xref: /freebsd/sys/dev/ale/if_ale.c (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/endian.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/module.h>
40 #include <sys/rman.h>
41 #include <sys/queue.h>
42 #include <sys/socket.h>
43 #include <sys/sockio.h>
44 #include <sys/sysctl.h>
45 #include <sys/taskqueue.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_llc.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_vlan_var.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/ip.h>
61 #include <netinet/tcp.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 
66 #include <dev/pci/pcireg.h>
67 #include <dev/pci/pcivar.h>
68 
69 #include <machine/bus.h>
70 #include <machine/in_cksum.h>
71 
72 #include <dev/ale/if_alereg.h>
73 #include <dev/ale/if_alevar.h>
74 
75 /* "device miibus" required.  See GENERIC if you get errors here. */
76 #include "miibus_if.h"
77 
78 /* For more information about Tx checksum offload issues see ale_encap(). */
79 #define	ALE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
80 
81 MODULE_DEPEND(ale, pci, 1, 1, 1);
82 MODULE_DEPEND(ale, ether, 1, 1, 1);
83 MODULE_DEPEND(ale, miibus, 1, 1, 1);
84 
85 /* Tunables. */
86 static int msi_disable = 0;
87 static int msix_disable = 0;
88 TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
89 TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
90 
91 /*
92  * Devices supported by this driver.
93  */
94 static const struct ale_dev {
95 	uint16_t	ale_vendorid;
96 	uint16_t	ale_deviceid;
97 	const char	*ale_name;
98 } ale_devs[] = {
99     { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
100     "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
101 };
102 
103 static int	ale_attach(device_t);
104 static int	ale_check_boundary(struct ale_softc *);
105 static int	ale_detach(device_t);
106 static int	ale_dma_alloc(struct ale_softc *);
107 static void	ale_dma_free(struct ale_softc *);
108 static void	ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
109 static int	ale_encap(struct ale_softc *, struct mbuf **);
110 static void	ale_get_macaddr(struct ale_softc *);
111 static void	ale_init(void *);
112 static void	ale_init_locked(struct ale_softc *);
113 static void	ale_init_rx_pages(struct ale_softc *);
114 static void	ale_init_tx_ring(struct ale_softc *);
115 static void	ale_int_task(void *, int);
116 static int	ale_intr(void *);
117 static int	ale_ioctl(if_t, u_long, caddr_t);
118 static void	ale_mac_config(struct ale_softc *);
119 static int	ale_miibus_readreg(device_t, int, int);
120 static void	ale_miibus_statchg(device_t);
121 static int	ale_miibus_writereg(device_t, int, int, int);
122 static int	ale_mediachange(if_t);
123 static void	ale_mediastatus(if_t, struct ifmediareq *);
124 static void	ale_phy_reset(struct ale_softc *);
125 static int	ale_probe(device_t);
126 static void	ale_reset(struct ale_softc *);
127 static int	ale_resume(device_t);
128 static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
129     uint32_t, uint32_t *);
130 static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
131 static int	ale_rxeof(struct ale_softc *sc, int);
132 static void	ale_rxfilter(struct ale_softc *);
133 static void	ale_rxvlan(struct ale_softc *);
134 static void	ale_setlinkspeed(struct ale_softc *);
135 static void	ale_setwol(struct ale_softc *);
136 static int	ale_shutdown(device_t);
137 static void	ale_start(if_t);
138 static void	ale_start_locked(if_t);
139 static void	ale_stats_clear(struct ale_softc *);
140 static void	ale_stats_update(struct ale_softc *);
141 static void	ale_stop(struct ale_softc *);
142 static void	ale_stop_mac(struct ale_softc *);
143 static int	ale_suspend(device_t);
144 static void	ale_sysctl_node(struct ale_softc *);
145 static void	ale_tick(void *);
146 static void	ale_txeof(struct ale_softc *);
147 static void	ale_watchdog(struct ale_softc *);
148 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
149 static int	sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
150 static int	sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
151 
152 static device_method_t ale_methods[] = {
153 	/* Device interface. */
154 	DEVMETHOD(device_probe,		ale_probe),
155 	DEVMETHOD(device_attach,	ale_attach),
156 	DEVMETHOD(device_detach,	ale_detach),
157 	DEVMETHOD(device_shutdown,	ale_shutdown),
158 	DEVMETHOD(device_suspend,	ale_suspend),
159 	DEVMETHOD(device_resume,	ale_resume),
160 
161 	/* MII interface. */
162 	DEVMETHOD(miibus_readreg,	ale_miibus_readreg),
163 	DEVMETHOD(miibus_writereg,	ale_miibus_writereg),
164 	DEVMETHOD(miibus_statchg,	ale_miibus_statchg),
165 
166 	DEVMETHOD_END
167 };
168 
169 static driver_t ale_driver = {
170 	"ale",
171 	ale_methods,
172 	sizeof(struct ale_softc)
173 };
174 
175 DRIVER_MODULE(ale, pci, ale_driver, NULL, NULL);
176 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ale, ale_devs,
177     nitems(ale_devs));
178 DRIVER_MODULE(miibus, ale, miibus_driver, NULL, NULL);
179 
180 static struct resource_spec ale_res_spec_mem[] = {
181 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
182 	{ -1,			0,		0 }
183 };
184 
185 static struct resource_spec ale_irq_spec_legacy[] = {
186 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
187 	{ -1,			0,		0 }
188 };
189 
190 static struct resource_spec ale_irq_spec_msi[] = {
191 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
192 	{ -1,			0,		0 }
193 };
194 
195 static struct resource_spec ale_irq_spec_msix[] = {
196 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
197 	{ -1,			0,		0 }
198 };
199 
200 static int
201 ale_miibus_readreg(device_t dev, int phy, int reg)
202 {
203 	struct ale_softc *sc;
204 	uint32_t v;
205 	int i;
206 
207 	sc = device_get_softc(dev);
208 
209 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
210 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
211 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
212 		DELAY(5);
213 		v = CSR_READ_4(sc, ALE_MDIO);
214 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
215 			break;
216 	}
217 
218 	if (i == 0) {
219 		device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
220 		return (0);
221 	}
222 
223 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
224 }
225 
226 static int
227 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
228 {
229 	struct ale_softc *sc;
230 	uint32_t v;
231 	int i;
232 
233 	sc = device_get_softc(dev);
234 
235 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
236 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
237 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
238 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
239 		DELAY(5);
240 		v = CSR_READ_4(sc, ALE_MDIO);
241 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
242 			break;
243 	}
244 
245 	if (i == 0)
246 		device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
247 
248 	return (0);
249 }
250 
251 static void
252 ale_miibus_statchg(device_t dev)
253 {
254 	struct ale_softc *sc;
255 	struct mii_data *mii;
256 	if_t ifp;
257 	uint32_t reg;
258 
259 	sc = device_get_softc(dev);
260 	mii = device_get_softc(sc->ale_miibus);
261 	ifp = sc->ale_ifp;
262 	if (mii == NULL || ifp == NULL ||
263 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
264 		return;
265 
266 	sc->ale_flags &= ~ALE_FLAG_LINK;
267 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
268 	    (IFM_ACTIVE | IFM_AVALID)) {
269 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
270 		case IFM_10_T:
271 		case IFM_100_TX:
272 			sc->ale_flags |= ALE_FLAG_LINK;
273 			break;
274 		case IFM_1000_T:
275 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
276 				sc->ale_flags |= ALE_FLAG_LINK;
277 			break;
278 		default:
279 			break;
280 		}
281 	}
282 
283 	/* Stop Rx/Tx MACs. */
284 	ale_stop_mac(sc);
285 
286 	/* Program MACs with resolved speed/duplex/flow-control. */
287 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
288 		ale_mac_config(sc);
289 		/* Reenable Tx/Rx MACs. */
290 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
291 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
292 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
293 	}
294 }
295 
296 static void
297 ale_mediastatus(if_t ifp, struct ifmediareq *ifmr)
298 {
299 	struct ale_softc *sc;
300 	struct mii_data *mii;
301 
302 	sc = if_getsoftc(ifp);
303 	ALE_LOCK(sc);
304 	if ((if_getflags(ifp) & IFF_UP) == 0) {
305 		ALE_UNLOCK(sc);
306 		return;
307 	}
308 	mii = device_get_softc(sc->ale_miibus);
309 
310 	mii_pollstat(mii);
311 	ifmr->ifm_status = mii->mii_media_status;
312 	ifmr->ifm_active = mii->mii_media_active;
313 	ALE_UNLOCK(sc);
314 }
315 
316 static int
317 ale_mediachange(if_t ifp)
318 {
319 	struct ale_softc *sc;
320 	struct mii_data *mii;
321 	struct mii_softc *miisc;
322 	int error;
323 
324 	sc = if_getsoftc(ifp);
325 	ALE_LOCK(sc);
326 	mii = device_get_softc(sc->ale_miibus);
327 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
328 		PHY_RESET(miisc);
329 	error = mii_mediachg(mii);
330 	ALE_UNLOCK(sc);
331 
332 	return (error);
333 }
334 
335 static int
336 ale_probe(device_t dev)
337 {
338 	const struct ale_dev *sp;
339 	int i;
340 	uint16_t vendor, devid;
341 
342 	vendor = pci_get_vendor(dev);
343 	devid = pci_get_device(dev);
344 	sp = ale_devs;
345 	for (i = 0; i < nitems(ale_devs); i++) {
346 		if (vendor == sp->ale_vendorid &&
347 		    devid == sp->ale_deviceid) {
348 			device_set_desc(dev, sp->ale_name);
349 			return (BUS_PROBE_DEFAULT);
350 		}
351 		sp++;
352 	}
353 
354 	return (ENXIO);
355 }
356 
357 static void
358 ale_get_macaddr(struct ale_softc *sc)
359 {
360 	uint32_t ea[2], reg;
361 	int i, vpdc;
362 
363 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
364 	if ((reg & SPI_VPD_ENB) != 0) {
365 		reg &= ~SPI_VPD_ENB;
366 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
367 	}
368 
369 	if (pci_find_cap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
370 		/*
371 		 * PCI VPD capability found, let TWSI reload EEPROM.
372 		 * This will set ethernet address of controller.
373 		 */
374 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
375 		    TWSI_CTRL_SW_LD_START);
376 		for (i = 100; i > 0; i--) {
377 			DELAY(1000);
378 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
379 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
380 				break;
381 		}
382 		if (i == 0)
383 			device_printf(sc->ale_dev,
384 			    "reloading EEPROM timeout!\n");
385 	} else {
386 		if (bootverbose)
387 			device_printf(sc->ale_dev,
388 			    "PCI VPD capability not found!\n");
389 	}
390 
391 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
392 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
393 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
394 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
395 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
396 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
397 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
398 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
399 }
400 
401 static void
402 ale_phy_reset(struct ale_softc *sc)
403 {
404 
405 	/* Reset magic from Linux. */
406 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
407 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
408 	    GPHY_CTRL_PHY_PLL_ON);
409 	DELAY(1000);
410 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
411 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
412 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
413 	DELAY(1000);
414 
415 #define	ATPHY_DBG_ADDR		0x1D
416 #define	ATPHY_DBG_DATA		0x1E
417 
418 	/* Enable hibernation mode. */
419 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
420 	    ATPHY_DBG_ADDR, 0x0B);
421 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
422 	    ATPHY_DBG_DATA, 0xBC00);
423 	/* Set Class A/B for all modes. */
424 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
425 	    ATPHY_DBG_ADDR, 0x00);
426 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
427 	    ATPHY_DBG_DATA, 0x02EF);
428 	/* Enable 10BT power saving. */
429 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
430 	    ATPHY_DBG_ADDR, 0x12);
431 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
432 	    ATPHY_DBG_DATA, 0x4C04);
433 	/* Adjust 1000T power. */
434 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
435 	    ATPHY_DBG_ADDR, 0x04);
436 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
437 	    ATPHY_DBG_ADDR, 0x8BBB);
438 	/* 10BT center tap voltage. */
439 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
440 	    ATPHY_DBG_ADDR, 0x05);
441 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
442 	    ATPHY_DBG_ADDR, 0x2C46);
443 
444 #undef	ATPHY_DBG_ADDR
445 #undef	ATPHY_DBG_DATA
446 	DELAY(1000);
447 }
448 
449 static int
450 ale_attach(device_t dev)
451 {
452 	struct ale_softc *sc;
453 	if_t ifp;
454 	uint16_t burst;
455 	int error, i, msic, msixc, pmc;
456 	uint32_t rxf_len, txf_len;
457 
458 	error = 0;
459 	sc = device_get_softc(dev);
460 	sc->ale_dev = dev;
461 
462 	mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
463 	    MTX_DEF);
464 	callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
465 	NET_TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
466 
467 	/* Map the device. */
468 	pci_enable_busmaster(dev);
469 	sc->ale_res_spec = ale_res_spec_mem;
470 	sc->ale_irq_spec = ale_irq_spec_legacy;
471 	error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
472 	if (error != 0) {
473 		device_printf(dev, "cannot allocate memory resources.\n");
474 		goto fail;
475 	}
476 
477 	/* Set PHY address. */
478 	sc->ale_phyaddr = ALE_PHY_ADDR;
479 
480 	/* Reset PHY. */
481 	ale_phy_reset(sc);
482 
483 	/* Reset the ethernet controller. */
484 	ale_reset(sc);
485 
486 	/* Get PCI and chip id/revision. */
487 	sc->ale_rev = pci_get_revid(dev);
488 	if (sc->ale_rev >= 0xF0) {
489 		/* L2E Rev. B. AR8114 */
490 		sc->ale_flags |= ALE_FLAG_FASTETHER;
491 	} else {
492 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
493 			/* L1E AR8121 */
494 			sc->ale_flags |= ALE_FLAG_JUMBO;
495 		} else {
496 			/* L2E Rev. A. AR8113 */
497 			sc->ale_flags |= ALE_FLAG_FASTETHER;
498 		}
499 	}
500 	/*
501 	 * All known controllers seems to require 4 bytes alignment
502 	 * of Tx buffers to make Tx checksum offload with custom
503 	 * checksum generation method work.
