. 1780 * However it seems that custom checksum offload 1781 * requires 4 bytes aligned Tx buffers due to hardware 1782 * bug. 1783 * AR81xx also supports explicit Tx checksum computation 1784 * if it is told that the size of IP header and TCP 1785 * header(for UDP, the header size does not matter 1786 * because it's fixed length). However with this scheme 1787 * TSO does not work so you have to choose one either 1788 * TSO or explicit Tx checksum offload. I chosen TSO 1789 * plus custom checksum offload with work-around which 1790 * will cover most common usage for this consumer 1791 * ethernet controller. The work-around takes a lot of 1792 * CPU cycles if Tx buffer is not aligned on 4 bytes 1793 * boundary, though. 1794 */ 1795 cflags |= ALE_TD_CXSUM; 1796 /* Set checksum start offset. */ 1797 cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT); 1798 /* Set checksum insertion position of TCP/UDP. */ 1799 cflags |= ((poff + m->m_pkthdr.csum_data) << 1800 ALE_TD_CSUM_XSUMOFFSET_SHIFT); 1801 } 1802 1803 /* Configure VLAN hardware tag insertion. */ 1804 if ((m->m_flags & M_VLANTAG) != 0) { 1805 vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag); 1806 vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK); 1807 cflags |= ALE_TD_INSERT_VLAN_TAG; 1808 } 1809 1810 i = 0; 1811 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1812 /* 1813 * Make sure the first fragment contains 1814 * only ethernet and IP/TCP header with options. 1815 */ 1816 hdrlen = poff + (tcp->th_off << 2); 1817 desc = &sc->ale_cdata.ale_tx_ring[prod]; 1818 desc->addr = htole64(txsegs[i].ds_addr); 1819 desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag); 1820 desc->flags = htole32(cflags); 1821 sc->ale_cdata.ale_tx_cnt++; 1822 ALE_DESC_INC(prod, ALE_TX_RING_CNT); 1823 if (m->m_len - hdrlen > 0) { 1824 /* Handle remaining payload of the first fragment. */ 1825 desc = &sc->ale_cdata.ale_tx_ring[prod]; 1826 desc->addr = htole64(txsegs[i].ds_addr + hdrlen); 1827 desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) | 1828 vtag); 1829 desc->flags = htole32(cflags); 1830 sc->ale_cdata.ale_tx_cnt++; 1831 ALE_DESC_INC(prod, ALE_TX_RING_CNT); 1832 } 1833 i = 1; 1834 } 1835 for (; i < nsegs; i++) { 1836 desc = &sc->ale_cdata.ale_tx_ring[prod]; 1837 desc->addr = htole64(txsegs[i].ds_addr); 1838 desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag); 1839 desc->flags = htole32(cflags); 1840 sc->ale_cdata.ale_tx_cnt++; 1841 ALE_DESC_INC(prod, ALE_TX_RING_CNT); 1842 } 1843 /* Update producer index. */ 1844 sc->ale_cdata.ale_tx_prod = prod; 1845 /* Set TSO header on the first descriptor. */ 1846 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1847 desc = &sc->ale_cdata.ale_tx_ring[si]; 1848 desc->flags |= htole32(ALE_TD_TSO_HDR); 1849 } 1850 1851 /* Finally set EOP on the last descriptor. */ 1852 prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT; 1853 desc = &sc->ale_cdata.ale_tx_ring[prod]; 1854 desc->flags |= htole32(ALE_TD_EOP); 1855 1856 /* Swap dmamap of the first and the last. */ 1857 txd = &sc->ale_cdata.ale_txdesc[prod]; 1858 map = txd_last->tx_dmamap; 1859 txd_last->tx_dmamap = txd->tx_dmamap; 1860 txd->tx_dmamap = map; 1861 txd->tx_m = m; 1862 1863 /* Sync descriptors. */ 1864 bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag, 1865 sc->ale_cdata.ale_tx_ring_map, 1866 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1867 1868 return (0); 1869 } 1870 1871 static void 1872 ale_start(struct ifnet *ifp) 1873 { 1874 struct ale_softc *sc; 1875 1876 sc = ifp->if_softc; 1877 ALE_LOCK(sc); 1878 ale_start_locked(ifp); 1879 ALE_UNLOCK(sc); 1880 } 1881 1882 static void 1883 ale_start_locked(struct ifnet *ifp) 1884 { 1885 struct ale_softc *sc; 1886 struct mbuf *m_head; 1887 int enq; 1888 1889 sc = ifp->if_softc; 1890 1891 ALE_LOCK_ASSERT(sc); 1892 1893 /* Reclaim transmitted frames. */ 1894 if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT) 1895 ale_txeof(sc); 1896 1897 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1898 IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0) 1899 return; 1900 1901 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) { 1902 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 1903 if (m_head == NULL) 1904 break; 1905 /* 1906 * Pack the data into the transmit ring. If we 1907 * don't have room, set the OACTIVE flag and wait 1908 * for the NIC to drain the ring. 1909 */ 1910 if (ale_encap(sc, &m_head)) { 1911 if (m_head == NULL) 1912 break; 1913 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 1914 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1915 break; 1916 } 1917 1918 enq++; 1919 /* 1920 * If there's a BPF listener, bounce a copy of this frame 1921 * to him. 1922 */ 1923 ETHER_BPF_MTAP(ifp, m_head); 1924 } 1925 1926 if (enq > 0) { 1927 /* Kick. */ 1928 CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX, 1929 sc->ale_cdata.ale_tx_prod); 1930 /* Set a timeout in case the chip goes out to lunch. */ 1931 sc->ale_watchdog_timer = ALE_TX_TIMEOUT; 1932 } 1933 } 1934 1935 static void 1936 ale_watchdog(struct ale_softc *sc) 1937 { 1938 struct ifnet *ifp; 1939 1940 ALE_LOCK_ASSERT(sc); 1941 1942 if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer) 1943 return; 1944 1945 ifp = sc->ale_ifp; 1946 if ((sc->ale_flags & ALE_FLAG_LINK) == 0) { 1947 if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n"); 1948 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1949 