xref: /freebsd/sys/dev/ale/if_ale.c (revision 70e0bbedef95258a4dadc996d641a9bebd3f107d)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/module.h>
41 #include <sys/rman.h>
42 #include <sys/queue.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_llc.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_vlan_var.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/ip.h>
61 #include <netinet/tcp.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 
66 #include <dev/pci/pcireg.h>
67 #include <dev/pci/pcivar.h>
68 
69 #include <machine/bus.h>
70 #include <machine/in_cksum.h>
71 
72 #include <dev/ale/if_alereg.h>
73 #include <dev/ale/if_alevar.h>
74 
75 /* "device miibus" required.  See GENERIC if you get errors here. */
76 #include "miibus_if.h"
77 
78 /* For more information about Tx checksum offload issues see ale_encap(). */
79 #define	ALE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
80 
81 MODULE_DEPEND(ale, pci, 1, 1, 1);
82 MODULE_DEPEND(ale, ether, 1, 1, 1);
83 MODULE_DEPEND(ale, miibus, 1, 1, 1);
84 
85 /* Tunables. */
86 static int msi_disable = 0;
87 static int msix_disable = 0;
88 TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
89 TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
90 
91 /*
92  * Devices supported by this driver.
93  */
94 static struct ale_dev {
95 	uint16_t	ale_vendorid;
96 	uint16_t	ale_deviceid;
97 	const char	*ale_name;
98 } ale_devs[] = {
99     { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
100     "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
101 };
102 
103 static int	ale_attach(device_t);
104 static int	ale_check_boundary(struct ale_softc *);
105 static int	ale_detach(device_t);
106 static int	ale_dma_alloc(struct ale_softc *);
107 static void	ale_dma_free(struct ale_softc *);
108 static void	ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
109 static int	ale_encap(struct ale_softc *, struct mbuf **);
110 static void	ale_get_macaddr(struct ale_softc *);
111 static void	ale_init(void *);
112 static void	ale_init_locked(struct ale_softc *);
113 static void	ale_init_rx_pages(struct ale_softc *);
114 static void	ale_init_tx_ring(struct ale_softc *);
115 static void	ale_int_task(void *, int);
116 static int	ale_intr(void *);
117 static int	ale_ioctl(struct ifnet *, u_long, caddr_t);
118 static void	ale_link_task(void *, int);
119 static void	ale_mac_config(struct ale_softc *);
120 static int	ale_miibus_readreg(device_t, int, int);
121 static void	ale_miibus_statchg(device_t);
122 static int	ale_miibus_writereg(device_t, int, int, int);
123 static int	ale_mediachange(struct ifnet *);
124 static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
125 static void	ale_phy_reset(struct ale_softc *);
126 static int	ale_probe(device_t);
127 static void	ale_reset(struct ale_softc *);
128 static int	ale_resume(device_t);
129 static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
130     uint32_t, uint32_t *);
131 static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
132 static int	ale_rxeof(struct ale_softc *sc, int);
133 static void	ale_rxfilter(struct ale_softc *);
134 static void	ale_rxvlan(struct ale_softc *);
135 static void	ale_setlinkspeed(struct ale_softc *);
136 static void	ale_setwol(struct ale_softc *);
137 static int	ale_shutdown(device_t);
138 static void	ale_start(struct ifnet *);
139 static void	ale_start_locked(struct ifnet *);
140 static void	ale_stats_clear(struct ale_softc *);
141 static void	ale_stats_update(struct ale_softc *);
142 static void	ale_stop(struct ale_softc *);
143 static void	ale_stop_mac(struct ale_softc *);
144 static int	ale_suspend(device_t);
145 static void	ale_sysctl_node(struct ale_softc *);
146 static void	ale_tick(void *);
147 static void	ale_txeof(struct ale_softc *);
148 static void	ale_watchdog(struct ale_softc *);
149 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
150 static int	sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
151 static int	sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
152 
153 static device_method_t ale_methods[] = {
154 	/* Device interface. */
155 	DEVMETHOD(device_probe,		ale_probe),
156 	DEVMETHOD(device_attach,	ale_attach),
157 	DEVMETHOD(device_detach,	ale_detach),
158 	DEVMETHOD(device_shutdown,	ale_shutdown),
159 	DEVMETHOD(device_suspend,	ale_suspend),
160 	DEVMETHOD(device_resume,	ale_resume),
161 
162 	/* MII interface. */
163 	DEVMETHOD(miibus_readreg,	ale_miibus_readreg),
164 	DEVMETHOD(miibus_writereg,	ale_miibus_writereg),
165 	DEVMETHOD(miibus_statchg,	ale_miibus_statchg),
166 
167 	{ NULL, NULL }
168 };
169 
170 static driver_t ale_driver = {
171 	"ale",
172 	ale_methods,
173 	sizeof(struct ale_softc)
174 };
175 
176 static devclass_t ale_devclass;
177 
178 DRIVER_MODULE(ale, pci, ale_driver, ale_devclass, 0, 0);
179 DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, 0, 0);
180 
181 static struct resource_spec ale_res_spec_mem[] = {
182 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
183 	{ -1,			0,		0 }
184 };
185 
186 static struct resource_spec ale_irq_spec_legacy[] = {
187 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
188 	{ -1,			0,		0 }
189 };
190 
191 static struct resource_spec ale_irq_spec_msi[] = {
192 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
193 	{ -1,			0,		0 }
194 };
195 
196 static struct resource_spec ale_irq_spec_msix[] = {
197 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
198 	{ -1,			0,		0 }
199 };
200 
201 static int
202 ale_miibus_readreg(device_t dev, int phy, int reg)
203 {
204 	struct ale_softc *sc;
205 	uint32_t v;
206 	int i;
207 
208 	sc = device_get_softc(dev);
209 
210 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
211 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
212 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
213 		DELAY(5);
214 		v = CSR_READ_4(sc, ALE_MDIO);
215 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
216 			break;
217 	}
218 
219 	if (i == 0) {
220 		device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
221 		return (0);
222 	}
223 
224 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
225 }
226 
227 static int
228 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
229 {
230 	struct ale_softc *sc;
231 	uint32_t v;
232 	int i;
233 
234 	sc = device_get_softc(dev);
235 
236 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
237 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
238 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
239 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
240 		DELAY(5);
241 		v = CSR_READ_4(sc, ALE_MDIO);
242 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
243 			break;
244 	}
245 
246 	if (i == 0)
247 		device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
248 
249 	return (0);
250 }
251 
252 static void
253 ale_miibus_statchg(device_t dev)
254 {
255 	struct ale_softc *sc;
256 
257 	sc = device_get_softc(dev);
258 
259 	taskqueue_enqueue(taskqueue_swi, &sc->ale_link_task);
260 }
261 
262 static void
263 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
264 {
265 	struct ale_softc *sc;
266 	struct mii_data *mii;
267 
268 	sc = ifp->if_softc;
269 	ALE_LOCK(sc);
270 	mii = device_get_softc(sc->ale_miibus);
271 
272 	mii_pollstat(mii);
273 	ifmr->ifm_status = mii->mii_media_status;
274 	ifmr->ifm_active = mii->mii_media_active;
275 	ALE_UNLOCK(sc);
276 }
277 
278 static int
279 ale_mediachange(struct ifnet *ifp)
280 {
281 	struct ale_softc *sc;
282 	struct mii_data *mii;
283 	struct mii_softc *miisc;
284 	int error;
285 
286 	sc = ifp->if_softc;
287 	ALE_LOCK(sc);
288 	mii = device_get_softc(sc->ale_miibus);
289 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
290 		PHY_RESET(miisc);
291 	error = mii_mediachg(mii);
292 	ALE_UNLOCK(sc);
293 
294 	return (error);
295 }
296 
297 static int
298 ale_probe(device_t dev)
299 {
300 	struct ale_dev *sp;
301 	int i;
302 	uint16_t vendor, devid;
303 
304 	vendor = pci_get_vendor(dev);
305 	devid = pci_get_device(dev);
306 	sp = ale_devs;
307 	for (i = 0; i < sizeof(ale_devs) / sizeof(ale_devs[0]); i++) {
308 		if (vendor == sp->ale_vendorid &&
309 		    devid == sp->ale_deviceid) {
310 			device_set_desc(dev, sp->ale_name);
311 			return (BUS_PROBE_DEFAULT);
312 		}
313 		sp++;
314 	}
315 
316 	return (ENXIO);
317 }
318 
319 static void
320 ale_get_macaddr(struct ale_softc *sc)
321 {
322 	uint32_t ea[2], reg;
323 	int i, vpdc;
324 
325 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
326 	if ((reg & SPI_VPD_ENB) != 0) {
327 		reg &= ~SPI_VPD_ENB;
328 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
329 	}
330 
331 	if (pci_find_cap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
332 		/*
333 		 * PCI VPD capability found, let TWSI reload EEPROM.
334 		 * This will set ethernet address of controller.
335 		 */
336 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
337 		    TWSI_CTRL_SW_LD_START);
338 		for (i = 100; i > 0; i--) {
339 			DELAY(1000);
340 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
341 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
342 				break;
343 		}
344 		if (i == 0)
345 			device_printf(sc->ale_dev,
346 			    "reloading EEPROM timeout!\n");
347 	} else {
348 		if (bootverbose)
349 			device_printf(sc->ale_dev,
350 			    "PCI VPD capability not found!\n");
351 	}
352 
353 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
354 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
355 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
356 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
357 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
358 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
359 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
360 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
361 }
362 
363 static void
364 ale_phy_reset(struct ale_softc *sc)
365 {
366 
367 	/* Reset magic from Linux. */
368 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
369 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
370 	    GPHY_CTRL_PHY_PLL_ON);
371 	DELAY(1000);
372 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
373 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
374 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
375 	DELAY(1000);
376 
377 #define	ATPHY_DBG_ADDR		0x1D
378 #define	ATPHY_DBG_DATA		0x1E
379 
380 	/* Enable hibernation mode. */
381 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
382 	    ATPHY_DBG_ADDR, 0x0B);
383 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
384 	    ATPHY_DBG_DATA, 0xBC00);
385 	/* Set Class A/B for all modes. */
386 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
387 	    ATPHY_DBG_ADDR, 0x00);
388 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
389 	    ATPHY_DBG_DATA, 0x02EF);
390 	/* Enable 10BT power saving. */
391 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
392 	    ATPHY_DBG_ADDR, 0x12);
393 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
394 	    ATPHY_DBG_DATA, 0x4C04);
395 	/* Adjust 1000T power. */
396 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
397 	    ATPHY_DBG_ADDR, 0x04);
398 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
399 	    ATPHY_DBG_ADDR, 0x8BBB);
400 	/* 10BT center tap voltage. */
401 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
402 	    ATPHY_DBG_ADDR, 0x05);
403 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
404 	    ATPHY_DBG_ADDR, 0x2C46);
405 
406 #undef	ATPHY_DBG_ADDR
407 #undef	ATPHY_DBG_DATA
408 	DELAY(1000);
409 }
410 
411 static int
412 ale_attach(device_t dev)
413 {
414 	struct ale_softc *sc;
415 	struct ifnet *ifp;
416 	uint16_t burst;
417 	int error, i, msic, msixc, pmc;
418 	uint32_t rxf_len, txf_len;
419 
420 	error = 0;
421 	sc = device_get_softc(dev);
422 	sc->ale_dev = dev;
423 
424 	mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
425 	    MTX_DEF);
426 	callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
427 	TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
428 	TASK_INIT(&sc->ale_link_task, 0, ale_link_task, sc);
429 
430 	/* Map the device. */
431 	pci_enable_busmaster(dev);
432 	sc->ale_res_spec = ale_res_spec_mem;
433 	sc->ale_irq_spec = ale_irq_spec_legacy;
434 	error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
435 	if (error != 0) {
436 		device_printf(dev, "cannot allocate memory resources.\n");
437 		goto fail;
438 	}
439 
440 	/* Set PHY address. */
441 	sc->ale_phyaddr = ALE_PHY_ADDR;
442 
443 	/* Reset PHY. */
444 	ale_phy_reset(sc);
445 
446 	/* Reset the ethernet controller. */
447 	ale_reset(sc);
448 
449 	/* Get PCI and chip id/revision. */
450 	sc->ale_rev = pci_get_revid(dev);
451 	if (sc->ale_rev >= 0xF0) {
452 		/* L2E Rev. B. AR8114 */
453 		sc->ale_flags |= ALE_FLAG_FASTETHER;
454 	} else {
455 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
456 			/* L1E AR8121 */
457 			sc->ale_flags |= ALE_FLAG_JUMBO;
458 		} else {
459 			/* L2E Rev. A. AR8113 */
460 			sc->ale_flags |= ALE_FLAG_FASTETHER;
461 		}
462 	}
463 	/*
464 	 * All known controllers seems to require 4 bytes alignment
465 	 * of Tx buffers to make Tx checksum offload with custom
466 	 * checksum generation method work.