504 	 */
505 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
506 	/*
507 	 * All known controllers seems to have issues on Rx checksum
508 	 * offload for fragmented IP datagrams.
509 	 */
510 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
511 	/*
512 	 * Don't use Tx CMB. It is known to cause RRS update failure
513 	 * under certain circumstances. Typical phenomenon of the
514 	 * issue would be unexpected sequence number encountered in
515 	 * Rx handler.
516 	 */
517 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
518 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
519 	    MASTER_CHIP_REV_SHIFT;
520 	if (bootverbose) {
521 		device_printf(dev, "PCI device revision : 0x%04x\n",
522 		    sc->ale_rev);
523 		device_printf(dev, "Chip id/revision : 0x%04x\n",
524 		    sc->ale_chip_rev);
525 	}
526 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
527 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
528 	/*
529 	 * Uninitialized hardware returns an invalid chip id/revision
530 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
531 	 */
532 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
533 	    rxf_len == 0xFFFFFFF) {
534 		device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
535 		    "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
536 		    txf_len, rxf_len);
537 		error = ENXIO;
538 		goto fail;
539 	}
540 	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
541 
542 	/* Allocate IRQ resources. */
543 	msixc = pci_msix_count(dev);
544 	msic = pci_msi_count(dev);
545 	if (bootverbose) {
546 		device_printf(dev, "MSIX count : %d\n", msixc);
547 		device_printf(dev, "MSI count : %d\n", msic);
548 	}
549 
550 	/* Prefer MSIX over MSI. */
551 	if (msix_disable == 0 || msi_disable == 0) {
552 		if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
553 		    pci_alloc_msix(dev, &msixc) == 0) {
554 			if (msixc == ALE_MSIX_MESSAGES) {
555 				device_printf(dev, "Using %d MSIX messages.\n",
556 				    msixc);
557 				sc->ale_flags |= ALE_FLAG_MSIX;
558 				sc->ale_irq_spec = ale_irq_spec_msix;
559 			} else
560 				pci_release_msi(dev);
561 		}
562 		if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
563 		    msic == ALE_MSI_MESSAGES &&
564 		    pci_alloc_msi(dev, &msic) == 0) {
565 			if (msic == ALE_MSI_MESSAGES) {
566 				device_printf(dev, "Using %d MSI messages.\n",
567 				    msic);
568 				sc->ale_flags |= ALE_FLAG_MSI;
569 				sc->ale_irq_spec = ale_irq_spec_msi;
570 			} else
571 				pci_release_msi(dev);
572 		}
573 	}
574 
575 	error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
576 	if (error != 0) {
577 		device_printf(dev, "cannot allocate IRQ resources.\n");
578 		goto fail;
579 	}
580 
581 	/* Get DMA parameters from PCIe device control register. */
582 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
583 		sc->ale_flags |= ALE_FLAG_PCIE;
584 		burst = pci_read_config(dev, i + 0x08, 2);
585 		/* Max read request size. */
586 		sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
587 		    DMA_CFG_RD_BURST_SHIFT;
588 		/* Max payload size. */
589 		sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
590 		    DMA_CFG_WR_BURST_SHIFT;
591 		if (bootverbose) {
592 			device_printf(dev, "Read request size : %d bytes.\n",
593 			    128 << ((burst >> 12) & 0x07));
594 			device_printf(dev, "TLP payload size : %d bytes.\n",
595 			    128 << ((burst >> 5) & 0x07));
596 		}
597 	} else {
598 		sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
599 		sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
600 	}
601 
602 	/* Create device sysctl node. */
603 	ale_sysctl_node(sc);
604 
605 	if ((error = ale_dma_alloc(sc)) != 0)
606 		goto fail;
607 
608 	/* Load station address. */
609 	ale_get_macaddr(sc);
610 
611 	ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
612 	if_setsoftc(ifp, sc);
613 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
614 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
615 	if_setioctlfn(ifp, ale_ioctl);
616 	if_setstartfn(ifp, ale_start);
617 	if_setinitfn(ifp, ale_init);
618 	if_setsendqlen(ifp, ALE_TX_RING_CNT - 1);
619 	if_setsendqready(ifp);
620 	if_setcapabilities(ifp, IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4);
621 	if_sethwassist(ifp, ALE_CSUM_FEATURES | CSUM_TSO);
622 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
623 		sc->ale_flags |= ALE_FLAG_PMCAP;
624 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST, 0);
625 	}
626 	if_setcapenable(ifp, if_getcapabilities(ifp));
627 
628 	/* Set up MII bus. */
629 	error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange,
630 	    ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY,
631 	    MIIF_DOPAUSE);
632 	if (error != 0) {
633 		device_printf(dev, "attaching PHYs failed\n");
634 		goto fail;
635 	}
636 
637 	ether_ifattach(ifp, sc->ale_eaddr);
638 
639 	/* VLAN capability setup. */
640 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
641 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
642 	if_setcapenable(ifp, if_getcapabilities(ifp));
643 	/*
644 	 * Even though controllers supported by ale(3) have Rx checksum
645 	 * offload bug the workaround for fragmented frames seemed to
646 	 * work so far. However it seems Rx checksum offload does not
647 	 * work under certain conditions. So disable Rx checksum offload
648 	 * until I find more clue about it but allow users to override it.
649 	 */
650 	if_setcapenablebit(ifp, 0, IFCAP_RXCSUM);
651 
652 	/* Tell the upper layer(s) we support long frames. */
653 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
654 
655 	/* Create local taskq. */
656 	sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
657 	    taskqueue_thread_enqueue, &sc->ale_tq);
658 	if (sc->ale_tq == NULL) {
659 		device_printf(dev, "could not create taskqueue.\n");
660 		ether_ifdetach(ifp);
661 		error = ENXIO;
662 		goto fail;
663 	}
664 	taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
665 	    device_get_nameunit(sc->ale_dev));
666 
667 	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
668 		msic = ALE_MSIX_MESSAGES;
669 	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
670 		msic = ALE_MSI_MESSAGES;
671 	else
672 		msic = 1;
673 	for (i = 0; i < msic; i++) {
674 		error = bus_setup_intr(dev, sc->ale_irq[i],
675 		    INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
676 		    &sc->ale_intrhand[i]);
677 		if (error != 0)
678 			break;
679 	}
680 	if (error != 0) {
681 		device_printf(dev, "could not set up interrupt handler.\n");
682 		taskqueue_free(sc->ale_tq);
683 		sc->ale_tq = NULL;
684 		ether_ifdetach(ifp);
685 		goto fail;
686 	}
687 
688 fail:
689 	if (error != 0)
690 		ale_detach(dev);
691 
692 	return (error);
693 }
694 
695 static int
696 ale_detach(device_t dev)
697 {
698 	struct ale_softc *sc;
699 	if_t ifp;
700 	int i, msic;
701 
702 	sc = device_get_softc(dev);
703 
704 	ifp = sc->ale_ifp;
705 	if (device_is_attached(dev)) {
706 		ether_ifdetach(ifp);
707 		ALE_LOCK(sc);
708 		ale_stop(sc);
709 		ALE_UNLOCK(sc);
710 		callout_drain(&sc->ale_tick_ch);
711 		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
712 	}
713 
714 	if (sc->ale_tq != NULL) {
715 		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
716 		taskqueue_free(sc->ale_tq);
717 		sc->ale_tq = NULL;
718 	}
719 
720 	if (sc->ale_miibus != NULL) {
721 		device_delete_child(dev, sc->ale_miibus);
722 		sc->ale_miibus = NULL;
723 	}
724 	bus_generic_detach(dev);
725 	ale_dma_free(sc);
726 
727 	if (ifp != NULL) {
728 		if_free(ifp);
729 		sc->ale_ifp = NULL;
730 	}
731 
732 	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
733 		msic = ALE_MSIX_MESSAGES;
734 	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
735 		msic = ALE_MSI_MESSAGES;
736 	else
737 		msic = 1;
738 	for (i = 0; i < msic; i++) {
739 		if (sc->ale_intrhand[i] != NULL) {
740 			bus_teardown_intr(dev, sc->ale_irq[i],
741 			    sc->ale_intrhand[i]);
742 			sc->ale_intrhand[i] = NULL;
743 		}
744 	}
745 
746 	bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
747 	if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
748 		pci_release_msi(dev);
749 	bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
750 	mtx_destroy(&sc->ale_mtx);
751 
752 	return (0);
753 }
754 
755 #define	ALE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
756 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
757 
758 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
759 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
760 
761 static void
762 ale_sysctl_node(struct ale_softc *sc)
763 {
764 	struct sysctl_ctx_list *ctx;
765 	struct sysctl_oid_list *child, *parent;
766 	struct sysctl_oid *tree;
767 	struct ale_hw_stats *stats;
768 	int error;
769 
770 	stats = &sc->ale_stats;
771 	ctx = device_get_sysctl_ctx(sc->ale_dev);
772 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
773 
774 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
775 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->ale_int_rx_mod,
776 	    0, sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
777 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
778 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->ale_int_tx_mod,
779 	    0, sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
780 	/* Pull in device tunables. */
781 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
782 	error = resource_int_value(device_get_name(sc->ale_dev),
783 	    device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
784 	if (error == 0) {
785 		if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
786 		    sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
787 			device_printf(sc->ale_dev, "int_rx_mod value out of "
788 			    "range; using default: %d\n",
789 			    ALE_IM_RX_TIMER_DEFAULT);
790 			sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
791 		}
792 	}
793 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
794 	error = resource_int_value(device_get_name(sc->ale_dev),
795 	    device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
796 	if (error == 0) {
797 		if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
798 		    sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
799 			device_printf(sc->ale_dev, "int_tx_mod value out of "
800 			    "range; using default: %d\n",
801 			    ALE_IM_TX_TIMER_DEFAULT);
802 			sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
803 		}
804 	}
805 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
806 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
807 	    &sc->ale_process_limit, 0, sysctl_hw_ale_proc_limit, "I",
808 	    "max number of Rx events to process");
809 	/* Pull in device tunables. */
810 	sc->ale_process_limit = ALE_PROC_DEFAULT;
811 	error = resource_int_value(device_get_name(sc->ale_dev),
812 	    device_get_unit(sc->ale_dev), "process_limit",
813 	    &sc->ale_process_limit);
814 	if (error == 0) {
815 		if (sc->ale_process_limit < ALE_PROC_MIN ||
816 		    sc->ale_process_limit > ALE_PROC_MAX) {
817 			device_printf(sc->ale_dev,
818 			    "process_limit value out of range; "
819 			    "using default: %d\n", ALE_PROC_DEFAULT);
820 			sc->ale_process_limit = ALE_PROC_DEFAULT;
821 		}
822 	}
823 
824 	/* Misc statistics. */
825 	ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
826 	    &stats->reset_brk_seq,
827 	    "Controller resets due to broken Rx sequnce number");
828 
829 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
830 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ATE statistics");
831 	parent = SYSCTL_CHILDREN(tree);
832 
833 	/* Rx statistics. */
834 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
835 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
836 	child = SYSCTL_CHILDREN(tree);
837 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
838 	    &stats->rx_frames, "Good frames");
839 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
840 	    &stats->rx_bcast_frames, "Good broadcast frames");
841 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
842 	    &stats->rx_mcast_frames, "Good multicast frames");
843 	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
844 	    &stats->rx_pause_frames, "Pause control frames");
845 	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
846 	    &stats->rx_control_frames, "Control frames");
847 	ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
848 	    &stats->rx_crcerrs, "CRC errors");
849 	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
850 	    &stats->rx_lenerrs, "Frames with length mismatched");
851 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
852 	    &stats->rx_bytes, "Good octets");
853 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
854 	    &stats->rx_bcast_bytes, "Good broadcast octets");
855 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
856 	    &stats->rx_mcast_bytes, "Good multicast octets");
857 	ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
858 	    &stats->rx_runts, "Too short frames");
859 	ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
860 	    &stats->rx_fragments, "Fragmented frames");
861 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
862 	    &stats->rx_pkts_64, "64 bytes frames");
863 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
864 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
865 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
866 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
867 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
868 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
869 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
870 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
871 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
872 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
873 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
874 	    &stats->rx_pkts_1519_max, "1519 to max frames");
875 	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
