xref: /freebsd/sys/dev/ale/if_ale.c (revision 4ed925457ab06e83238a5db33e89ccc94b99a713)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/module.h>
41 #include <sys/rman.h>
42 #include <sys/queue.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_llc.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_vlan_var.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/ip.h>
61 #include <netinet/tcp.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 
66 #include <dev/pci/pcireg.h>
67 #include <dev/pci/pcivar.h>
68 
69 #include <machine/atomic.h>
70 #include <machine/bus.h>
71 #include <machine/in_cksum.h>
72 
73 #include <dev/ale/if_alereg.h>
74 #include <dev/ale/if_alevar.h>
75 
76 /* "device miibus" required.  See GENERIC if you get errors here. */
77 #include "miibus_if.h"
78 
79 /* For more information about Tx checksum offload issues see ale_encap(). */
80 #define	ALE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
81 #ifndef	IFCAP_VLAN_HWTSO
82 #define	IFCAP_VLAN_HWTSO	0
83 #endif
84 
85 MODULE_DEPEND(ale, pci, 1, 1, 1);
86 MODULE_DEPEND(ale, ether, 1, 1, 1);
87 MODULE_DEPEND(ale, miibus, 1, 1, 1);
88 
89 /* Tunables. */
90 static int msi_disable = 0;
91 static int msix_disable = 0;
92 TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
93 TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
94 
95 /*
96  * Devices supported by this driver.
97  */
98 static struct ale_dev {
99 	uint16_t	ale_vendorid;
100 	uint16_t	ale_deviceid;
101 	const char	*ale_name;
102 } ale_devs[] = {
103     { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
104     "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
105 };
106 
107 static int	ale_attach(device_t);
108 static int	ale_check_boundary(struct ale_softc *);
109 static int	ale_detach(device_t);
110 static int	ale_dma_alloc(struct ale_softc *);
111 static void	ale_dma_free(struct ale_softc *);
112 static void	ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113 static int	ale_encap(struct ale_softc *, struct mbuf **);
114 static void	ale_get_macaddr(struct ale_softc *);
115 static void	ale_init(void *);
116 static void	ale_init_locked(struct ale_softc *);
117 static void	ale_init_rx_pages(struct ale_softc *);
118 static void	ale_init_tx_ring(struct ale_softc *);
119 static void	ale_int_task(void *, int);
120 static int	ale_intr(void *);
121 static int	ale_ioctl(struct ifnet *, u_long, caddr_t);
122 static void	ale_link_task(void *, int);
123 static void	ale_mac_config(struct ale_softc *);
124 static int	ale_miibus_readreg(device_t, int, int);
125 static void	ale_miibus_statchg(device_t);
126 static int	ale_miibus_writereg(device_t, int, int, int);
127 static int	ale_mediachange(struct ifnet *);
128 static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
129 static void	ale_phy_reset(struct ale_softc *);
130 static int	ale_probe(device_t);
131 static void	ale_reset(struct ale_softc *);
132 static int	ale_resume(device_t);
133 static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
134     uint32_t, uint32_t *);
135 static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
136 static int	ale_rxeof(struct ale_softc *sc, int);
137 static void	ale_rxfilter(struct ale_softc *);
138 static void	ale_rxvlan(struct ale_softc *);
139 static void	ale_setlinkspeed(struct ale_softc *);
140 static void	ale_setwol(struct ale_softc *);
141 static int	ale_shutdown(device_t);
142 static void	ale_start(struct ifnet *);
143 static void	ale_stats_clear(struct ale_softc *);
144 static void	ale_stats_update(struct ale_softc *);
145 static void	ale_stop(struct ale_softc *);
146 static void	ale_stop_mac(struct ale_softc *);
147 static int	ale_suspend(device_t);
148 static void	ale_sysctl_node(struct ale_softc *);
149 static void	ale_tick(void *);
150 static void	ale_tx_task(void *, int);
151 static void	ale_txeof(struct ale_softc *);
152 static void	ale_watchdog(struct ale_softc *);
153 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
154 static int	sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
155 static int	sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
156 
157 static device_method_t ale_methods[] = {
158 	/* Device interface. */
159 	DEVMETHOD(device_probe,		ale_probe),
160 	DEVMETHOD(device_attach,	ale_attach),
161 	DEVMETHOD(device_detach,	ale_detach),
162 	DEVMETHOD(device_shutdown,	ale_shutdown),
163 	DEVMETHOD(device_suspend,	ale_suspend),
164 	DEVMETHOD(device_resume,	ale_resume),
165 
166 	/* MII interface. */
167 	DEVMETHOD(miibus_readreg,	ale_miibus_readreg),
168 	DEVMETHOD(miibus_writereg,	ale_miibus_writereg),
169 	DEVMETHOD(miibus_statchg,	ale_miibus_statchg),
170 
171 	{ NULL, NULL }
172 };
173 
174 static driver_t ale_driver = {
175 	"ale",
176 	ale_methods,
177 	sizeof(struct ale_softc)
178 };
179 
180 static devclass_t ale_devclass;
181 
182 DRIVER_MODULE(ale, pci, ale_driver, ale_devclass, 0, 0);
183 DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, 0, 0);
184 
185 static struct resource_spec ale_res_spec_mem[] = {
186 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
187 	{ -1,			0,		0 }
188 };
189 
190 static struct resource_spec ale_irq_spec_legacy[] = {
191 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
192 	{ -1,			0,		0 }
193 };
194 
195 static struct resource_spec ale_irq_spec_msi[] = {
196 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
197 	{ -1,			0,		0 }
198 };
199 
200 static struct resource_spec ale_irq_spec_msix[] = {
201 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
202 	{ -1,			0,		0 }
203 };
204 
205 static int
206 ale_miibus_readreg(device_t dev, int phy, int reg)
207 {
208 	struct ale_softc *sc;
209 	uint32_t v;
210 	int i;
211 
212 	sc = device_get_softc(dev);
213 
214 	if (phy != sc->ale_phyaddr)
215 		return (0);
216 
217 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
218 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
219 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
220 		DELAY(5);
221 		v = CSR_READ_4(sc, ALE_MDIO);
222 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
223 			break;
224 	}
225 
226 	if (i == 0) {
227 		device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
228 		return (0);
229 	}
230 
231 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
232 }
233 
234 static int
235 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
236 {
237 	struct ale_softc *sc;
238 	uint32_t v;
239 	int i;
240 
241 	sc = device_get_softc(dev);
242 
243 	if (phy != sc->ale_phyaddr)
244 		return (0);
245 
246 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
247 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
248 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
249 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
250 		DELAY(5);
251 		v = CSR_READ_4(sc, ALE_MDIO);
252 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
253 			break;
254 	}
255 
256 	if (i == 0)
257 		device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
258 
259 	return (0);
260 }
261 
262 static void
263 ale_miibus_statchg(device_t dev)
264 {
265 	struct ale_softc *sc;
266 
267 	sc = device_get_softc(dev);
268 
269 	taskqueue_enqueue(taskqueue_swi, &sc->ale_link_task);
270 }
271 
272 static void
273 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
274 {
275 	struct ale_softc *sc;
276 	struct mii_data *mii;
277 
278 	sc = ifp->if_softc;
279 	ALE_LOCK(sc);
280 	mii = device_get_softc(sc->ale_miibus);
281 
282 	mii_pollstat(mii);
283 	ALE_UNLOCK(sc);
284 	ifmr->ifm_status = mii->mii_media_status;
285 	ifmr->ifm_active = mii->mii_media_active;
286 }
287 
288 static int
289 ale_mediachange(struct ifnet *ifp)
290 {
291 	struct ale_softc *sc;
292 	struct mii_data *mii;
293 	struct mii_softc *miisc;
294 	int error;
295 
296 	sc = ifp->if_softc;
297 	ALE_LOCK(sc);
298 	mii = device_get_softc(sc->ale_miibus);
299 	if (mii->mii_instance != 0) {
300 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
301 			mii_phy_reset(miisc);
302 	}
303 	error = mii_mediachg(mii);
304 	ALE_UNLOCK(sc);
305 
306 	return (error);
307 }
308 
309 static int
310 ale_probe(device_t dev)
311 {
312 	struct ale_dev *sp;
313 	int i;
314 	uint16_t vendor, devid;
315 
316 	vendor = pci_get_vendor(dev);
317 	devid = pci_get_device(dev);
318 	sp = ale_devs;
319 	for (i = 0; i < sizeof(ale_devs) / sizeof(ale_devs[0]); i++) {
320 		if (vendor == sp->ale_vendorid &&
321 		    devid == sp->ale_deviceid) {
322 			device_set_desc(dev, sp->ale_name);
323 			return (BUS_PROBE_DEFAULT);
324 		}
325 		sp++;
326 	}
327 
328 	return (ENXIO);
329 }
330 
331 static void
332 ale_get_macaddr(struct ale_softc *sc)
333 {
334 	uint32_t ea[2], reg;
335 	int i, vpdc;
336 
337 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
338 	if ((reg & SPI_VPD_ENB) != 0) {
339 		reg &= ~SPI_VPD_ENB;
340 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
341 	}
342 
343 	if (pci_find_extcap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
344 		/*
345 		 * PCI VPD capability found, let TWSI reload EEPROM.
346 		 * This will set ethernet address of controller.
347 		 */
348 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
349 		    TWSI_CTRL_SW_LD_START);
350 		for (i = 100; i > 0; i--) {
351 			DELAY(1000);
352 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
353 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
354 				break;
355 		}
356 		if (i == 0)
357 			device_printf(sc->ale_dev,
358 			    "reloading EEPROM timeout!\n");
359 	} else {
360 		if (bootverbose)
361 			device_printf(sc->ale_dev,
362 			    "PCI VPD capability not found!\n");
363 	}
364 
365 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
366 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
367 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
368 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
369 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
370 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
371 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
372 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
373 }
374 
375 static void
376 ale_phy_reset(struct ale_softc *sc)
377 {
378 
379 	/* Reset magic from Linux. */
380 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
381 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
382 	    GPHY_CTRL_PHY_PLL_ON);
383 	DELAY(1000);
384 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
385 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
386 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
387 	DELAY(1000);
388 
389 #define	ATPHY_DBG_ADDR		0x1D
390 #define	ATPHY_DBG_DATA		0x1E
391 
392 	/* Enable hibernation mode. */
393 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
394 	    ATPHY_DBG_ADDR, 0x0B);
395 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
396 	    ATPHY_DBG_DATA, 0xBC00);
397 	/* Set Class A/B for all modes. */
398 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
399 	    ATPHY_DBG_ADDR, 0x00);
400 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
401 	    ATPHY_DBG_DATA, 0x02EF);
402 	/* Enable 10BT power saving. */
403 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
404 	    ATPHY_DBG_ADDR, 0x12);
405 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
406 	    ATPHY_DBG_DATA, 0x4C04);
407 	/* Adjust 1000T power. */
408 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
409 	    ATPHY_DBG_ADDR, 0x04);
410 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
411 	    ATPHY_DBG_ADDR, 0x8BBB);
412 	/* 10BT center tap voltage. */
413 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
414 	    ATPHY_DBG_ADDR, 0x05);
415 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
416 	    ATPHY_DBG_ADDR, 0x2C46);
417 
418 #undef	ATPHY_DBG_ADDR
419 #undef	ATPHY_DBG_DATA
420 	DELAY(1000);
421 }
422 
423 static int
424 ale_attach(device_t dev)
425 {
426 	struct ale_softc *sc;
427 	struct ifnet *ifp;
428 	uint16_t burst;
429 	int error, i, msic, msixc, pmc;
430 	uint32_t rxf_len, txf_len;
431 
432 	error = 0;
433 	sc = device_get_softc(dev);
434 	sc->ale_dev = dev;
435 
436 	mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
437 	    MTX_DEF);
438 	callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
439 	TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
440 	TASK_INIT(&sc->ale_link_task, 0, ale_link_task, sc);
441 
442 	/* Map the device. */
443 	pci_enable_busmaster(dev);
444 	sc->ale_res_spec = ale_res_spec_mem;
445 	sc->ale_irq_spec = ale_irq_spec_legacy;
446 	error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
447 	if (error != 0) {
448 		device_printf(dev, "cannot allocate memory resources.\n");
449 		goto fail;
450 	}
451 
452 	/* Set PHY address. */
453 	sc->ale_phyaddr = ALE_PHY_ADDR;
454 
455 	/* Reset PHY. */
456 	ale_phy_reset(sc);
457 
458 	/* Reset the ethernet controller. */
459 	ale_reset(sc);
460 
461 	/* Get PCI and chip id/revision. */
462 	sc->ale_rev = pci_get_revid(dev);
463 	if (sc->ale_rev >= 0xF0) {
464 		/* L2E Rev. B. AR8114 */
465 		sc->ale_flags |= ALE_FLAG_FASTETHER;
466 	} else {
467 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
468 			/* L1E AR8121 */
469 			sc->ale_flags |= ALE_FLAG_JUMBO;
470 		} else {
471 			/* L2E Rev. A. AR8113 */
472 			sc->ale_flags |= ALE_FLAG_FASTETHER;
473 		}
474 	}
475 	/*
476 	 * All known controllers seems to require 4 bytes alignment
477 	 * of Tx buffers to make Tx checksum offload with custom
478 	 * checksum generation method work.
