xref: /freebsd/sys/dev/ale/if_ale.c (revision 30b72b6871140f0b29c64d41fc85c4c1d4d4b3f4)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/module.h>
41 #include <sys/rman.h>
42 #include <sys/queue.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_var.h>
51 #include <net/if_arp.h>
52 #include <net/ethernet.h>
53 #include <net/if_dl.h>
54 #include <net/if_llc.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57 #include <net/if_vlan_var.h>
58 
59 #include <netinet/in.h>
60 #include <netinet/in_systm.h>
61 #include <netinet/ip.h>
62 #include <netinet/tcp.h>
63 
64 #include <dev/mii/mii.h>
65 #include <dev/mii/miivar.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 
70 #include <machine/bus.h>
71 #include <machine/in_cksum.h>
72 
73 #include <dev/ale/if_alereg.h>
74 #include <dev/ale/if_alevar.h>
75 
76 /* "device miibus" required.  See GENERIC if you get errors here. */
77 #include "miibus_if.h"
78 
79 /* For more information about Tx checksum offload issues see ale_encap(). */
80 #define	ALE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
81 
82 MODULE_DEPEND(ale, pci, 1, 1, 1);
83 MODULE_DEPEND(ale, ether, 1, 1, 1);
84 MODULE_DEPEND(ale, miibus, 1, 1, 1);
85 
86 /* Tunables. */
87 static int msi_disable = 0;
88 static int msix_disable = 0;
89 TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
90 TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
91 
92 /*
93  * Devices supported by this driver.
94  */
95 static const struct ale_dev {
96 	uint16_t	ale_vendorid;
97 	uint16_t	ale_deviceid;
98 	const char	*ale_name;
99 } ale_devs[] = {
100     { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
101     "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
102 };
103 
104 static int	ale_attach(device_t);
105 static int	ale_check_boundary(struct ale_softc *);
106 static int	ale_detach(device_t);
107 static int	ale_dma_alloc(struct ale_softc *);
108 static void	ale_dma_free(struct ale_softc *);
109 static void	ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
110 static int	ale_encap(struct ale_softc *, struct mbuf **);
111 static void	ale_get_macaddr(struct ale_softc *);
112 static void	ale_init(void *);
113 static void	ale_init_locked(struct ale_softc *);
114 static void	ale_init_rx_pages(struct ale_softc *);
115 static void	ale_init_tx_ring(struct ale_softc *);
116 static void	ale_int_task(void *, int);
117 static int	ale_intr(void *);
118 static int	ale_ioctl(struct ifnet *, u_long, caddr_t);
119 static void	ale_mac_config(struct ale_softc *);
120 static int	ale_miibus_readreg(device_t, int, int);
121 static void	ale_miibus_statchg(device_t);
122 static int	ale_miibus_writereg(device_t, int, int, int);
123 static int	ale_mediachange(struct ifnet *);
124 static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
125 static void	ale_phy_reset(struct ale_softc *);
126 static int	ale_probe(device_t);
127 static void	ale_reset(struct ale_softc *);
128 static int	ale_resume(device_t);
129 static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
130     uint32_t, uint32_t *);
131 static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
132 static int	ale_rxeof(struct ale_softc *sc, int);
133 static void	ale_rxfilter(struct ale_softc *);
134 static void	ale_rxvlan(struct ale_softc *);
135 static void	ale_setlinkspeed(struct ale_softc *);
136 static void	ale_setwol(struct ale_softc *);
137 static int	ale_shutdown(device_t);
138 static void	ale_start(struct ifnet *);
139 static void	ale_start_locked(struct ifnet *);
140 static void	ale_stats_clear(struct ale_softc *);
141 static void	ale_stats_update(struct ale_softc *);
142 static void	ale_stop(struct ale_softc *);
143 static void	ale_stop_mac(struct ale_softc *);
144 static int	ale_suspend(device_t);
145 static void	ale_sysctl_node(struct ale_softc *);
146 static void	ale_tick(void *);
147 static void	ale_txeof(struct ale_softc *);
148 static void	ale_watchdog(struct ale_softc *);
149 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
150 static int	sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
151 static int	sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
152 
153 static device_method_t ale_methods[] = {
154 	/* Device interface. */
155 	DEVMETHOD(device_probe,		ale_probe),
156 	DEVMETHOD(device_attach,	ale_attach),
157 	DEVMETHOD(device_detach,	ale_detach),
158 	DEVMETHOD(device_shutdown,	ale_shutdown),
159 	DEVMETHOD(device_suspend,	ale_suspend),
160 	DEVMETHOD(device_resume,	ale_resume),
161 
162 	/* MII interface. */
163 	DEVMETHOD(miibus_readreg,	ale_miibus_readreg),
164 	DEVMETHOD(miibus_writereg,	ale_miibus_writereg),
165 	DEVMETHOD(miibus_statchg,	ale_miibus_statchg),
166 
167 	DEVMETHOD_END
168 };
169 
170 static driver_t ale_driver = {
171 	"ale",
172 	ale_methods,
173 	sizeof(struct ale_softc)