876 	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
877 	ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
878 	    &stats->rx_fifo_oflows, "FIFO overflows");
879 	ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
880 	    &stats->rx_rrs_errs, "Return status write-back errors");
881 	ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
882 	    &stats->rx_alignerrs, "Alignment errors");
883 	ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
884 	    &stats->rx_pkts_filtered,
885 	    "Frames dropped due to address filtering");
886 
887 	/* Tx statistics. */
888 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
889 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
890 	child = SYSCTL_CHILDREN(tree);
891 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
892 	    &stats->tx_frames, "Good frames");
893 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
894 	    &stats->tx_bcast_frames, "Good broadcast frames");
895 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
896 	    &stats->tx_mcast_frames, "Good multicast frames");
897 	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
898 	    &stats->tx_pause_frames, "Pause control frames");
899 	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
900 	    &stats->tx_control_frames, "Control frames");
901 	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
902 	    &stats->tx_excess_defer, "Frames with excessive derferrals");
903 	ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
904 	    &stats->tx_excess_defer, "Frames with derferrals");
905 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
906 	    &stats->tx_bytes, "Good octets");
907 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
908 	    &stats->tx_bcast_bytes, "Good broadcast octets");
909 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
910 	    &stats->tx_mcast_bytes, "Good multicast octets");
911 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
912 	    &stats->tx_pkts_64, "64 bytes frames");
913 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
914 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
915 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
916 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
917 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
918 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
919 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
920 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
921 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
922 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
923 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
924 	    &stats->tx_pkts_1519_max, "1519 to max frames");
925 	ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
926 	    &stats->tx_single_colls, "Single collisions");
927 	ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
928 	    &stats->tx_multi_colls, "Multiple collisions");
929 	ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
930 	    &stats->tx_late_colls, "Late collisions");
931 	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
932 	    &stats->tx_excess_colls, "Excessive collisions");
933 	ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
934 	    &stats->tx_underrun, "FIFO underruns");
935 	ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
936 	    &stats->tx_desc_underrun, "Descriptor write-back errors");
937 	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
938 	    &stats->tx_lenerrs, "Frames with length mismatched");
939 	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
940 	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
941 }
942 
943 #undef ALE_SYSCTL_STAT_ADD32
944 #undef ALE_SYSCTL_STAT_ADD64
945 
946 struct ale_dmamap_arg {
947 	bus_addr_t	ale_busaddr;
948 };
949 
950 static void
951 ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
952 {
953 	struct ale_dmamap_arg *ctx;
954 
955 	if (error != 0)
956 		return;
957 
958 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
959 
960 	ctx = (struct ale_dmamap_arg *)arg;
961 	ctx->ale_busaddr = segs[0].ds_addr;
962 }
963 
964 /*
965  * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
966  * which specifies high address region of DMA blocks. Therefore these
967  * blocks should have the same high address of given 4GB address
968  * space(i.e. crossing 4GB boundary is not allowed).
969  */
970 static int
971 ale_check_boundary(struct ale_softc *sc)
972 {
973 	bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
974 	bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
975 
976 	rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
977 	    sc->ale_pagesize;
978 	rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
979 	    sc->ale_pagesize;
980 	tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
981 	tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
982 	rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
983 	rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
984 
985 	if ((ALE_ADDR_HI(tx_ring_end) !=
986 	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
987 	    (ALE_ADDR_HI(rx_page_end[0]) !=
988 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
989 	    (ALE_ADDR_HI(rx_page_end[1]) !=
990 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
991 	    (ALE_ADDR_HI(tx_cmb_end) !=
992 	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
993 	    (ALE_ADDR_HI(rx_cmb_end[0]) !=
994 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
995 	    (ALE_ADDR_HI(rx_cmb_end[1]) !=
996 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
997 		return (EFBIG);
998 
999 	if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
1000 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
1001 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
1002 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
1003 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
1004 		return (EFBIG);
1005 
1006 	return (0);
1007 }
1008 
1009 static int
1010 ale_dma_alloc(struct ale_softc *sc)
1011 {
1012 	struct ale_txdesc *txd;
1013 	bus_addr_t lowaddr;
1014 	struct ale_dmamap_arg ctx;
1015 	int error, guard_size, i;
1016 
1017 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
1018 		guard_size = ALE_JUMBO_FRAMELEN;
1019 	else
1020 		guard_size = ALE_MAX_FRAMELEN;
1021 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
1022 	    ALE_RX_PAGE_ALIGN);
1023 	lowaddr = BUS_SPACE_MAXADDR;
1024 again:
1025 	/* Create parent DMA tag. */
1026 	error = bus_dma_tag_create(
1027 	    bus_get_dma_tag(sc->ale_dev), /* parent */
1028 	    1, 0,			/* alignment, boundary */
1029 	    lowaddr,			/* lowaddr */
1030 	    BUS_SPACE_MAXADDR,		/* highaddr */
1031 	    NULL, NULL,			/* filter, filterarg */
1032 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1033 	    0,				/* nsegments */
1034 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1035 	    0,				/* flags */
1036 	    NULL, NULL,			/* lockfunc, lockarg */
1037 	    &sc->ale_cdata.ale_parent_tag);
1038 	if (error != 0) {
1039 		device_printf(sc->ale_dev,
1040 		    "could not create parent DMA tag.\n");
1041 		goto fail;
1042 	}
1043 
1044 	/* Create DMA tag for Tx descriptor ring. */
1045 	error = bus_dma_tag_create(
1046 	    sc->ale_cdata.ale_parent_tag, /* parent */
1047 	    ALE_TX_RING_ALIGN, 0,	/* alignment, boundary */
1048 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1049 	    BUS_SPACE_MAXADDR,		/* highaddr */
1050 	    NULL, NULL,			/* filter, filterarg */
1051 	    ALE_TX_RING_SZ,		/* maxsize */
1052 	    1,				/* nsegments */
1053 	    ALE_TX_RING_SZ,		/* maxsegsize */
1054 	    0,				/* flags */
1055 	    NULL, NULL,			/* lockfunc, lockarg */
1056 	    &sc->ale_cdata.ale_tx_ring_tag);
1057 	if (error != 0) {
1058 		device_printf(sc->ale_dev,
1059 		    "could not create Tx ring DMA tag.\n");
1060 		goto fail;
1061 	}
1062 
1063 	/* Create DMA tag for Rx pages. */
1064 	for (i = 0; i < ALE_RX_PAGES; i++) {
1065 		error = bus_dma_tag_create(
1066 		    sc->ale_cdata.ale_parent_tag, /* parent */
1067 		    ALE_RX_PAGE_ALIGN, 0,	/* alignment, boundary */
1068 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1069 		    BUS_SPACE_MAXADDR,		/* highaddr */
1070 		    NULL, NULL,			/* filter, filterarg */
1071 		    sc->ale_pagesize,		/* maxsize */
1072 		    1,				/* nsegments */
1073 		    sc->ale_pagesize,		/* maxsegsize */
1074 		    0,				/* flags */
1075 		    NULL, NULL,			/* lockfunc, lockarg */
1076 		    &sc->ale_cdata.ale_rx_page[i].page_tag);
1077 		if (error != 0) {
1078 			device_printf(sc->ale_dev,
1079 			    "could not create Rx page %d DMA tag.\n", i);
1080 			goto fail;
1081 		}
1082 	}
1083 
1084 	/* Create DMA tag for Tx coalescing message block. */
1085 	error = bus_dma_tag_create(
1086 	    sc->ale_cdata.ale_parent_tag, /* parent */
1087 	    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1088 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1089 	    BUS_SPACE_MAXADDR,		/* highaddr */
1090 	    NULL, NULL,			/* filter, filterarg */
1091 	    ALE_TX_CMB_SZ,		/* maxsize */
1092 	    1,				/* nsegments */
1093 	    ALE_TX_CMB_SZ,		/* maxsegsize */
1094 	    0,				/* flags */
1095 	    NULL, NULL,			/* lockfunc, lockarg */
1096 	    &sc->ale_cdata.ale_tx_cmb_tag);
1097 	if (error != 0) {
1098 		device_printf(sc->ale_dev,
1099 		    "could not create Tx CMB DMA tag.\n");
1100 		goto fail;
1101 	}
1102 
1103 	/* Create DMA tag for Rx coalescing message block. */
1104 	for (i = 0; i < ALE_RX_PAGES; i++) {
1105 		error = bus_dma_tag_create(
1106 		    sc->ale_cdata.ale_parent_tag, /* parent */
1107 		    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1108 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1109 		    BUS_SPACE_MAXADDR,		/* highaddr */
1110 		    NULL, NULL,			/* filter, filterarg */
1111 		    ALE_RX_CMB_SZ,		/* maxsize */
1112 		    1,				/* nsegments */
1113 		    ALE_RX_CMB_SZ,		/* maxsegsize */
1114 		    0,				/* flags */
1115 		    NULL, NULL,			/* lockfunc, lockarg */
1116 		    &sc->ale_cdata.ale_rx_page[i].cmb_tag);
1117 		if (error != 0) {
1118 			device_printf(sc->ale_dev,
1119 			    "could not create Rx page %d CMB DMA tag.\n", i);
1120 			goto fail;
1121 		}
1122 	}
1123 
1124 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1125 	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
1126 	    (void **)&sc->ale_cdata.ale_tx_ring,
1127 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1128 	    &sc->ale_cdata.ale_tx_ring_map);
1129 	if (error != 0) {
1130 		device_printf(sc->ale_dev,
1131 		    "could not allocate DMA'able memory for Tx ring.\n");
1132 		goto fail;
1133 	}
1134 	ctx.ale_busaddr = 0;
1135 	error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
1136 	    sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
1137 	    ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
1138 	if (error != 0 || ctx.ale_busaddr == 0) {
1139 		device_printf(sc->ale_dev,
1140 		    "could not load DMA'able memory for Tx ring.\n");
1141 		goto fail;
1142 	}
1143 	sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
1144 
1145 	/* Rx pages. */
1146 	for (i = 0; i < ALE_RX_PAGES; i++) {
1147 		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
1148 		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
1149 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1150 		    &sc->ale_cdata.ale_rx_page[i].page_map);
1151 		if (error != 0) {
1152 			device_printf(sc->ale_dev,
1153 			    "could not allocate DMA'able memory for "
1154 			    "Rx page %d.\n", i);
1155 			goto fail;
1156 		}
1157 		ctx.ale_busaddr = 0;
1158 		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
1159 		    sc->ale_cdata.ale_rx_page[i].page_map,
1160 		    sc->ale_cdata.ale_rx_page[i].page_addr,
1161 		    sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
1162 		if (error != 0 || ctx.ale_busaddr == 0) {
1163 			device_printf(sc->ale_dev,
1164 			    "could not load DMA'able memory for "
1165 			    "Rx page %d.\n", i);
1166 			goto fail;
1167 		}
1168 		sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
1169 	}
1170 
1171 	/* Tx CMB. */
1172 	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
1173 	    (void **)&sc->ale_cdata.ale_tx_cmb,
1174 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1175 	    &sc->ale_cdata.ale_tx_cmb_map);
1176 	if (error != 0) {
1177 		device_printf(sc->ale_dev,
1178 		    "could not allocate DMA'able memory for Tx CMB.\n");
1179 		goto fail;
1180 	}
1181 	ctx.ale_busaddr = 0;
1182 	error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
1183 	    sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
1184 	    ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1185 	if (error != 0 || ctx.ale_busaddr == 0) {
1186 		device_printf(sc->ale_dev,
1187 		    "could not load DMA'able memory for Tx CMB.\n");
1188 		goto fail;
1189 	}
1190 	sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
1191 
1192 	/* Rx CMB. */
1193 	for (i = 0; i < ALE_RX_PAGES; i++) {
1194 		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1195 		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
1196 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1197 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
1198 		if (error != 0) {
1199 			device_printf(sc->ale_dev, "could not allocate "
1200 			    "DMA'able memory for Rx page %d CMB.\n", i);
1201 			goto fail;
1202 		}
1203 		ctx.ale_busaddr = 0;
1204 		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1205 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
1206 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1207 		    ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1208 		if (error != 0 || ctx.ale_busaddr == 0) {
1209 			device_printf(sc->ale_dev, "could not load DMA'able "
1210 			    "memory for Rx page %d CMB.\n", i);
1211 			goto fail;
1212 		}
1213 		sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
1214 	}
1215 
1216 	/*
1217 	 * Tx descriptors/RXF0/CMB DMA blocks share the same
1218 	 * high address region of 64bit DMA address space.