467 	 */
468 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
469 	/*
470 	 * All known controllers seems to have issues on Rx checksum
471 	 * offload for fragmented IP datagrams.
472 	 */
473 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
474 	/*
475 	 * Don't use Tx CMB. It is known to cause RRS update failure
476 	 * under certain circumstances. Typical phenomenon of the
477 	 * issue would be unexpected sequence number encountered in
478 	 * Rx handler.
479 	 */
480 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
481 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
482 	    MASTER_CHIP_REV_SHIFT;
483 	if (bootverbose) {
484 		device_printf(dev, "PCI device revision : 0x%04x\n",
485 		    sc->ale_rev);
486 		device_printf(dev, "Chip id/revision : 0x%04x\n",
487 		    sc->ale_chip_rev);
488 	}
489 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
490 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
491 	/*
492 	 * Uninitialized hardware returns an invalid chip id/revision
493 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
494 	 */
495 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
496 	    rxf_len == 0xFFFFFFF) {
497 		device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
498 		    "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
499 		    txf_len, rxf_len);
500 		error = ENXIO;
501 		goto fail;
502 	}
503 	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
504 
505 	/* Allocate IRQ resources. */
506 	msixc = pci_msix_count(dev);
507 	msic = pci_msi_count(dev);
508 	if (bootverbose) {
509 		device_printf(dev, "MSIX count : %d\n", msixc);
510 		device_printf(dev, "MSI count : %d\n", msic);
511 	}
512 
513 	/* Prefer MSIX over MSI. */
514 	if (msix_disable == 0 || msi_disable == 0) {
515 		if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
516 		    pci_alloc_msix(dev, &msixc) == 0) {
517 			if (msic == ALE_MSIX_MESSAGES) {
518 				device_printf(dev, "Using %d MSIX messages.\n",
519 				    msixc);
520 				sc->ale_flags |= ALE_FLAG_MSIX;
521 				sc->ale_irq_spec = ale_irq_spec_msix;
522 			} else
523 				pci_release_msi(dev);
524 		}
525 		if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
526 		    msic == ALE_MSI_MESSAGES &&
527 		    pci_alloc_msi(dev, &msic) == 0) {
528 			if (msic == ALE_MSI_MESSAGES) {
529 				device_printf(dev, "Using %d MSI messages.\n",
530 				    msic);
531 				sc->ale_flags |= ALE_FLAG_MSI;
532 				sc->ale_irq_spec = ale_irq_spec_msi;
533 			} else
534 				pci_release_msi(dev);
535 		}
536 	}
537 
538 	error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
539 	if (error != 0) {
540 		device_printf(dev, "cannot allocate IRQ resources.\n");
541 		goto fail;
542 	}
543 
544 	/* Get DMA parameters from PCIe device control register. */
545 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
546 		sc->ale_flags |= ALE_FLAG_PCIE;
547 		burst = pci_read_config(dev, i + 0x08, 2);
548 		/* Max read request size. */
549 		sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
550 		    DMA_CFG_RD_BURST_SHIFT;
551 		/* Max payload size. */
552 		sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
553 		    DMA_CFG_WR_BURST_SHIFT;
554 		if (bootverbose) {
555 			device_printf(dev, "Read request size : %d bytes.\n",
556 			    128 << ((burst >> 12) & 0x07));
557 			device_printf(dev, "TLP payload size : %d bytes.\n",
558 			    128 << ((burst >> 5) & 0x07));
559 		}
560 	} else {
561 		sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
562 		sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
563 	}
564 
565 	/* Create device sysctl node. */
566 	ale_sysctl_node(sc);
567 
568 	if ((error = ale_dma_alloc(sc) != 0))
569 		goto fail;
570 
571 	/* Load station address. */
572 	ale_get_macaddr(sc);
573 
574 	ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
575 	if (ifp == NULL) {
576 		device_printf(dev, "cannot allocate ifnet structure.\n");
577 		error = ENXIO;
578 		goto fail;
579 	}
580 
581 	ifp->if_softc = sc;
582 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
583 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
584 	ifp->if_ioctl = ale_ioctl;
585 	ifp->if_start = ale_start;
586 	ifp->if_init = ale_init;
587 	ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1;
588 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
589 	IFQ_SET_READY(&ifp->if_snd);
590 	ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4;
591 	ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO;
592 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
593 		sc->ale_flags |= ALE_FLAG_PMCAP;
594 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
595 	}
596 	ifp->if_capenable = ifp->if_capabilities;
597 
598 	/* Set up MII bus. */
599 	error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange,
600 	    ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY,
601 	    0);
602 	if (error != 0) {
603 		device_printf(dev, "attaching PHYs failed\n");
604 		goto fail;
605 	}
606 
607 	ether_ifattach(ifp, sc->ale_eaddr);
608 
609 	/* VLAN capability setup. */
610 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
611 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
612 	ifp->if_capenable = ifp->if_capabilities;
613 	/*
614 	 * Even though controllers supported by ale(3) have Rx checksum
615 	 * offload bug the workaround for fragmented frames seemed to
616 	 * work so far. However it seems Rx checksum offload does not
617 	 * work under certain conditions. So disable Rx checksum offload
618 	 * until I find more clue about it but allow users to override it.
619 	 */
620 	ifp->if_capenable &= ~IFCAP_RXCSUM;
621 
622 	/* Tell the upper layer(s) we support long frames. */
623 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
624 
625 	/* Create local taskq. */
626 	sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
627 	    taskqueue_thread_enqueue, &sc->ale_tq);
628 	if (sc->ale_tq == NULL) {
629 		device_printf(dev, "could not create taskqueue.\n");
630 		ether_ifdetach(ifp);
631 		error = ENXIO;
632 		goto fail;
633 	}
634 	taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
635 	    device_get_nameunit(sc->ale_dev));
636 
637 	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
638 		msic = ALE_MSIX_MESSAGES;
639 	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
640 		msic = ALE_MSI_MESSAGES;
641 	else
642 		msic = 1;
643 	for (i = 0; i < msic; i++) {
644 		error = bus_setup_intr(dev, sc->ale_irq[i],
645 		    INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
646 		    &sc->ale_intrhand[i]);
647 		if (error != 0)
648 			break;
649 	}
650 	if (error != 0) {
651 		device_printf(dev, "could not set up interrupt handler.\n");
652 		taskqueue_free(sc->ale_tq);
653 		sc->ale_tq = NULL;
654 		ether_ifdetach(ifp);
655 		goto fail;
656 	}
657 
658 fail:
659 	if (error != 0)
660 		ale_detach(dev);
661 
662 	return (error);
663 }
664 
665 static int
666 ale_detach(device_t dev)
667 {
668 	struct ale_softc *sc;
669 	struct ifnet *ifp;
670 	int i, msic;
671 
672 	sc = device_get_softc(dev);
673 
674 	ifp = sc->ale_ifp;
675 	if (device_is_attached(dev)) {
676 		ether_ifdetach(ifp);
677 		ALE_LOCK(sc);
678 		ale_stop(sc);
679 		ALE_UNLOCK(sc);
680 		callout_drain(&sc->ale_tick_ch);
681 		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
682 		taskqueue_drain(taskqueue_swi, &sc->ale_link_task);
683 	}
684 
685 	if (sc->ale_tq != NULL) {
686 		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
687 		taskqueue_free(sc->ale_tq);
688 		sc->ale_tq = NULL;
689 	}
690 
691 	if (sc->ale_miibus != NULL) {
692 		device_delete_child(dev, sc->ale_miibus);
693 		sc->ale_miibus = NULL;
694 	}
695 	bus_generic_detach(dev);
696 	ale_dma_free(sc);
697 
698 	if (ifp != NULL) {
699 		if_free(ifp);
700 		sc->ale_ifp = NULL;
701 	}
702 
703 	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
704 		msic = ALE_MSIX_MESSAGES;
705 	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
706 		msic = ALE_MSI_MESSAGES;
707 	else
708 		msic = 1;
709 	for (i = 0; i < msic; i++) {
710 		if (sc->ale_intrhand[i] != NULL) {
711 			bus_teardown_intr(dev, sc->ale_irq[i],
712 			    sc->ale_intrhand[i]);
713 			sc->ale_intrhand[i] = NULL;
714 		}
715 	}
716 
717 	bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
718 	if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
719 		pci_release_msi(dev);
720 	bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
721 	mtx_destroy(&sc->ale_mtx);
722 
723 	return (0);
724 }
725 
726 #define	ALE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
727 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
728 
729 #if __FreeBSD_version >= 900030
730 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
731 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
732 #elif __FreeBSD_version > 800000
733 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
734 	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
735 #else
736 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
737 	    SYSCTL_ADD_ULONG(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
738 #endif
739 
740 static void
741 ale_sysctl_node(struct ale_softc *sc)
742 {
743 	struct sysctl_ctx_list *ctx;
744 	struct sysctl_oid_list *child, *parent;
745 	struct sysctl_oid *tree;
746 	struct ale_hw_stats *stats;
747 	int error;
748 
749 	stats = &sc->ale_stats;
750 	ctx = device_get_sysctl_ctx(sc->ale_dev);
751 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
752 
753 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
754 	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_rx_mod, 0,
755 	    sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
756 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
757 	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_tx_mod, 0,
758 	    sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
759 	/* Pull in device tunables. */
760 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
761 	error = resource_int_value(device_get_name(sc->ale_dev),
762 	    device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
763 	if (error == 0) {
764 		if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
765 		    sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
766 			device_printf(sc->ale_dev, "int_rx_mod value out of "
767 			    "range; using default: %d\n",
768 			    ALE_IM_RX_TIMER_DEFAULT);
769 			sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
770 		}
771 	}
772 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
773 	error = resource_int_value(device_get_name(sc->ale_dev),
774 	    device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
775 	if (error == 0) {
776 		if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
777 		    sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
778 			device_printf(sc->ale_dev, "int_tx_mod value out of "
779 			    "range; using default: %d\n",
780 			    ALE_IM_TX_TIMER_DEFAULT);
781 			sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
782 		}
783 	}
784 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
785 	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_process_limit, 0,
786 	    sysctl_hw_ale_proc_limit, "I",
787 	    "max number of Rx events to process");
788 	/* Pull in device tunables. */
789 	sc->ale_process_limit = ALE_PROC_DEFAULT;
790 	error = resource_int_value(device_get_name(sc->ale_dev),
791 	    device_get_unit(sc->ale_dev), "process_limit",
792 	    &sc->ale_process_limit);
793 	if (error == 0) {
794 		if (sc->ale_process_limit < ALE_PROC_MIN ||
795 		    sc->ale_process_limit > ALE_PROC_MAX) {
796 			device_printf(sc->ale_dev,
797 			    "process_limit value out of range; "
798 			    "using default: %d\n", ALE_PROC_DEFAULT);
799 			sc->ale_process_limit = ALE_PROC_DEFAULT;
800 		}
801 	}
802 
803 	/* Misc statistics. */
804 	ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
805 	    &stats->reset_brk_seq,
806 	    "Controller resets due to broken Rx sequnce number");
807 
808 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
809 	    NULL, "ATE statistics");
810 	parent = SYSCTL_CHILDREN(tree);
811 
812 	/* Rx statistics. */
813 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
814 	    NULL, "Rx MAC statistics");
815 	child = SYSCTL_CHILDREN(tree);
816 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
817 	    &stats->rx_frames, "Good frames");
818 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
819 	    &stats->rx_bcast_frames, "Good broadcast frames");
820 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
821 	    &stats->rx_mcast_frames, "Good multicast frames");
822 	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
823 	    &stats->rx_pause_frames, "Pause control frames");
824 	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
825 	    &stats->rx_control_frames, "Control frames");
826 	ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
827 	    &stats->rx_crcerrs, "CRC errors");
828 	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
829 	    &stats->rx_lenerrs, "Frames with length mismatched");
830 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
831 	    &stats->rx_bytes, "Good octets");
832 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
833 	    &stats->rx_bcast_bytes, "Good broadcast octets");
834 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
835 	    &stats->rx_mcast_bytes, "Good multicast octets");
836 	ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
837 	    &stats->rx_runts, "Too short frames");
838 	ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
839 	    &stats->rx_fragments, "Fragmented frames");
840 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
841 	    &stats->rx_pkts_64, "64 bytes frames");
842 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
843 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
844 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
845 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
846 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
847 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
848 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
849 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
850 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
851 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
852 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
853 	    &stats->rx_pkts_1519_max, "1519 to max frames");
854 	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
855 	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
856 	ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
857 	    &stats->rx_fifo_oflows, "FIFO overflows");
858 	ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
859 	    &stats->rx_rrs_errs, "Return status write-back errors");
860 	ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
861 	    &stats->rx_alignerrs, "Alignment errors");
862 	ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
863 	    &stats->rx_pkts_filtered,
864 	    "Frames dropped due to address filtering");
865 
866 	/* Tx statistics. */
867 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
868 	    NULL, "Tx MAC statistics");
869 	child = SYSCTL_CHILDREN(tree);
870 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
871 	    &stats->tx_frames, "Good frames");
872 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
873 	    &stats->tx_bcast_frames, "Good broadcast frames");
874 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
875 	    &stats->tx_mcast_frames, "Good multicast frames");
876 	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
877 	    &stats->tx_pause_frames, "Pause control frames");
878 	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
879 	    &stats->tx_control_frames, "Control frames");
880 	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
881 	    &stats->tx_excess_defer, "Frames with excessive derferrals");
882 	ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
883 	    &stats->tx_excess_defer, "Frames with derferrals");
884 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
885 	    &stats->tx_bytes, "Good octets");
886 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
887 	    &stats->tx_bcast_bytes, "Good broadcast octets");
888 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
889 	    &stats->tx_mcast_bytes, "Good multicast octets");
890 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
891 	    &stats->tx_pkts_64, "64 bytes frames");
892 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
893 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
894 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
895 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
896 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
897 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
898 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
899 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
900 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
901 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
902 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
903 	    &stats->tx_pkts_1519_max, "1519 to max frames");
904 	ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
905 	    &stats->tx_single_colls, "Single collisions");
906 	ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
907 	    &stats->tx_multi_colls, "Multiple collisions");
908 	ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
909 	    &stats->tx_late_colls, "Late collisions");
910 	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
911 	    &stats->tx_excess_colls, "Excessive collisions");
912 	ALE_SYSCTL_STAT_ADD32(ctx, child, "abort",
913 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
914 	ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
915 	    &stats->tx_underrun, "FIFO underruns");
916 	ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
917 	    &stats->tx_desc_underrun, "Descriptor write-back errors");
918 	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
919 	    &stats->tx_lenerrs, "Frames with length mismatched");
920 	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
921 	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
922 }
923 
924 #undef ALE_SYSCTL_STAT_ADD32
925 #undef ALE_SYSCTL_STAT_ADD64
926 
927 struct ale_dmamap_arg {
928 	bus_addr_t	ale_busaddr;
929 };
930 
931 static void
932 ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
933 {
934 	struct ale_dmamap_arg *ctx;
935 
936 	if (error != 0)
937 		return;
938 
939 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
940 
941 	ctx = (struct ale_dmamap_arg *)arg;
942 	ctx->ale_busaddr = segs[0].ds_addr;
943 }
944 
945 /*
946  * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
947  * which specifies high address region of DMA blocks. Therefore these
948  * blocks should have the same high address of given 4GB address
949  * space(i.e. crossing 4GB boundary is not allowed).