479 	 */
480 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
481 	/*
482 	 * All known controllers seems to have issues on Rx checksum
483 	 * offload for fragmented IP datagrams.
484 	 */
485 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
486 	/*
487 	 * Don't use Tx CMB. It is known to cause RRS update failure
488 	 * under certain circumstances. Typical phenomenon of the
489 	 * issue would be unexpected sequence number encountered in
490 	 * Rx handler.
491 	 */
492 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
493 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
494 	    MASTER_CHIP_REV_SHIFT;
495 	if (bootverbose) {
496 		device_printf(dev, "PCI device revision : 0x%04x\n",
497 		    sc->ale_rev);
498 		device_printf(dev, "Chip id/revision : 0x%04x\n",
499 		    sc->ale_chip_rev);
500 	}
501 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
502 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
503 	/*
504 	 * Uninitialized hardware returns an invalid chip id/revision
505 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
506 	 */
507 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
508 	    rxf_len == 0xFFFFFFF) {
509 		device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
510 		    "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
511 		    txf_len, rxf_len);
512 		error = ENXIO;
513 		goto fail;
514 	}
515 	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
516 
517 	/* Allocate IRQ resources. */
518 	msixc = pci_msix_count(dev);
519 	msic = pci_msi_count(dev);
520 	if (bootverbose) {
521 		device_printf(dev, "MSIX count : %d\n", msixc);
522 		device_printf(dev, "MSI count : %d\n", msic);
523 	}
524 
525 	/* Prefer MSIX over MSI. */
526 	if (msix_disable == 0 || msi_disable == 0) {
527 		if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
528 		    pci_alloc_msix(dev, &msixc) == 0) {
529 			if (msic == ALE_MSIX_MESSAGES) {
530 				device_printf(dev, "Using %d MSIX messages.\n",
531 				    msixc);
532 				sc->ale_flags |= ALE_FLAG_MSIX;
533 				sc->ale_irq_spec = ale_irq_spec_msix;
534 			} else
535 				pci_release_msi(dev);
536 		}
537 		if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
538 		    msic == ALE_MSI_MESSAGES &&
539 		    pci_alloc_msi(dev, &msic) == 0) {
540 			if (msic == ALE_MSI_MESSAGES) {
541 				device_printf(dev, "Using %d MSI messages.\n",
542 				    msic);
543 				sc->ale_flags |= ALE_FLAG_MSI;
544 				sc->ale_irq_spec = ale_irq_spec_msi;
545 			} else
546 				pci_release_msi(dev);
547 		}
548 	}
549 
550 	error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
551 	if (error != 0) {
552 		device_printf(dev, "cannot allocate IRQ resources.\n");
553 		goto fail;
554 	}
555 
556 	/* Get DMA parameters from PCIe device control register. */
557 	if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
558 		sc->ale_flags |= ALE_FLAG_PCIE;
559 		burst = pci_read_config(dev, i + 0x08, 2);
560 		/* Max read request size. */
561 		sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
562 		    DMA_CFG_RD_BURST_SHIFT;
563 		/* Max payload size. */
564 		sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
565 		    DMA_CFG_WR_BURST_SHIFT;
566 		if (bootverbose) {
567 			device_printf(dev, "Read request size : %d bytes.\n",
568 			    128 << ((burst >> 12) & 0x07));
569 			device_printf(dev, "TLP payload size : %d bytes.\n",
570 			    128 << ((burst >> 5) & 0x07));
571 		}
572 	} else {
573 		sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
574 		sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
575 	}
576 
577 	/* Create device sysctl node. */
578 	ale_sysctl_node(sc);
579 
580 	if ((error = ale_dma_alloc(sc) != 0))
581 		goto fail;
582 
583 	/* Load station address. */
584 	ale_get_macaddr(sc);
585 
586 	ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
587 	if (ifp == NULL) {
588 		device_printf(dev, "cannot allocate ifnet structure.\n");
589 		error = ENXIO;
590 		goto fail;
591 	}
592 
593 	ifp->if_softc = sc;
594 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
595 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
596 	ifp->if_ioctl = ale_ioctl;
597 	ifp->if_start = ale_start;
598 	ifp->if_init = ale_init;
599 	ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1;
600 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
601 	IFQ_SET_READY(&ifp->if_snd);
602 	ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4;
603 	ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO;
604 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
605 		sc->ale_flags |= ALE_FLAG_PMCAP;
606 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
607 	}
608 	ifp->if_capenable = ifp->if_capabilities;
609 
610 	/* Set up MII bus. */
611 	if ((error = mii_phy_probe(dev, &sc->ale_miibus, ale_mediachange,
612 	    ale_mediastatus)) != 0) {
613 		device_printf(dev, "no PHY found!\n");
614 		goto fail;
615 	}
616 
617 	ether_ifattach(ifp, sc->ale_eaddr);
618 
619 	/* VLAN capability setup. */
620 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
621 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
622 	ifp->if_capenable = ifp->if_capabilities;
623 	/*
624 	 * Even though controllers supported by ale(3) have Rx checksum
625 	 * offload bug the workaround for fragmented frames seemed to
626 	 * work so far. However it seems Rx checksum offload does not
627 	 * work under certain conditions. So disable Rx checksum offload
628 	 * until I find more clue about it but allow users to override it.
629 	 */
630 	ifp->if_capenable &= ~IFCAP_RXCSUM;
631 
632 	/* Tell the upper layer(s) we support long frames. */
633 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
634 
635 	/* Create local taskq. */
636 	TASK_INIT(&sc->ale_tx_task, 1, ale_tx_task, ifp);
637 	sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
638 	    taskqueue_thread_enqueue, &sc->ale_tq);
639 	if (sc->ale_tq == NULL) {
640 		device_printf(dev, "could not create taskqueue.\n");
641 		ether_ifdetach(ifp);
642 		error = ENXIO;
643 		goto fail;
644 	}
645 	taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
646 	    device_get_nameunit(sc->ale_dev));
647 
648 	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
649 		msic = ALE_MSIX_MESSAGES;
650 	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
651 		msic = ALE_MSI_MESSAGES;
652 	else
653 		msic = 1;
654 	for (i = 0; i < msic; i++) {
655 		error = bus_setup_intr(dev, sc->ale_irq[i],
656 		    INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
657 		    &sc->ale_intrhand[i]);
658 		if (error != 0)
659 			break;
660 	}
661 	if (error != 0) {
662 		device_printf(dev, "could not set up interrupt handler.\n");
663 		taskqueue_free(sc->ale_tq);
664 		sc->ale_tq = NULL;
665 		ether_ifdetach(ifp);
666 		goto fail;
667 	}
668 
669 fail:
670 	if (error != 0)
671 		ale_detach(dev);
672 
673 	return (error);
674 }
675 
676 static int
677 ale_detach(device_t dev)
678 {
679 	struct ale_softc *sc;
680 	struct ifnet *ifp;
681 	int i, msic;
682 
683 	sc = device_get_softc(dev);
684 
685 	ifp = sc->ale_ifp;
686 	if (device_is_attached(dev)) {
687 		ALE_LOCK(sc);
688 		sc->ale_flags |= ALE_FLAG_DETACH;
689 		ale_stop(sc);
690 		ALE_UNLOCK(sc);
691 		callout_drain(&sc->ale_tick_ch);
692 		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
693 		taskqueue_drain(sc->ale_tq, &sc->ale_tx_task);
694 		taskqueue_drain(taskqueue_swi, &sc->ale_link_task);
695 		ether_ifdetach(ifp);
696 	}
697 
698 	if (sc->ale_tq != NULL) {
699 		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
700 		taskqueue_free(sc->ale_tq);
701 		sc->ale_tq = NULL;
702 	}
703 
704 	if (sc->ale_miibus != NULL) {
705 		device_delete_child(dev, sc->ale_miibus);
706 		sc->ale_miibus = NULL;
707 	}
708 	bus_generic_detach(dev);
709 	ale_dma_free(sc);
710 
711 	if (ifp != NULL) {
712 		if_free(ifp);
713 		sc->ale_ifp = NULL;
714 	}
715 
716 	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
717 		msic = ALE_MSIX_MESSAGES;
718 	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
719 		msic = ALE_MSI_MESSAGES;
720 	else
721 		msic = 1;
722 	for (i = 0; i < msic; i++) {
723 		if (sc->ale_intrhand[i] != NULL) {
724 			bus_teardown_intr(dev, sc->ale_irq[i],
725 			    sc->ale_intrhand[i]);
726 			sc->ale_intrhand[i] = NULL;
727 		}
728 	}
729 
730 	bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
731 	if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
732 		pci_release_msi(dev);
733 	bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
734 	mtx_destroy(&sc->ale_mtx);
735 
736 	return (0);
737 }
738 
739 #define	ALE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
740 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
741 
742 #if __FreeBSD_version > 800000
743 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
744 	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
745 #else
746 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
747 	    SYSCTL_ADD_ULONG(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
748 #endif
749 
750 static void
751 ale_sysctl_node(struct ale_softc *sc)
752 {
753 	struct sysctl_ctx_list *ctx;
754 	struct sysctl_oid_list *child, *parent;
755 	struct sysctl_oid *tree;
756 	struct ale_hw_stats *stats;
757 	int error;
758 
759 	stats = &sc->ale_stats;
760 	ctx = device_get_sysctl_ctx(sc->ale_dev);
761 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
762 
763 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
764 	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_rx_mod, 0,
765 	    sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
766 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
767 	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_tx_mod, 0,
768 	    sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
769 	/* Pull in device tunables. */
770 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
771 	error = resource_int_value(device_get_name(sc->ale_dev),
772 	    device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
773 	if (error == 0) {
774 		if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
775 		    sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
776 			device_printf(sc->ale_dev, "int_rx_mod value out of "
777 			    "range; using default: %d\n",
778 			    ALE_IM_RX_TIMER_DEFAULT);
779 			sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
780 		}
781 	}
782 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
783 	error = resource_int_value(device_get_name(sc->ale_dev),
784 	    device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
785 	if (error == 0) {
786 		if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
787 		    sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
788 			device_printf(sc->ale_dev, "int_tx_mod value out of "
789 			    "range; using default: %d\n",
790 			    ALE_IM_TX_TIMER_DEFAULT);
791 			sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
792 		}
793 	}
794 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
795 	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_process_limit, 0,
796 	    sysctl_hw_ale_proc_limit, "I",
797 	    "max number of Rx events to process");
798 	/* Pull in device tunables. */
799 	sc->ale_process_limit = ALE_PROC_DEFAULT;
800 	error = resource_int_value(device_get_name(sc->ale_dev),
801 	    device_get_unit(sc->ale_dev), "process_limit",
802 	    &sc->ale_process_limit);
803 	if (error == 0) {
804 		if (sc->ale_process_limit < ALE_PROC_MIN ||
805 		    sc->ale_process_limit > ALE_PROC_MAX) {
806 			device_printf(sc->ale_dev,
807 			    "process_limit value out of range; "
808 			    "using default: %d\n", ALE_PROC_DEFAULT);
809 			sc->ale_process_limit = ALE_PROC_DEFAULT;
810 		}
811 	}
812 
813 	/* Misc statistics. */
814 	ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
815 	    &stats->reset_brk_seq,
816 	    "Controller resets due to broken Rx sequnce number");
817 
818 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
819 	    NULL, "ATE statistics");
820 	parent = SYSCTL_CHILDREN(tree);
821 
822 	/* Rx statistics. */
823 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
824 	    NULL, "Rx MAC statistics");
825 	child = SYSCTL_CHILDREN(tree);
826 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
827 	    &stats->rx_frames, "Good frames");
828 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
829 	    &stats->rx_bcast_frames, "Good broadcast frames");
830 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
831 	    &stats->rx_mcast_frames, "Good multicast frames");
832 	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
833 	    &stats->rx_pause_frames, "Pause control frames");
834 	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
835 	    &stats->rx_control_frames, "Control frames");
836 	ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
837 	    &stats->rx_crcerrs, "CRC errors");
838 	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
839 	    &stats->rx_lenerrs, "Frames with length mismatched");
840 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
841 	    &stats->rx_bytes, "Good octets");
842 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
843 	    &stats->rx_bcast_bytes, "Good broadcast octets");
844 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
845 	    &stats->rx_mcast_bytes, "Good multicast octets");
846 	ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
847 	    &stats->rx_runts, "Too short frames");
848 	ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
849 	    &stats->rx_fragments, "Fragmented frames");
850 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
851 	    &stats->rx_pkts_64, "64 bytes frames");
852 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
853 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
854 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
855 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
856 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
857 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
858 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
859 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
860 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
861 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
862 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