1219 	 */
1220 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1221 	    (error = ale_check_boundary(sc)) != 0) {
1222 		device_printf(sc->ale_dev, "4GB boundary crossed, "
1223 		    "switching to 32bit DMA addressing mode.\n");
1224 		ale_dma_free(sc);
1225 		/*
1226 		 * Limit max allowable DMA address space to 32bit
1227 		 * and try again.
1228 		 */
1229 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1230 		goto again;
1231 	}
1232 
1233 	/*
1234 	 * Create Tx buffer parent tag.
1235 	 * AR81xx allows 64bit DMA addressing of Tx buffers so it
1236 	 * needs separate parent DMA tag as parent DMA address space
1237 	 * could be restricted to be within 32bit address space by
1238 	 * 4GB boundary crossing.
1239 	 */
1240 	error = bus_dma_tag_create(
1241 	    bus_get_dma_tag(sc->ale_dev), /* parent */
1242 	    1, 0,			/* alignment, boundary */
1243 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1244 	    BUS_SPACE_MAXADDR,		/* highaddr */
1245 	    NULL, NULL,			/* filter, filterarg */
1246 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1247 	    0,				/* nsegments */
1248 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1249 	    0,				/* flags */
1250 	    NULL, NULL,			/* lockfunc, lockarg */
1251 	    &sc->ale_cdata.ale_buffer_tag);
1252 	if (error != 0) {
1253 		device_printf(sc->ale_dev,
1254 		    "could not create parent buffer DMA tag.\n");
1255 		goto fail;
1256 	}
1257 
1258 	/* Create DMA tag for Tx buffers. */
1259 	error = bus_dma_tag_create(
1260 	    sc->ale_cdata.ale_buffer_tag, /* parent */
1261 	    1, 0,			/* alignment, boundary */
1262 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1263 	    BUS_SPACE_MAXADDR,		/* highaddr */
1264 	    NULL, NULL,			/* filter, filterarg */
1265 	    ALE_TSO_MAXSIZE,		/* maxsize */
1266 	    ALE_MAXTXSEGS,		/* nsegments */
1267 	    ALE_TSO_MAXSEGSIZE,		/* maxsegsize */
1268 	    0,				/* flags */
1269 	    NULL, NULL,			/* lockfunc, lockarg */
1270 	    &sc->ale_cdata.ale_tx_tag);
1271 	if (error != 0) {
1272 		device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
1273 		goto fail;
1274 	}
1275 
1276 	/* Create DMA maps for Tx buffers. */
1277 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1278 		txd = &sc->ale_cdata.ale_txdesc[i];
1279 		txd->tx_m = NULL;
1280 		txd->tx_dmamap = NULL;
1281 		error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
1282 		    &txd->tx_dmamap);
1283 		if (error != 0) {
1284 			device_printf(sc->ale_dev,
1285 			    "could not create Tx dmamap.\n");
1286 			goto fail;
1287 		}
1288 	}
1289 
1290 fail:
1291 	return (error);
1292 }
1293 
1294 static void
1295 ale_dma_free(struct ale_softc *sc)
1296 {
1297 	struct ale_txdesc *txd;
1298 	int i;
1299 
1300 	/* Tx buffers. */
1301 	if (sc->ale_cdata.ale_tx_tag != NULL) {
1302 		for (i = 0; i < ALE_TX_RING_CNT; i++) {
1303 			txd = &sc->ale_cdata.ale_txdesc[i];
1304 			if (txd->tx_dmamap != NULL) {
1305 				bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
1306 				    txd->tx_dmamap);
1307 				txd->tx_dmamap = NULL;
1308 			}
1309 		}
1310 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
1311 		sc->ale_cdata.ale_tx_tag = NULL;
1312 	}
1313 	/* Tx descriptor ring. */
1314 	if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
1315 		if (sc->ale_cdata.ale_tx_ring_paddr != 0)
1316 			bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
1317 			    sc->ale_cdata.ale_tx_ring_map);
1318 		if (sc->ale_cdata.ale_tx_ring != NULL)
1319 			bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
1320 			    sc->ale_cdata.ale_tx_ring,
1321 			    sc->ale_cdata.ale_tx_ring_map);
1322 		sc->ale_cdata.ale_tx_ring_paddr = 0;
1323 		sc->ale_cdata.ale_tx_ring = NULL;
1324 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
1325 		sc->ale_cdata.ale_tx_ring_tag = NULL;
1326 	}
1327 	/* Rx page block. */
1328 	for (i = 0; i < ALE_RX_PAGES; i++) {
1329 		if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
1330 			if (sc->ale_cdata.ale_rx_page[i].page_paddr != 0)
1331 				bus_dmamap_unload(
1332 				    sc->ale_cdata.ale_rx_page[i].page_tag,
1333 				    sc->ale_cdata.ale_rx_page[i].page_map);
1334 			if (sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
1335 				bus_dmamem_free(
1336 				    sc->ale_cdata.ale_rx_page[i].page_tag,
1337 				    sc->ale_cdata.ale_rx_page[i].page_addr,
1338 				    sc->ale_cdata.ale_rx_page[i].page_map);
1339 			sc->ale_cdata.ale_rx_page[i].page_paddr = 0;
1340 			sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
1341 			bus_dma_tag_destroy(
1342 			    sc->ale_cdata.ale_rx_page[i].page_tag);
1343 			sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
1344 		}
1345 	}
1346 	/* Rx CMB. */
1347 	for (i = 0; i < ALE_RX_PAGES; i++) {
1348 		if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
1349 			if (sc->ale_cdata.ale_rx_page[i].cmb_paddr != 0)
1350 				bus_dmamap_unload(
1351 				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1352 				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1353 			if (sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
1354 				bus_dmamem_free(
1355 				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1356 				    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1357 				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1358 			sc->ale_cdata.ale_rx_page[i].cmb_paddr = 0;
1359 			sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
1360 			bus_dma_tag_destroy(
1361 			    sc->ale_cdata.ale_rx_page[i].cmb_tag);
1362 			sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
1363 		}
1364 	}
1365 	/* Tx CMB. */
1366 	if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
1367 		if (sc->ale_cdata.ale_tx_cmb_paddr != 0)
1368 			bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
1369 			    sc->ale_cdata.ale_tx_cmb_map);
1370 		if (sc->ale_cdata.ale_tx_cmb != NULL)
1371 			bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
1372 			    sc->ale_cdata.ale_tx_cmb,
1373 			    sc->ale_cdata.ale_tx_cmb_map);
1374 		sc->ale_cdata.ale_tx_cmb_paddr = 0;
1375 		sc->ale_cdata.ale_tx_cmb = NULL;
1376 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
1377 		sc->ale_cdata.ale_tx_cmb_tag = NULL;
1378 	}
1379 	if (sc->ale_cdata.ale_buffer_tag != NULL) {
1380 		bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
1381 		sc->ale_cdata.ale_buffer_tag = NULL;
1382 	}
1383 	if (sc->ale_cdata.ale_parent_tag != NULL) {
1384 		bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
1385 		sc->ale_cdata.ale_parent_tag = NULL;
1386 	}
1387 }
1388 
1389 static int
1390 ale_shutdown(device_t dev)
1391 {
1392 
1393 	return (ale_suspend(dev));
1394 }
1395 
1396 /*
1397  * Note, this driver resets the link speed to 10/100Mbps by
1398  * restarting auto-negotiation in suspend/shutdown phase but we
1399  * don't know whether that auto-negotiation would succeed or not
1400  * as driver has no control after powering off/suspend operation.
1401  * If the renegotiation fail WOL may not work. Running at 1Gbps
1402  * will draw more power than 375mA at 3.3V which is specified in
1403  * PCI specification and that would result in complete
1404  * shutdowning power to ethernet controller.
1405  *
1406  * TODO
1407  * Save current negotiated media speed/duplex/flow-control to
1408  * softc and restore the same link again after resuming. PHY
1409  * handling such as power down/resetting to 100Mbps may be better
1410  * handled in suspend method in phy driver.
1411  */
1412 static void
1413 ale_setlinkspeed(struct ale_softc *sc)
1414 {
1415 	struct mii_data *mii;
1416 	int aneg, i;
1417 
1418 	mii = device_get_softc(sc->ale_miibus);
1419 	mii_pollstat(mii);
1420 	aneg = 0;
1421 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1422 	    (IFM_ACTIVE | IFM_AVALID)) {
1423 		switch IFM_SUBTYPE(mii->mii_media_active) {
1424 		case IFM_10_T:
1425 		case IFM_100_TX:
1426 			return;
1427 		case IFM_1000_T:
1428 			aneg++;
1429 			break;
1430 		default:
1431 			break;
1432 		}
1433 	}
1434 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
1435 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1436 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1437 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1438 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1439 	DELAY(1000);
1440 	if (aneg != 0) {
1441 		/*
1442 		 * Poll link state until ale(4) get a 10/100Mbps link.
1443 		 */
1444 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1445 			mii_pollstat(mii);
1446 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1447 			    == (IFM_ACTIVE | IFM_AVALID)) {
1448 				switch (IFM_SUBTYPE(
1449 				    mii->mii_media_active)) {
1450 				case IFM_10_T:
1451 				case IFM_100_TX:
1452 					ale_mac_config(sc);
1453 					return;
1454 				default:
1455 					break;
1456 				}
1457 			}
1458 			ALE_UNLOCK(sc);
1459 			pause("alelnk", hz);
1460 			ALE_LOCK(sc);
1461 		}
1462 		if (i == MII_ANEGTICKS_GIGE)
1463 			device_printf(sc->ale_dev,
1464 			    "establishing a link failed, WOL may not work!");
1465 	}
1466 	/*
1467 	 * No link, force MAC to have 100Mbps, full-duplex link.
1468 	 * This is the last resort and may/may not work.