950  */
951 static int
952 ale_check_boundary(struct ale_softc *sc)
953 {
954 	bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
955 	bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
956 
957 	rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
958 	    sc->ale_pagesize;
959 	rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
960 	    sc->ale_pagesize;
961 	tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
962 	tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
963 	rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
964 	rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
965 
966 	if ((ALE_ADDR_HI(tx_ring_end) !=
967 	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
968 	    (ALE_ADDR_HI(rx_page_end[0]) !=
969 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
970 	    (ALE_ADDR_HI(rx_page_end[1]) !=
971 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
972 	    (ALE_ADDR_HI(tx_cmb_end) !=
973 	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
974 	    (ALE_ADDR_HI(rx_cmb_end[0]) !=
975 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
976 	    (ALE_ADDR_HI(rx_cmb_end[1]) !=
977 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
978 		return (EFBIG);
979 
980 	if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
981 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
982 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
983 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
984 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
985 		return (EFBIG);
986 
987 	return (0);
988 }
989 
990 static int
991 ale_dma_alloc(struct ale_softc *sc)
992 {
993 	struct ale_txdesc *txd;
994 	bus_addr_t lowaddr;
995 	struct ale_dmamap_arg ctx;
996 	int error, guard_size, i;
997 
998 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
999 		guard_size = ALE_JUMBO_FRAMELEN;
1000 	else
1001 		guard_size = ALE_MAX_FRAMELEN;
1002 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
1003 	    ALE_RX_PAGE_ALIGN);
1004 	lowaddr = BUS_SPACE_MAXADDR;
1005 again:
1006 	/* Create parent DMA tag. */
1007 	error = bus_dma_tag_create(
1008 	    bus_get_dma_tag(sc->ale_dev), /* parent */
1009 	    1, 0,			/* alignment, boundary */
1010 	    lowaddr,			/* lowaddr */
1011 	    BUS_SPACE_MAXADDR,		/* highaddr */
1012 	    NULL, NULL,			/* filter, filterarg */
1013 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1014 	    0,				/* nsegments */
1015 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1016 	    0,				/* flags */
1017 	    NULL, NULL,			/* lockfunc, lockarg */
1018 	    &sc->ale_cdata.ale_parent_tag);
1019 	if (error != 0) {
1020 		device_printf(sc->ale_dev,
1021 		    "could not create parent DMA tag.\n");
1022 		goto fail;
1023 	}
1024 
1025 	/* Create DMA tag for Tx descriptor ring. */
1026 	error = bus_dma_tag_create(
1027 	    sc->ale_cdata.ale_parent_tag, /* parent */
1028 	    ALE_TX_RING_ALIGN, 0,	/* alignment, boundary */
1029 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1030 	    BUS_SPACE_MAXADDR,		/* highaddr */
1031 	    NULL, NULL,			/* filter, filterarg */
1032 	    ALE_TX_RING_SZ,		/* maxsize */
1033 	    1,				/* nsegments */
1034 	    ALE_TX_RING_SZ,		/* maxsegsize */
1035 	    0,				/* flags */
1036 	    NULL, NULL,			/* lockfunc, lockarg */
1037 	    &sc->ale_cdata.ale_tx_ring_tag);
1038 	if (error != 0) {
1039 		device_printf(sc->ale_dev,
1040 		    "could not create Tx ring DMA tag.\n");
1041 		goto fail;
1042 	}
1043 
1044 	/* Create DMA tag for Rx pages. */
1045 	for (i = 0; i < ALE_RX_PAGES; i++) {
1046 		error = bus_dma_tag_create(
1047 		    sc->ale_cdata.ale_parent_tag, /* parent */
1048 		    ALE_RX_PAGE_ALIGN, 0,	/* alignment, boundary */
1049 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1050 		    BUS_SPACE_MAXADDR,		/* highaddr */
1051 		    NULL, NULL,			/* filter, filterarg */
1052 		    sc->ale_pagesize,		/* maxsize */
1053 		    1,				/* nsegments */
1054 		    sc->ale_pagesize,		/* maxsegsize */
1055 		    0,				/* flags */
1056 		    NULL, NULL,			/* lockfunc, lockarg */
1057 		    &sc->ale_cdata.ale_rx_page[i].page_tag);
1058 		if (error != 0) {
1059 			device_printf(sc->ale_dev,
1060 			    "could not create Rx page %d DMA tag.\n", i);
1061 			goto fail;
1062 		}
1063 	}
1064 
1065 	/* Create DMA tag for Tx coalescing message block. */
1066 	error = bus_dma_tag_create(
1067 	    sc->ale_cdata.ale_parent_tag, /* parent */
1068 	    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1069 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1070 	    BUS_SPACE_MAXADDR,		/* highaddr */
1071 	    NULL, NULL,			/* filter, filterarg */
1072 	    ALE_TX_CMB_SZ,		/* maxsize */
1073 	    1,				/* nsegments */
1074 	    ALE_TX_CMB_SZ,		/* maxsegsize */
1075 	    0,				/* flags */
1076 	    NULL, NULL,			/* lockfunc, lockarg */
1077 	    &sc->ale_cdata.ale_tx_cmb_tag);
1078 	if (error != 0) {
1079 		device_printf(sc->ale_dev,
1080 		    "could not create Tx CMB DMA tag.\n");
1081 		goto fail;
1082 	}
1083 
1084 	/* Create DMA tag for Rx coalescing message block. */
1085 	for (i = 0; i < ALE_RX_PAGES; i++) {
1086 		error = bus_dma_tag_create(
1087 		    sc->ale_cdata.ale_parent_tag, /* parent */
1088 		    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1089 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1090 		    BUS_SPACE_MAXADDR,		/* highaddr */
1091 		    NULL, NULL,			/* filter, filterarg */
1092 		    ALE_RX_CMB_SZ,		/* maxsize */
1093 		    1,				/* nsegments */
1094 		    ALE_RX_CMB_SZ,		/* maxsegsize */
1095 		    0,				/* flags */
1096 		    NULL, NULL,			/* lockfunc, lockarg */
1097 		    &sc->ale_cdata.ale_rx_page[i].cmb_tag);
1098 		if (error != 0) {
1099 			device_printf(sc->ale_dev,
1100 			    "could not create Rx page %d CMB DMA tag.\n", i);
1101 			goto fail;
1102 		}
1103 	}
1104 
1105 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1106 	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
1107 	    (void **)&sc->ale_cdata.ale_tx_ring,
1108 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1109 	    &sc->ale_cdata.ale_tx_ring_map);
1110 	if (error != 0) {
1111 		device_printf(sc->ale_dev,
1112 		    "could not allocate DMA'able memory for Tx ring.\n");
1113 		goto fail;
1114 	}
1115 	ctx.ale_busaddr = 0;
1116 	error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
1117 	    sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
1118 	    ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
1119 	if (error != 0 || ctx.ale_busaddr == 0) {
1120 		device_printf(sc->ale_dev,
1121 		    "could not load DMA'able memory for Tx ring.\n");
1122 		goto fail;
1123 	}
1124 	sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
1125 
1126 	/* Rx pages. */
1127 	for (i = 0; i < ALE_RX_PAGES; i++) {
1128 		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
1129 		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
1130 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1131 		    &sc->ale_cdata.ale_rx_page[i].page_map);
1132 		if (error != 0) {
1133 			device_printf(sc->ale_dev,
1134 			    "could not allocate DMA'able memory for "
1135 			    "Rx page %d.\n", i);
1136 			goto fail;
1137 		}
1138 		ctx.ale_busaddr = 0;
1139 		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
1140 		    sc->ale_cdata.ale_rx_page[i].page_map,
1141 		    sc->ale_cdata.ale_rx_page[i].page_addr,
1142 		    sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
1143 		if (error != 0 || ctx.ale_busaddr == 0) {
1144 			device_printf(sc->ale_dev,
1145 			    "could not load DMA'able memory for "
1146 			    "Rx page %d.\n", i);
1147 			goto fail;
1148 		}
1149 		sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
1150 	}
1151 
1152 	/* Tx CMB. */
1153 	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
1154 	    (void **)&sc->ale_cdata.ale_tx_cmb,
1155 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1156 	    &sc->ale_cdata.ale_tx_cmb_map);
1157 	if (error != 0) {
1158 		device_printf(sc->ale_dev,
1159 		    "could not allocate DMA'able memory for Tx CMB.\n");
1160 		goto fail;
1161 	}
1162 	ctx.ale_busaddr = 0;
1163 	error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
1164 	    sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
1165 	    ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1166 	if (error != 0 || ctx.ale_busaddr == 0) {
1167 		device_printf(sc->ale_dev,
1168 		    "could not load DMA'able memory for Tx CMB.\n");
1169 		goto fail;
1170 	}
1171 	sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
1172 
1173 	/* Rx CMB. */
1174 	for (i = 0; i < ALE_RX_PAGES; i++) {
1175 		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1176 		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
1177 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1178 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
1179 		if (error != 0) {
1180 			device_printf(sc->ale_dev, "could not allocate "
1181 			    "DMA'able memory for Rx page %d CMB.\n", i);
1182 			goto fail;
1183 		}
1184 		ctx.ale_busaddr = 0;
1185 		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1186 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
1187 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1188 		    ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1189 		if (error != 0 || ctx.ale_busaddr == 0) {
1190 			device_printf(sc->ale_dev, "could not load DMA'able "
1191 			    "memory for Rx page %d CMB.\n", i);
1192 			goto fail;
1193 		}
1194 		sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
1195 	}
1196 
1197 	/*
1198 	 * Tx descriptors/RXF0/CMB DMA blocks share the same
1199 	 * high address region of 64bit DMA address space.