863 	    &stats->rx_pkts_1519_max, "1519 to max frames");
864 	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
865 	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
866 	ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
867 	    &stats->rx_fifo_oflows, "FIFO overflows");
868 	ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
869 	    &stats->rx_rrs_errs, "Return status write-back errors");
870 	ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
871 	    &stats->rx_alignerrs, "Alignment errors");
872 	ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
873 	    &stats->rx_pkts_filtered,
874 	    "Frames dropped due to address filtering");
875 
876 	/* Tx statistics. */
877 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
878 	    NULL, "Tx MAC statistics");
879 	child = SYSCTL_CHILDREN(tree);
880 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
881 	    &stats->tx_frames, "Good frames");
882 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
883 	    &stats->tx_bcast_frames, "Good broadcast frames");
884 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
885 	    &stats->tx_mcast_frames, "Good multicast frames");
886 	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
887 	    &stats->tx_pause_frames, "Pause control frames");
888 	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
889 	    &stats->tx_control_frames, "Control frames");
890 	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
891 	    &stats->tx_excess_defer, "Frames with excessive derferrals");
892 	ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
893 	    &stats->tx_excess_defer, "Frames with derferrals");
894 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
895 	    &stats->tx_bytes, "Good octets");
896 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
897 	    &stats->tx_bcast_bytes, "Good broadcast octets");
898 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
899 	    &stats->tx_mcast_bytes, "Good multicast octets");
900 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
901 	    &stats->tx_pkts_64, "64 bytes frames");
902 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
903 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
904 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
905 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
906 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
907 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
908 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
909 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
910 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
911 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
912 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
913 	    &stats->tx_pkts_1519_max, "1519 to max frames");
914 	ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
915 	    &stats->tx_single_colls, "Single collisions");
916 	ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
917 	    &stats->tx_multi_colls, "Multiple collisions");
918 	ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
919 	    &stats->tx_late_colls, "Late collisions");
920 	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
921 	    &stats->tx_excess_colls, "Excessive collisions");
922 	ALE_SYSCTL_STAT_ADD32(ctx, child, "abort",
923 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
924 	ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
925 	    &stats->tx_underrun, "FIFO underruns");
926 	ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
927 	    &stats->tx_desc_underrun, "Descriptor write-back errors");
928 	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
929 	    &stats->tx_lenerrs, "Frames with length mismatched");
930 	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
931 	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
932 }
933 
934 #undef ALE_SYSCTL_STAT_ADD32
935 #undef ALE_SYSCTL_STAT_ADD64
936 
937 struct ale_dmamap_arg {
938 	bus_addr_t	ale_busaddr;
939 };
940 
941 static void
942 ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
943 {
944 	struct ale_dmamap_arg *ctx;
945 
946 	if (error != 0)
947 		return;
948 
949 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
950 
951 	ctx = (struct ale_dmamap_arg *)arg;
952 	ctx->ale_busaddr = segs[0].ds_addr;
953 }
954 
955 /*
956  * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
957  * which specifies high address region of DMA blocks. Therefore these
958  * blocks should have the same high address of given 4GB address
959  * space(i.e. crossing 4GB boundary is not allowed).
960  */
961 static int
962 ale_check_boundary(struct ale_softc *sc)
963 {
964 	bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
965 	bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
966 
967 	rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
968 	    sc->ale_pagesize;
969 	rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
970 	    sc->ale_pagesize;
971 	tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
972 	tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
973 	rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
974 	rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
975 
976 	if ((ALE_ADDR_HI(tx_ring_end) !=
977 	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
978 	    (ALE_ADDR_HI(rx_page_end[0]) !=
979 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
980 	    (ALE_ADDR_HI(rx_page_end[1]) !=
981 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
982 	    (ALE_ADDR_HI(tx_cmb_end) !=
983 	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
984 	    (ALE_ADDR_HI(rx_cmb_end[0]) !=
985 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
986 	    (ALE_ADDR_HI(rx_cmb_end[1]) !=
987 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
988 		return (EFBIG);
989 
990 	if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
991 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
992 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
993 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
994 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
995 		return (EFBIG);
996 
997 	return (0);
998 }
999 
1000 static int
1001 ale_dma_alloc(struct ale_softc *sc)
1002 {
1003 	struct ale_txdesc *txd;
1004 	bus_addr_t lowaddr;
1005 	struct ale_dmamap_arg ctx;
1006 	int error, guard_size, i;
1007 
1008 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
1009 		guard_size = ALE_JUMBO_FRAMELEN;
1010 	else
1011 		guard_size = ALE_MAX_FRAMELEN;
1012 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
1013 	    ALE_RX_PAGE_ALIGN);
1014 	lowaddr = BUS_SPACE_MAXADDR;
1015 again:
1016 	/* Create parent DMA tag. */
1017 	error = bus_dma_tag_create(
1018 	    bus_get_dma_tag(sc->ale_dev), /* parent */
1019 	    1, 0,			/* alignment, boundary */
1020 	    lowaddr,			/* lowaddr */
1021 	    BUS_SPACE_MAXADDR,		/* highaddr */
1022 	    NULL, NULL,			/* filter, filterarg */
1023 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1024 	    0,				/* nsegments */
1025 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1026 	    0,				/* flags */
1027 	    NULL, NULL,			/* lockfunc, lockarg */
1028 	    &sc->ale_cdata.ale_parent_tag);
1029 	if (error != 0) {
1030 		device_printf(sc->ale_dev,
1031 		    "could not create parent DMA tag.\n");
1032 		goto fail;
1033 	}
1034 
1035 	/* Create DMA tag for Tx descriptor ring. */
1036 	error = bus_dma_tag_create(
1037 	    sc->ale_cdata.ale_parent_tag, /* parent */
1038 	    ALE_TX_RING_ALIGN, 0,	/* alignment, boundary */
1039 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1040 	    BUS_SPACE_MAXADDR,		/* highaddr */
1041 	    NULL, NULL,			/* filter, filterarg */
1042 	    ALE_TX_RING_SZ,		/* maxsize */
1043 	    1,				/* nsegments */
1044 	    ALE_TX_RING_SZ,		/* maxsegsize */
1045 	    0,				/* flags */
1046 	    NULL, NULL,			/* lockfunc, lockarg */
1047 	    &sc->ale_cdata.ale_tx_ring_tag);
1048 	if (error != 0) {
1049 		device_printf(sc->ale_dev,
1050 		    "could not create Tx ring DMA tag.\n");
1051 		goto fail;
1052 	}
1053 
1054 	/* Create DMA tag for Rx pages. */
1055 	for (i = 0; i < ALE_RX_PAGES; i++) {
1056 		error = bus_dma_tag_create(
1057 		    sc->ale_cdata.ale_parent_tag, /* parent */
1058 		    ALE_RX_PAGE_ALIGN, 0,	/* alignment, boundary */
1059 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1060 		    BUS_SPACE_MAXADDR,		/* highaddr */
1061 		    NULL, NULL,			/* filter, filterarg */
1062 		    sc->ale_pagesize,		/* maxsize */
1063 		    1,				/* nsegments */
1064 		    sc->ale_pagesize,		/* maxsegsize */
1065 		    0,				/* flags */
1066 		    NULL, NULL,			/* lockfunc, lockarg */
1067 		    &sc->ale_cdata.ale_rx_page[i].page_tag);
1068 		if (error != 0) {
1069 			device_printf(sc->ale_dev,
1070 			    "could not create Rx page %d DMA tag.\n", i);
1071 			goto fail;
1072 		}
1073 	}
1074 
1075 	/* Create DMA tag for Tx coalescing message block. */
1076 	error = bus_dma_tag_create(
1077 	    sc->ale_cdata.ale_parent_tag, /* parent */
1078 	    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1079 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1080 	    BUS_SPACE_MAXADDR,		/* highaddr */
1081 	    NULL, NULL,			/* filter, filterarg */
1082 	    ALE_TX_CMB_SZ,		/* maxsize */
1083 	    1,				/* nsegments */
1084 	    ALE_TX_CMB_SZ,		/* maxsegsize */
1085 	    0,				/* flags */
1086 	    NULL, NULL,			/* lockfunc, lockarg */
1087 	    &sc->ale_cdata.ale_tx_cmb_tag);
1088 	if (error != 0) {
1089 		device_printf(sc->ale_dev,
1090 		    "could not create Tx CMB DMA tag.\n");
1091 		goto fail;
1092 	}
1093 
1094 	/* Create DMA tag for Rx coalescing message block. */
1095 	for (i = 0; i < ALE_RX_PAGES; i++) {
1096 		error = bus_dma_tag_create(
1097 		    sc->ale_cdata.ale_parent_tag, /* parent */
1098 		    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1099 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1100 		    BUS_SPACE_MAXADDR,		/* highaddr */
1101 		    NULL, NULL,			/* filter, filterarg */
1102 		    ALE_RX_CMB_SZ,		/* maxsize */
1103 		    1,				/* nsegments */
1104 		    ALE_RX_CMB_SZ,		/* maxsegsize */
1105 		    0,				/* flags */
1106 		    NULL, NULL,			/* lockfunc, lockarg */
1107 		    &sc->ale_cdata.ale_rx_page[i].cmb_tag);
1108 		if (error != 0) {
1109 			device_printf(sc->ale_dev,
1110 			    "could not create Rx page %d CMB DMA tag.\n", i);
1111 			goto fail;
1112 		}
1113 	}
1114 
1115 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1116 	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
1117 	    (void **)&sc->ale_cdata.ale_tx_ring,
1118 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1119 	    &sc->ale_cdata.ale_tx_ring_map);
1120 	if (error != 0) {
1121 		device_printf(sc->ale_dev,
1122 		    "could not allocate DMA'able memory for Tx ring.\n");
1123 		goto fail;
1124 	}
1125 	ctx.ale_busaddr = 0;
1126 	error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
1127 	    sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
1128 	    ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
1129 	if (error != 0 || ctx.ale_busaddr == 0) {
1130 		device_printf(sc->ale_dev,
1131 		    "could not load DMA'able memory for Tx ring.\n");
1132 		goto fail;
1133 	}
1134 	sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
1135 
1136 	/* Rx pages. */
1137 	for (i = 0; i < ALE_RX_PAGES; i++) {
1138 		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
1139 		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
1140 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1141 		    &sc->ale_cdata.ale_rx_page[i].page_map);
1142 		if (error != 0) {
1143 			device_printf(sc->ale_dev,
1144 			    "could not allocate DMA'able memory for "
1145 			    "Rx page %d.\n", i);
1146 			goto fail;
1147 		}
1148 		ctx.ale_busaddr = 0;
1149 		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
1150 		    sc->ale_cdata.ale_rx_page[i].page_map,
1151 		    sc->ale_cdata.ale_rx_page[i].page_addr,
1152 		    sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
1153 		if (error != 0 || ctx.ale_busaddr == 0) {
1154 			device_printf(sc->ale_dev,
1155 			    "could not load DMA'able memory for "
1156 			    "Rx page %d.\n", i);
1157 			goto fail;
1158 		}
1159 		sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
1160 	}
1161 
1162 	/* Tx CMB. */
1163 	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
1164 	    (void **)&sc->ale_cdata.ale_tx_cmb,
1165 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1166 	    &sc->ale_cdata.ale_tx_cmb_map);
1167 	if (error != 0) {
1168 		device_printf(sc->ale_dev,
1169 		    "could not allocate DMA'able memory for Tx CMB.\n");
1170 		goto fail;
1171 	}
1172 	ctx.ale_busaddr = 0;
1173 	error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
1174 	    sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
1175 	    ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1176 	if (error != 0 || ctx.ale_busaddr == 0) {
1177 		device_printf(sc->ale_dev,
1178 		    "could not load DMA'able memory for Tx CMB.\n");
1179 		goto fail;
1180 	}
1181 	sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
1182 
1183 	/* Rx CMB. */
1184 	for (i = 0; i < ALE_RX_PAGES; i++) {
1185 		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1186 		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
1187 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1188 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
1189 		if (error != 0) {
1190 			device_printf(sc->ale_dev, "could not allocate "
1191 			    "DMA'able memory for Rx page %d CMB.\n", i);
1192 			goto fail;
1193 		}
1194 		ctx.ale_busaddr = 0;
1195 		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1196 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
1197 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1198 		    ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1199 		if (error != 0 || ctx.ale_busaddr == 0) {
1200 			device_printf(sc->ale_dev, "could not load DMA'able "
1201 			    "memory for Rx page %d CMB.\n", i);
1202 			goto fail;
1203 		}
1204 		sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
1205 	}
1206 
1207 	/*
1208 	 * Tx descriptors/RXF0/CMB DMA blocks share the same
1209 	 * high address region of 64bit DMA address space.