1469 	 */
1470 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1471 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1472 	ale_mac_config(sc);
1473 }
1474 
1475 static void
1476 ale_setwol(struct ale_softc *sc)
1477 {
1478 	if_t ifp;
1479 	uint32_t reg, pmcs;
1480 	uint16_t pmstat;
1481 	int pmc;
1482 
1483 	ALE_LOCK_ASSERT(sc);
1484 
1485 	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
1486 		/* Disable WOL. */
1487 		CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1488 		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1489 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1490 		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1491 		/* Force PHY power down. */
1492 		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1493 		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1494 		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
1495 		    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
1496 		    GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
1497 		return;
1498 	}
1499 
1500 	ifp = sc->ale_ifp;
1501 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
1502 		if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
1503 			ale_setlinkspeed(sc);
1504 	}
1505 
1506 	pmcs = 0;
1507 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
1508 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1509 	CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
1510 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1511 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1512 	    MAC_CFG_BCAST);
1513 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) != 0)
1514 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1515 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1516 		reg |= MAC_CFG_RX_ENB;
1517 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1518 
1519 	if ((if_getcapenable(ifp) & IFCAP_WOL) == 0) {
1520 		/* WOL disabled, PHY power down. */
1521 		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1522 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1523 		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1524 		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1525 		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1526 		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
1527 		    GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
1528 		    GPHY_CTRL_PWDOWN_HW);
1529 	}
1530 	/* Request PME. */
1531 	pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
1532 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1533 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1534 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1535 	pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1536 }
1537 
1538 static int
1539 ale_suspend(device_t dev)
1540 {
1541 	struct ale_softc *sc;
1542 
1543 	sc = device_get_softc(dev);
1544 
1545 	ALE_LOCK(sc);
1546 	ale_stop(sc);
1547 	ale_setwol(sc);
1548 	ALE_UNLOCK(sc);
1549 
1550 	return (0);
1551 }
1552 
1553 static int
1554 ale_resume(device_t dev)
1555 {
1556 	struct ale_softc *sc;
1557 	if_t ifp;
1558 	int pmc;
1559 	uint16_t pmstat;
1560 
1561 	sc = device_get_softc(dev);
1562 
1563 	ALE_LOCK(sc);
1564 	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
1565 		/* Disable PME and clear PME status. */
1566 		pmstat = pci_read_config(sc->ale_dev,
1567 		    pmc + PCIR_POWER_STATUS, 2);
1568 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1569 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1570 			pci_write_config(sc->ale_dev,
1571 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
1572 		}
1573 	}
1574 	/* Reset PHY. */
1575 	ale_phy_reset(sc);
1576 	ifp = sc->ale_ifp;
1577 	if ((if_getflags(ifp) & IFF_UP) != 0) {
1578 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1579 		ale_init_locked(sc);
1580 	}
1581 	ALE_UNLOCK(sc);
1582 
1583 	return (0);
1584 }
1585 
1586 static int
1587 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
1588 {
1589 	struct ale_txdesc *txd, *txd_last;
1590 	struct tx_desc *desc;
1591 	struct mbuf *m;
1592 	struct ip *ip;
1593 	struct tcphdr *tcp;
1594 	bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
1595 	bus_dmamap_t map;
1596 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1597 	int error, i, nsegs, prod, si;
1598 
1599 	ALE_LOCK_ASSERT(sc);
1600 
1601 	M_ASSERTPKTHDR((*m_head));
1602 
1603 	m = *m_head;
1604 	ip = NULL;
1605 	tcp = NULL;
1606 	cflags = vtag = 0;
1607 	ip_off = poff = 0;
1608 	if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1609 		/*
1610 		 * AR81xx requires offset of TCP/UDP payload in its Tx
1611 		 * descriptor to perform hardware Tx checksum offload.
1612 		 * Additionally, TSO requires IP/TCP header size and
1613 		 * modification of IP/TCP header in order to make TSO
1614 		 * engine work. This kind of operation takes many CPU
1615 		 * cycles on FreeBSD so fast host CPU is required to
1616 		 * get smooth TSO performance.
1617 		 */
1618 		struct ether_header *eh;
1619 
1620 		if (M_WRITABLE(m) == 0) {
1621 			/* Get a writable copy. */
1622 			m = m_dup(*m_head, M_NOWAIT);
1623 			/* Release original mbufs. */
1624 			m_freem(*m_head);
1625 			if (m == NULL) {
1626 				*m_head = NULL;
1627 				return (ENOBUFS);
1628 			}
1629 			*m_head = m;
1630 		}
1631 
1632 		/*
1633 		 * Buggy-controller requires 4 byte aligned Tx buffer
1634 		 * to make custom checksum offload work.
1635 		 */
1636 		if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
1637 		    (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
1638 		    (mtod(m, intptr_t) & 3) != 0) {
1639 			m = m_defrag(*m_head, M_NOWAIT);
1640 			if (m == NULL) {
1641 				m_freem(*m_head);
1642 				*m_head = NULL;
1643 				return (ENOBUFS);
1644 			}
1645 			*m_head = m;
1646 		}
1647 
1648 		ip_off = sizeof(struct ether_header);
1649 		m = m_pullup(m, ip_off);
1650 		if (m == NULL) {
1651 			*m_head = NULL;
1652 			return (ENOBUFS);
1653 		}
1654 		eh = mtod(m, struct ether_header *);
1655 		/*
1656 		 * Check if hardware VLAN insertion is off.
1657 		 * Additional check for LLC/SNAP frame?
1658 		 */
1659 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1660 			ip_off = sizeof(struct ether_vlan_header);
1661 			m = m_pullup(m, ip_off);
1662 			if (m == NULL) {
1663 				*m_head = NULL;
1664 				return (ENOBUFS);
1665 			}
1666 		}
1667 		m = m_pullup(m, ip_off + sizeof(struct ip));
1668 		if (m == NULL) {
1669 			*m_head = NULL;
1670 			return (ENOBUFS);
1671 		}
1672 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1673 		poff = ip_off + (ip->ip_hl << 2);
1674 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1675 			/*
1676 			 * XXX
1677 			 * AR81xx requires the first descriptor should
1678 			 * not include any TCP playload for TSO case.
1679 			 * (i.e. ethernet header + IP + TCP header only)
1680 			 * m_pullup(9) above will ensure this too.
1681 			 * However it's not correct if the first mbuf
1682 			 * of the chain does not use cluster.
1683 			 */
1684 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1685 			if (m == NULL) {
1686 				*m_head = NULL;
1687 				return (ENOBUFS);
1688 			}
1689 			ip = (struct ip *)(mtod(m, char *) + ip_off);
1690 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1691 			m = m_pullup(m, poff + (tcp->th_off << 2));
1692 			if (m == NULL) {
1693 				*m_head = NULL;
1694 				return (ENOBUFS);
1695 			}
1696 			/*
1697 			 * AR81xx requires IP/TCP header size and offset as
1698 			 * well as TCP pseudo checksum which complicates
1699 			 * TSO configuration. I guess this comes from the
1700 			 * adherence to Microsoft NDIS Large Send
1701 			 * specification which requires insertion of
1702 			 * pseudo checksum by upper stack. The pseudo
1703 			 * checksum that NDIS refers to doesn't include
1704 			 * TCP payload length so ale(4) should recompute
1705 			 * the pseudo checksum here. Hopefully this wouldn't
1706 			 * be much burden on modern CPUs.
1707 			 * Reset IP checksum and recompute TCP pseudo
1708 			 * checksum as NDIS specification said.
1709 			 */
1710 			ip->ip_sum = 0;
1711 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1712 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1713 		}
1714 		*m_head = m;
1715 	}
1716 
1717 	si = prod = sc->ale_cdata.ale_tx_prod;
1718 	txd = &sc->ale_cdata.ale_txdesc[prod];
1719 	txd_last = txd;
1720 	map = txd->tx_dmamap;
1721 
1722 	error =  bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1723 	    *m_head, txsegs, &nsegs, 0);
1724 	if (error == EFBIG) {
1725 		m = m_collapse(*m_head, M_NOWAIT, ALE_MAXTXSEGS);
1726 		if (m == NULL) {
1727 			m_freem(*m_head);
1728 			*m_head = NULL;
1729 			return (ENOMEM);
1730 		}
1731 		*m_head = m;
1732 		error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1733 		    *m_head, txsegs, &nsegs, 0);
1734 		if (error != 0) {
1735 			m_freem(*m_head);
1736 			*m_head = NULL;
1737 			return (error);
1738 		}
1739 	} else if (error != 0)
1740 		return (error);
1741 	if (nsegs == 0) {
1742 		m_freem(*m_head);
1743 		*m_head = NULL;
1744 		return (EIO);
1745 	}
1746 
1747 	/* Check descriptor overrun. */
1748 	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) {
1749 		bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
1750 		return (ENOBUFS);
1751 	}
1752 	bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
1753 
1754 	m = *m_head;
1755 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1756 		/* Request TSO and set MSS. */
1757 		cflags |= ALE_TD_TSO;
1758 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
1759 		/* Set IP/TCP header size. */
1760 		cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
1761 		cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
1762 	} else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
1763 		/*
1764 		 * AR81xx supports Tx custom checksum offload feature
1765 		 * that offloads single 16bit checksum computation.
1766 		 * So you can choose one among IP, TCP and UDP.
1767 		 * Normally driver sets checksum start/insertion
1768 		 * position from the information of TCP/UDP frame as
1769 		 * TCP/UDP checksum takes more time than that of IP.
1770 		 * However it seems that custom checksum offload
1771 		 * requires 4 bytes aligned Tx buffers due to hardware
1772 		 * bug.
1773 		 * AR81xx also supports explicit Tx checksum computation
1774 		 * if it is told that the size of IP header and TCP
1775 		 * header(for UDP, the header size does not matter
1776 		 * because it's fixed length). However with this scheme
1777 		 * TSO does not work so you have to choose one either
1778 		 * TSO or explicit Tx checksum offload. I chosen TSO
1779 		 * plus custom checksum offload with work-around which
1780 		 * will cover most common usage for this consumer
1781 		 * ethernet controller. The work-around takes a lot of
1782 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
1783 		 * boundary, though.
1784 		 */
1785 		cflags |= ALE_TD_CXSUM;
1786 		/* Set checksum start offset. */
1787 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1788 		/* Set checksum insertion position of TCP/UDP. */
1789 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1790 		    ALE_TD_CSUM_XSUMOFFSET_SHIFT);
1791 	}
1792 
1793 	/* Configure VLAN hardware tag insertion. */
1794 	if ((m->m_flags & M_VLANTAG) != 0) {
1795 		vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1796 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1797 		cflags |= ALE_TD_INSERT_VLAN_TAG;
1798 	}
1799 
1800 	i = 0;
1801 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1802 		/*
1803 		 * Make sure the first fragment contains
1804 		 * only ethernet and IP/TCP header with options.
1805 		 */
1806 		hdrlen =  poff + (tcp->th_off << 2);
1807 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1808 		desc->addr = htole64(txsegs[i].ds_addr);
1809 		desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag);
1810 		desc->flags = htole32(cflags);
1811 		sc->ale_cdata.ale_tx_cnt++;
1812 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1813 		if (m->m_len - hdrlen > 0) {
1814 			/* Handle remaining payload of the first fragment. */
1815 			desc = &sc->ale_cdata.ale_tx_ring[prod];
1816 			desc->addr = htole64(txsegs[i].ds_addr + hdrlen);
1817 			desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) |
1818 			    vtag);
1819 			desc->flags = htole32(cflags);
1820 			sc->ale_cdata.ale_tx_cnt++;
1821 			ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1822 		}
1823 		i = 1;
1824 	}
1825 	for (; i < nsegs; i++) {
1826 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1827 		desc->addr = htole64(txsegs[i].ds_addr);
1828 		desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
1829 		desc->flags = htole32(cflags);
1830 		sc->ale_cdata.ale_tx_cnt++;
1831 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1832 	}
1833 	/* Update producer index. */
1834 	sc->ale_cdata.ale_tx_prod = prod;
1835 	/* Set TSO header on the first descriptor. */
1836 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1837 		desc = &sc->ale_cdata.ale_tx_ring[si];
1838 		desc->flags |= htole32(ALE_TD_TSO_HDR);
1839 	}
1840 
1841 	/* Finally set EOP on the last descriptor. */
1842 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1843 	desc = &sc->ale_cdata.ale_tx_ring[prod];
1844 	desc->flags |= htole32(ALE_TD_EOP);
1845 
1846 	/* Swap dmamap of the first and the last. */
1847 	txd = &sc->ale_cdata.ale_txdesc[prod];
1848 	map = txd_last->tx_dmamap;
1849 	txd_last->tx_dmamap = txd->tx_dmamap;
1850 	txd->tx_dmamap = map;
1851 	txd->tx_m = m;
1852 
1853 	/* Sync descriptors. */
1854 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
1855 	    sc->ale_cdata.ale_tx_ring_map,
1856 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1857 
1858 	return (0);
1859 }
1860 
1861 static void
1862 ale_start(if_t ifp)
1863 {
1864         struct ale_softc *sc;
1865 
1866 	sc = if_getsoftc(ifp);
1867 	ALE_LOCK(sc);
1868 	ale_start_locked(ifp);
1869 	ALE_UNLOCK(sc);
1870 }
1871 
1872 static void
1873 ale_start_locked(if_t ifp)
1874 {
1875         struct ale_softc *sc;
1876         struct mbuf *m_head;
1877 	int enq;
1878 
1879 	sc = if_getsoftc(ifp);
1880 
1881 	ALE_LOCK_ASSERT(sc);
1882 
1883 	/* Reclaim transmitted frames. */
1884 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1885 		ale_txeof(sc);
1886 
1887 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1888 	    IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0)
1889 		return;
1890 
1891 	for (enq = 0; !if_sendq_empty(ifp); ) {
1892 		m_head = if_dequeue(ifp);
1893 		if (m_head == NULL)
1894 			break;
1895 		/*
1896 		 * Pack the data into the transmit ring. If we
1897 		 * don't have room, set the OACTIVE flag and wait
1898 		 * for the NIC to drain the ring.
