1 /*- 2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/bus.h> 36 #include <sys/endian.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/mbuf.h> 40 #include <sys/module.h> 41 #include <sys/rman.h> 42 #include <sys/queue.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/sysctl.h> 46 #include <sys/taskqueue.h> 47 48 #include <net/bpf.h> 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/ethernet.h> 52 #include <net/if_dl.h> 53 #include <net/if_llc.h> 54 #include <net/if_media.h> 55 #include <net/if_types.h> 56 #include <net/if_vlan_var.h> 57 58 #include <netinet/in.h> 59 #include <netinet/in_systm.h> 60 #include <netinet/ip.h> 61 #include <netinet/tcp.h> 62 63 #include <dev/mii/mii.h> 64 #include <dev/mii/miivar.h> 65 66 #include <dev/pci/pcireg.h> 67 #include <dev/pci/pcivar.h> 68 69 #include <machine/bus.h> 70 #include <machine/in_cksum.h> 71 72 #include <dev/ale/if_alereg.h> 73 #include <dev/ale/if_alevar.h> 74 75 /* "device miibus" required. See GENERIC if you get errors here. */ 76 #include "miibus_if.h" 77 78 /* For more information about Tx checksum offload issues see ale_encap(). */ 79 #define ALE_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 80 81 MODULE_DEPEND(ale, pci, 1, 1, 1); 82 MODULE_DEPEND(ale, ether, 1, 1, 1); 83 MODULE_DEPEND(ale, miibus, 1, 1, 1); 84 85 /* Tunables. */ 86 static int msi_disable = 0; 87 static int msix_disable = 0; 88 TUNABLE_INT("hw.ale.msi_disable", &msi_disable); 89 TUNABLE_INT("hw.ale.msix_disable", &msix_disable); 90 91 /* 92 * Devices supported by this driver. 93 */ 94 static struct ale_dev { 95 uint16_t ale_vendorid; 96 uint16_t ale_deviceid; 97 const char *ale_name; 98 } ale_devs[] = { 99 { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX, 100 "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" }, 101 }; 102 103 static int ale_attach(device_t); 104 static int ale_check_boundary(struct ale_softc *); 105 static int ale_detach(device_t); 106 static int ale_dma_alloc(struct ale_softc *); 107 static void ale_dma_free(struct ale_softc *); 108 static void ale_dmamap_cb(void *, bus_dma_segment_t *, int, int); 109 static int ale_encap(struct ale_softc *, struct mbuf **); 110 static void ale_get_macaddr(struct ale_softc *); 111 static void ale_init(void *); 112 static void ale_init_locked(struct ale_softc *); 113 static void ale_init_rx_pages(struct ale_softc *); 114 static void ale_init_tx_ring(struct ale_softc *); 115 static void ale_int_task(void *, int); 116 static int ale_intr(void *); 117 static int ale_ioctl(struct ifnet *, u_long, caddr_t); 118 static void ale_link_task(void *, int); 119 static void ale_mac_config(struct ale_softc *); 120 static int ale_miibus_readreg(device_t, int, int); 121 static void ale_miibus_statchg(device_t); 122 static int ale_miibus_writereg(device_t, int, int, int); 123 static int ale_mediachange(struct ifnet *); 124 static void ale_mediastatus(struct ifnet *, struct ifmediareq *); 125 static void ale_phy_reset(struct ale_softc *); 126 static int ale_probe(device_t); 127 static void ale_reset(struct ale_softc *); 128 static int ale_resume(device_t); 129 static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **, 130 uint32_t, uint32_t *); 131 static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t); 132 static int ale_rxeof(struct ale_softc *sc, int); 133 static void ale_rxfilter(struct ale_softc *); 134 static void ale_rxvlan(struct ale_softc *); 135 static void ale_setlinkspeed(struct ale_softc *); 136 static void ale_setwol(struct ale_softc *); 137 static int ale_shutdown(device_t); 138 static void ale_start(struct ifnet *); 139 static void ale_start_locked(struct ifnet *); 140 static void ale_stats_clear(struct ale_softc *); 141 static void ale_stats_update(struct ale_softc *); 142 static void ale_stop(struct ale_softc *); 143 static void ale_stop_mac(struct ale_softc *); 144 static int ale_suspend(device_t); 145 static void ale_sysctl_node(struct ale_softc *); 146 static void ale_tick(void *); 147 static void ale_txeof(struct ale_softc *); 148 static void ale_watchdog(struct ale_softc *); 149 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); 150 static int sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS); 151 static int sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS); 152 153 static device_method_t ale_methods[] = { 154 /* Device interface. */ 155 DEVMETHOD(device_probe, ale_probe), 156 DEVMETHOD(device_attach, ale_attach), 157 DEVMETHOD(device_detach, ale_detach), 158 DEVMETHOD(device_shutdown, ale_shutdown), 159 DEVMETHOD(device_suspend, ale_suspend), 160 DEVMETHOD(device_resume, ale_resume), 161 162 /* MII interface. */ 163 DEVMETHOD(miibus_readreg, ale_miibus_readreg), 164 DEVMETHOD(miibus_writereg, ale_miibus_writereg), 165 DEVMETHOD(miibus_statchg, ale_miibus_statchg), 166 167 { NULL, NULL } 168 }; 169 170 static driver_t ale_driver = { 171 "ale", 172 ale_methods, 173 sizeof(struct ale_softc) 174 }; 175 176 static devclass_t ale_devclass; 177 178 DRIVER_MODULE(ale, pci, ale_driver, ale_devclass, 0, 0); 179 DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, 0, 0); 180 181 static struct resource_spec ale_res_spec_mem[] = { 182 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 183 { -1, 0, 0 } 184 }; 185 186 static struct resource_spec ale_irq_spec_legacy[] = { 187 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 188 { -1, 0, 0 } 189 }; 190 191 static struct resource_spec ale_irq_spec_msi[] = { 192 { SYS_RES_IRQ, 1, RF_ACTIVE }, 193 { -1, 0, 0 } 194 }; 195 196 static struct resource_spec ale_irq_spec_msix[] = { 197 { SYS_RES_IRQ, 1, RF_ACTIVE }, 198 { -1, 0, 0 } 199 }; 200 201 static int 202 ale_miibus_readreg(device_t dev, int phy, int reg) 203 { 204 struct ale_softc *sc; 205 uint32_t v; 206 int i; 207 208 sc = device_get_softc(dev); 209 210 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ | 211 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 212 for (i = ALE_PHY_TIMEOUT; i > 0; i--) { 213 DELAY(5); 214 v = CSR_READ_4(sc, ALE_MDIO); 215 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 216 break; 217 } 218 219 if (i == 0) { 220 device_printf(sc->ale_dev, "phy read timeout : %d\n", reg); 221 return (0); 222 } 223 224 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT); 225 } 226 227 static int 228 ale_miibus_writereg(device_t dev, int phy, int reg, int val) 229 { 230 struct ale_softc *sc; 231 uint32_t v; 232 int i; 233 234 sc = device_get_softc(dev); 235 236 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE | 237 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT | 238 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 239 for (i = ALE_PHY_TIMEOUT; i > 0; i--) { 240 DELAY(5); 241 v = CSR_READ_4(sc, ALE_MDIO); 242 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 243 break; 244 } 245 246 if (i == 0) 247 device_printf(sc->ale_dev, "phy write timeout : %d\n", reg); 248 249 return (0); 250 } 251 252 static void 253 ale_miibus_statchg(device_t dev) 254 { 255 struct ale_softc *sc; 256 257 sc = device_get_softc(dev); 258 259 taskqueue_enqueue(taskqueue_swi, &sc->ale_link_task); 260 } 261 262 static void 263 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 264 { 265 struct ale_softc *sc; 266 struct mii_data *mii; 267 268 sc = ifp->if_softc; 269 ALE_LOCK(sc); 270 mii = device_get_softc(sc->ale_miibus); 271 272 mii_pollstat(mii); 273 ifmr->ifm_status = mii->mii_media_status; 274 ifmr->ifm_active = mii->mii_media_active; 275 ALE_UNLOCK(sc); 276 } 277 278 static int 279 ale_mediachange(struct ifnet *ifp) 280 { 281 struct ale_softc *sc; 282 struct mii_data *mii; 283 struct mii_softc *miisc; 284 int error; 285 286 sc = ifp->if_softc; 287 ALE_LOCK(sc); 288 mii = device_get_softc(sc->ale_miibus); 289 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 290 PHY_RESET(miisc); 291 error = mii_mediachg(mii); 292 ALE_UNLOCK(sc); 293 294 return (error); 295 } 296 297 static int 298 ale_probe(device_t dev) 299 { 300 struct ale_dev *sp; 301 int i; 302 uint16_t vendor, devid; 303 304 vendor = pci_get_vendor(dev); 305 devid = pci_get_device(dev); 306 sp = ale_devs; 307 for (i = 0; i < sizeof(ale_devs) / sizeof(ale_devs[0]); i++) { 308 if (vendor == sp->ale_vendorid && 309 devid == sp->ale_deviceid) { 310 device_set_desc(dev, sp->ale_name); 311 return (BUS_PROBE_DEFAULT); 312 } 313 sp++; 314 } 315 316 return (ENXIO); 317 } 318 319 static void 320 ale_get_macaddr(struct ale_softc *sc) 321 { 322 uint32_t ea[2], reg; 323 int i, vpdc; 324 325 reg = CSR_READ_4(sc, ALE_SPI_CTRL); 326 if ((reg & SPI_VPD_ENB) != 0) { 327 reg &= ~SPI_VPD_ENB; 328 CSR_WRITE_4(sc, ALE_SPI_CTRL, reg); 329 } 330 331 if (pci_find_cap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) { 332 /* 333 * PCI VPD capability found, let TWSI reload EEPROM. 334 * This will set ethernet address of controller. 335 */ 336 CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) | 337 TWSI_CTRL_SW_LD_START); 338 for (i = 100; i > 0; i--) { 339 DELAY(1000); 340 reg = CSR_READ_4(sc, ALE_TWSI_CTRL); 341 if ((reg & TWSI_CTRL_SW_LD_START) == 0) 342 break; 343 } 344 if (i == 0) 345 device_printf(sc->ale_dev, 346 "reloading EEPROM timeout!\n"); 347 } else { 348 if (bootverbose) 349 device_printf(sc->ale_dev, 350 "PCI VPD capability not found!\n"); 351 } 352 353 ea[0] = CSR_READ_4(sc, ALE_PAR0); 354 ea[1] = CSR_READ_4(sc, ALE_PAR1); 355 sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF; 356 sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF; 357 sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF; 358 sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF; 359 sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF; 360 sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF; 361 } 362 363 static void 364 ale_phy_reset(struct ale_softc *sc) 365 { 366 367 /* Reset magic from Linux. */ 368 CSR_WRITE_2(sc, ALE_GPHY_CTRL, 369 GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET | 370 GPHY_CTRL_PHY_PLL_ON); 371 DELAY(1000); 372 CSR_WRITE_2(sc, ALE_GPHY_CTRL, 373 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | 374 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON); 375 DELAY(1000); 376 377 #define ATPHY_DBG_ADDR 0x1D 378 #define ATPHY_DBG_DATA 0x1E 379 380 /* Enable hibernation mode. */ 381 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 382 ATPHY_DBG_ADDR, 0x0B); 383 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 384 ATPHY_DBG_DATA, 0xBC00); 385 /* Set Class A/B for all modes. */ 386 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 387 ATPHY_DBG_ADDR, 0x00); 388 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 389 ATPHY_DBG_DATA, 0x02EF); 390 /* Enable 10BT power saving. */ 391 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 392 ATPHY_DBG_ADDR, 0x12); 393 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 394 ATPHY_DBG_DATA, 0x4C04); 395 /* Adjust 1000T power. */ 396 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 397 ATPHY_DBG_ADDR, 0x04); 398 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 399 ATPHY_DBG_ADDR, 0x8BBB); 400 /* 10BT center tap voltage. */ 401 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 402 ATPHY_DBG_ADDR, 0x05); 403 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 404 ATPHY_DBG_ADDR, 0x2C46); 405 406 #undef ATPHY_DBG_ADDR 407 #undef ATPHY_DBG_DATA 408 DELAY(1000); 409 } 410 411 static int 412 ale_attach(device_t dev) 413 { 414 struct ale_softc *sc; 415 struct ifnet *ifp; 416 uint16_t burst; 417 int error, i, msic, msixc, pmc; 418 uint32_t rxf_len, txf_len; 419 420 error = 0; 421 sc = device_get_softc(dev); 422 sc->ale_dev = dev; 423 424 mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 425 MTX_DEF); 426 callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0); 427 TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc); 428 TASK_INIT(&sc->ale_link_task, 0, ale_link_task, sc); 429 430 /* Map the device. */ 431 pci_enable_busmaster(dev); 432 sc->ale_res_spec = ale_res_spec_mem; 433 sc->ale_irq_spec = ale_irq_spec_legacy; 434 error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res); 435 if (error != 0) { 436 device_printf(dev, "cannot allocate memory resources.\n"); 437 goto fail; 438 } 439 440 /* Set PHY address. */ 441 sc->ale_phyaddr = ALE_PHY_ADDR; 442 443 /* Reset PHY. */ 444 ale_phy_reset(sc); 445 446 /* Reset the ethernet controller. */ 447 ale_reset(sc); 448 449 /* Get PCI and chip id/revision. */ 450 sc->ale_rev = pci_get_revid(dev); 451 if (sc->ale_rev >= 0xF0) { 452 /* L2E Rev. B. AR8114 */ 453 sc->ale_flags |= ALE_FLAG_FASTETHER; 454 } else { 455 if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) { 456 /* L1E AR8121 */ 457 sc->ale_flags |= ALE_FLAG_JUMBO; 458 } else { 459 /* L2E Rev. A. AR8113 */ 460 sc->ale_flags |= ALE_FLAG_FASTETHER; 461 } 462 } 463 /* 464 * All known controllers seems to require 4 bytes alignment 465 * of Tx buffers to make Tx checksum offload with custom 466 * checksum generation method work. 467 */ 468 sc->ale_flags |= ALE_FLAG_TXCSUM_BUG; 469 /* 470 * All known controllers seems to have issues on Rx checksum 471 * offload for fragmented IP datagrams. 