1200 	 */
1201 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1202 	    (error = ale_check_boundary(sc)) != 0) {
1203 		device_printf(sc->ale_dev, "4GB boundary crossed, "
1204 		    "switching to 32bit DMA addressing mode.\n");
1205 		ale_dma_free(sc);
1206 		/*
1207 		 * Limit max allowable DMA address space to 32bit
1208 		 * and try again.
1209 		 */
1210 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1211 		goto again;
1212 	}
1213 
1214 	/*
1215 	 * Create Tx buffer parent tag.
1216 	 * AR81xx allows 64bit DMA addressing of Tx buffers so it
1217 	 * needs separate parent DMA tag as parent DMA address space
1218 	 * could be restricted to be within 32bit address space by
1219 	 * 4GB boundary crossing.
1220 	 */
1221 	error = bus_dma_tag_create(
1222 	    bus_get_dma_tag(sc->ale_dev), /* parent */
1223 	    1, 0,			/* alignment, boundary */
1224 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1225 	    BUS_SPACE_MAXADDR,		/* highaddr */
1226 	    NULL, NULL,			/* filter, filterarg */
1227 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1228 	    0,				/* nsegments */
1229 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1230 	    0,				/* flags */
1231 	    NULL, NULL,			/* lockfunc, lockarg */
1232 	    &sc->ale_cdata.ale_buffer_tag);
1233 	if (error != 0) {
1234 		device_printf(sc->ale_dev,
1235 		    "could not create parent buffer DMA tag.\n");
1236 		goto fail;
1237 	}
1238 
1239 	/* Create DMA tag for Tx buffers. */
1240 	error = bus_dma_tag_create(
1241 	    sc->ale_cdata.ale_buffer_tag, /* parent */
1242 	    1, 0,			/* alignment, boundary */
1243 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1244 	    BUS_SPACE_MAXADDR,		/* highaddr */
1245 	    NULL, NULL,			/* filter, filterarg */
1246 	    ALE_TSO_MAXSIZE,		/* maxsize */
1247 	    ALE_MAXTXSEGS,		/* nsegments */
1248 	    ALE_TSO_MAXSEGSIZE,		/* maxsegsize */
1249 	    0,				/* flags */
1250 	    NULL, NULL,			/* lockfunc, lockarg */
1251 	    &sc->ale_cdata.ale_tx_tag);
1252 	if (error != 0) {
1253 		device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
1254 		goto fail;
1255 	}
1256 
1257 	/* Create DMA maps for Tx buffers. */
1258 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1259 		txd = &sc->ale_cdata.ale_txdesc[i];
1260 		txd->tx_m = NULL;
1261 		txd->tx_dmamap = NULL;
1262 		error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
1263 		    &txd->tx_dmamap);
1264 		if (error != 0) {
1265 			device_printf(sc->ale_dev,
1266 			    "could not create Tx dmamap.\n");
1267 			goto fail;
1268 		}
1269 	}
1270 
1271 fail:
1272 	return (error);
1273 }
1274 
1275 static void
1276 ale_dma_free(struct ale_softc *sc)
1277 {
1278 	struct ale_txdesc *txd;
1279 	int i;
1280 
1281 	/* Tx buffers. */
1282 	if (sc->ale_cdata.ale_tx_tag != NULL) {
1283 		for (i = 0; i < ALE_TX_RING_CNT; i++) {
1284 			txd = &sc->ale_cdata.ale_txdesc[i];
1285 			if (txd->tx_dmamap != NULL) {
1286 				bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
1287 				    txd->tx_dmamap);
1288 				txd->tx_dmamap = NULL;
1289 			}
1290 		}
1291 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
1292 		sc->ale_cdata.ale_tx_tag = NULL;
1293 	}
1294 	/* Tx descriptor ring. */
1295 	if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
1296 		if (sc->ale_cdata.ale_tx_ring_map != NULL)
1297 			bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
1298 			    sc->ale_cdata.ale_tx_ring_map);
1299 		if (sc->ale_cdata.ale_tx_ring_map != NULL &&
1300 		    sc->ale_cdata.ale_tx_ring != NULL)
1301 			bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
1302 			    sc->ale_cdata.ale_tx_ring,
1303 			    sc->ale_cdata.ale_tx_ring_map);
1304 		sc->ale_cdata.ale_tx_ring = NULL;
1305 		sc->ale_cdata.ale_tx_ring_map = NULL;
1306 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
1307 		sc->ale_cdata.ale_tx_ring_tag = NULL;
1308 	}
1309 	/* Rx page block. */
1310 	for (i = 0; i < ALE_RX_PAGES; i++) {
1311 		if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
1312 			if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
1313 				bus_dmamap_unload(
1314 				    sc->ale_cdata.ale_rx_page[i].page_tag,
1315 				    sc->ale_cdata.ale_rx_page[i].page_map);
1316 			if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
1317 			    sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
1318 				bus_dmamem_free(
1319 				    sc->ale_cdata.ale_rx_page[i].page_tag,
1320 				    sc->ale_cdata.ale_rx_page[i].page_addr,
1321 				    sc->ale_cdata.ale_rx_page[i].page_map);
1322 			sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
1323 			sc->ale_cdata.ale_rx_page[i].page_map = NULL;
1324 			bus_dma_tag_destroy(
1325 			    sc->ale_cdata.ale_rx_page[i].page_tag);
1326 			sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
1327 		}
1328 	}
1329 	/* Rx CMB. */
1330 	for (i = 0; i < ALE_RX_PAGES; i++) {
1331 		if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
1332 			if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
1333 				bus_dmamap_unload(
1334 				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1335 				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1336 			if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
1337 			    sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
1338 				bus_dmamem_free(
1339 				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1340 				    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1341 				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1342 			sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
1343 			sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
1344 			bus_dma_tag_destroy(
1345 			    sc->ale_cdata.ale_rx_page[i].cmb_tag);
1346 			sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
1347 		}
1348 	}
1349 	/* Tx CMB. */
1350 	if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
1351 		if (sc->ale_cdata.ale_tx_cmb_map != NULL)
1352 			bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
1353 			    sc->ale_cdata.ale_tx_cmb_map);
1354 		if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
1355 		    sc->ale_cdata.ale_tx_cmb != NULL)
1356 			bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
1357 			    sc->ale_cdata.ale_tx_cmb,
1358 			    sc->ale_cdata.ale_tx_cmb_map);
1359 		sc->ale_cdata.ale_tx_cmb = NULL;
1360 		sc->ale_cdata.ale_tx_cmb_map = NULL;
1361 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
1362 		sc->ale_cdata.ale_tx_cmb_tag = NULL;
1363 	}
1364 	if (sc->ale_cdata.ale_buffer_tag != NULL) {
1365 		bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
1366 		sc->ale_cdata.ale_buffer_tag = NULL;
1367 	}
1368 	if (sc->ale_cdata.ale_parent_tag != NULL) {
1369 		bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
1370 		sc->ale_cdata.ale_parent_tag = NULL;
1371 	}
1372 }
1373 
1374 static int
1375 ale_shutdown(device_t dev)
1376 {
1377 
1378 	return (ale_suspend(dev));
1379 }
1380 
1381 /*
1382  * Note, this driver resets the link speed to 10/100Mbps by
1383  * restarting auto-negotiation in suspend/shutdown phase but we
1384  * don't know whether that auto-negotiation would succeed or not
1385  * as driver has no control after powering off/suspend operation.
1386  * If the renegotiation fail WOL may not work. Running at 1Gbps
1387  * will draw more power than 375mA at 3.3V which is specified in
1388  * PCI specification and that would result in complete
1389  * shutdowning power to ethernet controller.
1390  *
1391  * TODO
1392  * Save current negotiated media speed/duplex/flow-control to
1393  * softc and restore the same link again after resuming. PHY
1394  * handling such as power down/resetting to 100Mbps may be better
1395  * handled in suspend method in phy driver.
1396  */
1397 static void
1398 ale_setlinkspeed(struct ale_softc *sc)
1399 {
1400 	struct mii_data *mii;
1401 	int aneg, i;
1402 
1403 	mii = device_get_softc(sc->ale_miibus);
1404 	mii_pollstat(mii);
1405 	aneg = 0;
1406 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1407 	    (IFM_ACTIVE | IFM_AVALID)) {
1408 		switch IFM_SUBTYPE(mii->mii_media_active) {
1409 		case IFM_10_T:
1410 		case IFM_100_TX:
1411 			return;
1412 		case IFM_1000_T:
1413 			aneg++;
1414 			break;
1415 		default:
1416 			break;
1417 		}
1418 	}
1419 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
1420 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1421 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1422 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1423 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1424 	DELAY(1000);
1425 	if (aneg != 0) {
1426 		/*
1427 		 * Poll link state until ale(4) get a 10/100Mbps link.
1428 		 */
1429 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1430 			mii_pollstat(mii);
1431 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1432 			    == (IFM_ACTIVE | IFM_AVALID)) {
1433 				switch (IFM_SUBTYPE(
1434 				    mii->mii_media_active)) {
1435 				case IFM_10_T:
1436 				case IFM_100_TX:
1437 					ale_mac_config(sc);
1438 					return;
1439 				default:
1440 					break;
1441 				}
1442 			}
1443 			ALE_UNLOCK(sc);
1444 			pause("alelnk", hz);
1445 			ALE_LOCK(sc);
1446 		}
1447 		if (i == MII_ANEGTICKS_GIGE)
1448 			device_printf(sc->ale_dev,
1449 			    "establishing a link failed, WOL may not work!");
1450 	}
1451 	/*
1452 	 * No link, force MAC to have 100Mbps, full-duplex link.
1453 	 * This is the last resort and may/may not work.