1899 		 */
1900 		if (ale_encap(sc, &m_head)) {
1901 			if (m_head == NULL)
1902 				break;
1903 			if_sendq_prepend(ifp, m_head);
1904 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1905 			break;
1906 		}
1907 
1908 		enq++;
1909 		/*
1910 		 * If there's a BPF listener, bounce a copy of this frame
1911 		 * to him.
1912 		 */
1913 		ETHER_BPF_MTAP(ifp, m_head);
1914 	}
1915 
1916 	if (enq > 0) {
1917 		/* Kick. */
1918 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1919 		    sc->ale_cdata.ale_tx_prod);
1920 		/* Set a timeout in case the chip goes out to lunch. */
1921 		sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
1922 	}
1923 }
1924 
1925 static void
1926 ale_watchdog(struct ale_softc *sc)
1927 {
1928 	if_t ifp;
1929 
1930 	ALE_LOCK_ASSERT(sc);
1931 
1932 	if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
1933 		return;
1934 
1935 	ifp = sc->ale_ifp;
1936 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1937 		if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
1938 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1939 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1940 		ale_init_locked(sc);
1941 		return;
1942 	}
1943 	if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
1944 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1945 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1946 	ale_init_locked(sc);
1947 	if (!if_sendq_empty(ifp))
1948 		ale_start_locked(ifp);
1949 }
1950 
1951 static int
1952 ale_ioctl(if_t ifp, u_long cmd, caddr_t data)
1953 {
1954 	struct ale_softc *sc;
1955 	struct ifreq *ifr;
1956 	struct mii_data *mii;
1957 	int error, mask;
1958 
1959 	sc = if_getsoftc(ifp);
1960 	ifr = (struct ifreq *)data;
1961 	error = 0;
1962 	switch (cmd) {
1963 	case SIOCSIFMTU:
1964 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
1965 		    ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
1966 		    ifr->ifr_mtu > ETHERMTU))
1967 			error = EINVAL;
1968 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1969 			ALE_LOCK(sc);
1970 			if_setmtu(ifp, ifr->ifr_mtu);
1971 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1972 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1973 				ale_init_locked(sc);
1974 			}
1975 			ALE_UNLOCK(sc);
1976 		}
1977 		break;
1978 	case SIOCSIFFLAGS:
1979 		ALE_LOCK(sc);
1980 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1981 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1982 				if (((if_getflags(ifp) ^ sc->ale_if_flags)
1983 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1984 					ale_rxfilter(sc);
1985 			} else {
1986 				ale_init_locked(sc);
1987 			}
1988 		} else {
1989 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1990 				ale_stop(sc);
1991 		}
1992 		sc->ale_if_flags = if_getflags(ifp);
1993 		ALE_UNLOCK(sc);
1994 		break;
1995 	case SIOCADDMULTI:
1996 	case SIOCDELMULTI:
1997 		ALE_LOCK(sc);
1998 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1999 			ale_rxfilter(sc);
2000 		ALE_UNLOCK(sc);
2001 		break;
2002 	case SIOCSIFMEDIA:
2003 	case SIOCGIFMEDIA:
2004 		mii = device_get_softc(sc->ale_miibus);
2005 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2006 		break;
2007 	case SIOCSIFCAP:
2008 		ALE_LOCK(sc);
2009 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2010 		if ((mask & IFCAP_TXCSUM) != 0 &&
2011 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
2012 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2013 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
2014 				if_sethwassistbits(ifp, ALE_CSUM_FEATURES, 0);
2015 			else
2016 				if_sethwassistbits(ifp, 0, ALE_CSUM_FEATURES);
2017 		}
2018 		if ((mask & IFCAP_RXCSUM) != 0 &&
2019 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
2020 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2021 		if ((mask & IFCAP_TSO4) != 0 &&
2022 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
2023 			if_togglecapenable(ifp, IFCAP_TSO4);
2024 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
2025 				if_sethwassistbits(ifp, CSUM_TSO, 0);
2026 			else
2027 				if_sethwassistbits(ifp, 0, CSUM_TSO);
2028 		}
2029 
2030 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2031 		    (if_getcapabilities(ifp) & IFCAP_WOL_MCAST) != 0)
2032 			if_togglecapenable(ifp, IFCAP_WOL_MCAST);
2033 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2034 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
2035 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2036 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2037 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2038 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2039 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2040 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
2041 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2042 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2043 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2044 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2045 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
2046 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
2047 			ale_rxvlan(sc);
2048 		}
2049 		ALE_UNLOCK(sc);
2050 		VLAN_CAPABILITIES(ifp);
2051 		break;
2052 	default:
2053 		error = ether_ioctl(ifp, cmd, data);
2054 		break;
2055 	}
2056 
2057 	return (error);
2058 }
2059 
2060 static void
2061 ale_mac_config(struct ale_softc *sc)
2062 {
2063 	struct mii_data *mii;
2064 	uint32_t reg;
2065 
2066 	ALE_LOCK_ASSERT(sc);
2067 
2068 	mii = device_get_softc(sc->ale_miibus);
2069 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2070 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2071 	    MAC_CFG_SPEED_MASK);
2072 	/* Reprogram MAC with resolved speed/duplex. */
2073 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2074 	case IFM_10_T:
2075 	case IFM_100_TX:
2076 		reg |= MAC_CFG_SPEED_10_100;
2077 		break;
2078 	case IFM_1000_T:
2079 		reg |= MAC_CFG_SPEED_1000;
2080 		break;
2081 	}
2082 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2083 		reg |= MAC_CFG_FULL_DUPLEX;
2084 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2085 			reg |= MAC_CFG_TX_FC;
2086 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2087 			reg |= MAC_CFG_RX_FC;
2088 	}
2089 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2090 }
2091 
2092 static void
2093 ale_stats_clear(struct ale_softc *sc)
2094 {
2095 	struct smb sb;
2096 	uint32_t *reg;
2097 	int i;
2098 
2099 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2100 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2101 		i += sizeof(uint32_t);
2102 	}
2103 	/* Read Tx statistics. */
2104 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2105 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2106 		i += sizeof(uint32_t);
2107 	}
2108 }
2109 
2110 static void
2111 ale_stats_update(struct ale_softc *sc)
2112 {
2113 	struct ale_hw_stats *stat;
2114 	struct smb sb, *smb;
2115 	if_t ifp;
2116 	uint32_t *reg;
2117 	int i;
2118 
2119 	ALE_LOCK_ASSERT(sc);
2120 
2121 	ifp = sc->ale_ifp;
2122 	stat = &sc->ale_stats;
2123 	smb = &sb;
2124 
2125 	/* Read Rx statistics. */
2126 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2127 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2128 		i += sizeof(uint32_t);
2129 	}
2130 	/* Read Tx statistics. */
2131 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2132 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2133 		i += sizeof(uint32_t);
2134 	}
2135 
2136 	/* Rx stats. */
2137 	stat->rx_frames += smb->rx_frames;
2138 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2139 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2140 	stat->rx_pause_frames += smb->rx_pause_frames;
2141 	stat->rx_control_frames += smb->rx_control_frames;
2142 	stat->rx_crcerrs += smb->rx_crcerrs;
2143 	stat->rx_lenerrs += smb->rx_lenerrs;
2144 	stat->rx_bytes += smb->rx_bytes;
2145 	stat->rx_runts += smb->rx_runts;
2146 	stat->rx_fragments += smb->rx_fragments;
2147 	stat->rx_pkts_64 += smb->rx_pkts_64;
2148 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2149 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2150 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2151 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2152 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2153 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2154 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2155 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2156 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2157 	stat->rx_alignerrs += smb->rx_alignerrs;
2158 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2159 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2160 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2161 
2162 	/* Tx stats. */
2163 	stat->tx_frames += smb->tx_frames;
2164 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2165 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2166 	stat->tx_pause_frames += smb->tx_pause_frames;
2167 	stat->tx_excess_defer += smb->tx_excess_defer;
2168 	stat->tx_control_frames += smb->tx_control_frames;
2169 	stat->tx_deferred += smb->tx_deferred;
2170 	stat->tx_bytes += smb->tx_bytes;
2171 	stat->tx_pkts_64 += smb->tx_pkts_64;
2172 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2173 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2174 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2175 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2176 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2177 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2178 	stat->tx_single_colls += smb->tx_single_colls;
2179 	stat->tx_multi_colls += smb->tx_multi_colls;
2180 	stat->tx_late_colls += smb->tx_late_colls;
2181 	stat->tx_excess_colls += smb->tx_excess_colls;
2182 	stat->tx_underrun += smb->tx_underrun;
2183 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2184 	stat->tx_lenerrs += smb->tx_lenerrs;
2185 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2186 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2187 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2188 
2189 	/* Update counters in ifnet. */
2190 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2191 
2192 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2193 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2194 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2195 
2196 	if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_late_colls +
2197 	    smb->tx_excess_colls + smb->tx_underrun + smb->tx_pkts_truncated);
2198 
2199 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2200 
2201 	if_inc_counter(ifp, IFCOUNTER_IERRORS,
2202 	    smb->rx_crcerrs + smb->rx_lenerrs +
2203 	    smb->rx_runts + smb->rx_pkts_truncated +
2204 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2205 	    smb->rx_alignerrs);
2206 }
2207 
2208 static int
2209 ale_intr(void *arg)
2210 {
2211 	struct ale_softc *sc;
2212 	uint32_t status;
2213 
2214 	sc = (struct ale_softc *)arg;
2215 
2216 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2217 	if ((status & ALE_INTRS) == 0)
2218 		return (FILTER_STRAY);
2219 	/* Disable interrupts. */
2220 	CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
2221 	taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2222 
2223 	return (FILTER_HANDLED);
2224 }
2225 
2226 static void
2227 ale_int_task(void *arg, int pending)
2228 {
2229 	struct ale_softc *sc;
2230 	if_t ifp;
2231 	uint32_t status;
2232 	int more;
2233 
2234 	sc = (struct ale_softc *)arg;
2235 
2236 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2237 	ALE_LOCK(sc);
2238 	if (sc->ale_morework != 0)
2239 		status |= INTR_RX_PKT;
2240 	if ((status & ALE_INTRS) == 0)
2241 		goto done;
2242 
2243 	/* Acknowledge interrupts but still disable interrupts. */
2244 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
2245 
2246 	ifp = sc->ale_ifp;
2247 	more = 0;
2248 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2249 		more = ale_rxeof(sc, sc->ale_process_limit);
2250 		if (more == EAGAIN)
2251 			sc->ale_morework = 1;
2252 		else if (more == EIO) {
2253 			sc->ale_stats.reset_brk_seq++;
2254 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2255 			ale_init_locked(sc);
2256 			ALE_UNLOCK(sc);
2257 			return;
2258 		}
2259 
2260 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2261 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2262 				device_printf(sc->ale_dev,
2263 				    "DMA read error! -- resetting\n");
2264 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2265 				device_printf(sc->ale_dev,
2266 				    "DMA write error! -- resetting\n");
2267 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2268 			ale_init_locked(sc);
2269 			ALE_UNLOCK(sc);
2270 			return;
2271 		}
2272 		if (!if_sendq_empty(ifp))
2273 			ale_start_locked(ifp);
2274 	}
2275 
2276 	if (more == EAGAIN ||
2277 	    (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
2278 		ALE_UNLOCK(sc);
2279 		taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2280 		return;
2281 	}
2282 
2283 done:
2284 	ALE_UNLOCK(sc);
2285 
2286 	/* Re-enable interrupts. */
2287 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
2288 }
2289 
2290 static void
2291 ale_txeof(struct ale_softc *sc)
2292 {
2293 	if_t ifp;
2294 	struct ale_txdesc *txd;
2295 	uint32_t cons, prod;
2296 	int prog;
2297 
2298 	ALE_LOCK_ASSERT(sc);
2299 
2300 	ifp = sc->ale_ifp;
2301 
2302 	if (sc->ale_cdata.ale_tx_cnt == 0)
2303 		return;
2304 
2305 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2306 	    sc->ale_cdata.ale_tx_ring_map,
2307 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2308 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
2309 		bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2310 		    sc->ale_cdata.ale_tx_cmb_map,
2311 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2312 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
2313 	} else
2314 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
2315 	cons = sc->ale_cdata.ale_tx_cons;
2316 	/*
2317 	 * Go through our Tx list and free mbufs for those
2318 	 * frames which have been transmitted.