472 */ 473 sc->ale_flags |= ALE_FLAG_RXCSUM_BUG; 474 /* 475 * Don't use Tx CMB. It is known to cause RRS update failure 476 * under certain circumstances. Typical phenomenon of the 477 * issue would be unexpected sequence number encountered in 478 * Rx handler. 479 */ 480 sc->ale_flags |= ALE_FLAG_TXCMB_BUG; 481 sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >> 482 MASTER_CHIP_REV_SHIFT; 483 if (bootverbose) { 484 device_printf(dev, "PCI device revision : 0x%04x\n", 485 sc->ale_rev); 486 device_printf(dev, "Chip id/revision : 0x%04x\n", 487 sc->ale_chip_rev); 488 } 489 txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN); 490 rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN); 491 /* 492 * Uninitialized hardware returns an invalid chip id/revision 493 * as well as 0xFFFFFFFF for Tx/Rx fifo length. 494 */ 495 if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF || 496 rxf_len == 0xFFFFFFF) { 497 device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO " 498 "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev, 499 txf_len, rxf_len); 500 error = ENXIO; 501 goto fail; 502 } 503 device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len); 504 505 /* Allocate IRQ resources. */ 506 msixc = pci_msix_count(dev); 507 msic = pci_msi_count(dev); 508 if (bootverbose) { 509 device_printf(dev, "MSIX count : %d\n", msixc); 510 device_printf(dev, "MSI count : %d\n", msic); 511 } 512 513 /* Prefer MSIX over MSI. */ 514 if (msix_disable == 0 || msi_disable == 0) { 515 if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES && 516 pci_alloc_msix(dev, &msixc) == 0) { 517 if (msic == ALE_MSIX_MESSAGES) { 518 device_printf(dev, "Using %d MSIX messages.\n", 519 msixc); 520 sc->ale_flags |= ALE_FLAG_MSIX; 521 sc->ale_irq_spec = ale_irq_spec_msix; 522 } else 523 pci_release_msi(dev); 524 } 525 if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 && 526 msic == ALE_MSI_MESSAGES && 527 pci_alloc_msi(dev, &msic) == 0) { 528 if (msic == ALE_MSI_MESSAGES) { 529 device_printf(dev, "Using %d MSI messages.\n", 530 msic); 531 sc->ale_flags |= ALE_FLAG_MSI; 532 sc->ale_irq_spec = ale_irq_spec_msi; 533 } else 534 pci_release_msi(dev); 535 } 536 } 537 538 error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq); 539 if (error != 0) { 540 device_printf(dev, "cannot allocate IRQ resources.\n"); 541 goto fail; 542 } 543 544 /* Get DMA parameters from PCIe device control register. */ 545 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 546 sc->ale_flags |= ALE_FLAG_PCIE; 547 burst = pci_read_config(dev, i + 0x08, 2); 548 /* Max read request size. */ 549 sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) << 550 DMA_CFG_RD_BURST_SHIFT; 551 /* Max payload size. */ 552 sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) << 553 DMA_CFG_WR_BURST_SHIFT; 554 if (bootverbose) { 555 device_printf(dev, "Read request size : %d bytes.\n", 556 128 << ((burst >> 12) & 0x07)); 557 device_printf(dev, "TLP payload size : %d bytes.\n", 558 128 << ((burst >> 5) & 0x07)); 559 } 560 } else { 561 sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128; 562 sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128; 563 } 564 565 /* Create device sysctl node. */ 566 ale_sysctl_node(sc); 567 568 if ((error = ale_dma_alloc(sc) != 0)) 569 goto fail; 570 571 /* Load station address. */ 572 ale_get_macaddr(sc); 573 574 ifp = sc->ale_ifp = if_alloc(IFT_ETHER); 575 if (ifp == NULL) { 576 device_printf(dev, "cannot allocate ifnet structure.\n"); 577 error = ENXIO; 578 goto fail; 579 } 580 581 ifp->if_softc = sc; 582 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 583 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 584 ifp->if_ioctl = ale_ioctl; 585 ifp->if_start = ale_start; 586 ifp->if_init = ale_init; 587 ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1; 588 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 589 IFQ_SET_READY(&ifp->if_snd); 590 ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4; 591 ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO; 592 if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) { 593 sc->ale_flags |= ALE_FLAG_PMCAP; 594 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST; 595 } 596 ifp->if_capenable = ifp->if_capabilities; 597 598 /* Set up MII bus. */ 599 error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange, 600 ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY, 601 0); 602 if (error != 0) { 603 device_printf(dev, "attaching PHYs failed\n"); 604 goto fail; 605 } 606 607 ether_ifattach(ifp, sc->ale_eaddr); 608 609 /* VLAN capability setup. */ 610 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | 611 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO; 612 ifp->if_capenable = ifp->if_capabilities; 613 /* 614 * Even though controllers supported by ale(3) have Rx checksum 615 * offload bug the workaround for fragmented frames seemed to 616 * work so far. However it seems Rx checksum offload does not 617 * work under certain conditions. So disable Rx checksum offload 618 * until I find more clue about it but allow users to override it. 619 */ 620 ifp->if_capenable &= ~IFCAP_RXCSUM; 621 622 /* Tell the upper layer(s) we support long frames. */ 623 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 624 625 /* Create local taskq. */ 626 sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK, 627 taskqueue_thread_enqueue, &sc->ale_tq); 628 if (sc->ale_tq == NULL) { 629 device_printf(dev, "could not create taskqueue.\n"); 630 ether_ifdetach(ifp); 631 error = ENXIO; 632 goto fail; 633 } 634 taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq", 635 device_get_nameunit(sc->ale_dev)); 636 637 if ((sc->ale_flags & ALE_FLAG_MSIX) != 0) 638 msic = ALE_MSIX_MESSAGES; 639 else if ((sc->ale_flags & ALE_FLAG_MSI) != 0) 640 msic = ALE_MSI_MESSAGES; 641 else 642 msic = 1; 643 for (i = 0; i < msic; i++) { 644 error = bus_setup_intr(dev, sc->ale_irq[i], 645 INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc, 646 &sc->ale_intrhand[i]); 647 if (error != 0) 648 break; 649 } 650 if (error != 0) { 651 device_printf(dev, "could not set up interrupt handler.\n"); 652 taskqueue_free(sc->ale_tq); 653 sc->ale_tq = NULL; 654 ether_ifdetach(ifp); 655 goto fail; 656 } 657 658 fail: 659 if (error != 0) 660 ale_detach(dev); 661 662 return (error); 663 } 664 665 static int 666 ale_detach(device_t dev) 667 { 668 struct ale_softc *sc; 669 struct ifnet *ifp; 670 int i, msic; 671 672 sc = device_get_softc(dev); 673 674 ifp = sc->ale_ifp; 675 if (device_is_attached(dev)) { 676 ether_ifdetach(ifp); 677 ALE_LOCK(sc); 678 ale_stop(sc); 679 ALE_UNLOCK(sc); 680 callout_drain(&sc->ale_tick_ch); 681 taskqueue_drain(sc->ale_tq, &sc->ale_int_task); 682 taskqueue_drain(taskqueue_swi, &sc->ale_link_task); 683 } 684 685 if (sc->ale_tq != NULL) { 686 taskqueue_drain(sc->ale_tq, &sc->ale_int_task); 687 taskqueue_free(sc->ale_tq); 688 sc->ale_tq = NULL; 689 } 690 691 if (sc->ale_miibus != NULL) { 692 device_delete_child(dev, sc->ale_miibus); 693 sc->ale_miibus = NULL; 694 } 695 bus_generic_detach(dev); 696 ale_dma_free(sc); 697 698 if (ifp != NULL) { 699 if_free(ifp); 700 sc->ale_ifp = NULL; 701 } 702 703 if ((sc->ale_flags & ALE_FLAG_MSIX) != 0) 704 msic = ALE_MSIX_MESSAGES; 705 else if ((sc->ale_flags & ALE_FLAG_MSI) != 0) 706 msic = ALE_MSI_MESSAGES; 707 else 708 msic = 1; 709 for (i = 0; i < msic; i++) { 710 if (sc->ale_intrhand[i] != NULL) { 711 bus_teardown_intr(dev, sc->ale_irq[i], 712 sc->ale_intrhand[i]); 713 sc->ale_intrhand[i] = NULL; 714 } 715 } 716 717 bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq); 718 if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0) 719 pci_release_msi(dev); 720 bus_release_resources(dev, sc->ale_res_spec, sc->ale_res); 721 mtx_destroy(&sc->ale_mtx); 722 723 return (0); 724 } 725 726 #define ALE_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 727 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 728 729 #if __FreeBSD_version >= 900030 730 #define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 731 SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 732 #elif __FreeBSD_version > 800000 733 #define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 734 SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 735 #else 736 #define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 737 SYSCTL_ADD_ULONG(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 738 #endif 739 740 static void 741 ale_sysctl_node(struct ale_softc *sc) 742 { 743 struct sysctl_ctx_list *ctx; 744 struct sysctl_oid_list *child, *parent; 745 struct sysctl_oid *tree; 746 struct ale_hw_stats *stats; 747 int error; 748 749 stats = &sc->ale_stats; 750 ctx = device_get_sysctl_ctx(sc->ale_dev); 751 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev)); 752 753 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod", 754 CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_rx_mod, 0, 755 sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation"); 756 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod", 757 CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_tx_mod, 0, 758 sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation"); 759 /* Pull in device tunables. */ 760 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT; 761 error = resource_int_value(device_get_name(sc->ale_dev), 762 device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod); 763 if (error == 0) { 764 if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN || 765 sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) { 766 device_printf(sc->ale_dev, "int_rx_mod value out of " 767 "range; using default: %d\n", 768 ALE_IM_RX_TIMER_DEFAULT); 769 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT; 770 } 771 } 772 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT; 773 error = resource_int_value(device_get_name(sc->ale_dev), 774 device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod); 775 if (error == 0) { 776 if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN || 777 sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) { 778 device_printf(sc->ale_dev, "int_tx_mod value out of " 779 "range; using default: %d\n", 780 ALE_IM_TX_TIMER_DEFAULT); 781 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT; 782 } 783 } 784 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit", 785 CTLTYPE_INT | CTLFLAG_RW, &sc->ale_process_limit, 0, 786 sysctl_hw_ale_proc_limit, "I", 787 "max number of Rx events to process"); 788 /* Pull in device tunables. */ 789 sc->ale_process_limit = ALE_PROC_DEFAULT; 790 error = resource_int_value(device_get_name(sc->ale_dev), 791 device_get_unit(sc->ale_dev), "process_limit", 792 &sc->ale_process_limit); 793 if (error == 0) { 794 if (sc->ale_process_limit < ALE_PROC_MIN || 795 sc->ale_process_limit > ALE_PROC_MAX) { 796 device_printf(sc->ale_dev, 797 "process_limit value out of range; " 798 "using default: %d\n", ALE_PROC_DEFAULT); 799 sc->ale_process_limit = ALE_PROC_DEFAULT; 800 } 801 } 802 803 /* Misc statistics. */ 804 ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq", 805 &stats->reset_brk_seq, 806 "Controller resets due to broken Rx sequnce number"); 807 808 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 809 NULL, "ATE statistics"); 810 parent = SYSCTL_CHILDREN(tree); 811 812 /* Rx statistics. */ 813 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD, 814 NULL, "Rx MAC statistics"); 815 child = SYSCTL_CHILDREN(tree); 816 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames", 817 &stats->rx_frames, "Good frames"); 818 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames", 819 &stats->rx_bcast_frames, "Good broadcast frames"); 820 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames", 821 &stats->rx_mcast_frames, "Good multicast frames"); 822 ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames", 823 &stats->rx_pause_frames, "Pause control frames"); 824 ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames", 825 &stats->rx_control_frames, "Control frames"); 826 ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs", 827 &stats->rx_crcerrs, "CRC errors"); 828 ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs", 829 &stats->rx_lenerrs, "Frames with length mismatched"); 830 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets", 831 &stats->rx_bytes, "Good octets"); 832 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets", 833 &stats->rx_bcast_bytes, "Good broadcast octets"); 834 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets", 835 &stats->rx_mcast_bytes, "Good multicast octets"); 836 ALE_SYSCTL_STAT_ADD32(ctx, child, "runts", 837 &stats->rx_runts, "Too short frames"); 