1454 	 */
1455 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1456 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1457 	ale_mac_config(sc);
1458 }
1459 
1460 static void
1461 ale_setwol(struct ale_softc *sc)
1462 {
1463 	struct ifnet *ifp;
1464 	uint32_t reg, pmcs;
1465 	uint16_t pmstat;
1466 	int pmc;
1467 
1468 	ALE_LOCK_ASSERT(sc);
1469 
1470 	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
1471 		/* Disable WOL. */
1472 		CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1473 		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1474 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1475 		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1476 		/* Force PHY power down. */
1477 		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1478 		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1479 		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
1480 		    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
1481 		    GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
1482 		return;
1483 	}
1484 
1485 	ifp = sc->ale_ifp;
1486 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1487 		if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
1488 			ale_setlinkspeed(sc);
1489 	}
1490 
1491 	pmcs = 0;
1492 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1493 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1494 	CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
1495 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1496 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1497 	    MAC_CFG_BCAST);
1498 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1499 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1500 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1501 		reg |= MAC_CFG_RX_ENB;
1502 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1503 
1504 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1505 		/* WOL disabled, PHY power down. */
1506 		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1507 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1508 		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1509 		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1510 		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1511 		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
1512 		    GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
1513 		    GPHY_CTRL_PWDOWN_HW);
1514 	}
1515 	/* Request PME. */
1516 	pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
1517 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1518 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1519 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1520 	pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1521 }
1522 
1523 static int
1524 ale_suspend(device_t dev)
1525 {
1526 	struct ale_softc *sc;
1527 
1528 	sc = device_get_softc(dev);
1529 
1530 	ALE_LOCK(sc);
1531 	ale_stop(sc);
1532 	ale_setwol(sc);
1533 	ALE_UNLOCK(sc);
1534 
1535 	return (0);
1536 }
1537 
1538 static int
1539 ale_resume(device_t dev)
1540 {
1541 	struct ale_softc *sc;
1542 	struct ifnet *ifp;
1543 	int pmc;
1544 	uint16_t pmstat;
1545 
1546 	sc = device_get_softc(dev);
1547 
1548 	ALE_LOCK(sc);
1549 	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
1550 		/* Disable PME and clear PME status. */
1551 		pmstat = pci_read_config(sc->ale_dev,
1552 		    pmc + PCIR_POWER_STATUS, 2);
1553 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1554 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1555 			pci_write_config(sc->ale_dev,
1556 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
1557 		}
1558 	}
1559 	/* Reset PHY. */
1560 	ale_phy_reset(sc);
1561 	ifp = sc->ale_ifp;
1562 	if ((ifp->if_flags & IFF_UP) != 0) {
1563 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1564 		ale_init_locked(sc);
1565 	}
1566 	ALE_UNLOCK(sc);
1567 
1568 	return (0);
1569 }
1570 
1571 static int
1572 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
1573 {
1574 	struct ale_txdesc *txd, *txd_last;
1575 	struct tx_desc *desc;
1576 	struct mbuf *m;
1577 	struct ip *ip;
1578 	struct tcphdr *tcp;
1579 	bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
1580 	bus_dmamap_t map;
1581 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1582 	int error, i, nsegs, prod, si;
1583 
1584 	ALE_LOCK_ASSERT(sc);
1585 
1586 	M_ASSERTPKTHDR((*m_head));
1587 
1588 	m = *m_head;
1589 	ip = NULL;
1590 	tcp = NULL;
1591 	cflags = vtag = 0;
1592 	ip_off = poff = 0;
1593 	if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1594 		/*
1595 		 * AR81xx requires offset of TCP/UDP payload in its Tx
1596 		 * descriptor to perform hardware Tx checksum offload.
1597 		 * Additionally, TSO requires IP/TCP header size and
1598 		 * modification of IP/TCP header in order to make TSO
1599 		 * engine work. This kind of operation takes many CPU
1600 		 * cycles on FreeBSD so fast host CPU is required to
1601 		 * get smooth TSO performance.
1602 		 */
1603 		struct ether_header *eh;
1604 
1605 		if (M_WRITABLE(m) == 0) {
1606 			/* Get a writable copy. */
1607 			m = m_dup(*m_head, M_DONTWAIT);
1608 			/* Release original mbufs. */
1609 			m_freem(*m_head);
1610 			if (m == NULL) {
1611 				*m_head = NULL;
1612 				return (ENOBUFS);
1613 			}
1614 			*m_head = m;
1615 		}
1616 
1617 		/*
1618 		 * Buggy-controller requires 4 byte aligned Tx buffer
1619 		 * to make custom checksum offload work.
1620 		 */
1621 		if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
1622 		    (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
1623 		    (mtod(m, intptr_t) & 3) != 0) {
1624 			m = m_defrag(*m_head, M_DONTWAIT);
1625 			if (m == NULL) {
1626 				*m_head = NULL;
1627 				return (ENOBUFS);
1628 			}
1629 			*m_head = m;
1630 		}
1631 
1632 		ip_off = sizeof(struct ether_header);
1633 		m = m_pullup(m, ip_off);
1634 		if (m == NULL) {
1635 			*m_head = NULL;
1636 			return (ENOBUFS);
1637 		}
1638 		eh = mtod(m, struct ether_header *);
1639 		/*
1640 		 * Check if hardware VLAN insertion is off.
1641 		 * Additional check for LLC/SNAP frame?
1642 		 */
1643 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1644 			ip_off = sizeof(struct ether_vlan_header);
1645 			m = m_pullup(m, ip_off);
1646 			if (m == NULL) {
1647 				*m_head = NULL;
1648 				return (ENOBUFS);
1649 			}
1650 		}
1651 		m = m_pullup(m, ip_off + sizeof(struct ip));
1652 		if (m == NULL) {
1653 			*m_head = NULL;
1654 			return (ENOBUFS);
1655 		}
1656 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1657 		poff = ip_off + (ip->ip_hl << 2);
1658 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1659 			/*
1660 			 * XXX
1661 			 * AR81xx requires the first descriptor should
1662 			 * not include any TCP playload for TSO case.
1663 			 * (i.e. ethernet header + IP + TCP header only)
1664 			 * m_pullup(9) above will ensure this too.
1665 			 * However it's not correct if the first mbuf
1666 			 * of the chain does not use cluster.
1667 			 */
1668 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1669 			if (m == NULL) {
1670 				*m_head = NULL;
1671 				return (ENOBUFS);
1672 			}
1673 			ip = (struct ip *)(mtod(m, char *) + ip_off);
1674 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1675 			m = m_pullup(m, poff + (tcp->th_off << 2));
1676 			if (m == NULL) {
1677 				*m_head = NULL;
1678 				return (ENOBUFS);
1679 			}
1680 			/*
1681 			 * AR81xx requires IP/TCP header size and offset as
1682 			 * well as TCP pseudo checksum which complicates
1683 			 * TSO configuration. I guess this comes from the
1684 			 * adherence to Microsoft NDIS Large Send
1685 			 * specification which requires insertion of
1686 			 * pseudo checksum by upper stack. The pseudo
1687 			 * checksum that NDIS refers to doesn't include
1688 			 * TCP payload length so ale(4) should recompute
1689 			 * the pseudo checksum here. Hopefully this wouldn't
1690 			 * be much burden on modern CPUs.
1691 			 * Reset IP checksum and recompute TCP pseudo
1692 			 * checksum as NDIS specification said.
1693 			 */
1694 			ip->ip_sum = 0;
1695 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1696 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1697 		}
1698 		*m_head = m;
1699 	}
1700 
1701 	si = prod = sc->ale_cdata.ale_tx_prod;
1702 	txd = &sc->ale_cdata.ale_txdesc[prod];
1703 	txd_last = txd;
1704 	map = txd->tx_dmamap;
1705 
1706 	error =  bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1707 	    *m_head, txsegs, &nsegs, 0);
1708 	if (error == EFBIG) {
1709 		m = m_collapse(*m_head, M_DONTWAIT, ALE_MAXTXSEGS);
1710 		if (m == NULL) {
1711 			m_freem(*m_head);
1712 			*m_head = NULL;
1713 			return (ENOMEM);
1714 		}
1715 		*m_head = m;
1716 		error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1717 		    *m_head, txsegs, &nsegs, 0);
1718 		if (error != 0) {
1719 			m_freem(*m_head);
1720 			*m_head = NULL;
1721 			return (error);
1722 		}
1723 	} else if (error != 0)
1724 		return (error);
1725 	if (nsegs == 0) {
1726 		m_freem(*m_head);
1727 		*m_head = NULL;
1728 		return (EIO);
1729 	}
1730 
1731 	/* Check descriptor overrun. */
1732 	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) {
1733 		bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
1734 		return (ENOBUFS);
1735 	}
1736 	bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
1737 
1738 	m = *m_head;
1739 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1740 		/* Request TSO and set MSS. */
1741 		cflags |= ALE_TD_TSO;
1742 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
1743 		/* Set IP/TCP header size. */
1744 		cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
1745 		cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
1746 	} else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
1747 		/*
1748 		 * AR81xx supports Tx custom checksum offload feature
1749 		 * that offloads single 16bit checksum computation.
1750 		 * So you can choose one among IP, TCP and UDP.
1751 		 * Normally driver sets checksum start/insertion
1752 		 * position from the information of TCP/UDP frame as
1753 		 * TCP/UDP checksum takes more time than that of IP.
1754 		 * However it seems that custom checksum offload
1755 		 * requires 4 bytes aligned Tx buffers due to hardware
1756 		 * bug.
1757 		 * AR81xx also supports explicit Tx checksum computation
1758 		 * if it is told that the size of IP header and TCP
1759 		 * header(for UDP, the header size does not matter
1760 		 * because it's fixed length). However with this scheme
1761 		 * TSO does not work so you have to choose one either
1762 		 * TSO or explicit Tx checksum offload. I chosen TSO
1763 		 * plus custom checksum offload with work-around which
1764 		 * will cover most common usage for this consumer
1765 		 * ethernet controller. The work-around takes a lot of
1766 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
1767 		 * boundary, though.
1768 		 */
1769 		cflags |= ALE_TD_CXSUM;
1770 		/* Set checksum start offset. */
1771 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1772 		/* Set checksum insertion position of TCP/UDP. */
1773 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1774 		    ALE_TD_CSUM_XSUMOFFSET_SHIFT);
1775 	}
1776 
1777 	/* Configure VLAN hardware tag insertion. */
1778 	if ((m->m_flags & M_VLANTAG) != 0) {
1779 		vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1780 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1781 		cflags |= ALE_TD_INSERT_VLAN_TAG;
1782 	}
1783 
1784 	i = 0;
1785 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1786 		/*
1787 		 * Make sure the first fragment contains
1788 		 * only ethernet and IP/TCP header with options.
1789 		 */
1790 		hdrlen =  poff + (tcp->th_off << 2);
1791 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1792 		desc->addr = htole64(txsegs[i].ds_addr);
1793 		desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag);
1794 		desc->flags = htole32(cflags);
1795 		sc->ale_cdata.ale_tx_cnt++;
1796 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1797 		if (m->m_len - hdrlen > 0) {
1798 			/* Handle remaining payload of the first fragment. */
1799 			desc = &sc->ale_cdata.ale_tx_ring[prod];
1800 			desc->addr = htole64(txsegs[i].ds_addr + hdrlen);
1801 			desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) |
1802 			    vtag);
1803 			desc->flags = htole32(cflags);
1804 			sc->ale_cdata.ale_tx_cnt++;
1805 			ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1806 		}
1807 		i = 1;
1808 	}
1809 	for (; i < nsegs; i++) {
1810 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1811 		desc->addr = htole64(txsegs[i].ds_addr);
1812 		desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
1813 		desc->flags = htole32(cflags);
1814 		sc->ale_cdata.ale_tx_cnt++;
1815 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1816 	}
1817 	/* Update producer index. */
1818 	sc->ale_cdata.ale_tx_prod = prod;
1819 	/* Set TSO header on the first descriptor. */
1820 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1821 		desc = &sc->ale_cdata.ale_tx_ring[si];
1822 		desc->flags |= htole32(ALE_TD_TSO_HDR);
1823 	}
1824 
1825 	/* Finally set EOP on the last descriptor. */
1826 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1827 	desc = &sc->ale_cdata.ale_tx_ring[prod];
1828 	desc->flags |= htole32(ALE_TD_EOP);
1829 
1830 	/* Swap dmamap of the first and the last. */
1831 	txd = &sc->ale_cdata.ale_txdesc[prod];
1832 	map = txd_last->tx_dmamap;
1833 	txd_last->tx_dmamap = txd->tx_dmamap;
1834 	txd->tx_dmamap = map;
1835 	txd->tx_m = m;
1836 
1837 	/* Sync descriptors. */
1838 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
1839 	    sc->ale_cdata.ale_tx_ring_map,
1840 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1841 
1842 	return (0);
1843 }
1844 
1845 static void
1846 ale_start(struct ifnet *ifp)
1847 {
1848         struct ale_softc *sc;
1849 
1850 	sc = ifp->if_softc;
1851 	ALE_LOCK(sc);
1852 	ale_start_locked(ifp);
1853 	ALE_UNLOCK(sc);
1854 }
1855 
1856 static void
1857 ale_start_locked(struct ifnet *ifp)
1858 {
1859         struct ale_softc *sc;
1860         struct mbuf *m_head;
1861 	int enq;
1862 
1863 	sc = ifp->if_softc;
1864 
1865 	ALE_LOCK_ASSERT(sc);
1866 
1867 	/* Reclaim transmitted frames. */
1868 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1869 		ale_txeof(sc);
1870 
1871 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1872 	    IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0)
1873 		return;
1874 
1875 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1876 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1877 		if (m_head == NULL)
1878 			break;
1879 		/*
1880 		 * Pack the data into the transmit ring. If we
1881 		 * don't have room, set the OACTIVE flag and wait
1882 		 * for the NIC to drain the ring.