2319 	 */
2320 	for (prog = 0; cons != prod; prog++,
2321 	    ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
2322 		if (sc->ale_cdata.ale_tx_cnt <= 0)
2323 			break;
2324 		prog++;
2325 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2326 		sc->ale_cdata.ale_tx_cnt--;
2327 		txd = &sc->ale_cdata.ale_txdesc[cons];
2328 		if (txd->tx_m != NULL) {
2329 			/* Reclaim transmitted mbufs. */
2330 			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2331 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2332 			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2333 			    txd->tx_dmamap);
2334 			m_freem(txd->tx_m);
2335 			txd->tx_m = NULL;
2336 		}
2337 	}
2338 
2339 	if (prog > 0) {
2340 		sc->ale_cdata.ale_tx_cons = cons;
2341 		/*
2342 		 * Unarm watchdog timer only when there is no pending
2343 		 * Tx descriptors in queue.
2344 		 */
2345 		if (sc->ale_cdata.ale_tx_cnt == 0)
2346 			sc->ale_watchdog_timer = 0;
2347 	}
2348 }
2349 
2350 static void
2351 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
2352     uint32_t length, uint32_t *prod)
2353 {
2354 	struct ale_rx_page *rx_page;
2355 
2356 	rx_page = *page;
2357 	/* Update consumer position. */
2358 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
2359 	    ALE_RX_PAGE_ALIGN);
2360 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
2361 		/*
2362 		 * End of Rx page reached, let hardware reuse
2363 		 * this page.
2364 		 */
2365 		rx_page->cons = 0;
2366 		*rx_page->cmb_addr = 0;
2367 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2368 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2369 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
2370 		    RXF_VALID);
2371 		/* Switch to alternate Rx page. */
2372 		sc->ale_cdata.ale_rx_curp ^= 1;
2373 		rx_page = *page =
2374 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2375 		/* Page flipped, sync CMB and Rx page. */
2376 		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2377 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2378 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2379 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2380 		/* Sync completed, cache updated producer index. */
2381 		*prod = *rx_page->cmb_addr;
2382 	}
2383 }
2384 
2385 /*
2386  * It seems that AR81xx controller can compute partial checksum.
2387  * The partial checksum value can be used to accelerate checksum
2388  * computation for fragmented TCP/UDP packets. Upper network stack
2389  * already takes advantage of the partial checksum value in IP
2390  * reassembly stage. But I'm not sure the correctness of the
2391  * partial hardware checksum assistance due to lack of data sheet.
2392  * In addition, the Rx feature of controller that requires copying
2393  * for every frames effectively nullifies one of most nice offload
2394  * capability of controller.
2395  */
2396 static void
2397 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
2398 {
2399 	if_t ifp;
2400 	struct ip *ip;
2401 	char *p;
2402 
2403 	ifp = sc->ale_ifp;
2404 	m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2405 	if ((status & ALE_RD_IPCSUM_NOK) == 0)
2406 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2407 
2408 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
2409 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
2410 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
2411 		    ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
2412 			m->m_pkthdr.csum_flags |=
2413 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2414 			m->m_pkthdr.csum_data = 0xffff;
2415 		}
2416 	} else {
2417 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
2418 		    (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
2419 			p = mtod(m, char *);
2420 			p += ETHER_HDR_LEN;
2421 			if ((status & ALE_RD_802_3) != 0)
2422 				p += LLC_SNAPFRAMELEN;
2423 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0 &&
2424 			    (status & ALE_RD_VLAN) != 0)
2425 				p += ETHER_VLAN_ENCAP_LEN;
2426 			ip = (struct ip *)p;
2427 			if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
2428 				return;
2429 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2430 			    CSUM_PSEUDO_HDR;
2431 			m->m_pkthdr.csum_data = 0xffff;
2432 		}
2433 	}
2434 	/*
2435 	 * Don't mark bad checksum for TCP/UDP frames
2436 	 * as fragmented frames may always have set
2437 	 * bad checksummed bit of frame status.
2438 	 */
2439 }
2440 
2441 /* Process received frames. */
2442 static int
2443 ale_rxeof(struct ale_softc *sc, int count)
2444 {
2445 	struct ale_rx_page *rx_page;
2446 	struct rx_rs *rs;
2447 	if_t ifp;
2448 	struct mbuf *m;
2449 	uint32_t length, prod, seqno, status, vtags;
2450 	int prog;
2451 
2452 	ifp = sc->ale_ifp;
2453 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2454 	bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2455 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2456 	bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2457 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2458 	/*
2459 	 * Don't directly access producer index as hardware may
2460 	 * update it while Rx handler is in progress. It would
2461 	 * be even better if there is a way to let hardware
2462 	 * know how far driver processed its received frames.
2463 	 * Alternatively, hardware could provide a way to disable
2464 	 * CMB updates until driver acknowledges the end of CMB
2465 	 * access.
2466 	 */
2467 	prod = *rx_page->cmb_addr;
2468 	for (prog = 0; prog < count; prog++) {
2469 		if (rx_page->cons >= prod)
2470 			break;
2471 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
2472 		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
2473 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
2474 			/*
2475 			 * Normally I believe this should not happen unless
2476 			 * severe driver bug or corrupted memory. However
2477 			 * it seems to happen under certain conditions which
2478 			 * is triggered by abrupt Rx events such as initiation
2479 			 * of bulk transfer of remote host. It's not easy to
2480 			 * reproduce this and I doubt it could be related
2481 			 * with FIFO overflow of hardware or activity of Tx
2482 			 * CMB updates. I also remember similar behaviour
2483 			 * seen on RealTek 8139 which uses resembling Rx
2484 			 * scheme.
2485 			 */
2486 			if (bootverbose)
2487 				device_printf(sc->ale_dev,
2488 				    "garbled seq: %u, expected: %u -- "
2489 				    "resetting!\n", seqno,
2490 				    sc->ale_cdata.ale_rx_seqno);
2491 			return (EIO);
2492 		}
2493 		/* Frame received. */
2494 		sc->ale_cdata.ale_rx_seqno++;
2495 		length = ALE_RX_BYTES(le32toh(rs->length));
2496 		status = le32toh(rs->flags);
2497 		if ((status & ALE_RD_ERROR) != 0) {
2498 			/*
2499 			 * We want to pass the following frames to upper
2500 			 * layer regardless of error status of Rx return
2501 			 * status.
2502 			 *
2503 			 *  o IP/TCP/UDP checksum is bad.
2504 			 *  o frame length and protocol specific length
2505 			 *     does not match.
2506 			 */
2507 			if ((status & (ALE_RD_CRC | ALE_RD_CODE |
2508 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
2509 			    ALE_RD_TRUNC)) != 0) {
2510 				ale_rx_update_page(sc, &rx_page, length, &prod);
2511 				continue;
2512 			}
2513 		}
2514 		/*
2515 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
2516 		 * from hardware limitation). For jumbo frames we could
2517 		 * get a slightly better performance if driver use
2518 		 * m_getjcl(9) with proper buffer size argument. However
2519 		 * that would make code more complicated and I don't
2520 		 * think users would expect good Rx performance numbers
2521 		 * on these low-end consumer ethernet controller.
2522 		 */
2523 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
2524 		    ETHER_ALIGN, ifp, NULL);
2525 		if (m == NULL) {
2526 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2527 			ale_rx_update_page(sc, &rx_page, length, &prod);
2528 			continue;
2529 		}
2530 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
2531 		    (status & ALE_RD_IPV4) != 0)
2532 			ale_rxcsum(sc, m, status);
2533 		if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
2534 		    (status & ALE_RD_VLAN) != 0) {
2535 			vtags = ALE_RX_VLAN(le32toh(rs->vtags));
2536 			m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
2537 			m->m_flags |= M_VLANTAG;
2538 		}
2539 
2540 		/* Pass it to upper layer. */
2541 		ALE_UNLOCK(sc);
2542 		if_input(ifp, m);
2543 		ALE_LOCK(sc);
2544 
2545 		ale_rx_update_page(sc, &rx_page, length, &prod);
2546 	}
2547 
2548 	return (count > 0 ? 0 : EAGAIN);
2549 }
2550 
2551 static void
2552 ale_tick(void *arg)
2553 {
2554 	struct ale_softc *sc;
2555 	struct mii_data *mii;
2556 
2557 	sc = (struct ale_softc *)arg;
2558 
2559 	ALE_LOCK_ASSERT(sc);
2560 
2561 	mii = device_get_softc(sc->ale_miibus);
2562 	mii_tick(mii);
2563 	ale_stats_update(sc);
2564 	/*
2565 	 * Reclaim Tx buffers that have been transferred. It's not
2566 	 * needed here but it would release allocated mbuf chains
2567 	 * faster and limit the maximum delay to a hz.
2568 	 */
2569 	ale_txeof(sc);
2570 	ale_watchdog(sc);
2571 	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2572 }
2573 
2574 static void
2575 ale_reset(struct ale_softc *sc)
2576 {
2577 	uint32_t reg;
2578 	int i;
2579 
2580 	/* Initialize PCIe module. From Linux. */
2581 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2582 
2583 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
2584 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2585 		DELAY(10);
2586 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
2587 			break;
2588 	}
2589 	if (i == 0)
2590 		device_printf(sc->ale_dev, "master reset timeout!\n");
2591 
2592 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2593 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
2594 			break;
2595 		DELAY(10);
2596 	}
2597 
2598 	if (i == 0)
2599 		device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
2600 }
2601 
2602 static void
2603 ale_init(void *xsc)
2604 {
2605 	struct ale_softc *sc;
2606 
2607 	sc = (struct ale_softc *)xsc;
2608 	ALE_LOCK(sc);
2609 	ale_init_locked(sc);
2610 	ALE_UNLOCK(sc);
2611 }
2612 
2613 static void
2614 ale_init_locked(struct ale_softc *sc)
2615 {
2616 	if_t ifp;
2617 	struct mii_data *mii;
2618 	uint8_t eaddr[ETHER_ADDR_LEN];
2619 	bus_addr_t paddr;
2620 	uint32_t reg, rxf_hi, rxf_lo;
2621 
2622 	ALE_LOCK_ASSERT(sc);
2623 
2624 	ifp = sc->ale_ifp;
2625 	mii = device_get_softc(sc->ale_miibus);
2626 
2627 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2628 		return;
2629 	/*
2630 	 * Cancel any pending I/O.
2631 	 */
2632 	ale_stop(sc);
2633 	/*
2634 	 * Reset the chip to a known state.