838 ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments", 839 &stats->rx_fragments, "Fragmented frames"); 840 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64", 841 &stats->rx_pkts_64, "64 bytes frames"); 842 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127", 843 &stats->rx_pkts_65_127, "65 to 127 bytes frames"); 844 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255", 845 &stats->rx_pkts_128_255, "128 to 255 bytes frames"); 846 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511", 847 &stats->rx_pkts_256_511, "256 to 511 bytes frames"); 848 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023", 849 &stats->rx_pkts_512_1023, "512 to 1023 bytes frames"); 850 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518", 851 &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames"); 852 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max", 853 &stats->rx_pkts_1519_max, "1519 to max frames"); 854 ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs", 855 &stats->rx_pkts_truncated, "Truncated frames due to MTU size"); 856 ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows", 857 &stats->rx_fifo_oflows, "FIFO overflows"); 858 ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs", 859 &stats->rx_rrs_errs, "Return status write-back errors"); 860 ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs", 861 &stats->rx_alignerrs, "Alignment errors"); 862 ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered", 863 &stats->rx_pkts_filtered, 864 "Frames dropped due to address filtering"); 865 866 /* Tx statistics. */ 867 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD, 868 NULL, "Tx MAC statistics"); 869 child = SYSCTL_CHILDREN(tree); 870 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames", 871 &stats->tx_frames, "Good frames"); 872 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames", 873 &stats->tx_bcast_frames, "Good broadcast frames"); 874 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames", 875 &stats->tx_mcast_frames, "Good multicast frames"); 876 ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames", 877 &stats->tx_pause_frames, "Pause control frames"); 878 ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames", 879 &stats->tx_control_frames, "Control frames"); 880 ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers", 881 &stats->tx_excess_defer, "Frames with excessive derferrals"); 882 ALE_SYSCTL_STAT_ADD32(ctx, child, "defers", 883 &stats->tx_excess_defer, "Frames with derferrals"); 884 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets", 885 &stats->tx_bytes, "Good octets"); 886 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets", 887 &stats->tx_bcast_bytes, "Good broadcast octets"); 888 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets", 889 &stats->tx_mcast_bytes, "Good multicast octets"); 890 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64", 891 &stats->tx_pkts_64, "64 bytes frames"); 892 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127", 893 &stats->tx_pkts_65_127, "65 to 127 bytes frames"); 894 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255", 895 &stats->tx_pkts_128_255, "128 to 255 bytes frames"); 896 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511", 897 &stats->tx_pkts_256_511, "256 to 511 bytes frames"); 898 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023", 899 &stats->tx_pkts_512_1023, "512 to 1023 bytes frames"); 900 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518", 901 &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames"); 902 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max", 903 &stats->tx_pkts_1519_max, "1519 to max frames"); 904 ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls", 905 &stats->tx_single_colls, "Single collisions"); 906 ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls", 907 &stats->tx_multi_colls, "Multiple collisions"); 908 ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls", 909 &stats->tx_late_colls, "Late collisions"); 910 ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls", 911 &stats->tx_excess_colls, "Excessive collisions"); 912 ALE_SYSCTL_STAT_ADD32(ctx, child, "abort", 913 &stats->tx_abort, "Aborted frames due to Excessive collisions"); 914 ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns", 915 &stats->tx_underrun, "FIFO underruns"); 916 ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns", 917 &stats->tx_desc_underrun, "Descriptor write-back errors"); 918 ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs", 919 &stats->tx_lenerrs, "Frames with length mismatched"); 920 ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs", 921 &stats->tx_pkts_truncated, "Truncated frames due to MTU size"); 922 } 923 924 #undef ALE_SYSCTL_STAT_ADD32 925 #undef ALE_SYSCTL_STAT_ADD64 926 927 struct ale_dmamap_arg { 928 bus_addr_t ale_busaddr; 929 }; 930 931 static void 932 ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 933 { 934 struct ale_dmamap_arg *ctx; 935 936 if (error != 0) 937 return; 938 939 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 940 941 ctx = (struct ale_dmamap_arg *)arg; 942 ctx->ale_busaddr = segs[0].ds_addr; 943 } 944 945 /* 946 * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register 947 * which specifies high address region of DMA blocks. Therefore these 948 * blocks should have the same high address of given 4GB address 949 * space(i.e. crossing 4GB boundary is not allowed). 950 */ 951 static int 952 ale_check_boundary(struct ale_softc *sc) 953 { 954 bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end; 955 bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end; 956 957 rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr + 958 sc->ale_pagesize; 959 rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr + 960 sc->ale_pagesize; 961 tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ; 962 tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ; 963 rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ; 964 rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ; 965 966 if ((ALE_ADDR_HI(tx_ring_end) != 967 ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) || 968 (ALE_ADDR_HI(rx_page_end[0]) != 969 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) || 970 (ALE_ADDR_HI(rx_page_end[1]) != 971 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) || 972 (ALE_ADDR_HI(tx_cmb_end) != 973 ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) || 974 (ALE_ADDR_HI(rx_cmb_end[0]) != 975 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) || 976 (ALE_ADDR_HI(rx_cmb_end[1]) != 977 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr))) 978 return (EFBIG); 979 980 if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) || 981 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) || 982 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) || 983 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) || 984 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end))) 985 return (EFBIG); 986 987 return (0); 988 } 989 990 static int 991 ale_dma_alloc(struct ale_softc *sc) 992 { 993 struct ale_txdesc *txd; 994 bus_addr_t lowaddr; 995 struct ale_dmamap_arg ctx; 996 int error, guard_size, i; 997 998 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) 999 guard_size = ALE_JUMBO_FRAMELEN; 1000 else 1001 guard_size = ALE_MAX_FRAMELEN; 1002 sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ, 1003 ALE_RX_PAGE_ALIGN); 1004 lowaddr = BUS_SPACE_MAXADDR; 1005 again: 1006 /* Create parent DMA tag. */ 1007 error = bus_dma_tag_create( 1008 bus_get_dma_tag(sc->ale_dev), /* parent */ 1009 1, 0, /* alignment, boundary */ 1010 lowaddr, /* lowaddr */ 1011 BUS_SPACE_MAXADDR, /* highaddr */ 1012 NULL, NULL, /* filter, filterarg */ 1013 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1014 0, /* nsegments */ 1015 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1016 0, /* flags */ 1017 NULL, NULL, /* lockfunc, lockarg */ 1018 &sc->ale_cdata.ale_parent_tag); 1019 if (error != 0) { 1020 device_printf(sc->ale_dev, 1021 "could not create parent DMA tag.\n"); 1022 goto fail; 1023 } 1024 1025 /* Create DMA tag for Tx descriptor ring. */ 1026 error = bus_dma_tag_create( 1027 sc->ale_cdata.ale_parent_tag, /* parent */ 1028 ALE_TX_RING_ALIGN, 0, /* alignment, boundary */ 1029 BUS_SPACE_MAXADDR, /* lowaddr */ 1030 BUS_SPACE_MAXADDR, /* highaddr */ 1031 NULL, NULL, /* filter, filterarg */ 1032 ALE_TX_RING_SZ, /* maxsize */ 1033 1, /* nsegments */ 1034 ALE_TX_RING_SZ, /* maxsegsize */ 1035 0, /* flags */ 1036 NULL, NULL, /* lockfunc, lockarg */ 1037 &sc->ale_cdata.ale_tx_ring_tag); 1038 if (error != 0) { 1039 device_printf(sc->ale_dev, 1040 "could not create Tx ring DMA tag.\n"); 1041 goto fail; 1042 } 1043 1044 /* Create DMA tag for Rx pages. */ 1045 for (i = 0; i < ALE_RX_PAGES; i++) { 1046 error = bus_dma_tag_create( 1047 sc->ale_cdata.ale_parent_tag, /* parent */ 1048 ALE_RX_PAGE_ALIGN, 0, /* alignment, boundary */ 1049 BUS_SPACE_MAXADDR, /* lowaddr */ 1050 BUS_SPACE_MAXADDR, /* highaddr */ 1051 NULL, NULL, /* filter, filterarg */ 1052 sc->ale_pagesize, /* maxsize */ 1053 1, /* nsegments */ 1054 sc->ale_pagesize, /* maxsegsize */ 1055 0, /* flags */ 1056 NULL, NULL, /* lockfunc, lockarg */ 1057 &sc->ale_cdata.ale_rx_page[i].page_tag); 1058 if (error != 0) { 1059 device_printf(sc->ale_dev, 1060 "could not create Rx page %d DMA tag.\n", i); 1061 goto fail; 1062 } 1063 } 1064 1065 /* Create DMA tag for Tx coalescing message block. */ 1066 error = bus_dma_tag_create( 1067 sc->ale_cdata.ale_parent_tag, /* parent */ 1068 ALE_CMB_ALIGN, 0, /* alignment, boundary */ 1069 BUS_SPACE_MAXADDR, /* lowaddr */ 1070 BUS_SPACE_MAXADDR, /* highaddr */ 1071 NULL, NULL, /* filter, filterarg */ 1072 ALE_TX_CMB_SZ, /* maxsize */ 1073 1, /* nsegments */ 1074 ALE_TX_CMB_SZ, /* maxsegsize */ 1075 0, /* flags */ 1076 NULL, NULL, /* lockfunc, lockarg */ 1077 &sc->ale_cdata.ale_tx_cmb_tag); 1078 if (error != 0) { 1079 device_printf(sc->ale_dev, 1080 "could not create Tx CMB DMA tag.\n"); 1081 goto fail; 1082 } 1083 1084 /* Create DMA tag for Rx coalescing message block. */ 1085 for (i = 0; i < ALE_RX_PAGES; i++) { 1086 error = bus_dma_tag_create( 1087 sc->ale_cdata.ale_parent_tag, /* parent */ 1088 ALE_CMB_ALIGN, 0, /* alignment, boundary */ 1089 BUS_SPACE_MAXADDR, /* lowaddr */ 1090 BUS_SPACE_MAXADDR, /* highaddr */ 1091 NULL, NULL, /* filter, filterarg */ 1092 ALE_RX_CMB_SZ, /* maxsize */ 1093 1, /* nsegments */ 1094 ALE_RX_CMB_SZ, /* maxsegsize */ 1095 0, /* flags */ 1096 NULL, NULL, /* lockfunc, lockarg */ 1097 &sc->ale_cdata.ale_rx_page[i].cmb_tag); 1098 if (error != 0) { 1099 device_printf(sc->ale_dev, 1100 "could not create Rx page %d CMB DMA tag.\n", i); 1101 goto fail; 1102 } 1103 } 1104 1105 /* Allocate DMA'able memory and load the DMA map for Tx ring. */ 1106 error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag, 1107 (void **)&sc->ale_cdata.ale_tx_ring, 1108 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1109 &sc->ale_cdata.ale_tx_ring_map); 1110 if (error != 0) { 1111 device_printf(sc->ale_dev, 1112 "could not allocate DMA'able memory for Tx ring.\n"); 1113 goto fail; 1114 } 1115 ctx.ale_busaddr = 0; 1116 error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag, 1117 sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring, 1118 ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0); 1119 if (error != 0 || ctx.ale_busaddr == 0) { 1120 device_printf(sc->ale_dev, 1121 "could not load DMA'able memory for Tx ring.\n"); 1122 goto fail; 1123 } 1124 sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr; 1125 1126 /* Rx pages. */ 1127 for (i = 0; i < ALE_RX_PAGES; i++) { 1128 error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag, 1129 (void **)&sc->ale_cdata.ale_rx_page[i].page_addr, 1130 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1131 &sc->ale_cdata.ale_rx_page[i].page_map); 1132 if (error != 0) { 1133 device_printf(sc->ale_dev, 1134 "could not allocate DMA'able memory for " 1135 "Rx page %d.\n", i); 1136 goto fail; 1137 } 1138 ctx.ale_busaddr = 0; 1139 error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag, 1140 sc->ale_cdata.ale_rx_page[i].page_map, 1141 sc->ale_cdata.ale_rx_page[i].page_addr, 1142 sc->ale_pagesize, ale_dmamap_cb, &ctx, 0); 1143 if (error != 0 || ctx.ale_busaddr == 0) { 1144 device_printf(sc->ale_dev, 1145 "could not load DMA'able memory for " 1146 "Rx page %d.\n", i); 1147 goto fail; 1148 } 1149 sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr; 1150 } 1151 1152 /* Tx CMB. */ 1153 error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag, 1154 (void **)&sc->ale_cdata.ale_tx_cmb, 1155 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1156 &sc->ale_cdata.ale_tx_cmb_map); 1157 if (error != 0) { 1158 device_printf(sc->ale_dev, 1159 "could not allocate DMA'able memory for Tx CMB.