1210 	 */
1211 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1212 	    (error = ale_check_boundary(sc)) != 0) {
1213 		device_printf(sc->ale_dev, "4GB boundary crossed, "
1214 		    "switching to 32bit DMA addressing mode.\n");
1215 		ale_dma_free(sc);
1216 		/*
1217 		 * Limit max allowable DMA address space to 32bit
1218 		 * and try again.
1219 		 */
1220 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1221 		goto again;
1222 	}
1223 
1224 	/*
1225 	 * Create Tx buffer parent tag.
1226 	 * AR81xx allows 64bit DMA addressing of Tx buffers so it
1227 	 * needs separate parent DMA tag as parent DMA address space
1228 	 * could be restricted to be within 32bit address space by
1229 	 * 4GB boundary crossing.
1230 	 */
1231 	error = bus_dma_tag_create(
1232 	    bus_get_dma_tag(sc->ale_dev), /* parent */
1233 	    1, 0,			/* alignment, boundary */
1234 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1235 	    BUS_SPACE_MAXADDR,		/* highaddr */
1236 	    NULL, NULL,			/* filter, filterarg */
1237 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1238 	    0,				/* nsegments */
1239 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1240 	    0,				/* flags */
1241 	    NULL, NULL,			/* lockfunc, lockarg */
1242 	    &sc->ale_cdata.ale_buffer_tag);
1243 	if (error != 0) {
1244 		device_printf(sc->ale_dev,
1245 		    "could not create parent buffer DMA tag.\n");
1246 		goto fail;
1247 	}
1248 
1249 	/* Create DMA tag for Tx buffers. */
1250 	error = bus_dma_tag_create(
1251 	    sc->ale_cdata.ale_buffer_tag, /* parent */
1252 	    1, 0,			/* alignment, boundary */
1253 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1254 	    BUS_SPACE_MAXADDR,		/* highaddr */
1255 	    NULL, NULL,			/* filter, filterarg */
1256 	    ALE_TSO_MAXSIZE,		/* maxsize */
1257 	    ALE_MAXTXSEGS,		/* nsegments */
1258 	    ALE_TSO_MAXSEGSIZE,		/* maxsegsize */
1259 	    0,				/* flags */
1260 	    NULL, NULL,			/* lockfunc, lockarg */
1261 	    &sc->ale_cdata.ale_tx_tag);
1262 	if (error != 0) {
1263 		device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
1264 		goto fail;
1265 	}
1266 
1267 	/* Create DMA maps for Tx buffers. */
1268 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1269 		txd = &sc->ale_cdata.ale_txdesc[i];
1270 		txd->tx_m = NULL;
1271 		txd->tx_dmamap = NULL;
1272 		error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
1273 		    &txd->tx_dmamap);
1274 		if (error != 0) {
1275 			device_printf(sc->ale_dev,
1276 			    "could not create Tx dmamap.\n");
1277 			goto fail;
1278 		}
1279 	}
1280 
1281 fail:
1282 	return (error);
1283 }
1284 
1285 static void
1286 ale_dma_free(struct ale_softc *sc)
1287 {
1288 	struct ale_txdesc *txd;
1289 	int i;
1290 
1291 	/* Tx buffers. */
1292 	if (sc->ale_cdata.ale_tx_tag != NULL) {
1293 		for (i = 0; i < ALE_TX_RING_CNT; i++) {
1294 			txd = &sc->ale_cdata.ale_txdesc[i];
1295 			if (txd->tx_dmamap != NULL) {
1296 				bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
1297 				    txd->tx_dmamap);
1298 				txd->tx_dmamap = NULL;
1299 			}
1300 		}
1301 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
1302 		sc->ale_cdata.ale_tx_tag = NULL;
1303 	}
1304 	/* Tx descriptor ring. */
1305 	if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
1306 		if (sc->ale_cdata.ale_tx_ring_map != NULL)
1307 			bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
1308 			    sc->ale_cdata.ale_tx_ring_map);
1309 		if (sc->ale_cdata.ale_tx_ring_map != NULL &&
1310 		    sc->ale_cdata.ale_tx_ring != NULL)
1311 			bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
1312 			    sc->ale_cdata.ale_tx_ring,
1313 			    sc->ale_cdata.ale_tx_ring_map);
1314 		sc->ale_cdata.ale_tx_ring = NULL;
1315 		sc->ale_cdata.ale_tx_ring_map = NULL;
1316 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
1317 		sc->ale_cdata.ale_tx_ring_tag = NULL;
1318 	}
1319 	/* Rx page block. */
1320 	for (i = 0; i < ALE_RX_PAGES; i++) {
1321 		if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
1322 			if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
1323 				bus_dmamap_unload(
1324 				    sc->ale_cdata.ale_rx_page[i].page_tag,
1325 				    sc->ale_cdata.ale_rx_page[i].page_map);
1326 			if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
1327 			    sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
1328 				bus_dmamem_free(
1329 				    sc->ale_cdata.ale_rx_page[i].page_tag,
1330 				    sc->ale_cdata.ale_rx_page[i].page_addr,
1331 				    sc->ale_cdata.ale_rx_page[i].page_map);
1332 			sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
1333 			sc->ale_cdata.ale_rx_page[i].page_map = NULL;
1334 			bus_dma_tag_destroy(
1335 			    sc->ale_cdata.ale_rx_page[i].page_tag);
1336 			sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
1337 		}
1338 	}
1339 	/* Rx CMB. */
1340 	for (i = 0; i < ALE_RX_PAGES; i++) {
1341 		if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
1342 			if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
1343 				bus_dmamap_unload(
1344 				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1345 				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1346 			if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
1347 			    sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
1348 				bus_dmamem_free(
1349 				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1350 				    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1351 				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1352 			sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
1353 			sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
1354 			bus_dma_tag_destroy(
1355 			    sc->ale_cdata.ale_rx_page[i].cmb_tag);
1356 			sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
1357 		}
1358 	}
1359 	/* Tx CMB. */
1360 	if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
1361 		if (sc->ale_cdata.ale_tx_cmb_map != NULL)
1362 			bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
1363 			    sc->ale_cdata.ale_tx_cmb_map);
1364 		if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
1365 		    sc->ale_cdata.ale_tx_cmb != NULL)
1366 			bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
1367 			    sc->ale_cdata.ale_tx_cmb,
1368 			    sc->ale_cdata.ale_tx_cmb_map);
1369 		sc->ale_cdata.ale_tx_cmb = NULL;
1370 		sc->ale_cdata.ale_tx_cmb_map = NULL;
1371 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
1372 		sc->ale_cdata.ale_tx_cmb_tag = NULL;
1373 	}
1374 	if (sc->ale_cdata.ale_buffer_tag != NULL) {
1375 		bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
1376 		sc->ale_cdata.ale_buffer_tag = NULL;
1377 	}
1378 	if (sc->ale_cdata.ale_parent_tag != NULL) {
1379 		bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
1380 		sc->ale_cdata.ale_parent_tag = NULL;
1381 	}
1382 }
1383 
1384 static int
1385 ale_shutdown(device_t dev)
1386 {
1387 
1388 	return (ale_suspend(dev));
1389 }
1390 
1391 /*
1392  * Note, this driver resets the link speed to 10/100Mbps by
1393  * restarting auto-negotiation in suspend/shutdown phase but we
1394  * don't know whether that auto-negotiation would succeed or not
1395  * as driver has no control after powering off/suspend operation.
1396  * If the renegotiation fail WOL may not work. Running at 1Gbps
1397  * will draw more power than 375mA at 3.3V which is specified in
1398  * PCI specification and that would result in complete
1399  * shutdowning power to ethernet controller.
1400  *
1401  * TODO
1402  * Save current negotiated media speed/duplex/flow-control to
1403  * softc and restore the same link again after resuming. PHY
1404  * handling such as power down/resetting to 100Mbps may be better
1405  * handled in suspend method in phy driver.
1406  */
1407 static void
1408 ale_setlinkspeed(struct ale_softc *sc)
1409 {
1410 	struct mii_data *mii;
1411 	int aneg, i;
1412 
1413 	mii = device_get_softc(sc->ale_miibus);
1414 	mii_pollstat(mii);
1415 	aneg = 0;
1416 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1417 	    (IFM_ACTIVE | IFM_AVALID)) {
1418 		switch IFM_SUBTYPE(mii->mii_media_active) {
1419 		case IFM_10_T:
1420 		case IFM_100_TX:
1421 			return;
1422 		case IFM_1000_T:
1423 			aneg++;
1424 			break;
1425 		default:
1426 			break;
1427 		}
1428 	}
1429 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
1430 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1431 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1432 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1433 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1434 	DELAY(1000);
1435 	if (aneg != 0) {
1436 		/*
1437 		 * Poll link state until ale(4) get a 10/100Mbps link.
1438 		 */
1439 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1440 			mii_pollstat(mii);
1441 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1442 			    == (IFM_ACTIVE | IFM_AVALID)) {
1443 				switch (IFM_SUBTYPE(
1444 				    mii->mii_media_active)) {
1445 				case IFM_10_T:
1446 				case IFM_100_TX:
1447 					ale_mac_config(sc);
1448 					return;
1449 				default:
1450 					break;
1451 				}
1452 			}
1453 			ALE_UNLOCK(sc);
1454 			pause("alelnk", hz);
1455 			ALE_LOCK(sc);
1456 		}
1457 		if (i == MII_ANEGTICKS_GIGE)
1458 			device_printf(sc->ale_dev,
1459 			    "establishing a link failed, WOL may not work!");
1460 	}
1461 	/*
1462 	 * No link, force MAC to have 100Mbps, full-duplex link.
1463 	 * This is the last resort and may/may not work.