2635 	 */
2636 	ale_reset(sc);
2637 	/* Initialize Tx descriptors, DMA memory blocks. */
2638 	ale_init_rx_pages(sc);
2639 	ale_init_tx_ring(sc);
2640 
2641 	/* Reprogram the station address. */
2642 	bcopy(if_getlladdr(ifp), eaddr, ETHER_ADDR_LEN);
2643 	CSR_WRITE_4(sc, ALE_PAR0,
2644 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2645 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
2646 	/*
2647 	 * Clear WOL status and disable all WOL feature as WOL
2648 	 * would interfere Rx operation under normal environments.
2649 	 */
2650 	CSR_READ_4(sc, ALE_WOL_CFG);
2651 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
2652 	/*
2653 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
2654 	 * the same high address part of DMAable region.
2655 	 */
2656 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
2657 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
2658 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
2659 	CSR_WRITE_4(sc, ALE_TPD_CNT,
2660 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
2661 	/* Set Rx page base address, note we use single queue. */
2662 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
2663 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
2664 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
2665 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
2666 	/* Set Tx/Rx CMB addresses. */
2667 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
2668 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
2669 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
2670 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
2671 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
2672 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
2673 	/* Mark RXF0 is valid. */
2674 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
2675 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
2676 	/*
2677 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
2678 	 * multi-queue yet.
2679 	 */
2680 
2681 	/* Set Rx page size, excluding guard frame size. */
2682 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
2683 	/* Tell hardware that we're ready to load DMA blocks. */
2684 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
2685 
2686 	/* Set Rx/Tx interrupt trigger threshold. */
2687 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
2688 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
2689 	/*
2690 	 * XXX
2691 	 * Set interrupt trigger timer, its purpose and relation
2692 	 * with interrupt moderation mechanism is not clear yet.
2693 	 */
2694 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
2695 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
2696 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
2697 
2698 	/* Configure interrupt moderation timer. */
2699 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
2700 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
2701 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
2702 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
2703 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
2704 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2705 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
2706 		reg |= MASTER_IM_RX_TIMER_ENB;
2707 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
2708 		reg |= MASTER_IM_TX_TIMER_ENB;
2709 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
2710 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
2711 
2712 	/* Set Maximum frame size of controller. */
2713 	if (if_getmtu(ifp) < ETHERMTU)
2714 		sc->ale_max_frame_size = ETHERMTU;
2715 	else
2716 		sc->ale_max_frame_size = if_getmtu(ifp);
2717 	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2718 	    ETHER_CRC_LEN;
2719 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
2720 	/* Configure IPG/IFG parameters. */
2721 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
2722 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2723 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2724 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2725 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2726 	/* Set parameters for half-duplex media. */
2727 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
2728 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2729 	    HDPX_CFG_LCOL_MASK) |
2730 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2731 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2732 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2733 	    HDPX_CFG_ABEBT_MASK) |
2734 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2735 	    HDPX_CFG_JAMIPG_MASK));
2736 
2737 	/* Configure Tx jumbo frame parameters. */
2738 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2739 		if (if_getmtu(ifp) < ETHERMTU)
2740 			reg = sc->ale_max_frame_size;
2741 		else if (if_getmtu(ifp) < 6 * 1024)
2742 			reg = (sc->ale_max_frame_size * 2) / 3;
2743 		else
2744 			reg = sc->ale_max_frame_size / 2;
2745 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
2746 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
2747 		    TX_JUMBO_THRESH_UNIT_SHIFT);
2748 	}
2749 	/* Configure TxQ. */
2750 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
2751 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
2752 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2753 	    TXQ_CFG_TPD_BURST_MASK;
2754 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
2755 
2756 	/* Configure Rx jumbo frame & flow control parameters. */
2757 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2758 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
2759 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
2760 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
2761 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
2762 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
2763 		    RX_JUMBO_LKAH_MASK));
2764 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
2765 		rxf_hi = (reg * 7) / 10;
2766 		rxf_lo = (reg * 3)/ 10;
2767 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
2768 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2769 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
2770 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2771 		    RX_FIFO_PAUSE_THRESH_HI_MASK));
2772 	}
2773 
2774 	/* Disable RSS. */
2775 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
2776 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
2777 
2778 	/* Configure RxQ. */
2779 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
2780 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2781 
2782 	/* Configure DMA parameters. */
2783 	reg = 0;
2784 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
2785 		reg |= DMA_CFG_TXCMB_ENB;
2786 	CSR_WRITE_4(sc, ALE_DMA_CFG,
2787 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
2788 	    sc->ale_dma_rd_burst | reg |
2789 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
2790 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2791 	    DMA_CFG_RD_DELAY_CNT_MASK) |
2792 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2793 	    DMA_CFG_WR_DELAY_CNT_MASK));
2794 
2795 	/*
2796 	 * Hardware can be configured to issue SMB interrupt based
2797 	 * on programmed interval. Since there is a callout that is
2798 	 * invoked for every hz in driver we use that instead of
2799 	 * relying on periodic SMB interrupt.
2800 	 */
2801 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
2802 	/* Clear MAC statistics. */
2803 	ale_stats_clear(sc);
2804 
2805 	/*
2806 	 * Configure Tx/Rx MACs.
2807 	 *  - Auto-padding for short frames.
2808 	 *  - Enable CRC generation.
2809 	 *  Actual reconfiguration of MAC for resolved speed/duplex
2810 	 *  is followed after detection of link establishment.
2811 	 *  AR81xx always does checksum computation regardless of
2812 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
2813 	 *  cause Rx handling issue for fragmented IP datagrams due
2814 	 *  to silicon bug.
2815 	 */
2816 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2817 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2818 	    MAC_CFG_PREAMBLE_MASK);
2819 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
2820 		reg |= MAC_CFG_SPEED_10_100;
2821 	else
2822 		reg |= MAC_CFG_SPEED_1000;
2823 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2824 
2825 	/* Set up the receive filter. */
2826 	ale_rxfilter(sc);
2827 	ale_rxvlan(sc);
2828 
2829 	/* Acknowledge all pending interrupts and clear it. */
2830 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
2831 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2832 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
2833 
2834 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2835 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2836 
2837 	sc->ale_flags &= ~ALE_FLAG_LINK;
2838 	/* Switch to the current media. */
2839 	mii_mediachg(mii);
2840 
2841 	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2842 }
2843 
2844 static void
2845 ale_stop(struct ale_softc *sc)
2846 {
2847 	if_t ifp;
2848 	struct ale_txdesc *txd;
2849 	uint32_t reg;
2850 	int i;
2851 
2852 	ALE_LOCK_ASSERT(sc);
2853 	/*
2854 	 * Mark the interface down and cancel the watchdog timer.
2855 	 */
2856 	ifp = sc->ale_ifp;
2857 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2858 	sc->ale_flags &= ~ALE_FLAG_LINK;
2859 	callout_stop(&sc->ale_tick_ch);
2860 	sc->ale_watchdog_timer = 0;
2861 	ale_stats_update(sc);
2862 	/* Disable interrupts. */
2863 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
2864 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2865 	/* Disable queue processing and DMA. */
2866 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
2867 	reg &= ~TXQ_CFG_ENB;
2868 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
2869 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
2870 	reg &= ~RXQ_CFG_ENB;
2871 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
2872 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
2873 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
2874 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
2875 	DELAY(1000);
2876 	/* Stop Rx/Tx MACs. */
2877 	ale_stop_mac(sc);
2878 	/* Disable interrupts which might be touched in taskq handler. */
2879 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2880 
2881 	/*
2882 	 * Free TX mbufs still in the queues.
2883 	 */
2884 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2885 		txd = &sc->ale_cdata.ale_txdesc[i];
2886 		if (txd->tx_m != NULL) {
2887 			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2888 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2889 			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2890 			    txd->tx_dmamap);
2891 			m_freem(txd->tx_m);
2892 			txd->tx_m = NULL;
2893 		}
2894         }
2895 }
2896 
2897 static void
2898 ale_stop_mac(struct ale_softc *sc)
2899 {
2900 	uint32_t reg;
2901 	int i;
2902 
2903 	ALE_LOCK_ASSERT(sc);
2904 
2905 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2906 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2907 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2908 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2909 	}
2910 
2911 	for (i = ALE_TIMEOUT; i > 0; i--) {
2912 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
2913 		if (reg == 0)
2914 			break;
2915 		DELAY(10);
2916 	}
2917 	if (i == 0)
2918 		device_printf(sc->ale_dev,
2919 		    "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
2920 }
2921 
2922 static void
2923 ale_init_tx_ring(struct ale_softc *sc)
2924 {
2925 	struct ale_txdesc *txd;
2926 	int i;
2927 
2928 	ALE_LOCK_ASSERT(sc);
2929 
2930 	sc->ale_cdata.ale_tx_prod = 0;
2931 	sc->ale_cdata.ale_tx_cons = 0;
2932 	sc->ale_cdata.ale_tx_cnt = 0;
2933 
2934 	bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
2935 	bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
2936 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2937 		txd = &sc->ale_cdata.ale_txdesc[i];
2938 		txd->tx_m = NULL;
2939 	}
2940 	*sc->ale_cdata.ale_tx_cmb = 0;
2941 	bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2942 	    sc->ale_cdata.ale_tx_cmb_map,
2943 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2944 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2945 	    sc->ale_cdata.ale_tx_ring_map,
2946 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2947 }
2948 
2949 static void
2950 ale_init_rx_pages(struct ale_softc *sc)
2951 {
2952 	struct ale_rx_page *rx_page;
2953 	int i;
2954 
2955 	ALE_LOCK_ASSERT(sc);
2956 
2957 	sc->ale_morework = 0;
2958 	sc->ale_cdata.ale_rx_seqno = 0;
2959 	sc->ale_cdata.ale_rx_curp = 0;
2960 
2961 	for (i = 0; i < ALE_RX_PAGES; i++) {
2962 		rx_page = &sc->ale_cdata.ale_rx_page[i];
2963 		bzero(rx_page->page_addr, sc->ale_pagesize);
2964 		bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
2965 		rx_page->cons = 0;
2966 		*rx_page->cmb_addr = 0;
2967 		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2968 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2969 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2970 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2971 	}
2972 }
2973 
2974 static void
2975 ale_rxvlan(struct ale_softc *sc)
2976 {
2977 	if_t ifp;
2978 	uint32_t reg;
2979 
2980 	ALE_LOCK_ASSERT(sc);
2981 
2982 	ifp = sc->ale_ifp;
2983 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2984 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2985 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
2986 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2987 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2988 }
2989 
2990 static u_int
2991 ale_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2992 {
2993 	uint32_t crc, *mchash = arg;
2994 
2995 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
2996 	mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2997 
2998 	return (1);
2999 }
3000 
3001 static void
3002 ale_rxfilter(struct ale_softc *sc)
3003 {
3004 	if_t ifp;
3005 	uint32_t mchash[2];
3006 	uint32_t rxcfg;
3007 
3008 	ALE_LOCK_ASSERT(sc);
3009 
3010 	ifp = sc->ale_ifp;
3011 
3012 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
3013 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3014 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
3015 		rxcfg |= MAC_CFG_BCAST;
3016 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3017 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
3018 			rxcfg |= MAC_CFG_PROMISC;
3019 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
3020 			rxcfg |= MAC_CFG_ALLMULTI;
3021 		CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
3022 		CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
3023 		CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3024 		return;
3025 	}
3026 
3027 	/* Program new filter. */
3028 	bzero(mchash, sizeof(mchash));
3029 	if_foreach_llmaddr(ifp, ale_hash_maddr, &mchash);
3030 
3031 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
3032 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
3033 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3034 }
3035 
3036 static int
3037 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3038 {
3039 	int error, value;
3040 
3041 	if (arg1 == NULL)
3042 		return (EINVAL);
3043 	value = *(int *)arg1;
3044 	error = sysctl_handle_int(oidp, &value, 0, req);
3045 	if (error || req->newptr == NULL)
3046 		return (error);
3047 	if (value < low || value > high)
3048 		return (EINVAL);
3049         *(int *)arg1 = value;
3050 
3051         return (0);
3052 }
3053 
3054 static int
3055 sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
3056 {
3057 	return (sysctl_int_range(oidp, arg1, arg2, req,
3058 	    ALE_PROC_MIN, ALE_PROC_MAX));
3059 }
3060 
3061 static int
3062 sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
3063 {
3064 
3065 	return (sysctl_int_range(oidp, arg1, arg2, req,
3066 	    ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
3067 }
3068