174 };
175 
176 static devclass_t ale_devclass;
177 
178 DRIVER_MODULE(ale, pci, ale_driver, ale_devclass, NULL, NULL);
179 DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, NULL, NULL);
180 
181 static struct resource_spec ale_res_spec_mem[] = {
182 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
183 	{ -1,			0,		0 }
184 };
185 
186 static struct resource_spec ale_irq_spec_legacy[] = {
187 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
188 	{ -1,			0,		0 }
189 };
190 
191 static struct resource_spec ale_irq_spec_msi[] = {
192 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
193 	{ -1,			0,		0 }
194 };
195 
196 static struct resource_spec ale_irq_spec_msix[] = {
197 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
198 	{ -1,			0,		0 }
199 };
200 
201 static int
202 ale_miibus_readreg(device_t dev, int phy, int reg)
203 {
204 	struct ale_softc *sc;
205 	uint32_t v;
206 	int i;
207 
208 	sc = device_get_softc(dev);
209 
210 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
211 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
212 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
213 		DELAY(5);
214 		v = CSR_READ_4(sc, ALE_MDIO);
215 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
216 			break;
217 	}
218 
219 	if (i == 0) {
220 		device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
221 		return (0);
222 	}
223 
224 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
225 }
226 
227 static int
228 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
229 {
230 	struct ale_softc *sc;
231 	uint32_t v;
232 	int i;
233 
234 	sc = device_get_softc(dev);
235 
236 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
237 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
238 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
239 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
240 		DELAY(5);
241 		v = CSR_READ_4(sc, ALE_MDIO);
242 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
243 			break;
244 	}
245 
246 	if (i == 0)
247 		device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
248 
249 	return (0);
250 }
251 
252 static void
253 ale_miibus_statchg(device_t dev)
254 {
255 	struct ale_softc *sc;
256 	struct mii_data *mii;
257 	struct ifnet *ifp;
258 	uint32_t reg;
259 
260 	sc = device_get_softc(dev);
261 	mii = device_get_softc(sc->ale_miibus);
262 	ifp = sc->ale_ifp;
263 	if (mii == NULL || ifp == NULL ||
264 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
265 		return;
266 
267 	sc->ale_flags &= ~ALE_FLAG_LINK;
268 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
269 	    (IFM_ACTIVE | IFM_AVALID)) {
270 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
271 		case IFM_10_T:
272 		case IFM_100_TX:
273 			sc->ale_flags |= ALE_FLAG_LINK;
274 			break;
275 		case IFM_1000_T:
276 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
277 				sc->ale_flags |= ALE_FLAG_LINK;
278 			break;
279 		default:
280 			break;
281 		}
282 	}
283 
284 	/* Stop Rx/Tx MACs. */
285 	ale_stop_mac(sc);
286 
287 	/* Program MACs with resolved speed/duplex/flow-control. */
288 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
289 		ale_mac_config(sc);
290 		/* Reenable Tx/Rx MACs. */
291 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
292 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
293 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
294 	}
295 }
296 
297 static void
298 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
299 {
300 	struct ale_softc *sc;
301 	struct mii_data *mii;
302 
303 	sc = ifp->if_softc;
304 	ALE_LOCK(sc);
305 	if ((ifp->if_flags & IFF_UP) == 0) {
306 		ALE_UNLOCK(sc);
307 		return;
308 	}
309 	mii = device_get_softc(sc->ale_miibus);
310 
311 	mii_pollstat(mii);
312 	ifmr->ifm_status = mii->mii_media_status;
313 	ifmr->ifm_active = mii->mii_media_active;
314 	ALE_UNLOCK(sc);
315 }
316 
317 static int
318 ale_mediachange(struct ifnet *ifp)
319 {
320 	struct ale_softc *sc;
321 	struct mii_data *mii;
322 	struct mii_softc *miisc;
323 	int error;
324 
325 	sc = ifp->if_softc;
326 	ALE_LOCK(sc);
327 	mii = device_get_softc(sc->ale_miibus);
328 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
329 		PHY_RESET(miisc);
330 	error = mii_mediachg(mii);
331 	ALE_UNLOCK(sc);
332 
333 	return (error);
334 }
335 
336 static int
337 ale_probe(device_t dev)
338 {
339 	const struct ale_dev *sp;
340 	int i;
341 	uint16_t vendor, devid;
342 
343 	vendor = pci_get_vendor(dev);
344 	devid = pci_get_device(dev);
345 	sp = ale_devs;
346 	for (i = 0; i < nitems(ale_devs); i++) {
347 		if (vendor == sp->ale_vendorid &&
348 		    devid == sp->ale_deviceid) {
349 			device_set_desc(dev, sp->ale_name);
350 			return (BUS_PROBE_DEFAULT);
351 		}
352 		sp++;
353 	}
354 
355 	return (ENXIO);
356 }
357 
358 static void