\n"); 1160 goto fail; 1161 } 1162 ctx.ale_busaddr = 0; 1163 error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag, 1164 sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb, 1165 ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0); 1166 if (error != 0 || ctx.ale_busaddr == 0) { 1167 device_printf(sc->ale_dev, 1168 "could not load DMA'able memory for Tx CMB.\n"); 1169 goto fail; 1170 } 1171 sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr; 1172 1173 /* Rx CMB. */ 1174 for (i = 0; i < ALE_RX_PAGES; i++) { 1175 error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag, 1176 (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr, 1177 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1178 &sc->ale_cdata.ale_rx_page[i].cmb_map); 1179 if (error != 0) { 1180 device_printf(sc->ale_dev, "could not allocate " 1181 "DMA'able memory for Rx page %d CMB.\n", i); 1182 goto fail; 1183 } 1184 ctx.ale_busaddr = 0; 1185 error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag, 1186 sc->ale_cdata.ale_rx_page[i].cmb_map, 1187 sc->ale_cdata.ale_rx_page[i].cmb_addr, 1188 ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0); 1189 if (error != 0 || ctx.ale_busaddr == 0) { 1190 device_printf(sc->ale_dev, "could not load DMA'able " 1191 "memory for Rx page %d CMB.\n", i); 1192 goto fail; 1193 } 1194 sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr; 1195 } 1196 1197 /* 1198 * Tx descriptors/RXF0/CMB DMA blocks share the same 1199 * high address region of 64bit DMA address space. 1200 */ 1201 if (lowaddr != BUS_SPACE_MAXADDR_32BIT && 1202 (error = ale_check_boundary(sc)) != 0) { 1203 device_printf(sc->ale_dev, "4GB boundary crossed, " 1204 "switching to 32bit DMA addressing mode.\n"); 1205 ale_dma_free(sc); 1206 /* 1207 * Limit max allowable DMA address space to 32bit 1208 * and try again. 1209 */ 1210 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1211 goto again; 1212 } 1213 1214 /* 1215 * Create Tx buffer parent tag. 1216 * AR81xx allows 64bit DMA addressing of Tx buffers so it 1217 * needs separate parent DMA tag as parent DMA address space 1218 * could be restricted to be within 32bit address space by 1219 * 4GB boundary crossing. 1220 */ 1221 error = bus_dma_tag_create( 1222 bus_get_dma_tag(sc->ale_dev), /* parent */ 1223 1, 0, /* alignment, boundary */ 1224 BUS_SPACE_MAXADDR, /* lowaddr */ 1225 BUS_SPACE_MAXADDR, /* highaddr */ 1226 NULL, NULL, /* filter, filterarg */ 1227 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1228 0, /* nsegments */ 1229 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1230 0, /* flags */ 1231 NULL, NULL, /* lockfunc, lockarg */ 1232 &sc->ale_cdata.ale_buffer_tag); 1233 if (error != 0) { 1234 device_printf(sc->ale_dev, 1235 "could not create parent buffer DMA tag.\n"); 1236 goto fail; 1237 } 1238 1239 /* Create DMA tag for Tx buffers. */ 1240 error = bus_dma_tag_create( 1241 sc->ale_cdata.ale_buffer_tag, /* parent */ 1242 1, 0, /* alignment, boundary */ 1243 BUS_SPACE_MAXADDR, /* lowaddr */ 1244 BUS_SPACE_MAXADDR, /* highaddr */ 1245 NULL, NULL, /* filter, filterarg */ 1246 ALE_TSO_MAXSIZE, /* maxsize */ 1247 ALE_MAXTXSEGS, /* nsegments */ 1248 ALE_TSO_MAXSEGSIZE, /* maxsegsize */ 1249 0, /* flags */ 1250 NULL, NULL, /* lockfunc, lockarg */ 1251 &sc->ale_cdata.ale_tx_tag); 1252 if (error != 0) { 1253 device_printf(sc->ale_dev, "could not create Tx DMA tag.\n"); 1254 goto fail; 1255 } 1256 1257 /* Create DMA maps for Tx buffers. */ 1258 for (i = 0; i < ALE_TX_RING_CNT; i++) { 1259 txd = &sc->ale_cdata.ale_txdesc[i]; 1260 txd->tx_m = NULL; 1261 txd->tx_dmamap = NULL; 1262 error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0, 1263 &txd->tx_dmamap); 1264 if (error != 0) { 1265 device_printf(sc->ale_dev, 1266 "could not create Tx dmamap.\n"); 1267 goto fail; 1268 } 1269 } 1270 1271 fail: 1272 return (error); 1273 } 1274 1275 static void 1276 ale_dma_free(struct ale_softc *sc) 1277 { 1278 struct ale_txdesc *txd; 1279 int i; 1280 1281 /* Tx buffers. */ 1282 if (sc->ale_cdata.ale_tx_tag != NULL) { 1283 for (i = 0; i < ALE_TX_RING_CNT; i++) { 1284 txd = &sc->ale_cdata.ale_txdesc[i]; 1285 if (txd->tx_dmamap != NULL) { 1286 bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag, 1287 txd->tx_dmamap); 1288 txd->tx_dmamap = NULL; 1289 } 1290 } 1291 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag); 1292 sc->ale_cdata.ale_tx_tag = NULL; 1293 } 1294 /* Tx descriptor ring. */ 1295 if (sc->ale_cdata.ale_tx_ring_tag != NULL) { 1296 if (sc->ale_cdata.ale_tx_ring_map != NULL) 1297 bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag, 1298 sc->ale_cdata.ale_tx_ring_map); 1299 if (sc->ale_cdata.ale_tx_ring_map != NULL && 1300 sc->ale_cdata.ale_tx_ring != NULL) 1301 bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag, 1302 sc->ale_cdata.ale_tx_ring, 1303 sc->ale_cdata.ale_tx_ring_map); 1304 sc->ale_cdata.ale_tx_ring = NULL; 1305 sc->ale_cdata.ale_tx_ring_map = NULL; 1306 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag); 1307 sc->ale_cdata.ale_tx_ring_tag = NULL; 1308 } 1309 /* Rx page block. */ 1310 for (i = 0; i < ALE_RX_PAGES; i++) { 1311 if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) { 1312 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL) 1313 bus_dmamap_unload( 1314 sc->ale_cdata.ale_rx_page[i].page_tag, 1315 sc->ale_cdata.ale_rx_page[i].page_map); 1316 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL && 1317 sc->ale_cdata.ale_rx_page[i].page_addr != NULL) 1318 bus_dmamem_free( 1319 sc->ale_cdata.ale_rx_page[i].page_tag, 1320 sc->ale_cdata.ale_rx_page[i].page_addr, 1321 sc->ale_cdata.ale_rx_page[i].page_map); 1322 sc->ale_cdata.ale_rx_page[i].page_addr = NULL; 1323 sc->ale_cdata.ale_rx_page[i].page_map = NULL; 1324 bus_dma_tag_destroy( 1325 sc->ale_cdata.ale_rx_page[i].page_tag); 1326 sc->ale_cdata.ale_rx_page[i].page_tag = NULL; 1327 } 1328 } 1329 /* Rx CMB. */ 1330 for (i = 0; i < ALE_RX_PAGES; i++) { 1331 if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) { 1332 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL) 1333 bus_dmamap_unload( 1334 sc->ale_cdata.ale_rx_page[i].cmb_tag, 1335 sc->ale_cdata.ale_rx_page[i].cmb_map); 1336 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL && 1337 sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL) 1338 bus_dmamem_free( 1339 sc->ale_cdata.ale_rx_page[i].cmb_tag, 1340 sc->ale_cdata.ale_rx_page[i].cmb_addr, 1341 sc->ale_cdata.ale_rx_page[i].cmb_map); 1342 sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL; 1343 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL; 1344 bus_dma_tag_destroy( 1345 sc->ale_cdata.ale_rx_page[i].cmb_tag); 1346 sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL; 1347 } 1348 } 1349 /* Tx CMB. */ 1350 if (sc->ale_cdata.ale_tx_cmb_tag != NULL) { 1351 if (sc->ale_cdata.ale_tx_cmb_map != NULL) 1352 bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag, 1353 sc->ale_cdata.ale_tx_cmb_map); 1354 if (sc->ale_cdata.ale_tx_cmb_map != NULL && 1355 sc->ale_cdata.ale_tx_cmb != NULL) 1356 bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag, 1357 sc->ale_cdata.ale_tx_cmb, 1358 sc->ale_cdata.ale_tx_cmb_map); 1359 sc->ale_cdata.ale_tx_cmb = NULL; 1360 sc->ale_cdata.ale_tx_cmb_map = NULL; 1361 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag); 1362 sc->ale_cdata.ale_tx_cmb_tag = NULL; 1363 } 1364 if (sc->ale_cdata.ale_buffer_tag != NULL) { 1365 bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag); 1366 sc->ale_cdata.ale_buffer_tag = NULL; 1367 } 1368 if (sc->ale_cdata.ale_parent_tag != NULL) { 1369 bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag); 1370 sc->ale_cdata.ale_parent_tag = NULL; 1371 } 1372 } 1373 1374 static int 1375 ale_shutdown(device_t dev) 1376 { 1377 1378 return (ale_suspend(dev)); 1379 } 1380 1381 /* 1382 * Note, this driver resets the link speed to 10/100Mbps by 1383 * restarting auto-negotiation in suspend/shutdown phase but we 1384 * don't know whether that auto-negotiation would succeed or not 1385 * as driver has no control after powering off/suspend operation. 1386 * If the renegotiation fail WOL may not work. Running at 1Gbps 1387 * will draw more power than 375mA at 3.3V which is specified in 1388 * PCI specification and that would result in complete 1389 * shutdowning power to ethernet controller. 1390 * 1391 * TODO 1392 * Save current negotiated media speed/duplex/flow-control to 1393 * softc and restore the same link again after resuming. PHY 1394 * handling such as power down/resetting to 100Mbps may be better 1395 * handled in suspend method in phy driver. 1396 */ 1397 static void 1398 ale_setlinkspeed(struct ale_softc *sc) 1399 { 1400 struct mii_data *mii; 1401 int aneg, i; 1402 1403 mii = device_get_softc(sc->ale_miibus); 1404 mii_pollstat(mii); 1405 aneg = 0; 1406 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 1407 (IFM_ACTIVE | IFM_AVALID)) { 1408 switch IFM_SUBTYPE(mii->mii_media_active) { 1409 case IFM_10_T: 1410 case IFM_100_TX: 1411 return; 1412 case IFM_1000_T: 1413 aneg++; 1414 break; 1415 default: 1416 break; 1417 } 1418 } 1419 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0); 1420 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 1421 MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA); 1422 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 1423 MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG); 1424 DELAY(1000); 1425 if (aneg != 0) { 1426 /* 1427 * Poll link state until ale(4) get a 10/100Mbps link. 1428 */ 1429 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { 1430 mii_pollstat(mii); 1431 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) 1432 == (IFM_ACTIVE | IFM_AVALID)) { 1433 switch (IFM_SUBTYPE( 1434 mii->mii_media_active)) { 1435 case IFM_10_T: 1436 case IFM_100_TX: 1437 ale_mac_config(sc); 1438 return; 1439 default: 1440 break; 1441 } 1442 } 1443 ALE_UNLOCK(sc); 1444 pause("alelnk", hz); 1445 ALE_LOCK(sc); 1446 } 1447 if (i == MII_ANEGTICKS_GIGE) 1448 device_printf(sc->ale_dev, 1449 "establishing a link failed, WOL may not work!"); 1450 } 1451 /* 1452 * No link, force MAC to have 100Mbps, full-duplex link. 1453 * This is the last resort and may/may not work. 1454 */ 1455 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; 1456 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; 1457 ale_mac_config(sc); 1458 } 1459 1460 static void 1461 ale_setwol(struct ale_softc *sc) 1462 { 1463 struct ifnet *ifp; 1464 uint32_t reg, pmcs; 1465 uint16_t pmstat; 1466 int pmc; 1467 1468 ALE_LOCK_ASSERT(sc); 1469 1470 if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) != 0) { 1471 /* Disable WOL. */ 1472 CSR_WRITE_4(sc, ALE_WOL_CFG, 0); 1473 reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC); 1474 reg |= PCIE_PHYMISC_FORCE_RCV_DET; 1475 CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg); 1476 /* Force PHY power down. */ 1477 CSR_WRITE_2(sc, ALE_GPHY_CTRL, 1478 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | 1479 GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON | 1480 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ | 1481 GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW); 1482 return; 1483 } 1484 1485 ifp = sc->ale_ifp; 1486 if ((ifp->if_capenable & IFCAP_WOL) != 0) { 1487 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0) 1488 ale_setlinkspeed(sc); 1489 } 1490 1491 pmcs = 0; 1492 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 1493 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB; 1494 CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs); 1495 reg = CSR_READ_4(sc, ALE_MAC_CFG); 1496 reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI | 1497 MAC_CFG_BCAST); 1498 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) 1499 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST; 1500 if ((ifp->if_capenable & IFCAP_WOL) != 0) 1501 reg |= MAC_CFG_RX_ENB; 1502 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 1503 1504 if ((ifp->if_capenable & IFCAP_WOL) == 0) { 1505 /* WOL disabled, PHY power down. */ 1506 reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC); 1507 reg |= PCIE_PHYMISC_FORCE_RCV_DET; 1508 CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg); 1509 CSR_WRITE_2(sc, ALE_GPHY_CTRL, 1510 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | 1511 GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET | 1512 GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS | 1513 GPHY_CTRL_PWDOWN_HW); 1514 } 1515 /* Request PME. */ 1516 pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2); 1517 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 1518 if ((ifp->if_capenable & IFCAP_WOL) != 0) 1519 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 1520 pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1521 } 1522 1523 static int 1524 ale_suspend(device_t dev) 1525 { 1526 struct ale_softc *sc; 1527 1528 sc = device_get_softc(dev); 1529 1530 ALE_LOCK(sc); 1531 ale_stop(sc); 1532 ale_setwol(sc); 1533 ALE_UNLOCK(sc); 1534 1535 return (0); 1536 } 1537 1538 static int 1539 ale_resume(device_t dev) 1540 { 1541 struct ale_softc *sc; 1542 struct ifnet *ifp; 1543 int pmc; 1544 uint16_t pmstat; 1545 1546 sc = device_get_softc(dev); 1547 1548 ALE_LOCK(sc); 1549 if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) == 0) { 1550 /* Disable PME and clear PME status. */ 1551 pmstat = pci_read_config(sc->ale_dev, 1552 pmc + PCIR_POWER_STATUS, 2); 1553 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) { 1554 pmstat &= ~PCIM_PSTAT_PMEENABLE; 1555 pci_write_config(sc->ale_dev, 1556 pmc + PCIR_POWER_STATUS, pmstat, 2); 1557 } 1558 } 1559 /* Reset PHY. */ 1560 ale_phy_reset(sc); 1561 ifp = sc->ale_ifp; 1562 if ((ifp->if_flags & IFF_UP) != 0) { 1563 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1564 ale_init_locked(sc); 1565 } 1566 ALE_UNLOCK(sc); 1567 1568 return (0); 1569 } 1570 1571 static int 1572 ale_encap(struct ale_softc *sc, struct mbuf **m_head) 1573 { 1574 struct ale_txdesc *txd, *txd_last; 1575 struct tx_desc *desc; 1576 struct mbuf *m; 1577 struct ip *ip; 1578 struct tcphdr *tcp; 1579 bus_dma_segment_t txsegs[ALE_MAXTXSEGS]; 1580 bus_dmamap_t map; 1581 uint32_t cflags, hdrlen, ip_off, poff, vtag; 1582 int error, i, nsegs, prod, si; 1583 1584 ALE_LOCK_ASSERT(sc); 1585 1586 M_ASSERTPKTHDR((*m_head)); 1587 1588 m = *m_head; 1589 ip = NULL; 1590 tcp = NULL; 1591 cflags = vtag = 0; 1592 ip_off = poff = 0; 1593 if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) { 1594 /* 1595 * AR81xx requires offset of TCP/UDP payload in its Tx 1596 * descriptor to perform hardware Tx checksum offload. 