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1950 ale_init_locked(sc); 1951 return; 1952 } 1953 if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n"); 1954 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1955 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1956 ale_init_locked(sc); 1957 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1958 ale_start_locked(ifp); 1959 } 1960 1961 static int 1962 ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1963 { 1964 struct ale_softc *sc; 1965 struct ifreq *ifr; 1966 struct mii_data *mii; 1967 int error, mask; 1968 1969 sc = ifp->if_softc; 1970 ifr = (struct ifreq *)data; 1971 error = 0; 1972 switch (cmd) { 1973 case SIOCSIFMTU: 1974 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU || 1975 ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 && 1976 ifr->ifr_mtu > ETHERMTU)) 1977 error = EINVAL; 1978 else if (ifp->if_mtu != ifr->ifr_mtu) { 1979 ALE_LOCK(sc); 1980 ifp->if_mtu = ifr->ifr_mtu; 1981 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1982 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1983 ale_init_locked(sc); 1984 } 1985 ALE_UNLOCK(sc); 1986 } 1987 break; 1988 case SIOCSIFFLAGS: 1989 ALE_LOCK(sc); 1990 if ((ifp->if_flags & IFF_UP) != 0) { 1991 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1992 if (((ifp->if_flags ^ sc->ale_if_flags) 1993 & (IFF_PROMISC | IFF_ALLMULTI)) != 0) 1994 ale_rxfilter(sc); 1995 } else { 1996 ale_init_locked(sc); 1997 } 1998 } else { 1999 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2000 ale_stop(sc); 2001 } 2002 sc->ale_if_flags = ifp->if_flags; 2003 ALE_UNLOCK(sc); 2004 break; 2005 case SIOCADDMULTI: 2006 case SIOCDELMULTI: 2007 ALE_LOCK(sc); 2008 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2009 ale_rxfilter(sc); 2010 ALE_UNLOCK(sc); 2011 break; 2012 case SIOCSIFMEDIA: 2013 case SIOCGIFMEDIA: 2014 mii = device_get_softc(sc->ale_miibus); 2015 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 2016 break; 2017 case SIOCSIFCAP: 2018 ALE_LOCK(sc); 2019 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2020 if ((mask & IFCAP_TXCSUM) != 0 && 2021 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { 2022 ifp->if_capenable ^= IFCAP_TXCSUM; 2023 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 2024 ifp->if_hwassist |= ALE_CSUM_FEATURES; 2025 else 2026 ifp->if_hwassist &= ~ALE_CSUM_FEATURES; 2027 } 2028 if ((mask & IFCAP_RXCSUM) != 0 && 2029 (ifp->if_capabilities & IFCAP_RXCSUM) != 0) 2030 ifp->if_capenable ^= IFCAP_RXCSUM; 2031 if ((mask & IFCAP_TSO4) != 0 && 2032 (ifp->if_capabilities & IFCAP_TSO4) != 0) { 2033 ifp->if_capenable ^= IFCAP_TSO4; 2034 if ((ifp->if_capenable & IFCAP_TSO4) != 0) 2035 ifp->if_hwassist |= CSUM_TSO; 2036 else 2037 ifp->if_hwassist &= ~CSUM_TSO; 2038 } 2039 2040 if ((mask & IFCAP_WOL_MCAST) != 0 && 2041 (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0) 2042 ifp->if_capenable ^= IFCAP_WOL_MCAST; 2043 if ((mask & IFCAP_WOL_MAGIC) != 0 && 2044 (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0) 2045 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 2046 if ((mask & IFCAP_VLAN_HWCSUM) != 0 && 2047 (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0) 2048 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 2049 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 2050 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 2051 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 2052 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 2053 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 2054 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2055 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 2056 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO; 2057 ale_rxvlan(sc); 2058 } 2059 ALE_UNLOCK(sc); 2060 VLAN_CAPABILITIES(ifp); 2061 break; 2062 default: 2063 error = ether_ioctl(ifp, cmd, data); 2064 break; 2065 } 2066 2067 return (error); 2068 } 2069 2070 static void 2071 ale_mac_config(struct ale_softc *sc) 2072 { 2073 struct mii_data *mii; 2074 uint32_t reg; 2075 2076 ALE_LOCK_ASSERT(sc); 2077 2078 mii = device_get_softc(sc->ale_miibus); 2079 reg = CSR_READ_4(sc, ALE_MAC_CFG); 2080 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC | 2081 MAC_CFG_SPEED_MASK); 2082 /* Reprogram MAC with resolved speed/duplex. */ 2083 switch (IFM_SUBTYPE(mii->mii_media_active)) { 2084 case IFM_10_T: 2085 case IFM_100_TX: 2086 reg |= MAC_CFG_SPEED_10_100; 2087 break; 2088 case IFM_1000_T: 2089 reg |= MAC_CFG_SPEED_1000; 2090 break; 2091 } 2092 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 2093 reg |= MAC_CFG_FULL_DUPLEX; 2094 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 2095 reg |= MAC_CFG_TX_FC; 2096 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 2097 reg |= MAC_CFG_RX_FC; 2098 } 2099 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 2100 } 2101 2102 static void 2103 ale_stats_clear(struct ale_softc *sc) 2104 { 2105 struct smb sb; 2106 uint32_t *reg; 2107 int i; 2108 2109 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) { 2110 CSR_READ_4(sc, ALE_RX_MIB_BASE + i); 2111 i += sizeof(uint32_t); 2112 } 2113 /* Read Tx statistics. */ 2114 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) { 2115 CSR_READ_4(sc, ALE_TX_MIB_BASE + i); 2116 i += sizeof(uint32_t); 2117 } 2118 } 2119 2120 static void 2121 ale_stats_update(struct ale_softc *sc) 2122 { 2123 struct ale_hw_stats *stat; 2124 struct smb sb, *smb; 2125 struct ifnet *ifp; 2126 uint32_t *reg; 2127 int i; 2128 2129 ALE_LOCK_ASSERT(sc); 2130 2131 ifp = sc->ale_ifp; 2132 stat = &sc->ale_stats; 2133 smb = &sb; 2134 2135 /* Read Rx statistics. */ 2136 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) { 2137 *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i); 2138 i += sizeof(uint32_t); 2139 } 2140 /* Read Tx statistics. */ 2141 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) { 2142 *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i); 2143 i += sizeof(uint32_t); 2144 } 2145 2146 /* Rx stats. */ 2147 stat->rx_frames += smb->rx_frames; 2148 stat->rx_bcast_frames += smb->rx_bcast_frames; 2149 stat->rx_mcast_frames += smb->rx_mcast_frames; 2150 stat->rx_pause_frames += smb->rx_pause_frames; 2151 stat->rx_control_frames += smb->rx_control_frames; 2152 stat->rx_crcerrs += smb->rx_crcerrs; 2153 stat->rx_lenerrs += smb->rx_lenerrs; 2154 stat->rx_bytes += smb->rx_bytes; 2155 stat->rx_runts += smb->rx_runts; 2156 stat->rx_fragments += smb->rx_fragments; 2157 stat->rx_pkts_64 += smb->rx_pkts_64; 2158 stat->rx_pkts_65_127 += smb->rx_pkts_65_127; 2159 stat->rx_pkts_128_255 += smb->rx_pkts_128_255; 2160 stat->rx_pkts_256_511 += smb->rx_pkts_256_511; 2161 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023; 2162 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518; 2163 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max; 2164 stat->rx_pkts_truncated += smb->rx_pkts_truncated; 2165 stat->rx_fifo_oflows += smb->rx_fifo_oflows; 2166 stat->rx_rrs_errs += smb->rx_rrs_errs; 2167 stat->rx_alignerrs += smb->rx_alignerrs; 2168 stat->rx_bcast_bytes += smb->rx_bcast_bytes; 2169 stat->rx_mcast_bytes += smb->rx_mcast_bytes; 2170 stat->rx_pkts_filtered += smb->rx_pkts_filtered; 2171 2172 /* Tx stats. */ 2173 stat->tx_frames += smb->tx_frames; 2174 stat->tx_bcast_frames += smb->tx_bcast_frames; 2175 stat->tx_mcast_frames += smb->tx_mcast_frames; 2176 stat->tx_pause_frames += smb->tx_pause_frames; 2177 stat->tx_excess_defer += smb->tx_excess_defer; 2178 stat->tx_control_frames += smb->tx_control_frames; 2179 stat->tx_deferred += smb->tx_deferred; 2180 stat->tx_bytes += smb->tx_bytes; 2181 stat->tx_pkts_64 += smb->tx_pkts_64; 2182 stat->tx_pkts_65_127 += smb->tx_pkts_65_127; 2183 stat->tx_pkts_128_255 += smb->tx_pkts_128_255; 2184 stat->tx_pkts_256_511 += smb->tx_pkts_256_511; 2185 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023; 2186 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518; 2187 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max; 2188 stat->tx_single_colls += smb->tx_single_colls; 2189 stat->tx_multi_colls += smb->tx_multi_colls; 2190 stat->tx_late_colls += smb->tx_late_colls; 2191 stat->tx_excess_colls += smb->tx_excess_colls; 2192 stat->tx_underrun += smb->tx_underrun; 2193 stat->tx_desc_underrun += smb->tx_desc_underrun; 2194 stat->tx_lenerrs += smb->tx_lenerrs; 2195 stat->tx_pkts_truncated += smb->tx_pkts_truncated; 2196 stat->tx_bcast_bytes += smb->tx_bcast_bytes; 2197 stat->tx_mcast_bytes += smb->tx_mcast_bytes; 2198 2199 /* Update counters in ifnet. */ 2200 if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames); 2201 2202 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls + 2203 smb->tx_multi_colls * 2 + smb->tx_late_colls + 2204 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT); 2205 2206 if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_late_colls + 2207 smb->tx_excess_colls + smb->tx_underrun + smb->tx_pkts_truncated); 2208 2209 if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames); 2210 2211 if_inc_counter(ifp, IFCOUNTER_IERRORS, 2212 smb->rx_crcerrs + smb->rx_lenerrs + 2213 smb->rx_runts + smb->rx_pkts_truncated + 2214 smb->rx_fifo_oflows + smb->rx_rrs_errs + 2215 smb->rx_alignerrs); 2216 } 2217 2218 static int 2219 ale_intr(void *arg) 2220 { 2221 struct ale_softc *sc; 2222 uint32_t status; 2223 2224 sc = (struct ale_softc *)arg; 2225 2226 status = CSR_READ_4(sc, ALE_INTR_STATUS); 2227 if ((status & ALE_INTRS) == 0) 2228 return (FILTER_STRAY); 2229 /* Disable interrupts. */ 2230 CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT); 2231 taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task); 2232 2233 return (FILTER_HANDLED); 2234 } 2235 2236 static void 2237 ale_int_task(void *arg, int pending) 2238 { 2239 struct ale_softc *sc; 2240 struct ifnet *ifp; 2241 uint32_t status; 2242 int more; 2243 2244 sc = (struct ale_softc *)arg; 2245 2246 status = CSR_READ_4(sc, ALE_INTR_STATUS); 2247 ALE_LOCK(sc); 2248 if (sc->ale_morework != 0) 2249 status |= INTR_RX_PKT; 2250 if ((status & ALE_INTRS) == 0) 2251 goto done; 2252 2253 /* Acknowledge interrupts but still disable interrupts. */ 2254 CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT); 2255 2256 ifp = sc->ale_ifp; 2257 more = 0; 2258 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2259 more = ale_rxeof(sc, sc->ale_process_limit); 2260 if (more == EAGAIN) 2261 sc->ale_morework = 1; 2262 else if (more == EIO) { 2263 sc->ale_stats.reset_brk_seq++; 2264 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2265 ale_init_locked(sc); 2266 ALE_UNLOCK(sc); 2267 return; 2268 } 2269 2270 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) { 2271 if ((status & INTR_DMA_RD_TO_RST) != 0) 2272 device_printf(sc->ale_dev, 2273 "DMA read error! -- resetting\n"); 2274 if ((status & INTR_DMA_WR_TO_RST) != 