359 ale_get_macaddr(struct ale_softc *sc)
360 {
361 	uint32_t ea[2], reg;
362 	int i, vpdc;
363 
364 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
365 	if ((reg & SPI_VPD_ENB) != 0) {
366 		reg &= ~SPI_VPD_ENB;
367 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
368 	}
369 
370 	if (pci_find_cap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
371 		/*
372 		 * PCI VPD capability found, let TWSI reload EEPROM.
373 		 * This will set ethernet address of controller.
374 		 */
375 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
376 		    TWSI_CTRL_SW_LD_START);
377 		for (i = 100; i > 0; i--) {
378 			DELAY(1000);
379 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
380 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
381 				break;
382 		}
383 		if (i == 0)
384 			device_printf(sc->ale_dev,
385 			    "reloading EEPROM timeout!\n");
386 	} else {
387 		if (bootverbose)
388 			device_printf(sc->ale_dev,
389 			    "PCI VPD capability not found!\n");
390 	}
391 
392 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
393 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
394 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
395 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
396 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
397 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
398 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
399 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
400 }
401 
402 static void
403 ale_phy_reset(struct ale_softc *sc)
404 {
405 
406 	/* Reset magic from Linux. */
407 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
408 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
409 	    GPHY_CTRL_PHY_PLL_ON);
410 	DELAY(1000);
411 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
412 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
413 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
414 	DELAY(1000);
415 
416 #define	ATPHY_DBG_ADDR		0x1D
417 #define	ATPHY_DBG_DATA		0x1E
418 
419 	/* Enable hibernation mode. */
420 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
421 	    ATPHY_DBG_ADDR, 0x0B);
422 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
423 	    ATPHY_DBG_DATA, 0xBC00);
424 	/* Set Class A/B for all modes. */
425 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
426 	    ATPHY_DBG_ADDR, 0x00);
427 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
428 	    ATPHY_DBG_DATA, 0x02EF);
429 	/* Enable 10BT power saving. */
430 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
431 	    ATPHY_DBG_ADDR, 0x12);
432 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
433 	    ATPHY_DBG_DATA, 0x4C04);
434 	/* Adjust 1000T power. */
435 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
436 	    ATPHY_DBG_ADDR, 0x04);
437 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
438 	    ATPHY_DBG_ADDR, 0x8BBB);
439 	/* 10BT center tap voltage. */
440 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
441 	    ATPHY_DBG_ADDR, 0x05);
442 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
443 	    ATPHY_DBG_ADDR, 0x2C46);
444 
445 #undef	ATPHY_DBG_ADDR
446 #undef	ATPHY_DBG_DATA
447 	DELAY(1000);
448 }
449 
450 static int
451 ale_attach(device_t dev)
452 {
453 	struct ale_softc *sc;
454 	struct ifnet *ifp;
455 	uint16_t burst;
456 	int error, i, msic, msixc, pmc;
457 	uint32_t rxf_len, txf_len;
458 
459 	error = 0;
460 	sc = device_get_softc(dev);
461 	sc->ale_dev = dev;
462 
463 	mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
464 	    MTX_DEF);
465 	callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
466 	TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
467 
468 	/* Map the device. */
469 	pci_enable_busmaster(dev);
470 	sc->ale_res_spec = ale_res_spec_mem;
471 	sc->ale_irq_spec = ale_irq_spec_legacy;
472 	error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
473 	if (error != 0) {
474 		device_printf(dev, "cannot allocate memory resources.\n");
475 		goto fail;
476 	}
477 
478 	/* Set PHY address. */
479 	sc->ale_phyaddr = ALE_PHY_ADDR;
480 
481 	/* Reset PHY. */
482 	ale_phy_reset(sc);
483 
484 	/* Reset the ethernet controller. */
485 	ale_reset(sc);
486 
487 	/* Get PCI and chip id/revision. */
488 	sc->ale_rev = pci_get_revid(dev);
489 	if (sc->ale_rev >= 0xF0) {
490 		/* L2E Rev. B. AR8114 */
491 		sc->ale_flags |= ALE_FLAG_FASTETHER;
492 	} else {
493 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
494 			/* L1E AR8121 */
495 			sc->ale_flags |= ALE_FLAG_JUMBO;
496 		} else {
497 			/* L2E Rev. A. AR8113 */
498 			sc->ale_flags |= ALE_FLAG_FASTETHER;
499 		}
500 	}
501 	/*
502 	 * All known controllers seems to require 4 bytes alignment
503 	 * of Tx buffers to make Tx checksum offload with custom
504 	 * checksum generation method work.