1597 * Additionally, TSO requires IP/TCP header size and 1598 * modification of IP/TCP header in order to make TSO 1599 * engine work. This kind of operation takes many CPU 1600 * cycles on FreeBSD so fast host CPU is required to 1601 * get smooth TSO performance. 1602 */ 1603 struct ether_header *eh; 1604 1605 if (M_WRITABLE(m) == 0) { 1606 /* Get a writable copy. */ 1607 m = m_dup(*m_head, M_DONTWAIT); 1608 /* Release original mbufs. */ 1609 m_freem(*m_head); 1610 if (m == NULL) { 1611 *m_head = NULL; 1612 return (ENOBUFS); 1613 } 1614 *m_head = m; 1615 } 1616 1617 /* 1618 * Buggy-controller requires 4 byte aligned Tx buffer 1619 * to make custom checksum offload work. 1620 */ 1621 if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 && 1622 (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 && 1623 (mtod(m, intptr_t) & 3) != 0) { 1624 m = m_defrag(*m_head, M_DONTWAIT); 1625 if (m == NULL) { 1626 *m_head = NULL; 1627 return (ENOBUFS); 1628 } 1629 *m_head = m; 1630 } 1631 1632 ip_off = sizeof(struct ether_header); 1633 m = m_pullup(m, ip_off); 1634 if (m == NULL) { 1635 *m_head = NULL; 1636 return (ENOBUFS); 1637 } 1638 eh = mtod(m, struct ether_header *); 1639 /* 1640 * Check if hardware VLAN insertion is off. 1641 * Additional check for LLC/SNAP frame? 1642 */ 1643 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 1644 ip_off = sizeof(struct ether_vlan_header); 1645 m = m_pullup(m, ip_off); 1646 if (m == NULL) { 1647 *m_head = NULL; 1648 return (ENOBUFS); 1649 } 1650 } 1651 m = m_pullup(m, ip_off + sizeof(struct ip)); 1652 if (m == NULL) { 1653 *m_head = NULL; 1654 return (ENOBUFS); 1655 } 1656 ip = (struct ip *)(mtod(m, char *) + ip_off); 1657 poff = ip_off + (ip->ip_hl << 2); 1658 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1659 /* 1660 * XXX 1661 * AR81xx requires the first descriptor should 1662 * not include any TCP playload for TSO case. 1663 * (i.e. ethernet header + IP + TCP header only) 1664 * m_pullup(9) above will ensure this too. 1665 * However it's not correct if the first mbuf 1666 * of the chain does not use cluster. 1667 */ 1668 m = m_pullup(m, poff + sizeof(struct tcphdr)); 1669 if (m == NULL) { 1670 *m_head = NULL; 1671 return (ENOBUFS); 1672 } 1673 ip = (struct ip *)(mtod(m, char *) + ip_off); 1674 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1675 m = m_pullup(m, poff + (tcp->th_off << 2)); 1676 if (m == NULL) { 1677 *m_head = NULL; 1678 return (ENOBUFS); 1679 } 1680 /* 1681 * AR81xx requires IP/TCP header size and offset as 1682 * well as TCP pseudo checksum which complicates 1683 * TSO configuration. I guess this comes from the 1684 * adherence to Microsoft NDIS Large Send 1685 * specification which requires insertion of 1686 * pseudo checksum by upper stack. The pseudo 1687 * checksum that NDIS refers to doesn't include 1688 * TCP payload length so ale(4) should recompute 1689 * the pseudo checksum here. Hopefully this wouldn't 1690 * be much burden on modern CPUs. 1691 * Reset IP checksum and recompute TCP pseudo 1692 * checksum as NDIS specification said. 1693 */ 1694 ip->ip_sum = 0; 1695 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, 1696 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 1697 } 1698 *m_head = m; 1699 } 1700 1701 si = prod = sc->ale_cdata.ale_tx_prod; 1702 txd = &sc->ale_cdata.ale_txdesc[prod]; 1703 txd_last = txd; 1704 map = txd->tx_dmamap; 1705 1706 error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map, 1707 *m_head, txsegs, &nsegs, 0); 1708 if (error == EFBIG) { 1709 m = m_collapse(*m_head, M_DONTWAIT, ALE_MAXTXSEGS); 1710 if (m == NULL) { 1711 m_freem(*m_head); 1712 *m_head = NULL; 1713 return (ENOMEM); 1714 } 1715 *m_head = m; 1716 error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map, 1717 *m_head, txsegs, &nsegs, 0); 1718 if (error != 0) { 1719 m_freem(*m_head); 1720 *m_head = NULL; 1721 return (error); 1722 } 1723 } else if (error != 0) 1724 return (error); 1725 if (nsegs == 0) { 1726 m_freem(*m_head); 1727 *m_head = NULL; 1728 return (EIO); 1729 } 1730 1731 /* Check descriptor overrun. */ 1732 if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) { 1733 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map); 1734 return (ENOBUFS); 1735 } 1736 bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE); 1737 1738 m = *m_head; 1739 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1740 /* Request TSO and set MSS. */ 1741 cflags |= ALE_TD_TSO; 1742 cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT); 1743 /* Set IP/TCP header size. */ 1744 cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT; 1745 cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT; 1746 } else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) { 1747 /* 1748 * AR81xx supports Tx custom checksum offload feature 1749 * that offloads single 16bit checksum computation. 1750 * So you can choose one among IP, TCP and UDP. 1751 * Normally driver sets checksum start/insertion 1752 * position from the information of TCP/UDP frame as 1753 * TCP/UDP checksum takes more time than that of IP. 1754 * However it seems that custom checksum offload 1755 * requires 4 bytes aligned Tx buffers due to hardware 1756 * bug. 1757 * AR81xx also supports explicit Tx checksum computation 1758 * if it is told that the size of IP header and TCP 1759 * header(for UDP, the header size does not matter 1760 * because it's fixed length). However with this scheme 1761 * TSO does not work so you have to choose one either 1762 * TSO or explicit Tx checksum offload. I chosen TSO 1763 * plus custom checksum offload with work-around which 1764 * will cover most common usage for this consumer 1765 * ethernet controller. The work-around takes a lot of 1766 * CPU cycles if Tx buffer is not aligned on 4 bytes 1767 * boundary, though. 1768 */ 1769 cflags |= ALE_TD_CXSUM; 1770 /* Set checksum start offset. */ 1771 cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT); 1772 /* Set checksum insertion position of TCP/UDP. */ 1773 cflags |= ((poff + m->m_pkthdr.csum_data) << 1774 ALE_TD_CSUM_XSUMOFFSET_SHIFT); 1775 } 1776 1777 /* Configure VLAN hardware tag insertion. */ 1778 if ((m->m_flags & M_VLANTAG) != 0) { 1779 vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag); 1780 vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK); 1781 cflags |= ALE_TD_INSERT_VLAN_TAG; 1782 } 1783 1784 i = 0; 1785 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1786 /* 1787 * Make sure the first fragment contains 1788 * only ethernet and IP/TCP header with options. 1789 */ 1790 hdrlen = poff + (tcp->th_off << 2); 1791 desc = &sc->ale_cdata.ale_tx_ring[prod]; 1792 desc->addr = htole64(txsegs[i].ds_addr); 1793 desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag); 1794 desc->flags = htole32(cflags); 1795 sc->ale_cdata.ale_tx_cnt++; 1796 ALE_DESC_INC(prod, ALE_TX_RING_CNT); 1797 if (m->m_len - hdrlen > 0) { 1798 /* Handle remaining payload of the first fragment. */ 1799 desc = &sc->ale_cdata.ale_tx_ring[prod]; 1800 desc->addr = htole64(txsegs[i].ds_addr + hdrlen); 1801 desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) | 1802 vtag); 1803 desc->flags = htole32(cflags); 1804 sc->ale_cdata.ale_tx_cnt++; 1805 ALE_DESC_INC(prod, ALE_TX_RING_CNT); 1806 } 1807 i = 1; 1808 } 1809 for (; i < nsegs; i++) { 1810 desc = &sc->ale_cdata.ale_tx_ring[prod]; 1811 desc->addr = htole64(txsegs[i].ds_addr); 1812 desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag); 1813 desc->flags = htole32(cflags); 1814 sc->ale_cdata.ale_tx_cnt++; 1815 ALE_DESC_INC(prod, ALE_TX_RING_CNT); 1816 } 1817 /* Update producer index. */ 1818 sc->ale_cdata.ale_tx_prod = prod; 1819 /* Set TSO header on the first descriptor. */ 1820 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1821 desc = &sc->ale_cdata.ale_tx_ring[si]; 1822 desc->flags |= htole32(ALE_TD_TSO_HDR); 1823 } 1824 1825 /* Finally set EOP on the last descriptor. */ 1826 prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT; 1827 desc = &sc->ale_cdata.ale_tx_ring[prod]; 1828 desc->flags |= htole32(ALE_TD_EOP); 1829 1830 /* Swap dmamap of the first and the last. */ 1831 txd = &sc->ale_cdata.ale_txdesc[prod]; 1832 map = txd_last->tx_dmamap; 1833 txd_last->tx_dmamap = txd->tx_dmamap; 1834 txd->tx_dmamap = map; 1835 txd->tx_m = m; 1836 1837 /* Sync descriptors. */ 1838 bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag, 1839 sc->ale_cdata.ale_tx_ring_map, 1840 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1841 1842 return (0); 1843 } 1844 1845 static void 1846 ale_start(struct ifnet *ifp) 1847 { 1848 struct ale_softc *sc; 1849 1850 sc = ifp->if_softc; 1851 ALE_LOCK(sc); 1852 ale_start_locked(ifp); 1853 ALE_UNLOCK(sc); 1854 } 1855 1856 static void 1857 ale_start_locked(struct ifnet *ifp) 1858 { 1859 struct ale_softc *sc; 1860 struct mbuf *m_head; 1861 int enq; 1862 1863 sc = ifp->if_softc; 1864 1865 ALE_LOCK_ASSERT(sc); 1866 1867 /* Reclaim transmitted frames. */ 1868 if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT) 1869 ale_txeof(sc); 1870 1871 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1872 IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0) 1873 return; 1874 1875 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) { 1876 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 1877 if (m_head == NULL) 1878 break; 1879 /* 1880 * Pack the data into the transmit ring. If we 1881 * don't have room, set the OACTIVE flag and wait 1882 * for the NIC to drain the ring. 1883 */ 1884 if (ale_encap(sc, &m_head)) { 1885 if (m_head == NULL) 1886 break; 1887 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 1888 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1889 break; 1890 } 1891 1892 enq++; 1893 /* 1894 * If there's a BPF listener, bounce a copy of this frame 1895 * to him. 1896 */ 1897 ETHER_BPF_MTAP(ifp, m_head); 1898 } 1899 1900 if (enq > 0) { 1901 /* Kick. */ 1902 CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX, 1903 sc->ale_cdata.ale_tx_prod); 1904 /* Set a timeout in case the chip goes out to lunch. */ 1905 sc->ale_watchdog_timer = ALE_TX_TIMEOUT; 1906 } 1907 } 1908 1909 static void 1910 ale_watchdog(struct ale_softc *sc) 1911 { 1912 struct ifnet *ifp; 1913 1914 ALE_LOCK_ASSERT(sc); 1915 1916 if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer) 1917 return; 1918 1919 ifp = sc->ale_ifp; 1920 if ((sc->ale_flags & ALE_FLAG_LINK) == 0) { 1921 if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n"); 1922 ifp->if_oerrors++; 1923 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1924 ale_init_locked(sc); 1925 return; 1926 } 1927 if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n"); 1928 ifp->if_oerrors++; 1929 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1930 ale_init_locked(sc); 1931 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1932 ale_start_locked(ifp); 1933 } 1934 1935 static int 1936 ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1937 { 1938 struct ale_softc *sc; 1939 struct ifreq *ifr; 1940 struct mii_data *mii; 1941 int error, mask; 1942 1943 sc = ifp->if_softc; 1944 ifr = (struct ifreq *)data; 1945 error = 0; 1946 switch (cmd) { 1947 case SIOCSIFMTU: 1948 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU || 1949 ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 && 1950 ifr->ifr_mtu > ETHERMTU)) 1951 error = EINVAL; 1952 else if (ifp->if_mtu != ifr->ifr_mtu) { 1953 ALE_LOCK(sc); 1954 ifp->if_mtu = ifr->ifr_mtu; 1955 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1956 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1957 ale_init_locked(sc); 1958 } 1959 ALE_UNLOCK(sc); 1960 } 1961 break; 1962 case SIOCSIFFLAGS: 1963 ALE_LOCK(sc); 1964 if ((ifp->if_flags & IFF_UP) != 0) { 1965 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1966 if (((ifp->if_flags ^ sc->ale_if_flags) 1967 & (IFF_PROMISC | IFF_ALLMULTI)) != 0) 1968 ale_rxfilter(sc); 1969 } else { 1970 ale_init_locked(sc); 1971 } 1972 } else { 1973 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1974 ale_stop(sc); 1975 } 1976 sc->ale_if_flags = ifp->if_flags; 1977 ALE_UNLOCK(sc); 1978 break; 1979 case SIOCADDMULTI: 1980 case SIOCDELMULTI: 1981 ALE_LOCK(sc); 1982 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1983 ale_rxfilter(sc); 1984 ALE_UNLOCK(sc); 1985 break; 1986 case SIOCSIFMEDIA: 1987 case SIOCGIFMEDIA: 1988 mii = device_get_softc(sc->ale_miibus); 1989 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 1990 break; 1991 case SIOCSIFCAP: 1992 ALE_LOCK(sc); 1993 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1994 if ((mask & IFCAP_TXCSUM) != 0 && 1995 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { 1996 ifp->if_capenable ^= IFCAP_TXCSUM; 1997 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 1998 ifp->if_hwassist |= ALE_CSUM_FEATURES; 1999 else 2000 ifp->if_hwassist &= ~ALE_CSUM_FEATURES; 2001 } 2002 if ((mask & IFCAP_RXCSUM) != 0 && 2003 (ifp->if_capabilities & IFCAP_RXCSUM) != 0) 2004 ifp->if_capenable ^= IFCAP_RXCSUM; 2005 if ((mask & IFCAP_TSO4) != 0 && 2006 (ifp->if_capabilities & IFCAP_TSO4) != 0) { 2007 ifp->if_capenable ^= IFCAP_TSO4; 2008 if ((ifp->if_capenable & IFCAP_TSO4) != 0) 2009 ifp->if_hwassist |= CSUM_TSO; 2010 else 2011 ifp->if_hwassist &= ~CSUM_TSO; 2012 } 2013 2014 if ((mask & IFCAP_WOL_MCAST) != 0 && 2015 (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0) 2016 ifp->if_capenable ^= IFCAP_WOL_MCAST; 2017 if ((mask & IFCAP_WOL_MAGIC) != 0 && 2018 (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0) 2019 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 2020 if ((mask & IFCAP_VLAN_HWCSUM) != 0 && 2021 (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0) 2022 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 2023 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 2024 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 2025 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 2026 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 2027 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 2028 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2029 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 2030 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO; 2031 ale_rxvlan(sc); 2032 } 2033 ALE_UNLOCK(sc); 2034 VLAN_CAPABILITIES(ifp); 2035 break; 2036 default: 2037 error = ether_ioctl(ifp, cmd, data); 2038 break; 2039 } 2040 2041 return (error); 2042 } 2043 2044 static void 2045 ale_mac_config(struct ale_softc *sc) 2046 { 2047 struct mii_data *mii; 2048 uint32_t reg; 2049 2050 ALE_LOCK_ASSERT(sc); 2051 2052 mii = device_get_softc(sc->ale_miibus); 2053 reg = CSR_READ_4(sc, ALE_MAC_CFG); 2054 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC | 2055 MAC_CFG_SPEED_MASK); 2056 /* Reprogram MAC with resolved speed/duplex. */ 2057 switch (IFM_SUBTYPE(mii->mii_media_active)) { 2058 case IFM_10_T: 2059 case IFM_100_TX: 2060 reg |= MAC_CFG_SPEED_10_100; 2061 break; 2062 case IFM_1000_T: 2063 reg |= MAC_CFG_SPEED_1000; 2064 break; 2065 } 2066 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 2067 reg |= MAC_CFG_FULL_DUPLEX; 2068 #ifdef notyet 2069 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 2070 reg |= MAC_CFG_TX_FC; 2071 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 2072 reg |= MAC_CFG_RX_FC; 2073 #endif 2074 } 2075 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 2076 } 2077 2078 static void 2079 ale_link_task(void *arg, int pending) 2080 { 2081 struct ale_softc *sc; 2082 struct mii_data *mii; 2083 struct ifnet *ifp; 2084 uint32_t reg; 2085 2086 sc = (struct ale_softc *)arg; 2087 2088 ALE_LOCK(sc); 2089 mii = device_get_softc(sc->ale_miibus); 2090 ifp = sc->ale_ifp; 2091 if (mii == NULL || ifp == NULL || 2092 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2093 ALE_UNLOCK(sc); 2094 return; 2095 } 2096 2097 sc->ale_flags &= ~ALE_FLAG_LINK; 2098 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 2099 (IFM_ACTIVE | IFM_AVALID)) { 2100 switch (IFM_SUBTYPE(mii->mii_media_active)) { 2101 case IFM_10_T: 2102 case IFM_100_TX: 2103 sc->ale_flags |= ALE_FLAG_LINK; 2104 break; 2105 case IFM_1000_T: 2106 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0) 2107 sc->ale_flags |= ALE_FLAG_LINK; 2108 break; 2109 default: 2110 break; 2111 } 2112 } 2113 2114 /* Stop Rx/Tx MACs. */ 2115 ale_stop_mac(sc); 2116 2117 /* Program MACs with resolved speed/duplex/flow-control. */ 2118 if ((sc->ale_flags & ALE_FLAG_LINK) != 0) { 2119 ale_mac_config(sc); 2120 /* Reenable Tx/Rx MACs. */ 2121 reg = CSR_READ_4(sc, ALE_MAC_CFG); 2122 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB; 2123 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 2124 } 2125 2126 ALE_UNLOCK(sc); 2127 } 2128 2129 static void 2130 ale_stats_clear(struct ale_softc *sc) 2131 { 2132 struct smb sb; 2133 uint32_t *reg; 2134 int i; 2135 2136 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) { 2137 CSR_READ_4(sc, ALE_RX_MIB_BASE + i); 2138 i += sizeof(uint32_t); 2139 } 2140 /* Read Tx statistics. */ 2141 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) { 2142 CSR_READ_4(sc, ALE_TX_MIB_BASE + i); 2143 i += sizeof(uint32_t); 2144 } 2145 } 2146 2147 static void 2148 ale_stats_update(struct ale_softc *sc) 2149 { 2150 struct ale_hw_stats *stat; 2151 struct smb sb, *smb; 2152 struct ifnet *ifp; 2153 uint32_t *reg; 2154 int i; 2155 2156 ALE_LOCK_ASSERT(sc); 2157 2158 ifp = sc->ale_ifp; 2159 stat = &sc->ale_stats; 2160 smb = &sb; 2161 2162 /* Read Rx statistics. */ 2163 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) { 2164 *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i); 2165 i += sizeof(uint32_t); 2166 } 2167 /* Read Tx statistics. */ 2168 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) { 2169 *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i); 2170 i += sizeof(uint32_t); 2171 } 2172 2173 /* Rx stats. */ 2174 stat->rx_frames += smb->rx_frames; 2175 stat->rx_bcast_frames += smb->rx_bcast_frames; 2176 stat->rx_mcast_frames += smb->rx_mcast_frames; 2177 stat->rx_pause_frames += smb->rx_pause_frames; 2178 stat->rx_control_frames += smb->rx_control_frames; 2179 stat->rx_crcerrs += smb->rx_crcerrs; 2180 stat->rx_lenerrs += smb->rx_lenerrs; 2181 stat->rx_bytes += smb->rx_bytes; 2182 stat->rx_runts += smb->rx_runts; 2183 stat->rx_fragments += smb->rx_fragments; 2184 stat->rx_pkts_64 += smb->rx_pkts_64; 2185 stat->rx_pkts_65_127 += smb->rx_pkts_65_127; 2186 stat->rx_pkts_128_255 += smb->rx_pkts_128_255; 2187 stat->rx_pkts_256_511 += smb->rx_pkts_256_511; 2188 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023; 2189 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518; 2190 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max; 2191 stat->rx_pkts_truncated += smb->rx_pkts_truncated; 2192 stat->rx_fifo_oflows += smb->rx_fifo_oflows; 2193 stat->rx_rrs_errs += smb->rx_rrs_errs; 2194 stat->rx_alignerrs += smb->rx_alignerrs; 2195 stat->rx_bcast_bytes += smb->rx_bcast_bytes; 2196 stat->rx_mcast_bytes += smb->rx_mcast_bytes; 2197 stat->rx_pkts_filtered += smb->rx_pkts_filtered; 2198 2199 /* Tx stats. */ 2200 stat->tx_frames += smb->tx_frames; 2201 stat->tx_bcast_frames += smb->tx_bcast_frames; 2202 stat->tx_mcast_frames += smb->tx_mcast_frames; 2203 stat->tx_pause_frames += smb->tx_pause_frames; 2204 stat->tx_excess_defer += smb->tx_excess_defer; 2205 stat->tx_control_frames += smb->tx_control_frames; 2206 stat->tx_deferred += smb->tx_deferred; 2207 stat->tx_bytes += smb->tx_bytes; 2208 stat->tx_pkts_64 += smb->tx_pkts_64; 2209 stat->tx_pkts_65_127 += smb->tx_pkts_65_127; 2210 stat->tx_pkts_128_255 += smb->tx_pkts_128_255; 2211 stat->tx_pkts_256_511 += smb->tx_pkts_256_511; 2212 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023; 2213 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518; 2214 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max; 2215 stat->tx_single_colls += smb->tx_single_colls; 2216 stat->tx_multi_colls += smb->tx_multi_colls; 2217 stat->tx_late_colls += smb->tx_late_colls; 2218 stat->tx_excess_colls += smb->tx_excess_colls; 2219 stat->tx_abort += smb->tx_abort; 2220 stat->tx_underrun += smb->tx_underrun; 2221 stat->tx_desc_underrun += smb->tx_desc_underrun; 2222 stat->tx_lenerrs += smb->tx_lenerrs; 2223 stat->tx_pkts_truncated += smb->tx_pkts_truncated; 2224 stat->tx_bcast_bytes += smb->tx_bcast_bytes; 2225 stat->tx_mcast_bytes += smb->tx_mcast_bytes; 2226 2227 /* Update counters in ifnet. */ 2228 ifp->if_opackets += smb->tx_frames; 2229 2230 ifp->if_collisions += smb->tx_single_colls + 2231 smb->tx_multi_colls * 2 + smb->tx_late_colls + 2232 smb->tx_abort * HDPX_CFG_RETRY_DEFAULT; 2233 2234 /* 2235 * XXX 2236 * tx_pkts_truncated counter looks suspicious. It constantly 2237 * increments with no sign of Tx errors. This may indicate 2238 * the counter name is not correct one so I've removed the 2239 * counter in output errors. 2240 */ 2241 ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls + 2242 smb->tx_underrun; 2243 2244 ifp->if_ipackets += smb->rx_frames; 2245 2246 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs + 2247 smb->rx_runts + smb->rx_pkts_truncated + 2248 smb->rx_fifo_oflows + smb->rx_rrs_errs + 2249 smb->rx_alignerrs; 2250 } 2251 2252 static int 2253 ale_intr(void *arg) 2254 { 2255 struct ale_softc *sc; 2256 uint32_t status; 2257 2258 sc = (struct ale_softc *)arg; 2259 2260 status = CSR_READ_4(sc, ALE_INTR_STATUS); 2261 if ((status & ALE_INTRS) == 0) 2262 return (FILTER_STRAY); 2263 /* Disable interrupts. */ 2264 CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT); 2265 taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task); 2266 2267 return (FILTER_HANDLED); 2268 } 2269 2270 static void 2271 ale_int_task(void *arg, int pending) 2272 { 2273 struct ale_softc *sc; 2274 struct ifnet *ifp; 2275 uint32_t status; 2276 int more; 2277 2278 sc = (struct ale_softc *)arg; 2279 2280 status = CSR_READ_4(sc, ALE_INTR_STATUS); 2281 ALE_LOCK(sc); 2282 if (sc->ale_morework != 0) 2283 status |= INTR_RX_PKT; 2284 if ((status & ALE_INTRS) == 0) 2285 goto done; 2286 2287 /* Acknowledge interrupts but still disable interrupts. */ 2288 CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT); 2289 2290 ifp = sc->ale_ifp; 2291 more = 0; 2292 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2293 more = ale_rxeof(sc, sc->ale_process_limit); 2294 if (more == EAGAIN) 2295 sc->ale_morework = 1; 2296 else if (more == EIO) { 2297 sc->ale_stats.reset_brk_seq++; 2298 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2299 ale_init_locked(sc); 2300 ALE_UNLOCK(sc); 2301 return; 2302 } 2303 2304 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) { 2305 if ((status & INTR_DMA_RD_TO_RST) != 0) 2306 device_printf(sc->ale_dev, 2307 "DMA read error! -- resetting\n"); 2308 if ((status & INTR_DMA_WR_TO_RST) != 0) 2309 device_printf(sc->ale_dev, 2310 "DMA write error! -- resetting\n"); 2311 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2312 ale_init_locked(sc); 2313 ALE_UNLOCK(sc); 2314 return; 2315 } 2316 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2317 ale_start_locked(ifp); 2318 } 2319 2320 if (more == EAGAIN || 2321 (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) { 2322 ALE_UNLOCK(sc); 2323 taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task); 2324 return; 2325 } 2326 2327 done: 2328 ALE_UNLOCK(sc); 2329 2330 /* Re-enable interrupts. */ 2331 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF); 2332 } 2333 2334 static void 2335 ale_txeof(struct ale_softc *sc) 2336 { 2337 struct ifnet *ifp; 2338 struct ale_txdesc *txd; 2339 uint32_t cons, prod; 2340 int prog; 2341 2342 ALE_LOCK_ASSERT(sc); 2343 2344 ifp = sc->ale_ifp; 2345 2346 if (sc->ale_cdata.ale_tx_cnt == 0) 2347 return; 2348 2349 bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag, 2350 sc->ale_cdata.ale_tx_ring_map, 2351 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2352 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) { 2353 bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag, 2354 sc->ale_cdata.ale_tx_cmb_map, 2355 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2356 prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK; 2357 } else 2358 prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX); 2359 cons = sc->ale_cdata.ale_tx_cons; 2360 /* 2361 * Go through our Tx list and free mbufs for those 2362 * frames which have been transmitted. 