0) 2275 device_printf(sc->ale_dev, 2276 "DMA write error! -- resetting\n"); 2277 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2278 ale_init_locked(sc); 2279 ALE_UNLOCK(sc); 2280 return; 2281 } 2282 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2283 ale_start_locked(ifp); 2284 } 2285 2286 if (more == EAGAIN || 2287 (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) { 2288 ALE_UNLOCK(sc); 2289 taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task); 2290 return; 2291 } 2292 2293 done: 2294 ALE_UNLOCK(sc); 2295 2296 /* Re-enable interrupts. */ 2297 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF); 2298 } 2299 2300 static void 2301 ale_txeof(struct ale_softc *sc) 2302 { 2303 struct ifnet *ifp; 2304 struct ale_txdesc *txd; 2305 uint32_t cons, prod; 2306 int prog; 2307 2308 ALE_LOCK_ASSERT(sc); 2309 2310 ifp = sc->ale_ifp; 2311 2312 if (sc->ale_cdata.ale_tx_cnt == 0) 2313 return; 2314 2315 bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag, 2316 sc->ale_cdata.ale_tx_ring_map, 2317 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2318 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) { 2319 bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag, 2320 sc->ale_cdata.ale_tx_cmb_map, 2321 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2322 prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK; 2323 } else 2324 prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX); 2325 cons = sc->ale_cdata.ale_tx_cons; 2326 /* 2327 * Go through our Tx list and free mbufs for those 2328 * frames which have been transmitted. 2329 */ 2330 for (prog = 0; cons != prod; prog++, 2331 ALE_DESC_INC(cons, ALE_TX_RING_CNT)) { 2332 if (sc->ale_cdata.ale_tx_cnt <= 0) 2333 break; 2334 prog++; 2335 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2336 sc->ale_cdata.ale_tx_cnt--; 2337 txd = &sc->ale_cdata.ale_txdesc[cons]; 2338 if (txd->tx_m != NULL) { 2339 /* Reclaim transmitted mbufs. */ 2340 bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, 2341 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2342 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, 2343 txd->tx_dmamap); 2344 m_freem(txd->tx_m); 2345 txd->tx_m = NULL; 2346 } 2347 } 2348 2349 if (prog > 0) { 2350 sc->ale_cdata.ale_tx_cons = cons; 2351 /* 2352 * Unarm watchdog timer only when there is no pending 2353 * Tx descriptors in queue. 2354 */ 2355 if (sc->ale_cdata.ale_tx_cnt == 0) 2356 sc->ale_watchdog_timer = 0; 2357 } 2358 } 2359 2360 static void 2361 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page, 2362 uint32_t length, uint32_t *prod) 2363 { 2364 struct ale_rx_page *rx_page; 2365 2366 rx_page = *page; 2367 /* Update consumer position. */ 2368 rx_page->cons += roundup(length + sizeof(struct rx_rs), 2369 ALE_RX_PAGE_ALIGN); 2370 if (rx_page->cons >= ALE_RX_PAGE_SZ) { 2371 /* 2372 * End of Rx page reached, let hardware reuse 2373 * this page. 2374 */ 2375 rx_page->cons = 0; 2376 *rx_page->cmb_addr = 0; 2377 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map, 2378 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2379 CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp, 2380 RXF_VALID); 2381 /* Switch to alternate Rx page. */ 2382 sc->ale_cdata.ale_rx_curp ^= 1; 2383 rx_page = *page = 2384 &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp]; 2385 /* Page flipped, sync CMB and Rx page. */ 2386 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map, 2387 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2388 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map, 2389 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2390 /* Sync completed, cache updated producer index. */ 2391 *prod = *rx_page->cmb_addr; 2392 } 2393 } 2394 2395 /* 2396 * It seems that AR81xx controller can compute partial checksum. 2397 * The partial checksum value can be used to accelerate checksum 2398 * computation for fragmented TCP/UDP packets. Upper network stack 2399 * already takes advantage of the partial checksum value in IP 2400 * reassembly stage. But I'm not sure the correctness of the 2401 * partial hardware checksum assistance due to lack of data sheet. 2402 * In addition, the Rx feature of controller that requires copying 2403 * for every frames effectively nullifies one of most nice offload 2404 * capability of controller. 2405 */ 2406 static void 2407 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status) 2408 { 2409 struct ifnet *ifp; 2410 struct ip *ip; 2411 char *p; 2412 2413 ifp = sc->ale_ifp; 2414 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 2415 if ((status & ALE_RD_IPCSUM_NOK) == 0) 2416 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2417 2418 if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) { 2419 if (((status & ALE_RD_IPV4_FRAG) == 0) && 2420 ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) && 2421 ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) { 2422 m->m_pkthdr.csum_flags |= 2423 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2424 m->m_pkthdr.csum_data = 0xffff; 2425 } 2426 } else { 2427 if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 && 2428 (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) { 2429 p = mtod(m, char *); 2430 p += ETHER_HDR_LEN; 2431 if ((status & ALE_RD_802_3) != 0) 2432 p += LLC_SNAPFRAMELEN; 2433 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 && 2434 (status & ALE_RD_VLAN) != 0) 2435 p += ETHER_VLAN_ENCAP_LEN; 2436 ip = (struct ip *)p; 2437 if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0) 2438 return; 2439 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 2440 CSUM_PSEUDO_HDR; 2441 m->m_pkthdr.csum_data = 0xffff; 2442 } 2443 } 2444 /* 2445 * Don't mark bad checksum for TCP/UDP frames 2446 * as fragmented frames may always have set 2447 * bad checksummed bit of frame status. 