1464 	 */
1465 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1466 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1467 	ale_mac_config(sc);
1468 }
1469 
1470 static void
1471 ale_setwol(struct ale_softc *sc)
1472 {
1473 	struct ifnet *ifp;
1474 	uint32_t reg, pmcs;
1475 	uint16_t pmstat;
1476 	int pmc;
1477 
1478 	ALE_LOCK_ASSERT(sc);
1479 
1480 	if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
1481 		/* Disable WOL. */
1482 		CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1483 		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1484 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1485 		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1486 		/* Force PHY power down. */
1487 		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1488 		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1489 		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
1490 		    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
1491 		    GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
1492 		return;
1493 	}
1494 
1495 	ifp = sc->ale_ifp;
1496 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1497 		if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
1498 			ale_setlinkspeed(sc);
1499 	}
1500 
1501 	pmcs = 0;
1502 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1503 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1504 	CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
1505 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1506 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1507 	    MAC_CFG_BCAST);
1508 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1509 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1510 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1511 		reg |= MAC_CFG_RX_ENB;
1512 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1513 
1514 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1515 		/* WOL disabled, PHY power down. */
1516 		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1517 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1518 		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1519 		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1520 		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1521 		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
1522 		    GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
1523 		    GPHY_CTRL_PWDOWN_HW);
1524 	}
1525 	/* Request PME. */
1526 	pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
1527 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1528 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1529 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1530 	pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1531 }
1532 
1533 static int
1534 ale_suspend(device_t dev)
1535 {
1536 	struct ale_softc *sc;
1537 
1538 	sc = device_get_softc(dev);
1539 
1540 	ALE_LOCK(sc);
1541 	ale_stop(sc);
1542 	ale_setwol(sc);
1543 	ALE_UNLOCK(sc);
1544 
1545 	return (0);
1546 }
1547 
1548 static int
1549 ale_resume(device_t dev)
1550 {
1551 	struct ale_softc *sc;
1552 	struct ifnet *ifp;
1553 	int pmc;
1554 	uint16_t pmstat;
1555 
1556 	sc = device_get_softc(dev);
1557 
1558 	ALE_LOCK(sc);
1559 	if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
1560 		/* Disable PME and clear PME status. */
1561 		pmstat = pci_read_config(sc->ale_dev,
1562 		    pmc + PCIR_POWER_STATUS, 2);
1563 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1564 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1565 			pci_write_config(sc->ale_dev,
1566 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
1567 		}
1568 	}
1569 	/* Reset PHY. */
1570 	ale_phy_reset(sc);
1571 	ifp = sc->ale_ifp;
1572 	if ((ifp->if_flags & IFF_UP) != 0) {
1573 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1574 		ale_init_locked(sc);
1575 	}
1576 	ALE_UNLOCK(sc);
1577 
1578 	return (0);
1579 }
1580 
1581 static int
1582 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
1583 {
1584 	struct ale_txdesc *txd, *txd_last;
1585 	struct tx_desc *desc;
1586 	struct mbuf *m;
1587 	struct ip *ip;
1588 	struct tcphdr *tcp;
1589 	bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
1590 	bus_dmamap_t map;
1591 	uint32_t cflags, ip_off, poff, vtag;
1592 	int error, i, nsegs, prod, si;
1593 
1594 	ALE_LOCK_ASSERT(sc);
1595 
1596 	M_ASSERTPKTHDR((*m_head));
1597 
1598 	m = *m_head;
1599 	ip = NULL;
1600 	tcp = NULL;
1601 	cflags = vtag = 0;
1602 	ip_off = poff = 0;
1603 	if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1604 		/*
1605 		 * AR81xx requires offset of TCP/UDP payload in its Tx
1606 		 * descriptor to perform hardware Tx checksum offload.
1607 		 * Additionally, TSO requires IP/TCP header size and
1608 		 * modification of IP/TCP header in order to make TSO
1609 		 * engine work. This kind of operation takes many CPU
1610 		 * cycles on FreeBSD so fast host CPU is required to
1611 		 * get smooth TSO performance.
1612 		 */
1613 		struct ether_header *eh;
1614 
1615 		if (M_WRITABLE(m) == 0) {
1616 			/* Get a writable copy. */
1617 			m = m_dup(*m_head, M_DONTWAIT);
1618 			/* Release original mbufs. */
1619 			m_freem(*m_head);
1620 			if (m == NULL) {
1621 				*m_head = NULL;
1622 				return (ENOBUFS);
1623 			}
1624 			*m_head = m;
1625 		}
1626 
1627 		/*
1628 		 * Buggy-controller requires 4 byte aligned Tx buffer
1629 		 * to make custom checksum offload work.
1630 		 */
1631 		if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
1632 		    (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
1633 		    (mtod(m, intptr_t) & 3) != 0) {
1634 			m = m_defrag(*m_head, M_DONTWAIT);
1635 			if (m == NULL) {
1636 				*m_head = NULL;
1637 				return (ENOBUFS);
1638 			}
1639 			*m_head = m;
1640 		}
1641 
1642 		ip_off = sizeof(struct ether_header);
1643 		m = m_pullup(m, ip_off);
1644 		if (m == NULL) {
1645 			*m_head = NULL;
1646 			return (ENOBUFS);
1647 		}
1648 		eh = mtod(m, struct ether_header *);
1649 		/*
1650 		 * Check if hardware VLAN insertion is off.
1651 		 * Additional check for LLC/SNAP frame?
1652 		 */
1653 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1654 			ip_off = sizeof(struct ether_vlan_header);
1655 			m = m_pullup(m, ip_off);
1656 			if (m == NULL) {
1657 				*m_head = NULL;
1658 				return (ENOBUFS);
1659 			}
1660 		}
1661 		m = m_pullup(m, ip_off + sizeof(struct ip));
1662 		if (m == NULL) {
1663 			*m_head = NULL;
1664 			return (ENOBUFS);
1665 		}
1666 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1667 		poff = ip_off + (ip->ip_hl << 2);
1668 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1669 			/*
1670 			 * XXX
1671 			 * AR81xx requires the first descriptor should
1672 			 * not include any TCP playload for TSO case.
1673 			 * (i.e. ethernet header + IP + TCP header only)
1674 			 * m_pullup(9) above will ensure this too.
1675 			 * However it's not correct if the first mbuf
1676 			 * of the chain does not use cluster.
1677 			 */
1678 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1679 			if (m == NULL) {
1680 				*m_head = NULL;
1681 				return (ENOBUFS);
1682 			}
1683 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1684 			/*
1685 			 * AR81xx requires IP/TCP header size and offset as
1686 			 * well as TCP pseudo checksum which complicates
1687 			 * TSO configuration. I guess this comes from the
1688 			 * adherence to Microsoft NDIS Large Send
1689 			 * specification which requires insertion of
1690 			 * pseudo checksum by upper stack. The pseudo
1691 			 * checksum that NDIS refers to doesn't include
1692 			 * TCP payload length so ale(4) should recompute
1693 			 * the pseudo checksum here. Hopefully this wouldn't
1694 			 * be much burden on modern CPUs.
1695 			 * Reset IP checksum and recompute TCP pseudo
1696 			 * checksum as NDIS specification said.
1697 			 */
1698 			ip->ip_sum = 0;
1699 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1700 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1701 		}
1702 		*m_head = m;
1703 	}
1704 
1705 	si = prod = sc->ale_cdata.ale_tx_prod;
1706 	txd = &sc->ale_cdata.ale_txdesc[prod];
1707 	txd_last = txd;
1708 	map = txd->tx_dmamap;
1709 
1710 	error =  bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1711 	    *m_head, txsegs, &nsegs, 0);
1712 	if (error == EFBIG) {
1713 		m = m_collapse(*m_head, M_DONTWAIT, ALE_MAXTXSEGS);
1714 		if (m == NULL) {
1715 			m_freem(*m_head);
1716 			*m_head = NULL;
1717 			return (ENOMEM);
1718 		}
1719 		*m_head = m;
1720 		error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1721 		    *m_head, txsegs, &nsegs, 0);
1722 		if (error != 0) {
1723 			m_freem(*m_head);
1724 			*m_head = NULL;
1725 			return (error);
1726 		}
1727 	} else if (error != 0)
1728 		return (error);
1729 	if (nsegs == 0) {
1730 		m_freem(*m_head);
1731 		*m_head = NULL;
1732 		return (EIO);
1733 	}
1734 
1735 	/* Check descriptor overrun. */
1736 	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
1737 		bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
1738 		return (ENOBUFS);
1739 	}
1740 	bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
1741 
1742 	m = *m_head;
1743 	/* Configure Tx checksum offload. */
1744 	if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
1745 		/*
1746 		 * AR81xx supports Tx custom checksum offload feature
1747 		 * that offloads single 16bit checksum computation.
1748 		 * So you can choose one among IP, TCP and UDP.
1749 		 * Normally driver sets checksum start/insertion
1750 		 * position from the information of TCP/UDP frame as
1751 		 * TCP/UDP checksum takes more time than that of IP.
1752 		 * However it seems that custom checksum offload
1753 		 * requires 4 bytes aligned Tx buffers due to hardware
1754 		 * bug.
1755 		 * AR81xx also supports explicit Tx checksum computation
1756 		 * if it is told that the size of IP header and TCP
1757 		 * header(for UDP, the header size does not matter
1758 		 * because it's fixed length). However with this scheme
1759 		 * TSO does not work so you have to choose one either
1760 		 * TSO or explicit Tx checksum offload. I chosen TSO
1761 		 * plus custom checksum offload with work-around which
1762 		 * will cover most common usage for this consumer
1763 		 * ethernet controller. The work-around takes a lot of
1764 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
1765 		 * boundary, though.
1766 		 */
1767 		cflags |= ALE_TD_CXSUM;
1768 		/* Set checksum start offset. */
1769 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1770 		/* Set checksum insertion position of TCP/UDP. */
1771 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1772 		    ALE_TD_CSUM_XSUMOFFSET_SHIFT);
1773 	}
1774 
1775 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1776 		/* Request TSO and set MSS. */
1777 		cflags |= ALE_TD_TSO;
1778 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
1779 		/* Set IP/TCP header size. */
1780 		cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
1781 		cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
1782 	}
1783 
1784 	/* Configure VLAN hardware tag insertion. */
1785 	if ((m->m_flags & M_VLANTAG) != 0) {
1786 		vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1787 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1788 		cflags |= ALE_TD_INSERT_VLAN_TAG;
1789 	}
1790 
1791 	desc = NULL;
1792 	for (i = 0; i < nsegs; i++) {
1793 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1794 		desc->addr = htole64(txsegs[i].ds_addr);
1795 		desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
1796 		desc->flags = htole32(cflags);
1797 		sc->ale_cdata.ale_tx_cnt++;
1798 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1799 	}
1800 	/* Update producer index. */
1801 	sc->ale_cdata.ale_tx_prod = prod;
1802 	/* Set TSO header on the first descriptor. */
1803 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1804 		desc = &sc->ale_cdata.ale_tx_ring[si];
1805 		desc->flags |= htole32(ALE_TD_TSO_HDR);
1806 	}
1807 
1808 	/* Finally set EOP on the last descriptor. */
1809 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1810 	desc = &sc->ale_cdata.ale_tx_ring[prod];
1811 	desc->flags |= htole32(ALE_TD_EOP);
1812 
1813 	/* Swap dmamap of the first and the last. */
1814 	txd = &sc->ale_cdata.ale_txdesc[prod];
1815 	map = txd_last->tx_dmamap;
1816 	txd_last->tx_dmamap = txd->tx_dmamap;
1817 	txd->tx_dmamap = map;
1818 	txd->tx_m = m;
1819 
1820 	/* Sync descriptors. */
1821 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
1822 	    sc->ale_cdata.ale_tx_ring_map,
1823 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1824 
1825 	return (0);
1826 }
1827 
1828 static void
1829 ale_tx_task(void *arg, int pending)
1830 {
1831 	struct ifnet *ifp;
1832 
1833 	ifp = (struct ifnet *)arg;
1834 	ale_start(ifp);
1835 }
1836 
1837 static void
1838 ale_start(struct ifnet *ifp)
1839 {
1840         struct ale_softc *sc;
1841         struct mbuf *m_head;
1842 	int enq;
1843 
1844 	sc = ifp->if_softc;
1845 
1846 	ALE_LOCK(sc);
1847 
1848 	/* Reclaim transmitted frames. */
1849 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1850 		ale_txeof(sc);
1851 
1852 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1853 	    IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0) {
1854 		ALE_UNLOCK(sc);
1855 		return;
1856 	}
1857 
1858 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1859 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1860 		if (m_head == NULL)
1861 			break;
1862 		/*
1863 		 * Pack the data into the transmit ring. If we
1864 		 * don't have room, set the OACTIVE flag and wait
1865 		 * for the NIC to drain the ring.
1866 		 */
1867 		if (ale_encap(sc, &m_head)) {
1868 			if (m_head == NULL)
1869 				break;
1870 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1871 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1872 			break;
1873 		}
1874 
1875 		enq++;
1876 		/*
1877 		 * If there's a BPF listener, bounce a copy of this frame
1878 		 * to him.