1883 		 */
1884 		if (ale_encap(sc, &m_head)) {
1885 			if (m_head == NULL)
1886 				break;
1887 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1888 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1889 			break;
1890 		}
1891 
1892 		enq++;
1893 		/*
1894 		 * If there's a BPF listener, bounce a copy of this frame
1895 		 * to him.
1896 		 */
1897 		ETHER_BPF_MTAP(ifp, m_head);
1898 	}
1899 
1900 	if (enq > 0) {
1901 		/* Kick. */
1902 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1903 		    sc->ale_cdata.ale_tx_prod);
1904 		/* Set a timeout in case the chip goes out to lunch. */
1905 		sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
1906 	}
1907 }
1908 
1909 static void
1910 ale_watchdog(struct ale_softc *sc)
1911 {
1912 	struct ifnet *ifp;
1913 
1914 	ALE_LOCK_ASSERT(sc);
1915 
1916 	if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
1917 		return;
1918 
1919 	ifp = sc->ale_ifp;
1920 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1921 		if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
1922 		ifp->if_oerrors++;
1923 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1924 		ale_init_locked(sc);
1925 		return;
1926 	}
1927 	if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
1928 	ifp->if_oerrors++;
1929 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1930 	ale_init_locked(sc);
1931 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1932 		ale_start_locked(ifp);
1933 }
1934 
1935 static int
1936 ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1937 {
1938 	struct ale_softc *sc;
1939 	struct ifreq *ifr;
1940 	struct mii_data *mii;
1941 	int error, mask;
1942 
1943 	sc = ifp->if_softc;
1944 	ifr = (struct ifreq *)data;
1945 	error = 0;
1946 	switch (cmd) {
1947 	case SIOCSIFMTU:
1948 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
1949 		    ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
1950 		    ifr->ifr_mtu > ETHERMTU))
1951 			error = EINVAL;
1952 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1953 			ALE_LOCK(sc);
1954 			ifp->if_mtu = ifr->ifr_mtu;
1955 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1956 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1957 				ale_init_locked(sc);
1958 			}
1959 			ALE_UNLOCK(sc);
1960 		}
1961 		break;
1962 	case SIOCSIFFLAGS:
1963 		ALE_LOCK(sc);
1964 		if ((ifp->if_flags & IFF_UP) != 0) {
1965 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1966 				if (((ifp->if_flags ^ sc->ale_if_flags)
1967 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1968 					ale_rxfilter(sc);
1969 			} else {
1970 				ale_init_locked(sc);
1971 			}
1972 		} else {
1973 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1974 				ale_stop(sc);
1975 		}
1976 		sc->ale_if_flags = ifp->if_flags;
1977 		ALE_UNLOCK(sc);
1978 		break;
1979 	case SIOCADDMULTI:
1980 	case SIOCDELMULTI:
1981 		ALE_LOCK(sc);
1982 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1983 			ale_rxfilter(sc);
1984 		ALE_UNLOCK(sc);
1985 		break;
1986 	case SIOCSIFMEDIA:
1987 	case SIOCGIFMEDIA:
1988 		mii = device_get_softc(sc->ale_miibus);
1989 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1990 		break;
1991 	case SIOCSIFCAP:
1992 		ALE_LOCK(sc);
1993 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1994 		if ((mask & IFCAP_TXCSUM) != 0 &&
1995 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1996 			ifp->if_capenable ^= IFCAP_TXCSUM;
1997 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1998 				ifp->if_hwassist |= ALE_CSUM_FEATURES;
1999 			else
2000 				ifp->if_hwassist &= ~ALE_CSUM_FEATURES;
2001 		}
2002 		if ((mask & IFCAP_RXCSUM) != 0 &&
2003 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2004 			ifp->if_capenable ^= IFCAP_RXCSUM;
2005 		if ((mask & IFCAP_TSO4) != 0 &&
2006 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2007 			ifp->if_capenable ^= IFCAP_TSO4;
2008 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2009 				ifp->if_hwassist |= CSUM_TSO;
2010 			else
2011 				ifp->if_hwassist &= ~CSUM_TSO;
2012 		}
2013 
2014 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2015 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2016 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2017 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2018 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2019 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2020 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2021 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2022 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2023 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2024 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2025 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2026 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2027 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2028 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2029 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2030 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
2031 			ale_rxvlan(sc);
2032 		}
2033 		ALE_UNLOCK(sc);
2034 		VLAN_CAPABILITIES(ifp);
2035 		break;
2036 	default:
2037 		error = ether_ioctl(ifp, cmd, data);
2038 		break;
2039 	}
2040 
2041 	return (error);
2042 }
2043 
2044 static void
2045 ale_mac_config(struct ale_softc *sc)
2046 {
2047 	struct mii_data *mii;
2048 	uint32_t reg;
2049 
2050 	ALE_LOCK_ASSERT(sc);
2051 
2052 	mii = device_get_softc(sc->ale_miibus);
2053 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2054 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2055 	    MAC_CFG_SPEED_MASK);
2056 	/* Reprogram MAC with resolved speed/duplex. */
2057 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2058 	case IFM_10_T:
2059 	case IFM_100_TX:
2060 		reg |= MAC_CFG_SPEED_10_100;
2061 		break;
2062 	case IFM_1000_T:
2063 		reg |= MAC_CFG_SPEED_1000;
2064 		break;
2065 	}
2066 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2067 		reg |= MAC_CFG_FULL_DUPLEX;
2068 #ifdef notyet
2069 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2070 			reg |= MAC_CFG_TX_FC;
2071 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2072 			reg |= MAC_CFG_RX_FC;
2073 #endif
2074 	}
2075 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2076 }
2077 
2078 static void
2079 ale_link_task(void *arg, int pending)
2080 {
2081 	struct ale_softc *sc;
2082 	struct mii_data *mii;
2083 	struct ifnet *ifp;
2084 	uint32_t reg;
2085 
2086 	sc = (struct ale_softc *)arg;
2087 
2088 	ALE_LOCK(sc);
2089 	mii = device_get_softc(sc->ale_miibus);
2090 	ifp = sc->ale_ifp;
2091 	if (mii == NULL || ifp == NULL ||
2092 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2093 		ALE_UNLOCK(sc);
2094 		return;
2095 	}
2096 
2097 	sc->ale_flags &= ~ALE_FLAG_LINK;
2098 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2099 	    (IFM_ACTIVE | IFM_AVALID)) {
2100 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2101 		case IFM_10_T:
2102 		case IFM_100_TX:
2103 			sc->ale_flags |= ALE_FLAG_LINK;
2104 			break;
2105 		case IFM_1000_T:
2106 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
2107 				sc->ale_flags |= ALE_FLAG_LINK;
2108 			break;
2109 		default:
2110 			break;
2111 		}
2112 	}
2113 
2114 	/* Stop Rx/Tx MACs. */
2115 	ale_stop_mac(sc);
2116 
2117 	/* Program MACs with resolved speed/duplex/flow-control. */
2118 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
2119 		ale_mac_config(sc);
2120 		/* Reenable Tx/Rx MACs. */
2121 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
2122 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2123 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2124 	}
2125 
2126 	ALE_UNLOCK(sc);
2127 }
2128 
2129 static void
2130 ale_stats_clear(struct ale_softc *sc)
2131 {
2132 	struct smb sb;
2133 	uint32_t *reg;
2134 	int i;
2135 
2136 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2137 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2138 		i += sizeof(uint32_t);
2139 	}
2140 	/* Read Tx statistics. */
2141 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2142 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2143 		i += sizeof(uint32_t);
2144 	}
2145 }
2146 
2147 static void
2148 ale_stats_update(struct ale_softc *sc)
2149 {
2150 	struct ale_hw_stats *stat;
2151 	struct smb sb, *smb;
2152 	struct ifnet *ifp;
2153 	uint32_t *reg;
2154 	int i;
2155 
2156 	ALE_LOCK_ASSERT(sc);
2157 
2158 	ifp = sc->ale_ifp;
2159 	stat = &sc->ale_stats;
2160 	smb = &sb;
2161 
2162 	/* Read Rx statistics. */
2163 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2164 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2165 		i += sizeof(uint32_t);
2166 	}
2167 	/* Read Tx statistics. */
2168 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2169 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2170 		i += sizeof(uint32_t);
2171 	}
2172 
2173 	/* Rx stats. */
2174 	stat->rx_frames += smb->rx_frames;
2175 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2176 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2177 	stat->rx_pause_frames += smb->rx_pause_frames;
2178 	stat->rx_control_frames += smb->rx_control_frames;
2179 	stat->rx_crcerrs += smb->rx_crcerrs;
2180 	stat->rx_lenerrs += smb->rx_lenerrs;
2181 	stat->rx_bytes += smb->rx_bytes;
2182 	stat->rx_runts += smb->rx_runts;
2183 	stat->rx_fragments += smb->rx_fragments;
2184 	stat->rx_pkts_64 += smb->rx_pkts_64;
2185 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2186 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2187 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2188 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2189 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2190 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2191 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2192 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2193 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2194 	stat->rx_alignerrs += smb->rx_alignerrs;
2195 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2196 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2197 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2198 
2199 	/* Tx stats. */
2200 	stat->tx_frames += smb->tx_frames;
2201 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2202 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2203 	stat->tx_pause_frames += smb->tx_pause_frames;
2204 	stat->tx_excess_defer += smb->tx_excess_defer;
2205 	stat->tx_control_frames += smb->tx_control_frames;
2206 	stat->tx_deferred += smb->tx_deferred;
2207 	stat->tx_bytes += smb->tx_bytes;
2208 	stat->tx_pkts_64 += smb->tx_pkts_64;
2209 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2210 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2211 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2212 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2213 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2214 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2215 	stat->tx_single_colls += smb->tx_single_colls;
2216 	stat->tx_multi_colls += smb->tx_multi_colls;
2217 	stat->tx_late_colls += smb->tx_late_colls;
2218 	stat->tx_excess_colls += smb->tx_excess_colls;
2219 	stat->tx_abort += smb->tx_abort;
2220 	stat->tx_underrun += smb->tx_underrun;
2221 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2222 	stat->tx_lenerrs += smb->tx_lenerrs;
2223 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2224 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2225 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2226 
2227 	/* Update counters in ifnet. */
2228 	ifp->if_opackets += smb->tx_frames;
2229 
2230 	ifp->if_collisions += smb->tx_single_colls +
2231 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2232 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
2233 
2234 	/*
2235 	 * XXX
2236 	 * tx_pkts_truncated counter looks suspicious. It constantly
2237 	 * increments with no sign of Tx errors. This may indicate
2238 	 * the counter name is not correct one so I've removed the
2239 	 * counter in output errors.
2240 	 */
2241 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
2242 	    smb->tx_underrun;
2243 
2244 	ifp->if_ipackets += smb->rx_frames;
2245 
2246 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2247 	    smb->rx_runts + smb->rx_pkts_truncated +
2248 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2249 	    smb->rx_alignerrs;
2250 }
2251 
2252 static int
2253 ale_intr(void *arg)
2254 {
2255 	struct ale_softc *sc;
2256 	uint32_t status;
2257 
2258 	sc = (struct ale_softc *)arg;
2259 
2260 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2261 	if ((status & ALE_INTRS) == 0)
2262 		return (FILTER_STRAY);
2263 	/* Disable interrupts. */
2264 	CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
2265 	taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2266 
2267 	return (FILTER_HANDLED);
2268 }
2269 
2270 static void
2271 ale_int_task(void *arg, int pending)
2272 {
2273 	struct ale_softc *sc;
2274 	struct ifnet *ifp;
2275 	uint32_t status;
2276 	int more;
2277 
2278 	sc = (struct ale_softc *)arg;
2279 
2280 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2281 	ALE_LOCK(sc);
2282 	if (sc->ale_morework != 0)
2283 		status |= INTR_RX_PKT;
2284 	if ((status & ALE_INTRS) == 0)
2285 		goto done;
2286 
2287 	/* Acknowledge interrupts but still disable interrupts. */
2288 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
2289 
2290 	ifp = sc->ale_ifp;
2291 	more = 0;
2292 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2293 		more = ale_rxeof(sc, sc->ale_process_limit);
2294 		if (more == EAGAIN)
2295 			sc->ale_morework = 1;
2296 		else if (more == EIO) {
2297 			sc->ale_stats.reset_brk_seq++;
2298 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2299 			ale_init_locked(sc);
2300 			ALE_UNLOCK(sc);
2301 			return;
2302 		}
2303 
2304 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2305 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2306 				device_printf(sc->ale_dev,
2307 				    "DMA read error! -- resetting\n");
2308 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2309 				device_printf(sc->ale_dev,
2310 				    "DMA write error! -- resetting\n");
2311 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2312 			ale_init_locked(sc);
2313 			ALE_UNLOCK(sc);
2314 			return;
2315 		}
2316 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2317 			ale_start_locked(ifp);
2318 	}
2319 
2320 	if (more == EAGAIN ||
2321 	    (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
2322 		ALE_UNLOCK(sc);
2323 		taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2324 		return;
2325 	}
2326 
2327 done:
2328 	ALE_UNLOCK(sc);
2329 
2330 	/* Re-enable interrupts. */
2331 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
2332 }
2333 
2334 static void
2335 ale_txeof(struct ale_softc *sc)
2336 {
2337 	struct ifnet *ifp;
2338 	struct ale_txdesc *txd;
2339 	uint32_t cons, prod;
2340 	int prog;
2341 
2342 	ALE_LOCK_ASSERT(sc);
2343 
2344 	ifp = sc->ale_ifp;
2345 
2346 	if (sc->ale_cdata.ale_tx_cnt == 0)
2347 		return;
2348 
2349 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2350 	    sc->ale_cdata.ale_tx_ring_map,
2351 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2352 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
2353 		bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2354 		    sc->ale_cdata.ale_tx_cmb_map,
2355 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2356 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
2357 	} else
2358 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
2359 	cons = sc->ale_cdata.ale_tx_cons;
2360 	/*
2361 	 * Go through our Tx list and free mbufs for those
2362 	 * frames which have been transmitted.