2448 */ 2449 } 2450 2451 /* Process received frames. */ 2452 static int 2453 ale_rxeof(struct ale_softc *sc, int count) 2454 { 2455 struct ale_rx_page *rx_page; 2456 struct rx_rs *rs; 2457 struct ifnet *ifp; 2458 struct mbuf *m; 2459 uint32_t length, prod, seqno, status, vtags; 2460 int prog; 2461 2462 ifp = sc->ale_ifp; 2463 rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp]; 2464 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map, 2465 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2466 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map, 2467 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2468 /* 2469 * Don't directly access producer index as hardware may 2470 * update it while Rx handler is in progress. It would 2471 * be even better if there is a way to let hardware 2472 * know how far driver processed its received frames. 2473 * Alternatively, hardware could provide a way to disable 2474 * CMB updates until driver acknowledges the end of CMB 2475 * access. 2476 */ 2477 prod = *rx_page->cmb_addr; 2478 for (prog = 0; prog < count; prog++) { 2479 if (rx_page->cons >= prod) 2480 break; 2481 rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons); 2482 seqno = ALE_RX_SEQNO(le32toh(rs->seqno)); 2483 if (sc->ale_cdata.ale_rx_seqno != seqno) { 2484 /* 2485 * Normally I believe this should not happen unless 2486 * severe driver bug or corrupted memory. However 2487 * it seems to happen under certain conditions which 2488 * is triggered by abrupt Rx events such as initiation 2489 * of bulk transfer of remote host. It's not easy to 2490 * reproduce this and I doubt it could be related 2491 * with FIFO overflow of hardware or activity of Tx 2492 * CMB updates. I also remember similar behaviour 2493 * seen on RealTek 8139 which uses resembling Rx 2494 * scheme. 2495 */ 2496 if (bootverbose) 2497 device_printf(sc->ale_dev, 2498 "garbled seq: %u, expected: %u -- " 2499 "resetting!\n", seqno, 2500 sc->ale_cdata.ale_rx_seqno); 2501 return (EIO); 2502 } 2503 /* Frame received. */ 2504 sc->ale_cdata.ale_rx_seqno++; 2505 length = ALE_RX_BYTES(le32toh(rs->length)); 2506 status = le32toh(rs->flags); 2507 if ((status & ALE_RD_ERROR) != 0) { 2508 /* 2509 * We want to pass the following frames to upper 2510 * layer regardless of error status of Rx return 2511 * status. 2512 * 2513 * o IP/TCP/UDP checksum is bad. 2514 * o frame length and protocol specific length 2515 * does not match. 2516 */ 2517 if ((status & (ALE_RD_CRC | ALE_RD_CODE | 2518 ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW | 2519 ALE_RD_TRUNC)) != 0) { 2520 ale_rx_update_page(sc, &rx_page, length, &prod); 2521 continue; 2522 } 2523 } 2524 /* 2525 * m_devget(9) is major bottle-neck of ale(4)(It comes 2526 * from hardware limitation). For jumbo frames we could 2527 * get a slightly better performance if driver use 2528 * m_getjcl(9) with proper buffer size argument. However 2529 * that would make code more complicated and I don't 2530 * think users would expect good Rx performance numbers 2531 * on these low-end consumer ethernet controller. 2532 */ 2533 m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN, 2534 ETHER_ALIGN, ifp, NULL); 2535 if (m == NULL) { 2536 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 2537 ale_rx_update_page(sc, &rx_page, length, &prod); 2538 continue; 2539 } 2540 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 && 2541 (status & ALE_RD_IPV4) != 0) 2542 ale_rxcsum(sc, m, status); 2543 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && 2544 (status & ALE_RD_VLAN) != 0) { 2545 vtags = ALE_RX_VLAN(le32toh(rs->vtags)); 2546 m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags); 2547 m->m_flags |= M_VLANTAG; 2548 } 2549 2550 /* Pass it to upper layer. */ 2551 ALE_UNLOCK(sc); 2552 (*ifp->if_input)(ifp, m); 2553 ALE_LOCK(sc); 2554 2555 ale_rx_update_page(sc, &rx_page, length, &prod); 2556 } 2557 2558 return (count > 0 ? 0 : EAGAIN); 2559 } 2560 2561 static void 2562 ale_tick(void *arg) 2563 { 2564 struct ale_softc *sc; 2565 struct mii_data *mii; 2566 2567 sc = (struct ale_softc *)arg; 2568 2569 ALE_LOCK_ASSERT(sc); 2570 2571 mii = device_get_softc(sc->ale_miibus); 2572 mii_tick(mii); 2573 ale_stats_update(sc); 2574 /* 2575 * Reclaim Tx buffers that have been transferred. It's not 2576 * needed here but it would release allocated mbuf chains 2577 * faster and limit the maximum delay to a hz. 2578 */ 2579 ale_txeof(sc); 2580 ale_watchdog(sc); 2581 callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc); 2582 } 2583 2584 static void 2585 ale_reset(struct ale_softc *sc) 2586 { 2587 uint32_t reg; 2588 int i; 2589 2590 /* Initialize PCIe module. From Linux. */ 2591 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000); 2592 2593 CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET); 2594 for (i = ALE_RESET_TIMEOUT; i > 0; i--) { 2595 DELAY(10); 2596 if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0) 2597 break; 2598 } 2599 if (i == 0) 2600 device_printf(sc->ale_dev, "master reset timeout!