1879 		 */
1880 		ETHER_BPF_MTAP(ifp, m_head);
1881 	}
1882 
1883 	if (enq > 0) {
1884 		/* Kick. */
1885 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1886 		    sc->ale_cdata.ale_tx_prod);
1887 		/* Set a timeout in case the chip goes out to lunch. */
1888 		sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
1889 	}
1890 
1891 	ALE_UNLOCK(sc);
1892 }
1893 
1894 static void
1895 ale_watchdog(struct ale_softc *sc)
1896 {
1897 	struct ifnet *ifp;
1898 
1899 	ALE_LOCK_ASSERT(sc);
1900 
1901 	if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
1902 		return;
1903 
1904 	ifp = sc->ale_ifp;
1905 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1906 		if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
1907 		ifp->if_oerrors++;
1908 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1909 		ale_init_locked(sc);
1910 		return;
1911 	}
1912 	if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
1913 	ifp->if_oerrors++;
1914 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1915 	ale_init_locked(sc);
1916 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1917 		taskqueue_enqueue(sc->ale_tq, &sc->ale_tx_task);
1918 }
1919 
1920 static int
1921 ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1922 {
1923 	struct ale_softc *sc;
1924 	struct ifreq *ifr;
1925 	struct mii_data *mii;
1926 	int error, mask;
1927 
1928 	sc = ifp->if_softc;
1929 	ifr = (struct ifreq *)data;
1930 	error = 0;
1931 	switch (cmd) {
1932 	case SIOCSIFMTU:
1933 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
1934 		    ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
1935 		    ifr->ifr_mtu > ETHERMTU))
1936 			error = EINVAL;
1937 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1938 			ALE_LOCK(sc);
1939 			ifp->if_mtu = ifr->ifr_mtu;
1940 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1941 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1942 				ale_init_locked(sc);
1943 			}
1944 			ALE_UNLOCK(sc);
1945 		}
1946 		break;
1947 	case SIOCSIFFLAGS:
1948 		ALE_LOCK(sc);
1949 		if ((ifp->if_flags & IFF_UP) != 0) {
1950 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1951 				if (((ifp->if_flags ^ sc->ale_if_flags)
1952 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1953 					ale_rxfilter(sc);
1954 			} else {
1955 				if ((sc->ale_flags & ALE_FLAG_DETACH) == 0)
1956 					ale_init_locked(sc);
1957 			}
1958 		} else {
1959 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1960 				ale_stop(sc);
1961 		}
1962 		sc->ale_if_flags = ifp->if_flags;
1963 		ALE_UNLOCK(sc);
1964 		break;
1965 	case SIOCADDMULTI:
1966 	case SIOCDELMULTI:
1967 		ALE_LOCK(sc);
1968 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1969 			ale_rxfilter(sc);
1970 		ALE_UNLOCK(sc);
1971 		break;
1972 	case SIOCSIFMEDIA:
1973 	case SIOCGIFMEDIA:
1974 		mii = device_get_softc(sc->ale_miibus);
1975 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1976 		break;
1977 	case SIOCSIFCAP:
1978 		ALE_LOCK(sc);
1979 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1980 		if ((mask & IFCAP_TXCSUM) != 0 &&
1981 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1982 			ifp->if_capenable ^= IFCAP_TXCSUM;
1983 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1984 				ifp->if_hwassist |= ALE_CSUM_FEATURES;
1985 			else
1986 				ifp->if_hwassist &= ~ALE_CSUM_FEATURES;
1987 		}
1988 		if ((mask & IFCAP_RXCSUM) != 0 &&
1989 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
1990 			ifp->if_capenable ^= IFCAP_RXCSUM;
1991 		if ((mask & IFCAP_TSO4) != 0 &&
1992 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1993 			ifp->if_capenable ^= IFCAP_TSO4;
1994 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1995 				ifp->if_hwassist |= CSUM_TSO;
1996 			else
1997 				ifp->if_hwassist &= ~CSUM_TSO;
1998 		}
1999 
2000 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2001 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2002 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2003 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2004 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2005 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2006 
2007 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2008 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2009 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2010 			ale_rxvlan(sc);
2011 		}
2012 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2013 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2014 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2015 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2016 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2017 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2018 		/*
2019 		 * VLAN hardware tagging is required to do checksum
2020 		 * offload or TSO on VLAN interface. Checksum offload
2021 		 * on VLAN interface also requires hardware checksum
2022 		 * offload of parent interface.
2023 		 */
2024 		if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
2025 			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2026 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2027 			ifp->if_capenable &=
2028 			    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
2029 		ALE_UNLOCK(sc);
2030 		VLAN_CAPABILITIES(ifp);
2031 		break;
2032 	default:
2033 		error = ether_ioctl(ifp, cmd, data);
2034 		break;
2035 	}
2036 
2037 	return (error);
2038 }
2039 
2040 static void
2041 ale_mac_config(struct ale_softc *sc)
2042 {
2043 	struct mii_data *mii;
2044 	uint32_t reg;
2045 
2046 	ALE_LOCK_ASSERT(sc);
2047 
2048 	mii = device_get_softc(sc->ale_miibus);
2049 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2050 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2051 	    MAC_CFG_SPEED_MASK);
2052 	/* Reprogram MAC with resolved speed/duplex. */
2053 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2054 	case IFM_10_T:
2055 	case IFM_100_TX:
2056 		reg |= MAC_CFG_SPEED_10_100;
2057 		break;
2058 	case IFM_1000_T:
2059 		reg |= MAC_CFG_SPEED_1000;
2060 		break;
2061 	}
2062 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2063 		reg |= MAC_CFG_FULL_DUPLEX;
2064 #ifdef notyet
2065 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2066 			reg |= MAC_CFG_TX_FC;
2067 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2068 			reg |= MAC_CFG_RX_FC;
2069 #endif
2070 	}
2071 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2072 }
2073 
2074 static void
2075 ale_link_task(void *arg, int pending)
2076 {
2077 	struct ale_softc *sc;
2078 	struct mii_data *mii;
2079 	struct ifnet *ifp;
2080 	uint32_t reg;
2081 
2082 	sc = (struct ale_softc *)arg;
2083 
2084 	ALE_LOCK(sc);
2085 	mii = device_get_softc(sc->ale_miibus);
2086 	ifp = sc->ale_ifp;
2087 	if (mii == NULL || ifp == NULL ||
2088 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2089 		ALE_UNLOCK(sc);
2090 		return;
2091 	}
2092 
2093 	sc->ale_flags &= ~ALE_FLAG_LINK;
2094 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2095 	    (IFM_ACTIVE | IFM_AVALID)) {
2096 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2097 		case IFM_10_T:
2098 		case IFM_100_TX:
2099 			sc->ale_flags |= ALE_FLAG_LINK;
2100 			break;
2101 		case IFM_1000_T:
2102 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
2103 				sc->ale_flags |= ALE_FLAG_LINK;
2104 			break;
2105 		default:
2106 			break;
2107 		}
2108 	}
2109 
2110 	/* Stop Rx/Tx MACs. */
2111 	ale_stop_mac(sc);
2112 
2113 	/* Program MACs with resolved speed/duplex/flow-control. */
2114 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
2115 		ale_mac_config(sc);
2116 		/* Reenable Tx/Rx MACs. */
2117 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
2118 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2119 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2120 	}
2121 
2122 	ALE_UNLOCK(sc);
2123 }
2124 
2125 static void
2126 ale_stats_clear(struct ale_softc *sc)
2127 {
2128 	struct smb sb;
2129 	uint32_t *reg;
2130 	int i;
2131 
2132 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2133 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2134 		i += sizeof(uint32_t);
2135 	}
2136 	/* Read Tx statistics. */
2137 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2138 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2139 		i += sizeof(uint32_t);
2140 	}
2141 }
2142 
2143 static void
2144 ale_stats_update(struct ale_softc *sc)
2145 {
2146 	struct ale_hw_stats *stat;
2147 	struct smb sb, *smb;
2148 	struct ifnet *ifp;
2149 	uint32_t *reg;
2150 	int i;
2151 
2152 	ALE_LOCK_ASSERT(sc);
2153 
2154 	ifp = sc->ale_ifp;
2155 	stat = &sc->ale_stats;
2156 	smb = &sb;
2157 
2158 	/* Read Rx statistics. */
2159 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2160 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2161 		i += sizeof(uint32_t);
2162 	}
2163 	/* Read Tx statistics. */
2164 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2165 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2166 		i += sizeof(uint32_t);
2167 	}
2168 
2169 	/* Rx stats. */
2170 	stat->rx_frames += smb->rx_frames;
2171 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2172 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2173 	stat->rx_pause_frames += smb->rx_pause_frames;
2174 	stat->rx_control_frames += smb->rx_control_frames;
2175 	stat->rx_crcerrs += smb->rx_crcerrs;
2176 	stat->rx_lenerrs += smb->rx_lenerrs;
2177 	stat->rx_bytes += smb->rx_bytes;
2178 	stat->rx_runts += smb->rx_runts;
2179 	stat->rx_fragments += smb->rx_fragments;
2180 	stat->rx_pkts_64 += smb->rx_pkts_64;
2181 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2182 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2183 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2184 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2185 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2186 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2187 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2188 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2189 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2190 	stat->rx_alignerrs += smb->rx_alignerrs;
2191 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2192 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2193 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2194 
2195 	/* Tx stats. */
2196 	stat->tx_frames += smb->tx_frames;
2197 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2198 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2199 	stat->tx_pause_frames += smb->tx_pause_frames;
2200 	stat->tx_excess_defer += smb->tx_excess_defer;
2201 	stat->tx_control_frames += smb->tx_control_frames;
2202 	stat->tx_deferred += smb->tx_deferred;
2203 	stat->tx_bytes += smb->tx_bytes;
2204 	stat->tx_pkts_64 += smb->tx_pkts_64;
2205 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2206 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2207 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2208 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2209 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2210 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2211 	stat->tx_single_colls += smb->tx_single_colls;
2212 	stat->tx_multi_colls += smb->tx_multi_colls;
2213 	stat->tx_late_colls += smb->tx_late_colls;
2214 	stat->tx_excess_colls += smb->tx_excess_colls;
2215 	stat->tx_abort += smb->tx_abort;
2216 	stat->tx_underrun += smb->tx_underrun;
2217 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2218 	stat->tx_lenerrs += smb->tx_lenerrs;
2219 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2220 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2221 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2222 
2223 	/* Update counters in ifnet. */
2224 	ifp->if_opackets += smb->tx_frames;
2225 
2226 	ifp->if_collisions += smb->tx_single_colls +
2227 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2228 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
2229 
2230 	/*
2231 	 * XXX
2232 	 * tx_pkts_truncated counter looks suspicious. It constantly
2233 	 * increments with no sign of Tx errors. This may indicate
2234 	 * the counter name is not correct one so I've removed the
2235 	 * counter in output errors.
2236 	 */
2237 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
2238 	    smb->tx_underrun;
2239 
2240 	ifp->if_ipackets += smb->rx_frames;
2241 
2242 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2243 	    smb->rx_runts + smb->rx_pkts_truncated +
2244 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2245 	    smb->rx_alignerrs;
2246 }
2247 
2248 static int
2249 ale_intr(void *arg)
2250 {
2251 	struct ale_softc *sc;
2252 	uint32_t status;
2253 
2254 	sc = (struct ale_softc *)arg;
2255 
2256 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2257 	if ((status & ALE_INTRS) == 0)
2258 		return (FILTER_STRAY);
2259 	/* Disable interrupts. */
2260 	CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
2261 	taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2262 
2263 	return (FILTER_HANDLED);
2264 }
2265 
2266 static void
2267 ale_int_task(void *arg, int pending)
2268 {
2269 	struct ale_softc *sc;
2270 	struct ifnet *ifp;
2271 	uint32_t status;
2272 	int more;
2273 
2274 	sc = (struct ale_softc *)arg;
2275 
2276 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2277 	more = atomic_readandclear_int(&sc->ale_morework);
2278 	if (more != 0)
2279 		status |= INTR_RX_PKT;
2280 	if ((status & ALE_INTRS) == 0)
2281 		goto done;
2282 
2283 	/* Acknowledge interrupts but still disable interrupts. */
2284 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
2285 
2286 	ifp = sc->ale_ifp;
2287 	more = 0;
2288 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2289 		more = ale_rxeof(sc, sc->ale_process_limit);
2290 		if (more == EAGAIN)
2291 			atomic_set_int(&sc->ale_morework, 1);
2292 		else if (more == EIO) {
2293 			ALE_LOCK(sc);
2294 			sc->ale_stats.reset_brk_seq++;
2295 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2296 			ale_init_locked(sc);
2297 			ALE_UNLOCK(sc);
2298 			return;
2299 		}
2300 
2301 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2302 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2303 				device_printf(sc->ale_dev,
2304 				    "DMA read error! -- resetting\n");
2305 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2306 				device_printf(sc->ale_dev,
2307 				    "DMA write error! -- resetting\n");
2308 			ALE_LOCK(sc);
2309 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2310 			ale_init_locked(sc);
2311 			ALE_UNLOCK(sc);
2312 			return;
2313 		}
2314 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2315 			taskqueue_enqueue(sc->ale_tq, &sc->ale_tx_task);
2316 	}
2317 
2318 	if (more == EAGAIN ||
2319 	    (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
2320 		taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2321 		return;
2322 	}
2323 
2324 done:
2325 	/* Re-enable interrupts. */
2326 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
2327 }
2328 
2329 static void
2330 ale_txeof(struct ale_softc *sc)
2331 {
2332 	struct ifnet *ifp;
2333 	struct ale_txdesc *txd;
2334 	uint32_t cons, prod;
2335 	int prog;
2336 
2337 	ALE_LOCK_ASSERT(sc);
2338 
2339 	ifp = sc->ale_ifp;
2340 
2341 	if (sc->ale_cdata.ale_tx_cnt == 0)
2342 		return;
2343 
2344 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2345 	    sc->ale_cdata.ale_tx_ring_map,
2346 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2347 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
2348 		bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2349 		    sc->ale_cdata.ale_tx_cmb_map,
2350 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2351 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
2352 	} else
2353 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
2354 	cons = sc->ale_cdata.ale_tx_cons;
2355 	/*
2356 	 * Go through our Tx list and free mbufs for those
2357 	 * frames which have been transmitted.