2363 	 */
2364 	for (prog = 0; cons != prod; prog++,
2365 	    ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
2366 		if (sc->ale_cdata.ale_tx_cnt <= 0)
2367 			break;
2368 		prog++;
2369 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2370 		sc->ale_cdata.ale_tx_cnt--;
2371 		txd = &sc->ale_cdata.ale_txdesc[cons];
2372 		if (txd->tx_m != NULL) {
2373 			/* Reclaim transmitted mbufs. */
2374 			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2375 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2376 			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2377 			    txd->tx_dmamap);
2378 			m_freem(txd->tx_m);
2379 			txd->tx_m = NULL;
2380 		}
2381 	}
2382 
2383 	if (prog > 0) {
2384 		sc->ale_cdata.ale_tx_cons = cons;
2385 		/*
2386 		 * Unarm watchdog timer only when there is no pending
2387 		 * Tx descriptors in queue.
2388 		 */
2389 		if (sc->ale_cdata.ale_tx_cnt == 0)
2390 			sc->ale_watchdog_timer = 0;
2391 	}
2392 }
2393 
2394 static void
2395 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
2396     uint32_t length, uint32_t *prod)
2397 {
2398 	struct ale_rx_page *rx_page;
2399 
2400 	rx_page = *page;
2401 	/* Update consumer position. */
2402 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
2403 	    ALE_RX_PAGE_ALIGN);
2404 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
2405 		/*
2406 		 * End of Rx page reached, let hardware reuse
2407 		 * this page.
2408 		 */
2409 		rx_page->cons = 0;
2410 		*rx_page->cmb_addr = 0;
2411 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2412 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2413 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
2414 		    RXF_VALID);
2415 		/* Switch to alternate Rx page. */
2416 		sc->ale_cdata.ale_rx_curp ^= 1;
2417 		rx_page = *page =
2418 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2419 		/* Page flipped, sync CMB and Rx page. */
2420 		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2421 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2422 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2423 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2424 		/* Sync completed, cache updated producer index. */
2425 		*prod = *rx_page->cmb_addr;
2426 	}
2427 }
2428 
2429 
2430 /*
2431  * It seems that AR81xx controller can compute partial checksum.
2432  * The partial checksum value can be used to accelerate checksum
2433  * computation for fragmented TCP/UDP packets. Upper network stack
2434  * already takes advantage of the partial checksum value in IP
2435  * reassembly stage. But I'm not sure the correctness of the
2436  * partial hardware checksum assistance due to lack of data sheet.
2437  * In addition, the Rx feature of controller that requires copying
2438  * for every frames effectively nullifies one of most nice offload
2439  * capability of controller.
2440  */
2441 static void
2442 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
2443 {
2444 	struct ifnet *ifp;
2445 	struct ip *ip;
2446 	char *p;
2447 
2448 	ifp = sc->ale_ifp;
2449 	m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2450 	if ((status & ALE_RD_IPCSUM_NOK) == 0)
2451 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2452 
2453 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
2454 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
2455 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
2456 		    ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
2457 			m->m_pkthdr.csum_flags |=
2458 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2459 			m->m_pkthdr.csum_data = 0xffff;
2460 		}
2461 	} else {
2462 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
2463 		    (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
2464 			p = mtod(m, char *);
2465 			p += ETHER_HDR_LEN;
2466 			if ((status & ALE_RD_802_3) != 0)
2467 				p += LLC_SNAPFRAMELEN;
2468 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 &&
2469 			    (status & ALE_RD_VLAN) != 0)
2470 				p += ETHER_VLAN_ENCAP_LEN;
2471 			ip = (struct ip *)p;
2472 			if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
2473 				return;
2474 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2475 			    CSUM_PSEUDO_HDR;
2476 			m->m_pkthdr.csum_data = 0xffff;
2477 		}
2478 	}
2479 	/*
2480 	 * Don't mark bad checksum for TCP/UDP frames
2481 	 * as fragmented frames may always have set
2482 	 * bad checksummed bit of frame status.
2483 	 */
2484 }
2485 
2486 /* Process received frames. */
2487 static int
2488 ale_rxeof(struct ale_softc *sc, int count)
2489 {
2490 	struct ale_rx_page *rx_page;
2491 	struct rx_rs *rs;
2492 	struct ifnet *ifp;
2493 	struct mbuf *m;
2494 	uint32_t length, prod, seqno, status, vtags;
2495 	int prog;
2496 
2497 	ifp = sc->ale_ifp;
2498 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2499 	bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2500 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2501 	bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2502 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2503 	/*
2504 	 * Don't directly access producer index as hardware may
2505 	 * update it while Rx handler is in progress. It would
2506 	 * be even better if there is a way to let hardware
2507 	 * know how far driver processed its received frames.
2508 	 * Alternatively, hardware could provide a way to disable
2509 	 * CMB updates until driver acknowledges the end of CMB
2510 	 * access.
2511 	 */
2512 	prod = *rx_page->cmb_addr;
2513 	for (prog = 0; prog < count; prog++) {
2514 		if (rx_page->cons >= prod)
2515 			break;
2516 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
2517 		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
2518 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
2519 			/*
2520 			 * Normally I believe this should not happen unless
2521 			 * severe driver bug or corrupted memory. However
2522 			 * it seems to happen under certain conditions which
2523 			 * is triggered by abrupt Rx events such as initiation
2524 			 * of bulk transfer of remote host. It's not easy to
2525 			 * reproduce this and I doubt it could be related
2526 			 * with FIFO overflow of hardware or activity of Tx
2527 			 * CMB updates. I also remember similar behaviour
2528 			 * seen on RealTek 8139 which uses resembling Rx
2529 			 * scheme.
2530 			 */
2531 			if (bootverbose)
2532 				device_printf(sc->ale_dev,
2533 				    "garbled seq: %u, expected: %u -- "
2534 				    "resetting!\n", seqno,
2535 				    sc->ale_cdata.ale_rx_seqno);
2536 			return (EIO);
2537 		}
2538 		/* Frame received. */
2539 		sc->ale_cdata.ale_rx_seqno++;
2540 		length = ALE_RX_BYTES(le32toh(rs->length));
2541 		status = le32toh(rs->flags);
2542 		if ((status & ALE_RD_ERROR) != 0) {
2543 			/*
2544 			 * We want to pass the following frames to upper
2545 			 * layer regardless of error status of Rx return
2546 			 * status.
2547 			 *
2548 			 *  o IP/TCP/UDP checksum is bad.
2549 			 *  o frame length and protocol specific length
2550 			 *     does not match.
2551 			 */
2552 			if ((status & (ALE_RD_CRC | ALE_RD_CODE |
2553 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
2554 			    ALE_RD_TRUNC)) != 0) {
2555 				ale_rx_update_page(sc, &rx_page, length, &prod);
2556 				continue;
2557 			}
2558 		}
2559 		/*
2560 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
2561 		 * from hardware limitation). For jumbo frames we could
2562 		 * get a slightly better performance if driver use
2563 		 * m_getjcl(9) with proper buffer size argument. However
2564 		 * that would make code more complicated and I don't
2565 		 * think users would expect good Rx performance numbers
2566 		 * on these low-end consumer ethernet controller.
2567 		 */
2568 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
2569 		    ETHER_ALIGN, ifp, NULL);
2570 		if (m == NULL) {
2571 			ifp->if_iqdrops++;
2572 			ale_rx_update_page(sc, &rx_page, length, &prod);
2573 			continue;
2574 		}
2575 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2576 		    (status & ALE_RD_IPV4) != 0)
2577 			ale_rxcsum(sc, m, status);
2578 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2579 		    (status & ALE_RD_VLAN) != 0) {
2580 			vtags = ALE_RX_VLAN(le32toh(rs->vtags));
2581 			m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
2582 			m->m_flags |= M_VLANTAG;
2583 		}
2584 
2585 		/* Pass it to upper layer. */
2586 		ALE_UNLOCK(sc);
2587 		(*ifp->if_input)(ifp, m);
2588 		ALE_LOCK(sc);
2589 
2590 		ale_rx_update_page(sc, &rx_page, length, &prod);
2591 	}
2592 
2593 	return (count > 0 ? 0 : EAGAIN);
2594 }
2595 
2596 static void
2597 ale_tick(void *arg)
2598 {
2599 	struct ale_softc *sc;
2600 	struct mii_data *mii;
2601 
2602 	sc = (struct ale_softc *)arg;
2603 
2604 	ALE_LOCK_ASSERT(sc);
2605 
2606 	mii = device_get_softc(sc->ale_miibus);
2607 	mii_tick(mii);
2608 	ale_stats_update(sc);
2609 	/*
2610 	 * Reclaim Tx buffers that have been transferred. It's not
2611 	 * needed here but it would release allocated mbuf chains
2612 	 * faster and limit the maximum delay to a hz.
2613 	 */
2614 	ale_txeof(sc);
2615 	ale_watchdog(sc);
2616 	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2617 }
2618 
2619 static void
2620 ale_reset(struct ale_softc *sc)
2621 {
2622 	uint32_t reg;
2623 	int i;
2624 
2625 	/* Initialize PCIe module. From Linux. */
2626 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2627 
2628 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
2629 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2630 		DELAY(10);
2631 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
2632 			break;
2633 	}
2634 	if (i == 0)
2635 		device_printf(sc->ale_dev, "master reset timeout!\n");
2636 
2637 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2638 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
2639 			break;
2640 		DELAY(10);
2641 	}
2642 
2643 	if (i == 0)
2644 		device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
2645 }
2646 
2647 static void
2648 ale_init(void *xsc)
2649 {
2650 	struct ale_softc *sc;
2651 
2652 	sc = (struct ale_softc *)xsc;
2653 	ALE_LOCK(sc);
2654 	ale_init_locked(sc);
2655 	ALE_UNLOCK(sc);
2656 }
2657 
2658 static void
2659 ale_init_locked(struct ale_softc *sc)
2660 {
2661 	struct ifnet *ifp;
2662 	struct mii_data *mii;
2663 	uint8_t eaddr[ETHER_ADDR_LEN];
2664 	bus_addr_t paddr;
2665 	uint32_t reg, rxf_hi, rxf_lo;
2666 
2667 	ALE_LOCK_ASSERT(sc);
2668 
2669 	ifp = sc->ale_ifp;
2670 	mii = device_get_softc(sc->ale_miibus);
2671 
2672 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2673 		return;
2674 	/*
2675 	 * Cancel any pending I/O.
2676 	 */
2677 	ale_stop(sc);
2678 	/*
2679 	 * Reset the chip to a known state.