\n"); 2601 2602 for (i = ALE_RESET_TIMEOUT; i > 0; i--) { 2603 if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0) 2604 break; 2605 DELAY(10); 2606 } 2607 2608 if (i == 0) 2609 device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg); 2610 } 2611 2612 static void 2613 ale_init(void *xsc) 2614 { 2615 struct ale_softc *sc; 2616 2617 sc = (struct ale_softc *)xsc; 2618 ALE_LOCK(sc); 2619 ale_init_locked(sc); 2620 ALE_UNLOCK(sc); 2621 } 2622 2623 static void 2624 ale_init_locked(struct ale_softc *sc) 2625 { 2626 struct ifnet *ifp; 2627 struct mii_data *mii; 2628 uint8_t eaddr[ETHER_ADDR_LEN]; 2629 bus_addr_t paddr; 2630 uint32_t reg, rxf_hi, rxf_lo; 2631 2632 ALE_LOCK_ASSERT(sc); 2633 2634 ifp = sc->ale_ifp; 2635 mii = device_get_softc(sc->ale_miibus); 2636 2637 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2638 return; 2639 /* 2640 * Cancel any pending I/O. 2641 */ 2642 ale_stop(sc); 2643 /* 2644 * Reset the chip to a known state. 2645 */ 2646 ale_reset(sc); 2647 /* Initialize Tx descriptors, DMA memory blocks. */ 2648 ale_init_rx_pages(sc); 2649 ale_init_tx_ring(sc); 2650 2651 /* Reprogram the station address. */ 2652 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN); 2653 CSR_WRITE_4(sc, ALE_PAR0, 2654 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]); 2655 CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]); 2656 /* 2657 * Clear WOL status and disable all WOL feature as WOL 2658 * would interfere Rx operation under normal environments. 2659 */ 2660 CSR_READ_4(sc, ALE_WOL_CFG); 2661 CSR_WRITE_4(sc, ALE_WOL_CFG, 0); 2662 /* 2663 * Set Tx descriptor/RXF0/CMB base addresses. They share 2664 * the same high address part of DMAable region. 2665 */ 2666 paddr = sc->ale_cdata.ale_tx_ring_paddr; 2667 CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr)); 2668 CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr)); 2669 CSR_WRITE_4(sc, ALE_TPD_CNT, 2670 (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK); 2671 /* Set Rx page base address, note we use single queue. */ 2672 paddr = sc->ale_cdata.ale_rx_page[0].page_paddr; 2673 CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr)); 2674 paddr = sc->ale_cdata.ale_rx_page[1].page_paddr; 2675 CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr)); 2676 /* Set Tx/Rx CMB addresses. */ 2677 paddr = sc->ale_cdata.ale_tx_cmb_paddr; 2678 CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr)); 2679 paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr; 2680 CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr)); 2681 paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr; 2682 CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr)); 2683 /* Mark RXF0 is valid. */ 2684 CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID); 2685 CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID); 2686 /* 2687 * No need to initialize RFX1/RXF2/RXF3. We don't use 2688 * multi-queue yet. 2689 */ 2690 2691 /* Set Rx page size, excluding guard frame size. */ 2692 CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ); 2693 /* Tell hardware that we're ready to load DMA blocks. */ 2694 CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD); 2695 2696 /* Set Rx/Tx interrupt trigger threshold. */ 2697 CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) | 2698 (4 << INT_TRIG_TX_THRESH_SHIFT)); 2699 /* 2700 * XXX 2701 * Set interrupt trigger timer, its purpose and relation 2702 * with interrupt moderation mechanism is not clear yet. 2703 */ 2704 CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER, 2705 ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) | 2706 (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT))); 2707 2708 /* Configure interrupt moderation timer. */ 2709 reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT; 2710 reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT; 2711 CSR_WRITE_4(sc, ALE_IM_TIMER, reg); 2712 reg = CSR_READ_4(sc, ALE_MASTER_CFG); 2713 reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK); 2714 reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB); 2715 if (ALE_USECS(sc->ale_int_rx_mod) != 0) 2716 reg |= MASTER_IM_RX_TIMER_ENB; 2717 if (ALE_USECS(sc->ale_int_tx_mod) != 0) 2718 reg |= MASTER_IM_TX_TIMER_ENB; 2719 CSR_WRITE_4(sc, ALE_MASTER_CFG, reg); 2720 CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000)); 2721 2722 /* Set Maximum frame size of controller. */ 2723 if (ifp->if_mtu < ETHERMTU) 2724 sc->ale_max_frame_size = ETHERMTU; 2725 else 2726 sc->ale_max_frame_size = ifp->if_mtu; 2727 sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 2728 ETHER_CRC_LEN; 2729 CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size); 2730 /* Configure IPG/IFG parameters. */ 2731 CSR_WRITE_4(sc, ALE_IPG_IFG_CFG, 2732 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) | 2733 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) | 2734 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) | 2735 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK)); 2736 /* Set parameters for half-duplex media. */ 2737 CSR_WRITE_4(sc, ALE_HDPX_CFG, 2738 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) & 2739 HDPX_CFG_LCOL_MASK) | 2740 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) & 2741 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN | 2742 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) & 2743 HDPX_CFG_ABEBT_MASK) | 2744 