2358 	 */
2359 	for (prog = 0; cons != prod; prog++,
2360 	    ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
2361 		if (sc->ale_cdata.ale_tx_cnt <= 0)
2362 			break;
2363 		prog++;
2364 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2365 		sc->ale_cdata.ale_tx_cnt--;
2366 		txd = &sc->ale_cdata.ale_txdesc[cons];
2367 		if (txd->tx_m != NULL) {
2368 			/* Reclaim transmitted mbufs. */
2369 			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2370 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2371 			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2372 			    txd->tx_dmamap);
2373 			m_freem(txd->tx_m);
2374 			txd->tx_m = NULL;
2375 		}
2376 	}
2377 
2378 	if (prog > 0) {
2379 		sc->ale_cdata.ale_tx_cons = cons;
2380 		/*
2381 		 * Unarm watchdog timer only when there is no pending
2382 		 * Tx descriptors in queue.
2383 		 */
2384 		if (sc->ale_cdata.ale_tx_cnt == 0)
2385 			sc->ale_watchdog_timer = 0;
2386 	}
2387 }
2388 
2389 static void
2390 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
2391     uint32_t length, uint32_t *prod)
2392 {
2393 	struct ale_rx_page *rx_page;
2394 
2395 	rx_page = *page;
2396 	/* Update consumer position. */
2397 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
2398 	    ALE_RX_PAGE_ALIGN);
2399 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
2400 		/*
2401 		 * End of Rx page reached, let hardware reuse
2402 		 * this page.
2403 		 */
2404 		rx_page->cons = 0;
2405 		*rx_page->cmb_addr = 0;
2406 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2407 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2408 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
2409 		    RXF_VALID);
2410 		/* Switch to alternate Rx page. */
2411 		sc->ale_cdata.ale_rx_curp ^= 1;
2412 		rx_page = *page =
2413 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2414 		/* Page flipped, sync CMB and Rx page. */
2415 		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2416 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2417 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2418 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2419 		/* Sync completed, cache updated producer index. */
2420 		*prod = *rx_page->cmb_addr;
2421 	}
2422 }
2423 
2424 
2425 /*
2426  * It seems that AR81xx controller can compute partial checksum.
2427  * The partial checksum value can be used to accelerate checksum
2428  * computation for fragmented TCP/UDP packets. Upper network stack
2429  * already takes advantage of the partial checksum value in IP
2430  * reassembly stage. But I'm not sure the correctness of the
2431  * partial hardware checksum assistance due to lack of data sheet.
2432  * In addition, the Rx feature of controller that requires copying
2433  * for every frames effectively nullifies one of most nice offload
2434  * capability of controller.
2435  */
2436 static void
2437 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
2438 {
2439 	struct ifnet *ifp;
2440 	struct ip *ip;
2441 	char *p;
2442 
2443 	ifp = sc->ale_ifp;
2444 	m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2445 	if ((status & ALE_RD_IPCSUM_NOK) == 0)
2446 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2447 
2448 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
2449 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
2450 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
2451 		    ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
2452 			m->m_pkthdr.csum_flags |=
2453 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2454 			m->m_pkthdr.csum_data = 0xffff;
2455 		}
2456 	} else {
2457 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
2458 		    (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
2459 			p = mtod(m, char *);
2460 			p += ETHER_HDR_LEN;
2461 			if ((status & ALE_RD_802_3) != 0)
2462 				p += LLC_SNAPFRAMELEN;
2463 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 &&
2464 			    (status & ALE_RD_VLAN) != 0)
2465 				p += ETHER_VLAN_ENCAP_LEN;
2466 			ip = (struct ip *)p;
2467 			if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
2468 				return;
2469 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2470 			    CSUM_PSEUDO_HDR;
2471 			m->m_pkthdr.csum_data = 0xffff;
2472 		}
2473 	}
2474 	/*
2475 	 * Don't mark bad checksum for TCP/UDP frames
2476 	 * as fragmented frames may always have set
2477 	 * bad checksummed bit of frame status.
2478 	 */
2479 }
2480 
2481 /* Process received frames. */
2482 static int
2483 ale_rxeof(struct ale_softc *sc, int count)
2484 {
2485 	struct ale_rx_page *rx_page;
2486 	struct rx_rs *rs;
2487 	struct ifnet *ifp;
2488 	struct mbuf *m;
2489 	uint32_t length, prod, seqno, status, vtags;
2490 	int prog;
2491 
2492 	ifp = sc->ale_ifp;
2493 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2494 	bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2495 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2496 	bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2497 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2498 	/*
2499 	 * Don't directly access producer index as hardware may
2500 	 * update it while Rx handler is in progress. It would
2501 	 * be even better if there is a way to let hardware
2502 	 * know how far driver processed its received frames.
2503 	 * Alternatively, hardware could provide a way to disable
2504 	 * CMB updates until driver acknowledges the end of CMB
2505 	 * access.
2506 	 */
2507 	prod = *rx_page->cmb_addr;
2508 	for (prog = 0; prog < count; prog++) {
2509 		if (rx_page->cons >= prod)
2510 			break;
2511 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
2512 		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
2513 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
2514 			/*
2515 			 * Normally I believe this should not happen unless
2516 			 * severe driver bug or corrupted memory. However
2517 			 * it seems to happen under certain conditions which
2518 			 * is triggered by abrupt Rx events such as initiation
2519 			 * of bulk transfer of remote host. It's not easy to
2520 			 * reproduce this and I doubt it could be related
2521 			 * with FIFO overflow of hardware or activity of Tx
2522 			 * CMB updates. I also remember similar behaviour
2523 			 * seen on RealTek 8139 which uses resembling Rx
2524 			 * scheme.
2525 			 */
2526 			if (bootverbose)
2527 				device_printf(sc->ale_dev,
2528 				    "garbled seq: %u, expected: %u -- "
2529 				    "resetting!\n", seqno,
2530 				    sc->ale_cdata.ale_rx_seqno);
2531 			return (EIO);
2532 		}
2533 		/* Frame received. */
2534 		sc->ale_cdata.ale_rx_seqno++;
2535 		length = ALE_RX_BYTES(le32toh(rs->length));
2536 		status = le32toh(rs->flags);
2537 		if ((status & ALE_RD_ERROR) != 0) {
2538 			/*
2539 			 * We want to pass the following frames to upper
2540 			 * layer regardless of error status of Rx return
2541 			 * status.
2542 			 *
2543 			 *  o IP/TCP/UDP checksum is bad.
2544 			 *  o frame length and protocol specific length
2545 			 *     does not match.
2546 			 */
2547 			if ((status & (ALE_RD_CRC | ALE_RD_CODE |
2548 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
2549 			    ALE_RD_TRUNC)) != 0) {
2550 				ale_rx_update_page(sc, &rx_page, length, &prod);
2551 				continue;
2552 			}
2553 		}
2554 		/*
2555 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
2556 		 * from hardware limitation). For jumbo frames we could
2557 		 * get a slightly better performance if driver use
2558 		 * m_getjcl(9) with proper buffer size argument. However
2559 		 * that would make code more complicated and I don't
2560 		 * think users would expect good Rx performance numbers
2561 		 * on these low-end consumer ethernet controller.
2562 		 */
2563 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
2564 		    ETHER_ALIGN, ifp, NULL);
2565 		if (m == NULL) {
2566 			ifp->if_iqdrops++;
2567 			ale_rx_update_page(sc, &rx_page, length, &prod);
2568 			continue;
2569 		}
2570 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2571 		    (status & ALE_RD_IPV4) != 0)
2572 			ale_rxcsum(sc, m, status);
2573 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2574 		    (status & ALE_RD_VLAN) != 0) {
2575 			vtags = ALE_RX_VLAN(le32toh(rs->vtags));
2576 			m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
2577 			m->m_flags |= M_VLANTAG;
2578 		}
2579 
2580 		/* Pass it to upper layer. */
2581 		(*ifp->if_input)(ifp, m);
2582 
2583 		ale_rx_update_page(sc, &rx_page, length, &prod);
2584 	}
2585 
2586 	return (count > 0 ? 0 : EAGAIN);
2587 }
2588 
2589 static void
2590 ale_tick(void *arg)
2591 {
2592 	struct ale_softc *sc;
2593 	struct mii_data *mii;
2594 
2595 	sc = (struct ale_softc *)arg;
2596 
2597 	ALE_LOCK_ASSERT(sc);
2598 
2599 	mii = device_get_softc(sc->ale_miibus);
2600 	mii_tick(mii);
2601 	ale_stats_update(sc);
2602 	/*
2603 	 * Reclaim Tx buffers that have been transferred. It's not
2604 	 * needed here but it would release allocated mbuf chains
2605 	 * faster and limit the maximum delay to a hz.
2606 	 */
2607 	ale_txeof(sc);
2608 	ale_watchdog(sc);
2609 	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2610 }
2611 
2612 static void
2613 ale_reset(struct ale_softc *sc)
2614 {
2615 	uint32_t reg;
2616 	int i;
2617 
2618 	/* Initialize PCIe module. From Linux. */
2619 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2620 
2621 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
2622 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2623 		DELAY(10);
2624 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
2625 			break;
2626 	}
2627 	if (i == 0)
2628 		device_printf(sc->ale_dev, "master reset timeout!\n");
2629 
2630 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2631 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
2632 			break;
2633 		DELAY(10);
2634 	}
2635 
2636 	if (i == 0)
2637 		device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
2638 }
2639 
2640 static void
2641 ale_init(void *xsc)
2642 {
2643 	struct ale_softc *sc;
2644 
2645 	sc = (struct ale_softc *)xsc;
2646 	ALE_LOCK(sc);
2647 	ale_init_locked(sc);
2648 	ALE_UNLOCK(sc);
2649 }
2650 
2651 static void
2652 ale_init_locked(struct ale_softc *sc)
2653 {
2654 	struct ifnet *ifp;
2655 	struct mii_data *mii;
2656 	uint8_t eaddr[ETHER_ADDR_LEN];
2657 	bus_addr_t paddr;
2658 	uint32_t reg, rxf_hi, rxf_lo;
2659 
2660 	ALE_LOCK_ASSERT(sc);
2661 
2662 	ifp = sc->ale_ifp;
2663 	mii = device_get_softc(sc->ale_miibus);
2664 
2665 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2666 		return;
2667 	/*
2668 	 * Cancel any pending I/O.
2669 	 */
2670 	ale_stop(sc);
2671 	/*
2672 	 * Reset the chip to a known state.