2680 	 */
2681 	ale_reset(sc);
2682 	/* Initialize Tx descriptors, DMA memory blocks. */
2683 	ale_init_rx_pages(sc);
2684 	ale_init_tx_ring(sc);
2685 
2686 	/* Reprogram the station address. */
2687 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2688 	CSR_WRITE_4(sc, ALE_PAR0,
2689 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2690 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
2691 	/*
2692 	 * Clear WOL status and disable all WOL feature as WOL
2693 	 * would interfere Rx operation under normal environments.
2694 	 */
2695 	CSR_READ_4(sc, ALE_WOL_CFG);
2696 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
2697 	/*
2698 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
2699 	 * the same high address part of DMAable region.
2700 	 */
2701 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
2702 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
2703 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
2704 	CSR_WRITE_4(sc, ALE_TPD_CNT,
2705 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
2706 	/* Set Rx page base address, note we use single queue. */
2707 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
2708 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
2709 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
2710 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
2711 	/* Set Tx/Rx CMB addresses. */
2712 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
2713 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
2714 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
2715 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
2716 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
2717 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
2718 	/* Mark RXF0 is valid. */
2719 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
2720 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
2721 	/*
2722 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
2723 	 * multi-queue yet.
2724 	 */
2725 
2726 	/* Set Rx page size, excluding guard frame size. */
2727 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
2728 	/* Tell hardware that we're ready to load DMA blocks. */
2729 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
2730 
2731 	/* Set Rx/Tx interrupt trigger threshold. */
2732 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
2733 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
2734 	/*
2735 	 * XXX
2736 	 * Set interrupt trigger timer, its purpose and relation
2737 	 * with interrupt moderation mechanism is not clear yet.
2738 	 */
2739 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
2740 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
2741 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
2742 
2743 	/* Configure interrupt moderation timer. */
2744 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
2745 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
2746 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
2747 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
2748 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
2749 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2750 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
2751 		reg |= MASTER_IM_RX_TIMER_ENB;
2752 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
2753 		reg |= MASTER_IM_TX_TIMER_ENB;
2754 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
2755 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
2756 
2757 	/* Set Maximum frame size of controller. */
2758 	if (ifp->if_mtu < ETHERMTU)
2759 		sc->ale_max_frame_size = ETHERMTU;
2760 	else
2761 		sc->ale_max_frame_size = ifp->if_mtu;
2762 	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2763 	    ETHER_CRC_LEN;
2764 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
2765 	/* Configure IPG/IFG parameters. */
2766 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
2767 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2768 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2769 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2770 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2771 	/* Set parameters for half-duplex media. */
2772 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
2773 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2774 	    HDPX_CFG_LCOL_MASK) |
2775 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2776 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2777 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2778 	    HDPX_CFG_ABEBT_MASK) |
2779 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2780 	    HDPX_CFG_JAMIPG_MASK));
2781 
2782 	/* Configure Tx jumbo frame parameters. */
2783 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2784 		if (ifp->if_mtu < ETHERMTU)
2785 			reg = sc->ale_max_frame_size;
2786 		else if (ifp->if_mtu < 6 * 1024)
2787 			reg = (sc->ale_max_frame_size * 2) / 3;
2788 		else
2789 			reg = sc->ale_max_frame_size / 2;
2790 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
2791 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
2792 		    TX_JUMBO_THRESH_UNIT_SHIFT);
2793 	}
2794 	/* Configure TxQ. */
2795 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
2796 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
2797 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2798 	    TXQ_CFG_TPD_BURST_MASK;
2799 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
2800 
2801 	/* Configure Rx jumbo frame & flow control parameters. */
2802 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2803 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
2804 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
2805 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
2806 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
2807 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
2808 		    RX_JUMBO_LKAH_MASK));
2809 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
2810 		rxf_hi = (reg * 7) / 10;
2811 		rxf_lo = (reg * 3)/ 10;
2812 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
2813 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2814 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
2815 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2816 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
2817 	}
2818 
2819 	/* Disable RSS. */
2820 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
2821 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
2822 
2823 	/* Configure RxQ. */
2824 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
2825 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2826 
2827 	/* Configure DMA parameters. */
2828 	reg = 0;
2829 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
2830 		reg |= DMA_CFG_TXCMB_ENB;
2831 	CSR_WRITE_4(sc, ALE_DMA_CFG,
2832 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
2833 	    sc->ale_dma_rd_burst | reg |
2834 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
2835 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2836 	    DMA_CFG_RD_DELAY_CNT_MASK) |
2837 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2838 	    DMA_CFG_WR_DELAY_CNT_MASK));
2839 
2840 	/*
2841 	 * Hardware can be configured to issue SMB interrupt based
2842 	 * on programmed interval. Since there is a callout that is
2843 	 * invoked for every hz in driver we use that instead of
2844 	 * relying on periodic SMB interrupt.
2845 	 */
2846 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
2847 	/* Clear MAC statistics. */
2848 	ale_stats_clear(sc);
2849 
2850 	/*
2851 	 * Configure Tx/Rx MACs.
2852 	 *  - Auto-padding for short frames.
2853 	 *  - Enable CRC generation.
2854 	 *  Actual reconfiguration of MAC for resolved speed/duplex
2855 	 *  is followed after detection of link establishment.
2856 	 *  AR81xx always does checksum computation regardless of
2857 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
2858 	 *  cause Rx handling issue for fragmented IP datagrams due
2859 	 *  to silicon bug.
2860 	 */
2861 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2862 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2863 	    MAC_CFG_PREAMBLE_MASK);
2864 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
2865 		reg |= MAC_CFG_SPEED_10_100;
2866 	else
2867 		reg |= MAC_CFG_SPEED_1000;
2868 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2869 
2870 	/* Set up the receive filter. */
2871 	ale_rxfilter(sc);
2872 	ale_rxvlan(sc);
2873 
2874 	/* Acknowledge all pending interrupts and clear it. */
2875 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
2876 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2877 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
2878 
2879 	sc->ale_flags &= ~ALE_FLAG_LINK;
2880 	/* Switch to the current media. */
2881 	mii_mediachg(mii);
2882 
2883 	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2884 
2885 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2886 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2887 }
2888 
2889 static void
2890 ale_stop(struct ale_softc *sc)
2891 {
2892 	struct ifnet *ifp;
2893 	struct ale_txdesc *txd;
2894 	uint32_t reg;
2895 	int i;
2896 
2897 	ALE_LOCK_ASSERT(sc);
2898 	/*
2899 	 * Mark the interface down and cancel the watchdog timer.
2900 	 */
2901 	ifp = sc->ale_ifp;
2902 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2903 	sc->ale_flags &= ~ALE_FLAG_LINK;
2904 	callout_stop(&sc->ale_tick_ch);
2905 	sc->ale_watchdog_timer = 0;
2906 	ale_stats_update(sc);
2907 	/* Disable interrupts. */
2908 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
2909 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2910 	/* Disable queue processing and DMA. */
2911 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
2912 	reg &= ~TXQ_CFG_ENB;
2913 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
2914 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
2915 	reg &= ~RXQ_CFG_ENB;
2916 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
2917 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
2918 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
2919 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
2920 	DELAY(1000);
2921 	/* Stop Rx/Tx MACs. */
2922 	ale_stop_mac(sc);
2923 	/* Disable interrupts which might be touched in taskq handler. */
2924 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2925 
2926 	/*
2927 	 * Free TX mbufs still in the queues.
2928 	 */
2929 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2930 		txd = &sc->ale_cdata.ale_txdesc[i];
2931 		if (txd->tx_m != NULL) {
2932 			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2933 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2934 			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2935 			    txd->tx_dmamap);
2936 			m_freem(txd->tx_m);
2937 			txd->tx_m = NULL;
2938 		}
2939         }
2940 }
2941 
2942 static void
2943 ale_stop_mac(struct ale_softc *sc)
2944 {
2945 	uint32_t reg;
2946 	int i;
2947 
2948 	ALE_LOCK_ASSERT(sc);
2949 
2950 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2951 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2952 		reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2953 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2954 	}
2955 
2956 	for (i = ALE_TIMEOUT; i > 0; i--) {
2957 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
2958 		if (reg == 0)
2959 			break;
2960 		DELAY(10);
2961 	}
2962 	if (i == 0)
2963 		device_printf(sc->ale_dev,
2964 		    "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
2965 }
2966 
2967 static void
2968 ale_init_tx_ring(struct ale_softc *sc)
2969 {
2970 	struct ale_txdesc *txd;
2971 	int i;
2972 
2973 	ALE_LOCK_ASSERT(sc);
2974 
2975 	sc->ale_cdata.ale_tx_prod = 0;
2976 	sc->ale_cdata.ale_tx_cons = 0;
2977 	sc->ale_cdata.ale_tx_cnt = 0;
2978 
2979 	bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
2980 	bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
2981 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2982 		txd = &sc->ale_cdata.ale_txdesc[i];
2983 		txd->tx_m = NULL;
2984 	}
2985 	*sc->ale_cdata.ale_tx_cmb = 0;
2986 	bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2987 	    sc->ale_cdata.ale_tx_cmb_map,
2988 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2989 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2990 	    sc->ale_cdata.ale_tx_ring_map,
2991 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2992 }
2993 
2994 static void
2995 ale_init_rx_pages(struct ale_softc *sc)
2996 {
2997 	struct ale_rx_page *rx_page;
2998 	int i;
2999 
3000 	ALE_LOCK_ASSERT(sc);
3001 
3002 	sc->ale_morework = 0;
3003 	sc->ale_cdata.ale_rx_seqno = 0;
3004 	sc->ale_cdata.ale_rx_curp = 0;
3005 
3006 	for (i = 0; i < ALE_RX_PAGES; i++) {
3007 		rx_page = &sc->ale_cdata.ale_rx_page[i];
3008 		bzero(rx_page->page_addr, sc->ale_pagesize);
3009 		bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
3010 		rx_page->cons = 0;
3011 		*rx_page->cmb_addr = 0;
3012 		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
3013 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3014 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
3015 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3016 	}
3017 }
3018 
3019 static void
3020 ale_rxvlan(struct ale_softc *sc)
3021 {
3022 	struct ifnet *ifp;
3023 	uint32_t reg;
3024 
3025 	ALE_LOCK_ASSERT(sc);
3026 
3027 	ifp = sc->ale_ifp;
3028 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
3029 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3030 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3031 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3032 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
3033 }
3034 
3035 static void
3036 ale_rxfilter(struct ale_softc *sc)
3037 {
3038 	struct ifnet *ifp;
3039 	struct ifmultiaddr *ifma;
3040 	uint32_t crc;
3041 	uint32_t mchash[2];
3042 	uint32_t rxcfg;
3043 
3044 	ALE_LOCK_ASSERT(sc);
3045 
3046 	ifp = sc->ale_ifp;
3047 
3048 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
3049 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3050 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3051 		rxcfg |= MAC_CFG_BCAST;
3052 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3053 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3054 			rxcfg |= MAC_CFG_PROMISC;
3055 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3056 			rxcfg |= MAC_CFG_ALLMULTI;
3057 		CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
3058 		CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
3059 		CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3060 		return;
3061 	}
3062 
3063 	/* Program new filter. */
3064 	bzero(mchash, sizeof(mchash));
3065 
3066 	if_maddr_rlock(ifp);
3067 	TAILQ_FOREACH(ifma, &sc->ale_ifp->if_multiaddrs, ifma_link) {
3068 		if (ifma->ifma_addr->sa_family != AF_LINK)
3069 			continue;
3070 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3071 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3072 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3073 	}
3074 	if_maddr_runlock(ifp);
3075 
3076 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
3077 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
3078 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3079 }
3080 
3081 static int
3082 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3083 {
3084 	int error, value;
3085 
3086 	if (arg1 == NULL)
3087 		return (EINVAL);
3088 	value = *(int *)arg1;
3089 	error = sysctl_handle_int(oidp, &value, 0, req);
3090 	if (error || req->newptr == NULL)
3091 		return (error);
3092 	if (value < low || value > high)
3093 		return (EINVAL);
3094         *(int *)arg1 = value;
3095 
3096         return (0);
3097 }
3098 
3099 static int
3100 sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
3101 {
3102 	return (sysctl_int_range(oidp, arg1, arg2, req,
3103 	    ALE_PROC_MIN, ALE_PROC_MAX));
3104 }
3105 
3106 static int
3107 sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
3108 {
3109 
3110 	return (sysctl_int_range(oidp, arg1, arg2, req,
3111 	    ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
3112 }
3113