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) & 2745 HDPX_CFG_JAMIPG_MASK)); 2746 2747 /* Configure Tx jumbo frame parameters. */ 2748 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) { 2749 if (ifp->if_mtu < ETHERMTU) 2750 reg = sc->ale_max_frame_size; 2751 else if (ifp->if_mtu < 6 * 1024) 2752 reg = (sc->ale_max_frame_size * 2) / 3; 2753 else 2754 reg = sc->ale_max_frame_size / 2; 2755 CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH, 2756 roundup(reg, TX_JUMBO_THRESH_UNIT) >> 2757 TX_JUMBO_THRESH_UNIT_SHIFT); 2758 } 2759 /* Configure TxQ. */ 2760 reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT)) 2761 << TXQ_CFG_TX_FIFO_BURST_SHIFT; 2762 reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) & 2763 TXQ_CFG_TPD_BURST_MASK; 2764 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB); 2765 2766 /* Configure Rx jumbo frame & flow control parameters. */ 2767 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) { 2768 reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT); 2769 CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH, 2770 (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) << 2771 RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) | 2772 ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) & 2773 RX_JUMBO_LKAH_MASK)); 2774 reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN); 2775 rxf_hi = (reg * 7) / 10; 2776 rxf_lo = (reg * 3)/ 10; 2777 CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH, 2778 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) & 2779 RX_FIFO_PAUSE_THRESH_LO_MASK) | 2780 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) & 2781 RX_FIFO_PAUSE_THRESH_HI_MASK)); 2782 } 2783 2784 /* Disable RSS. */ 2785 CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0); 2786 CSR_WRITE_4(sc, ALE_RSS_CPU, 0); 2787 2788 /* Configure RxQ. */ 2789 CSR_WRITE_4(sc, ALE_RXQ_CFG, 2790 RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB); 2791 2792 /* Configure DMA parameters. */ 2793 reg = 0; 2794 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) 2795 reg |= DMA_CFG_TXCMB_ENB; 2796 CSR_WRITE_4(sc, ALE_DMA_CFG, 2797 DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 | 2798 sc->ale_dma_rd_burst | reg | 2799 sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB | 2800 ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) & 2801 DMA_CFG_RD_DELAY_CNT_MASK) | 2802 ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) & 2803 DMA_CFG_WR_DELAY_CNT_MASK)); 2804 2805 /* 2806 * Hardware can be configured to issue SMB interrupt based 2807 * on programmed interval. Since there is a callout that is 2808 * invoked for every hz in driver we use that instead of 2809 * relying on periodic SMB interrupt. 2810 */ 2811 CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0)); 2812 /* Clear MAC statistics. */ 2813 ale_stats_clear(sc); 2814 2815 /* 2816 * Configure Tx/Rx MACs. 2817 * - Auto-padding for short frames. 2818 * - Enable CRC generation. 2819 * Actual reconfiguration of MAC for resolved speed/duplex 2820 * is followed after detection of link establishment. 2821 * AR81xx always does checksum computation regardless of 2822 * MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will 2823 * cause Rx handling issue for fragmented IP datagrams due 2824 * to silicon bug. 2825 */ 2826 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX | 2827 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) & 2828 MAC_CFG_PREAMBLE_MASK); 2829 if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0) 2830 reg |= MAC_CFG_SPEED_10_100; 2831 else 2832 reg |= MAC_CFG_SPEED_1000; 2833 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 2834 2835 /* Set up the receive filter. */ 2836 ale_rxfilter(sc); 2837 ale_rxvlan(sc); 2838 2839 /* Acknowledge all pending interrupts and clear it. */ 2840 CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS); 2841 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF); 2842 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0); 2843 2844 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2845 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2846 2847 sc->ale_flags &= ~ALE_FLAG_LINK; 2848 /* Switch to the current media. */ 2849 mii_mediachg(mii); 2850 2851 callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc); 2852 } 2853 2854 static void 2855 ale_stop(struct ale_softc *sc) 2856 { 2857 struct ifnet *ifp; 2858 struct ale_txdesc *txd; 2859 uint32_t reg; 2860 int i; 2861 2862 ALE_LOCK_ASSERT(sc); 2863 /* 2864 * Mark the interface down and cancel the watchdog timer. 2865 */ 2866 ifp = sc->ale_ifp; 2867 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2868 sc->ale_flags &= ~ALE_FLAG_LINK; 2869 callout_stop(&sc->ale_tick_ch); 2870 sc->ale_watchdog_timer = 0; 2871 ale_stats_update(sc); 2872 /* Disable interrupts. */ 2873 CSR_WRITE_4(sc, ALE_INTR_MASK, 0); 2874 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF); 2875 /* Disable queue processing and DMA. */ 2876 reg = CSR_READ_4(sc, ALE_TXQ_CFG); 2877 reg &= ~TXQ_CFG_ENB; 2878 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg); 2879 reg = CSR_READ_4(sc, ALE_RXQ_CFG); 2880 reg &= ~RXQ_CFG_ENB; 2881 CSR_WRITE_4(sc, ALE_RXQ_CFG, reg); 2882 reg = CSR_READ_4(sc, ALE_DMA_CFG); 2883 reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB); 2884 CSR_WRITE_4(sc, ALE_DMA_CFG, reg); 2885 DELAY(1000); 2886 /* Stop Rx/Tx MACs. */ 2887 ale_stop_mac(sc); 2888 /* Disable interrupts which might be touched in taskq handler. */ 2889 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF); 2890 2891 /* 2892 * Free TX mbufs still in the queues. 