2363 */ 2364 for (prog = 0; cons != prod; prog++, 2365 ALE_DESC_INC(cons, ALE_TX_RING_CNT)) { 2366 if (sc->ale_cdata.ale_tx_cnt <= 0) 2367 break; 2368 prog++; 2369 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2370 sc->ale_cdata.ale_tx_cnt--; 2371 txd = &sc->ale_cdata.ale_txdesc[cons]; 2372 if (txd->tx_m != NULL) { 2373 /* Reclaim transmitted mbufs. */ 2374 bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, 2375 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2376 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, 2377 txd->tx_dmamap); 2378 m_freem(txd->tx_m); 2379 txd->tx_m = NULL; 2380 } 2381 } 2382 2383 if (prog > 0) { 2384 sc->ale_cdata.ale_tx_cons = cons; 2385 /* 2386 * Unarm watchdog timer only when there is no pending 2387 * Tx descriptors in queue. 2388 */ 2389 if (sc->ale_cdata.ale_tx_cnt == 0) 2390 sc->ale_watchdog_timer = 0; 2391 } 2392 } 2393 2394 static void 2395 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page, 2396 uint32_t length, uint32_t *prod) 2397 { 2398 struct ale_rx_page *rx_page; 2399 2400 rx_page = *page; 2401 /* Update consumer position. */ 2402 rx_page->cons += roundup(length + sizeof(struct rx_rs), 2403 ALE_RX_PAGE_ALIGN); 2404 if (rx_page->cons >= ALE_RX_PAGE_SZ) { 2405 /* 2406 * End of Rx page reached, let hardware reuse 2407 * this page. 2408 */ 2409 rx_page->cons = 0; 2410 *rx_page->cmb_addr = 0; 2411 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map, 2412 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2413 CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp, 2414 RXF_VALID); 2415 /* Switch to alternate Rx page. */ 2416 sc->ale_cdata.ale_rx_curp ^= 1; 2417 rx_page = *page = 2418 &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp]; 2419 /* Page flipped, sync CMB and Rx page. */ 2420 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map, 2421 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2422 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map, 2423 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2424 /* Sync completed, cache updated producer index. */ 2425 *prod = *rx_page->cmb_addr; 2426 } 2427 } 2428 2429 2430 /* 2431 * It seems that AR81xx controller can compute partial checksum. 2432 * The partial checksum value can be used to accelerate checksum 2433 * computation for fragmented TCP/UDP packets. Upper network stack 2434 * already takes advantage of the partial checksum value in IP 2435 * reassembly stage. But I'm not sure the correctness of the 2436 * partial hardware checksum assistance due to lack of data sheet. 2437 * In addition, the Rx feature of controller that requires copying 2438 * for every frames effectively nullifies one of most nice offload 2439 * capability of controller. 2440 */ 2441 static void 2442 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status) 2443 { 2444 struct ifnet *ifp; 2445 struct ip *ip; 2446 char *p; 2447 2448 ifp = sc->ale_ifp; 2449 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 2450 if ((status & ALE_RD_IPCSUM_NOK) == 0) 2451 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2452 2453 if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) { 2454 if (((status & ALE_RD_IPV4_FRAG) == 0) && 2455 ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) && 2456 ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) { 2457 m->m_pkthdr.csum_flags |= 2458 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2459 m->m_pkthdr.csum_data = 0xffff; 2460 } 2461 } else { 2462 if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 && 2463 (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) { 2464 p = mtod(m, char *); 2465 p += ETHER_HDR_LEN; 2466 if ((status & ALE_RD_802_3) != 0) 2467 p += LLC_SNAPFRAMELEN; 2468 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 && 2469 (status & ALE_RD_VLAN) != 0) 2470 p += ETHER_VLAN_ENCAP_LEN; 2471 ip = (struct ip *)p; 2472 if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0) 2473 return; 2474 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 2475 CSUM_PSEUDO_HDR; 2476 m->m_pkthdr.csum_data = 0xffff; 2477 } 2478 } 2479 /* 2480 * Don't mark bad checksum for TCP/UDP frames 2481 * as fragmented frames may always have set 2482 * bad checksummed bit of frame status. 2483 */ 2484 } 2485 2486 /* Process received frames. */ 2487 static int 2488 ale_rxeof(struct ale_softc *sc, int count) 2489 { 2490 struct ale_rx_page *rx_page; 2491 struct rx_rs *rs; 2492 struct ifnet *ifp; 2493 struct mbuf *m; 2494 uint32_t length, prod, seqno, status, vtags; 2495 int prog; 2496 2497 ifp = sc->ale_ifp; 2498 rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp]; 2499 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map, 2500 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2501 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map, 2502 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2503 /* 2504 * Don't directly access producer index as hardware may 2505 * update it while Rx handler is in progress. It would 2506 * be even better if there is a way to let hardware 2507 * know how far driver processed its received frames. 2508 * Alternatively, hardware could provide a way to disable 2509 * CMB updates until driver acknowledges the end of CMB 2510 * access. 2511 */ 2512 prod = *rx_page->cmb_addr; 2513 for (prog = 0; prog < count; prog++) { 2514 if (rx_page->cons >= prod) 2515 break; 2516 rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons); 2517 seqno = ALE_RX_SEQNO(le32toh(rs->seqno)); 2518 if (sc->ale_cdata.ale_rx_seqno != seqno) { 2519 /* 2520 * Normally I believe this should not happen unless 2521 * severe driver bug or corrupted memory. However 2522 * it seems to happen under certain conditions which 2523 * is triggered by abrupt Rx events such as initiation 2524 * of bulk transfer of remote host. It's not easy to 2525 * reproduce this and I doubt it could be related 2526 * with FIFO overflow of hardware or activity of Tx 2527 * CMB updates. I also remember similar behaviour 2528 * seen on RealTek 8139 which uses resembling Rx 2529 * scheme. 2530 */ 2531 if (bootverbose) 2532 device_printf(sc->ale_dev, 2533 "garbled seq: %u, expected: %u -- " 2534 "resetting!\n", seqno, 2535 sc->ale_cdata.ale_rx_seqno); 2536 return (EIO); 2537 } 2538 /* Frame received. */ 2539 sc->ale_cdata.ale_rx_seqno++; 2540 length = ALE_RX_BYTES(le32toh(rs->length)); 2541 status = le32toh(rs->flags); 2542 if ((status & ALE_RD_ERROR) != 0) { 2543 /* 2544 * We want to pass the following frames to upper 2545 * layer regardless of error status of Rx return 2546 * status. 2547 * 2548 * o IP/TCP/UDP checksum is bad. 2549 * o frame length and protocol specific length 2550 * does not match. 2551 */ 2552 if ((status & (ALE_RD_CRC | ALE_RD_CODE | 2553 ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW | 2554 ALE_RD_TRUNC)) != 0) { 2555 ale_rx_update_page(sc, &rx_page, length, &prod); 2556 continue; 2557 } 2558 } 2559 /* 2560 * m_devget(9) is major bottle-neck of ale(4)(It comes 2561 * from hardware limitation). For jumbo frames we could 2562 * get a slightly better performance if driver use 2563 * m_getjcl(9) with proper buffer size argument. However 2564 * that would make code more complicated and I don't 2565 * think users would expect good Rx performance numbers 2566 * on these low-end consumer ethernet controller. 2567 */ 2568 m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN, 2569 ETHER_ALIGN, ifp, NULL); 2570 if (m == NULL) { 2571 ifp->if_iqdrops++; 2572 ale_rx_update_page(sc, &rx_page, length, &prod); 2573 continue; 2574 } 2575 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 && 2576 (status & ALE_RD_IPV4) != 0) 2577 ale_rxcsum(sc, m, status); 2578 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && 2579 (status & ALE_RD_VLAN) != 0) { 2580 vtags = ALE_RX_VLAN(le32toh(rs->vtags)); 2581 m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags); 2582 m->m_flags |= M_VLANTAG; 2583 } 2584 2585 /* Pass it to upper layer. */ 2586 ALE_UNLOCK(sc); 2587 (*ifp->if_input)(ifp, m); 2588 ALE_LOCK(sc); 2589 2590 ale_rx_update_page(sc, &rx_page, length, &prod); 2591 } 2592 2593 return (count > 0 ? 0 : EAGAIN); 2594 } 2595 2596 static void 2597 ale_tick(void *arg) 2598 { 2599 struct ale_softc *sc; 2600 struct mii_data *mii; 2601 2602 sc = (struct ale_softc *)arg; 2603 2604 ALE_LOCK_ASSERT(sc); 2605 2606 mii = device_get_softc(sc->ale_miibus); 2607 mii_tick(mii); 2608 ale_stats_update(sc); 2609 /* 2610 * Reclaim Tx buffers that have been transferred. It's not 2611 * needed here but it would release allocated mbuf chains 2612 * faster and limit the maximum delay to a hz. 2613 */ 2614 ale_txeof(sc); 2615 ale_watchdog(sc); 2616 callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc); 2617 } 2618 2619 static void 2620 ale_reset(struct ale_softc *sc) 2621 { 2622 uint32_t reg; 2623 int i; 2624 2625 /* Initialize PCIe module. From Linux. */ 2626 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000); 2627 2628 CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET); 2629 for (i = ALE_RESET_TIMEOUT; i > 0; i--) { 2630 DELAY(10); 2631 if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0) 2632 break; 2633 } 2634 if (i == 0) 2635 device_printf(sc->ale_dev, "master reset timeout!\n"); 2636 2637 for (i = ALE_RESET_TIMEOUT; i > 0; i--) { 2638 if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0) 2639 break; 2640 DELAY(10); 2641 } 2642 2643 if (i == 0) 2644 device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg); 2645 } 2646 2647 static void 2648 ale_init(void *xsc) 2649 { 2650 struct ale_softc *sc; 2651 2652 sc = (struct ale_softc *)xsc; 2653 ALE_LOCK(sc); 2654 ale_init_locked(sc); 2655 ALE_UNLOCK(sc); 2656 } 2657 2658 static void 2659 ale_init_locked(struct ale_softc *sc) 2660 { 2661 struct ifnet *ifp; 2662 struct mii_data *mii; 2663 uint8_t eaddr[ETHER_ADDR_LEN]; 2664 bus_addr_t paddr; 2665 uint32_t reg, rxf_hi, rxf_lo; 2666 2667 ALE_LOCK_ASSERT(sc); 2668 2669 ifp = sc->ale_ifp; 2670 mii = device_get_softc(sc->ale_miibus); 2671 2672 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2673 return; 2674 /* 2675 * Cancel any pending I/O. 2676 */ 2677 ale_stop(sc); 2678 /* 2679 * Reset the chip to a known state. 2680 */ 2681 ale_reset(sc); 2682 /* Initialize Tx descriptors, DMA memory blocks. */ 2683 ale_init_rx_pages(sc); 2684 ale_init_tx_ring(sc); 2685 2686 /* Reprogram the station address. */ 2687 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN); 2688 CSR_WRITE_4(sc, ALE_PAR0, 2689 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]); 2690 CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]); 2691 /* 2692 * Clear WOL status and disable all WOL feature as WOL 2693 * would interfere Rx operation under normal environments. 2694 */ 2695 CSR_READ_4(sc, ALE_WOL_CFG); 2696 CSR_WRITE_4(sc, ALE_WOL_CFG, 0); 2697 /* 2698 * Set Tx descriptor/RXF0/CMB base addresses. They share 2699 * the same high address part of DMAable region. 