2673 	 */
2674 	ale_reset(sc);
2675 	/* Initialize Tx descriptors, DMA memory blocks. */
2676 	ale_init_rx_pages(sc);
2677 	ale_init_tx_ring(sc);
2678 
2679 	/* Reprogram the station address. */
2680 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2681 	CSR_WRITE_4(sc, ALE_PAR0,
2682 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2683 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
2684 	/*
2685 	 * Clear WOL status and disable all WOL feature as WOL
2686 	 * would interfere Rx operation under normal environments.
2687 	 */
2688 	CSR_READ_4(sc, ALE_WOL_CFG);
2689 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
2690 	/*
2691 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
2692 	 * the same high address part of DMAable region.
2693 	 */
2694 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
2695 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
2696 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
2697 	CSR_WRITE_4(sc, ALE_TPD_CNT,
2698 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
2699 	/* Set Rx page base address, note we use single queue. */
2700 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
2701 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
2702 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
2703 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
2704 	/* Set Tx/Rx CMB addresses. */
2705 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
2706 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
2707 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
2708 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
2709 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
2710 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
2711 	/* Mark RXF0 is valid. */
2712 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
2713 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
2714 	/*
2715 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
2716 	 * multi-queue yet.
2717 	 */
2718 
2719 	/* Set Rx page size, excluding guard frame size. */
2720 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
2721 	/* Tell hardware that we're ready to load DMA blocks. */
2722 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
2723 
2724 	/* Set Rx/Tx interrupt trigger threshold. */
2725 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
2726 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
2727 	/*
2728 	 * XXX
2729 	 * Set interrupt trigger timer, its purpose and relation
2730 	 * with interrupt moderation mechanism is not clear yet.
2731 	 */
2732 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
2733 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
2734 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
2735 
2736 	/* Configure interrupt moderation timer. */
2737 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
2738 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
2739 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
2740 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
2741 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
2742 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2743 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
2744 		reg |= MASTER_IM_RX_TIMER_ENB;
2745 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
2746 		reg |= MASTER_IM_TX_TIMER_ENB;
2747 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
2748 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
2749 
2750 	/* Set Maximum frame size of controller. */
2751 	if (ifp->if_mtu < ETHERMTU)
2752 		sc->ale_max_frame_size = ETHERMTU;
2753 	else
2754 		sc->ale_max_frame_size = ifp->if_mtu;
2755 	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2756 	    ETHER_CRC_LEN;
2757 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
2758 	/* Configure IPG/IFG parameters. */
2759 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
2760 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2761 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2762 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2763 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2764 	/* Set parameters for half-duplex media. */
2765 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
2766 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2767 	    HDPX_CFG_LCOL_MASK) |
2768 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2769 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2770 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2771 	    HDPX_CFG_ABEBT_MASK) |
2772 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2773 	    HDPX_CFG_JAMIPG_MASK));
2774 
2775 	/* Configure Tx jumbo frame parameters. */
2776 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2777 		if (ifp->if_mtu < ETHERMTU)
2778 			reg = sc->ale_max_frame_size;
2779 		else if (ifp->if_mtu < 6 * 1024)
2780 			reg = (sc->ale_max_frame_size * 2) / 3;
2781 		else
2782 			reg = sc->ale_max_frame_size / 2;
2783 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
2784 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
2785 		    TX_JUMBO_THRESH_UNIT_SHIFT);
2786 	}
2787 	/* Configure TxQ. */
2788 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
2789 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
2790 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2791 	    TXQ_CFG_TPD_BURST_MASK;
2792 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
2793 
2794 	/* Configure Rx jumbo frame & flow control parameters. */
2795 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2796 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
2797 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
2798 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
2799 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
2800 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
2801 		    RX_JUMBO_LKAH_MASK));
2802 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
2803 		rxf_hi = (reg * 7) / 10;
2804 		rxf_lo = (reg * 3)/ 10;
2805 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
2806 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2807 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
2808 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2809 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
2810 	}
2811 
2812 	/* Disable RSS. */
2813 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
2814 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
2815 
2816 	/* Configure RxQ. */
2817 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
2818 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2819 
2820 	/* Configure DMA parameters. */
2821 	reg = 0;
2822 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
2823 		reg |= DMA_CFG_TXCMB_ENB;
2824 	CSR_WRITE_4(sc, ALE_DMA_CFG,
2825 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
2826 	    sc->ale_dma_rd_burst | reg |
2827 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
2828 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2829 	    DMA_CFG_RD_DELAY_CNT_MASK) |
2830 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2831 	    DMA_CFG_WR_DELAY_CNT_MASK));
2832 
2833 	/*
2834 	 * Hardware can be configured to issue SMB interrupt based
2835 	 * on programmed interval. Since there is a callout that is
2836 	 * invoked for every hz in driver we use that instead of
2837 	 * relying on periodic SMB interrupt.
2838 	 */
2839 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
2840 	/* Clear MAC statistics. */
2841 	ale_stats_clear(sc);
2842 
2843 	/*
2844 	 * Configure Tx/Rx MACs.
2845 	 *  - Auto-padding for short frames.
2846 	 *  - Enable CRC generation.
2847 	 *  Actual reconfiguration of MAC for resolved speed/duplex
2848 	 *  is followed after detection of link establishment.
2849 	 *  AR81xx always does checksum computation regardless of
2850 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
2851 	 *  cause Rx handling issue for fragmented IP datagrams due
2852 	 *  to silicon bug.
2853 	 */
2854 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2855 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2856 	    MAC_CFG_PREAMBLE_MASK);
2857 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
2858 		reg |= MAC_CFG_SPEED_10_100;
2859 	else
2860 		reg |= MAC_CFG_SPEED_1000;
2861 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2862 
2863 	/* Set up the receive filter. */
2864 	ale_rxfilter(sc);
2865 	ale_rxvlan(sc);
2866 
2867 	/* Acknowledge all pending interrupts and clear it. */
2868 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
2869 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2870 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
2871 
2872 	sc->ale_flags &= ~ALE_FLAG_LINK;
2873 	/* Switch to the current media. */
2874 	mii_mediachg(mii);
2875 
2876 	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2877 
2878 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2879 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2880 }
2881 
2882 static void
2883 ale_stop(struct ale_softc *sc)
2884 {
2885 	struct ifnet *ifp;
2886 	struct ale_txdesc *txd;
2887 	uint32_t reg;
2888 	int i;
2889 
2890 	ALE_LOCK_ASSERT(sc);
2891 	/*
2892 	 * Mark the interface down and cancel the watchdog timer.
2893 	 */
2894 	ifp = sc->ale_ifp;
2895 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2896 	sc->ale_flags &= ~ALE_FLAG_LINK;
2897 	callout_stop(&sc->ale_tick_ch);
2898 	sc->ale_watchdog_timer = 0;
2899 	ale_stats_update(sc);
2900 	/* Disable interrupts. */
2901 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
2902 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2903 	/* Disable queue processing and DMA. */
2904 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
2905 	reg &= ~TXQ_CFG_ENB;
2906 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
2907 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
2908 	reg &= ~RXQ_CFG_ENB;
2909 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
2910 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
2911 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
2912 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
2913 	DELAY(1000);
2914 	/* Stop Rx/Tx MACs. */
2915 	ale_stop_mac(sc);
2916 	/* Disable interrupts which might be touched in taskq handler. */
2917 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2918 
2919 	/*
2920 	 * Free TX mbufs still in the queues.
2921 	 */
2922 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2923 		txd = &sc->ale_cdata.ale_txdesc[i];
2924 		if (txd->tx_m != NULL) {
2925 			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2926 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2927 			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2928 			    txd->tx_dmamap);
2929 			m_freem(txd->tx_m);
2930 			txd->tx_m = NULL;
2931 		}
2932         }
2933 }
2934 
2935 static void
2936 ale_stop_mac(struct ale_softc *sc)
2937 {
2938 	uint32_t reg;
2939 	int i;
2940 
2941 	ALE_LOCK_ASSERT(sc);
2942 
2943 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2944 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2945 		reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2946 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2947 	}
2948 
2949 	for (i = ALE_TIMEOUT; i > 0; i--) {
2950 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
2951 		if (reg == 0)
2952 			break;
2953 		DELAY(10);
2954 	}
2955 	if (i == 0)
2956 		device_printf(sc->ale_dev,
2957 		    "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
2958 }
2959 
2960 static void
2961 ale_init_tx_ring(struct ale_softc *sc)
2962 {
2963 	struct ale_txdesc *txd;
2964 	int i;
2965 
2966 	ALE_LOCK_ASSERT(sc);
2967 
2968 	sc->ale_cdata.ale_tx_prod = 0;
2969 	sc->ale_cdata.ale_tx_cons = 0;
2970 	sc->ale_cdata.ale_tx_cnt = 0;
2971 
2972 	bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
2973 	bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
2974 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2975 		txd = &sc->ale_cdata.ale_txdesc[i];
2976 		txd->tx_m = NULL;
2977 	}
2978 	*sc->ale_cdata.ale_tx_cmb = 0;
2979 	bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2980 	    sc->ale_cdata.ale_tx_cmb_map,
2981 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2982 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2983 	    sc->ale_cdata.ale_tx_ring_map,
2984 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2985 }
2986 
2987 static void
2988 ale_init_rx_pages(struct ale_softc *sc)
2989 {
2990 	struct ale_rx_page *rx_page;
2991 	int i;
2992 
2993 	ALE_LOCK_ASSERT(sc);
2994 
2995 	atomic_set_int(&sc->ale_morework, 0);
2996 	sc->ale_cdata.ale_rx_seqno = 0;
2997 	sc->ale_cdata.ale_rx_curp = 0;
2998 
2999 	for (i = 0; i < ALE_RX_PAGES; i++) {
3000 		rx_page = &sc->ale_cdata.ale_rx_page[i];
3001 		bzero(rx_page->page_addr, sc->ale_pagesize);
3002 		bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
3003 		rx_page->cons = 0;
3004 		*rx_page->cmb_addr = 0;
3005 		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
3006 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3007 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
3008 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3009 	}
3010 }
3011 
3012 static void
3013 ale_rxvlan(struct ale_softc *sc)
3014 {
3015 	struct ifnet *ifp;
3016 	uint32_t reg;
3017 
3018 	ALE_LOCK_ASSERT(sc);
3019 
3020 	ifp = sc->ale_ifp;
3021 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
3022 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3023 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3024 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3025 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
3026 }
3027 
3028 static void
3029 ale_rxfilter(struct ale_softc *sc)
3030 {
3031 	struct ifnet *ifp;
3032 	struct ifmultiaddr *ifma;
3033 	uint32_t crc;
3034 	uint32_t mchash[2];
3035 	uint32_t rxcfg;
3036 
3037 	ALE_LOCK_ASSERT(sc);
3038 
3039 	ifp = sc->ale_ifp;
3040 
3041 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
3042 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3043 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3044 		rxcfg |= MAC_CFG_BCAST;
3045 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3046 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3047 			rxcfg |= MAC_CFG_PROMISC;
3048 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3049 			rxcfg |= MAC_CFG_ALLMULTI;
3050 		CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
3051 		CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
3052 		CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3053 		return;
3054 	}
3055 
3056 	/* Program new filter. */
3057 	bzero(mchash, sizeof(mchash));
3058 
3059 	if_maddr_rlock(ifp);
3060 	TAILQ_FOREACH(ifma, &sc->ale_ifp->if_multiaddrs, ifma_link) {
3061 		if (ifma->ifma_addr->sa_family != AF_LINK)
3062 			continue;
3063 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3064 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3065 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3066 	}
3067 	if_maddr_runlock(ifp);
3068 
3069 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
3070 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
3071 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3072 }
3073 
3074 static int
3075 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3076 {
3077 	int error, value;
3078 
3079 	if (arg1 == NULL)
3080 		return (EINVAL);
3081 	value = *(int *)arg1;
3082 	error = sysctl_handle_int(oidp, &value, 0, req);
3083 	if (error || req->newptr == NULL)
3084 		return (error);
3085 	if (value < low || value > high)
3086 		return (EINVAL);
3087         *(int *)arg1 = value;
3088 
3089         return (0);
3090 }
3091 
3092 static int
3093 sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
3094 {
3095 	return (sysctl_int_range(oidp, arg1, arg2, req,
3096 	    ALE_PROC_MIN, ALE_PROC_MAX));
3097 }
3098 
3099 static int
3100 sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
3101 {
3102 
3103 	return (sysctl_int_range(oidp, arg1, arg2, req,
3104 	    ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
3105 }
3106