2893 */ 2894 for (i = 0; i < ALE_TX_RING_CNT; i++) { 2895 txd = &sc->ale_cdata.ale_txdesc[i]; 2896 if (txd->tx_m != NULL) { 2897 bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, 2898 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2899 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, 2900 txd->tx_dmamap); 2901 m_freem(txd->tx_m); 2902 txd->tx_m = NULL; 2903 } 2904 } 2905 } 2906 2907 static void 2908 ale_stop_mac(struct ale_softc *sc) 2909 { 2910 uint32_t reg; 2911 int i; 2912 2913 ALE_LOCK_ASSERT(sc); 2914 2915 reg = CSR_READ_4(sc, ALE_MAC_CFG); 2916 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) { 2917 reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB); 2918 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 2919 } 2920 2921 for (i = ALE_TIMEOUT; i > 0; i--) { 2922 reg = CSR_READ_4(sc, ALE_IDLE_STATUS); 2923 if (reg == 0) 2924 break; 2925 DELAY(10); 2926 } 2927 if (i == 0) 2928 device_printf(sc->ale_dev, 2929 "could not disable Tx/Rx MAC(0x%08x)!\n", reg); 2930 } 2931 2932 static void 2933 ale_init_tx_ring(struct ale_softc *sc) 2934 { 2935 struct ale_txdesc *txd; 2936 int i; 2937 2938 ALE_LOCK_ASSERT(sc); 2939 2940 sc->ale_cdata.ale_tx_prod = 0; 2941 sc->ale_cdata.ale_tx_cons = 0; 2942 sc->ale_cdata.ale_tx_cnt = 0; 2943 2944 bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ); 2945 bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ); 2946 for (i = 0; i < ALE_TX_RING_CNT; i++) { 2947 txd = &sc->ale_cdata.ale_txdesc[i]; 2948 txd->tx_m = NULL; 2949 } 2950 *sc->ale_cdata.ale_tx_cmb = 0; 2951 bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag, 2952 sc->ale_cdata.ale_tx_cmb_map, 2953 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2954 bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag, 2955 sc->ale_cdata.ale_tx_ring_map, 2956 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2957 } 2958 2959 static void 2960 ale_init_rx_pages(struct ale_softc *sc) 2961 { 2962 struct ale_rx_page *rx_page; 2963 int i; 2964 2965 ALE_LOCK_ASSERT(sc); 2966 2967 sc->ale_morework = 0; 2968 sc->ale_cdata.ale_rx_seqno = 0; 2969 sc->ale_cdata.ale_rx_curp = 0; 2970 2971 for (i = 0; i < ALE_RX_PAGES; i++) { 2972 rx_page = &sc->ale_cdata.ale_rx_page[i]; 2973 bzero(rx_page->page_addr, sc->ale_pagesize); 2974 bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ); 2975 rx_page->cons = 0; 2976 *rx_page->cmb_addr = 0; 2977 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map, 2978 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2979 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map, 2980 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2981 } 2982 } 2983 2984 static void 2985 ale_rxvlan(struct ale_softc *sc) 2986 { 2987 struct ifnet *ifp; 2988 uint32_t reg; 2989 2990 ALE_LOCK_ASSERT(sc); 2991 2992 ifp = sc->ale_ifp; 2993 reg = CSR_READ_4(sc, ALE_MAC_CFG); 2994 reg &= ~MAC_CFG_VLAN_TAG_STRIP; 2995 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 2996 reg |= MAC_CFG_VLAN_TAG_STRIP; 2997 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 2998 } 2999 3000 static u_int 3001 ale_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 3002 { 3003 uint32_t crc, *mchash = arg; 3004 3005 crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN); 3006 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); 3007 3008 return (1); 3009 } 3010 3011 static void 3012 ale_rxfilter(struct ale_softc *sc) 3013 { 3014 struct ifnet *ifp; 3015 uint32_t mchash[2]; 3016 uint32_t rxcfg; 3017 3018 ALE_LOCK_ASSERT(sc); 3019 3020 ifp = sc->ale_ifp; 3021 3022 rxcfg = CSR_READ_4(sc, ALE_MAC_CFG); 3023 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC); 3024 if ((ifp->if_flags & IFF_BROADCAST) != 0) 3025 rxcfg |= MAC_CFG_BCAST; 3026 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 3027 if ((ifp->if_flags & IFF_PROMISC) != 0) 3028 rxcfg |= MAC_CFG_PROMISC; 3029 if ((ifp->if_flags & IFF_ALLMULTI) != 0) 3030 rxcfg |= MAC_CFG_ALLMULTI; 3031 CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF); 3032 CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF); 3033 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg); 3034 return; 3035 } 3036 3037 /* Program new filter. */ 3038 bzero(mchash, sizeof(mchash)); 3039 if_foreach_llmaddr(ifp, ale_hash_maddr, &mchash); 3040 3041 CSR_WRITE_4(sc, ALE_MAR0, mchash[0]); 3042 CSR_WRITE_4(sc, ALE_MAR1, mchash[1]); 3043 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg); 3044 } 3045 3046 static int 3047 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3048 { 3049 int error, value; 3050 3051 if (arg1 == NULL) 3052 return (EINVAL); 3053 value = *(int *)arg1; 3054 error = sysctl_handle_int(oidp, &value, 0, req); 3055 if (error || req->newptr == NULL) 3056 return (error); 3057 if (value < low || value > high) 3058 return (EINVAL); 3059 *(int *)arg1 = value; 3060 3061 return (0); 3062 } 3063 3064 static int 3065 sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS) 3066 { 3067 return (sysctl_int_range(oidp, arg1, arg2, req, 3068 ALE_PROC_MIN, ALE_PROC_MAX)); 3069 } 3070 3071 static int 3072 sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS) 3073 { 3074 3075 return (sysctl_int_range(oidp, arg1, arg2, req, 3076 ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX)); 3077 } 3078