2700 */ 2701 paddr = sc->ale_cdata.ale_tx_ring_paddr; 2702 CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr)); 2703 CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr)); 2704 CSR_WRITE_4(sc, ALE_TPD_CNT, 2705 (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK); 2706 /* Set Rx page base address, note we use single queue. */ 2707 paddr = sc->ale_cdata.ale_rx_page[0].page_paddr; 2708 CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr)); 2709 paddr = sc->ale_cdata.ale_rx_page[1].page_paddr; 2710 CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr)); 2711 /* Set Tx/Rx CMB addresses. */ 2712 paddr = sc->ale_cdata.ale_tx_cmb_paddr; 2713 CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr)); 2714 paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr; 2715 CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr)); 2716 paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr; 2717 CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr)); 2718 /* Mark RXF0 is valid. */ 2719 CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID); 2720 CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID); 2721 /* 2722 * No need to initialize RFX1/RXF2/RXF3. We don't use 2723 * multi-queue yet. 2724 */ 2725 2726 /* Set Rx page size, excluding guard frame size. */ 2727 CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ); 2728 /* Tell hardware that we're ready to load DMA blocks. */ 2729 CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD); 2730 2731 /* Set Rx/Tx interrupt trigger threshold. */ 2732 CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) | 2733 (4 << INT_TRIG_TX_THRESH_SHIFT)); 2734 /* 2735 * XXX 2736 * Set interrupt trigger timer, its purpose and relation 2737 * with interrupt moderation mechanism is not clear yet. 2738 */ 2739 CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER, 2740 ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) | 2741 (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT))); 2742 2743 /* Configure interrupt moderation timer. */ 2744 reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT; 2745 reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT; 2746 CSR_WRITE_4(sc, ALE_IM_TIMER, reg); 2747 reg = CSR_READ_4(sc, ALE_MASTER_CFG); 2748 reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK); 2749 reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB); 2750 if (ALE_USECS(sc->ale_int_rx_mod) != 0) 2751 reg |= MASTER_IM_RX_TIMER_ENB; 2752 if (ALE_USECS(sc->ale_int_tx_mod) != 0) 2753 reg |= MASTER_IM_TX_TIMER_ENB; 2754 CSR_WRITE_4(sc, ALE_MASTER_CFG, reg); 2755 CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000)); 2756 2757 /* Set Maximum frame size of controller. */ 2758 if (ifp->if_mtu < ETHERMTU) 2759 sc->ale_max_frame_size = ETHERMTU; 2760 else 2761 sc->ale_max_frame_size = ifp->if_mtu; 2762 sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 2763 ETHER_CRC_LEN; 2764 CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size); 2765 /* Configure IPG/IFG parameters. */ 2766 CSR_WRITE_4(sc, ALE_IPG_IFG_CFG, 2767 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) | 2768 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) | 2769 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) | 2770 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK)); 2771 /* Set parameters for half-duplex media. */ 2772 CSR_WRITE_4(sc, ALE_HDPX_CFG, 2773 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) & 2774 HDPX_CFG_LCOL_MASK) | 2775 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) & 2776 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN | 2777 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) & 2778 HDPX_CFG_ABEBT_MASK) | 2779 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) & 2780 HDPX_CFG_JAMIPG_MASK)); 2781 2782 /* Configure Tx jumbo frame parameters. */ 2783 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) { 2784 if (ifp->if_mtu < ETHERMTU) 2785 reg = sc->ale_max_frame_size; 2786 else if (ifp->if_mtu < 6 * 1024) 2787 reg = (sc->ale_max_frame_size * 2) / 3; 2788 else 2789 reg = sc->ale_max_frame_size / 2; 2790 CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH, 2791 roundup(reg, TX_JUMBO_THRESH_UNIT) >> 2792 TX_JUMBO_THRESH_UNIT_SHIFT); 2793 } 2794 /* Configure TxQ. */ 2795 reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT)) 2796 << TXQ_CFG_TX_FIFO_BURST_SHIFT; 2797 reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) & 2798 TXQ_CFG_TPD_BURST_MASK; 2799 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB); 2800 2801 /* Configure Rx jumbo frame & flow control parameters. */ 2802 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) { 2803 reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT); 2804 CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH, 2805 (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) << 2806 RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) | 2807 ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) & 2808 RX_JUMBO_LKAH_MASK)); 2809 reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN); 2810 rxf_hi = (reg * 7) / 10; 2811 rxf_lo = (reg * 3)/ 10; 2812 CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH, 2813 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) & 2814 RX_FIFO_PAUSE_THRESH_LO_MASK) | 2815 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) & 2816 RX_FIFO_PAUSE_THRESH_HI_MASK)); 2817 } 2818 2819 /* Disable RSS. */ 2820 CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0); 2821 CSR_WRITE_4(sc, ALE_RSS_CPU, 0); 2822 2823 /* Configure RxQ. */ 2824 CSR_WRITE_4(sc, ALE_RXQ_CFG, 2825 RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB); 2826 2827 /* Configure DMA parameters. */ 2828 reg = 0; 2829 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) 2830 reg |= DMA_CFG_TXCMB_ENB; 2831 CSR_WRITE_4(sc, ALE_DMA_CFG, 2832 DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 | 2833 sc->ale_dma_rd_burst | reg | 2834 sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB | 2835 ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) & 2836 DMA_CFG_RD_DELAY_CNT_MASK) | 2837 ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) & 2838 DMA_CFG_WR_DELAY_CNT_MASK)); 2839 2840 /* 2841 * Hardware can be configured to issue SMB interrupt based 2842 * on programmed interval. Since there is a callout that is 2843 * invoked for every hz in driver we use that instead of 2844 * relying on periodic SMB interrupt. 2845 */ 2846 CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0)); 2847 /* Clear MAC statistics. */ 2848 ale_stats_clear(sc); 2849 2850 /* 2851 * Configure Tx/Rx MACs. 2852 * - Auto-padding for short frames. 2853 * - Enable CRC generation. 2854 * Actual reconfiguration of MAC for resolved speed/duplex 2855 * is followed after detection of link establishment. 2856 * AR81xx always does checksum computation regardless of 2857 * MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will 2858 * cause Rx handling issue for fragmented IP datagrams due 2859 * to silicon bug. 2860 */ 2861 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX | 2862 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) & 2863 MAC_CFG_PREAMBLE_MASK); 2864 if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0) 2865 reg |= MAC_CFG_SPEED_10_100; 2866 else 2867 reg |= MAC_CFG_SPEED_1000; 2868 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 2869 2870 /* Set up the receive filter. */ 2871 ale_rxfilter(sc); 2872 ale_rxvlan(sc); 2873 2874 /* Acknowledge all pending interrupts and clear it. */ 2875 CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS); 2876 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF); 2877 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0); 2878 2879 sc->ale_flags &= ~ALE_FLAG_LINK; 2880 /* Switch to the current media. */ 2881 mii_mediachg(mii); 2882 2883 callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc); 2884 2885 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2886 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2887 } 2888 2889 static void 2890 ale_stop(struct ale_softc *sc) 2891 { 2892 struct ifnet *ifp; 2893 struct ale_txdesc *txd; 2894 uint32_t reg; 2895 int i; 2896 2897 ALE_LOCK_ASSERT(sc); 2898 /* 2899 * Mark the interface down and cancel the watchdog timer. 2900 */ 2901 ifp = sc->ale_ifp; 2902 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2903 sc->ale_flags &= ~ALE_FLAG_LINK; 2904 callout_stop(&sc->ale_tick_ch); 2905 sc->ale_watchdog_timer = 0; 2906 ale_stats_update(sc); 2907 /* Disable interrupts. */ 2908 CSR_WRITE_4(sc, ALE_INTR_MASK, 0); 2909 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF); 2910 /* Disable queue processing and DMA. */ 2911 reg = CSR_READ_4(sc, ALE_TXQ_CFG); 2912 reg &= ~TXQ_CFG_ENB; 2913 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg); 2914 reg = CSR_READ_4(sc, ALE_RXQ_CFG); 2915 reg &= ~RXQ_CFG_ENB; 2916 CSR_WRITE_4(sc, ALE_RXQ_CFG, reg); 2917 reg = CSR_READ_4(sc, ALE_DMA_CFG); 2918 reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB); 2919 CSR_WRITE_4(sc, ALE_DMA_CFG, reg); 2920 DELAY(1000); 2921 /* Stop Rx/Tx MACs. */ 2922 ale_stop_mac(sc); 2923 /* Disable interrupts which might be touched in taskq handler. */ 2924 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF); 2925 2926 /* 2927 * Free TX mbufs still in the queues. 2928 */ 2929 for (i = 0; i < ALE_TX_RING_CNT; i++) { 2930 txd = &sc->ale_cdata.ale_txdesc[i]; 2931 if (txd->tx_m != NULL) { 2932 bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, 2933 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2934 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, 2935 txd->tx_dmamap); 2936 m_freem(txd->tx_m); 2937 txd->tx_m = NULL; 2938 } 2939 } 2940 } 2941 2942 static void 2943 ale_stop_mac(struct ale_softc *sc) 2944 { 2945 uint32_t reg; 2946 int i; 2947 2948 ALE_LOCK_ASSERT(sc); 2949 2950 reg = CSR_READ_4(sc, ALE_MAC_CFG); 2951 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) { 2952 reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB; 2953 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 2954 } 2955 2956 for (i = ALE_TIMEOUT; i > 0; i--) { 2957 reg = CSR_READ_4(sc, ALE_IDLE_STATUS); 2958 if (reg == 0) 2959 break; 2960 DELAY(10); 2961 } 2962 if (i == 0) 2963 device_printf(sc->ale_dev, 2964 "could not disable Tx/Rx MAC(0x%08x)!\n", reg); 2965 } 2966 2967 static void 2968 ale_init_tx_ring(struct ale_softc *sc) 2969 { 2970 struct ale_txdesc *txd; 2971 int i; 2972 2973 ALE_LOCK_ASSERT(sc); 2974 2975 sc->ale_cdata.ale_tx_prod = 0; 2976 sc->ale_cdata.ale_tx_cons = 0; 2977 sc->ale_cdata.ale_tx_cnt = 0; 2978 2979 bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ); 2980 bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ); 2981 for (i = 0; i < ALE_TX_RING_CNT; i++) { 2982 txd = &sc->ale_cdata.ale_txdesc[i]; 2983 txd->tx_m = NULL; 2984 } 2985 *sc->ale_cdata.ale_tx_cmb = 0; 2986 bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag, 2987 sc->ale_cdata.ale_tx_cmb_map, 2988 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2989 bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag, 2990 sc->ale_cdata.ale_tx_ring_map, 2991 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2992 } 2993 2994 static void 2995 ale_init_rx_pages(struct ale_softc *sc) 2996 { 2997 struct ale_rx_page *rx_page; 2998 int i; 2999 3000 ALE_LOCK_ASSERT(sc); 3001 3002 sc->ale_morework = 0; 3003 sc->ale_cdata.ale_rx_seqno = 0; 3004 sc->ale_cdata.ale_rx_curp = 0; 3005 3006 for (i = 0; i < ALE_RX_PAGES; i++) { 3007 rx_page = &sc->ale_cdata.ale_rx_page[i]; 3008 bzero(rx_page->page_addr, sc->ale_pagesize); 3009 bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ); 3010 rx_page->cons = 0; 3011 *rx_page->cmb_addr = 0; 3012 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map, 3013 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3014 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map, 3015 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3016 } 3017 } 3018 3019 static void 3020 ale_rxvlan(struct ale_softc *sc) 3021 { 3022 struct ifnet *ifp; 3023 uint32_t reg; 3024 3025 ALE_LOCK_ASSERT(sc); 3026 3027 ifp = sc->ale_ifp; 3028 reg = CSR_READ_4(sc, ALE_MAC_CFG); 3029 reg &= ~MAC_CFG_VLAN_TAG_STRIP; 3030 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 3031 reg |= MAC_CFG_VLAN_TAG_STRIP; 3032 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 3033 } 3034 3035 static void 3036 ale_rxfilter(struct ale_softc *sc) 3037 { 3038 struct ifnet *ifp; 3039 struct ifmultiaddr *ifma; 3040 uint32_t crc; 3041 uint32_t mchash[2]; 3042 uint32_t rxcfg; 3043 3044 ALE_LOCK_ASSERT(sc); 3045 3046 ifp = sc->ale_ifp; 3047 3048 rxcfg = CSR_READ_4(sc, ALE_MAC_CFG); 3049 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC); 3050 if ((ifp->if_flags & IFF_BROADCAST) != 0) 3051 rxcfg |= MAC_CFG_BCAST; 3052 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 3053 if ((ifp->if_flags & IFF_PROMISC) != 0) 3054 rxcfg |= MAC_CFG_PROMISC; 3055 if ((ifp->if_flags & IFF_ALLMULTI) != 0) 3056 rxcfg |= MAC_CFG_ALLMULTI; 3057 CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF); 3058 CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF); 3059 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg); 3060 return; 3061 } 3062 3063 /* Program new filter. */ 3064 bzero(mchash, sizeof(mchash)); 3065 3066 if_maddr_rlock(ifp); 3067 TAILQ_FOREACH(ifma, &sc->ale_ifp->if_multiaddrs, ifma_link) { 3068 if (ifma->ifma_addr->sa_family != AF_LINK) 3069 continue; 3070 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) 3071 ifma->ifma_addr), ETHER_ADDR_LEN); 3072 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); 3073 } 3074 if_maddr_runlock(ifp); 3075 3076 CSR_WRITE_4(sc, ALE_MAR0, mchash[0]); 3077 CSR_WRITE_4(sc, ALE_MAR1, mchash[1]); 3078 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg); 3079 } 3080 3081 static int 3082 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3083 { 3084 int error, value; 3085 3086 if (arg1 == NULL) 3087 return (EINVAL); 3088 value = *(int *)arg1; 3089 error = sysctl_handle_int(oidp, &value, 0, req); 3090 if (error || req->newptr == NULL) 3091 return (error); 3092 if (value < low || value > high) 3093 return (EINVAL); 3094 *(int *)arg1 = value; 3095 3096 return (0); 3097 } 3098 3099 static int 3100 sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS) 3101 { 3102 return (sysctl_int_range(oidp, arg1, arg2, req, 3103 ALE_PROC_MIN, ALE_PROC_MAX)); 3104 } 3105 3106 static int 3107 sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS) 3108 { 3109 3110 return (sysctl_int_range(oidp, arg1, arg2, req, 3111 ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX)); 3112 } 3113