505 	 */
506 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
507 	/*
508 	 * All known controllers seems to have issues on Rx checksum
509 	 * offload for fragmented IP datagrams.
510 	 */
511 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
512 	/*
513 	 * Don't use Tx CMB. It is known to cause RRS update failure
514 	 * under certain circumstances. Typical phenomenon of the
515 	 * issue would be unexpected sequence number encountered in
516 	 * Rx handler.
517 	 */
518 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
519 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
520 	    MASTER_CHIP_REV_SHIFT;
521 	if (bootverbose) {
522 		device_printf(dev, "PCI device revision : 0x%04x\n",
523 		    sc->ale_rev);
524 		device_printf(dev, "Chip id/revision : 0x%04x\n",
525 		    sc->ale_chip_rev);
526 	}
527 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
528 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
529 	/*
530 	 * Uninitialized hardware returns an invalid chip id/revision
531 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
532 	 */
533 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
534 	    rxf_len == 0xFFFFFFF) {
535 		device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
536 		    "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
537 		    txf_len, rxf_len);
538 		error = ENXIO;
539 		goto fail;
540 	}
541 	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
542 
543 	/* Allocate IRQ resources. */
544 	msixc = pci_msix_count(dev);
545 	msic = pci_msi_count(dev);
546 	if (bootverbose) {
547 		device_printf(dev, "MSIX count : %d\n", msixc);
548 		device_printf(dev, "MSI count : %d\n", msic);
549 	}
550 
551 	/* Prefer MSIX over MSI. */
552 	if (msix_disable == 0 || msi_disable == 0) {
553 		if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
554 		    pci_alloc_msix(dev, &msixc) == 0) {
555 			if (msixc == ALE_MSIX_MESSAGES) {
556 				device_printf(dev, "Using %d MSIX messages.\n",
557 				    msixc);
558 				sc->ale_flags |= ALE_FLAG_MSIX;
559 				sc->ale_irq_spec = ale_irq_spec_msix;
560 			} else
561 				pci_release_msi(dev);
562 		}
563 		if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
564 		    msic == ALE_MSI_MESSAGES &&
565 		    pci_alloc_msi(dev, &msic) == 0) {
566 			if (msic == ALE_MSI_MESSAGES) {
567 				device_printf(dev, "Using %d MSI messages.\n",
568 				    msic);
569 				sc->ale_flags |= ALE_FLAG_MSI;
570 				sc->ale_irq_spec = ale_irq_spec_msi;
571 			} else
572 				pci_release_msi(dev);
573 		}
574 	}
575 
576 	error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
577 	if (error != 0) {
578 		device_printf(dev, "cannot allocate IRQ resources.\n");
579 		goto fail;
580 	}
581 
582 	/* Get DMA parameters from PCIe device control register. */
583 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
584 		sc->ale_flags |= ALE_FLAG_PCIE;
585 		burst = pci_read_config(dev, i + 0x08, 2);
586 		/* Max read request size. */
587 		sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
588 		    DMA_CFG_RD_BURST_SHIFT;
589 		/* Max payload size. */
590 		sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
591 		    DMA_CFG_WR_BURST_SHIFT;
592 		if (bootverbose) {
593 			device_printf(dev, "Read request size : %d bytes.\n",
594 			    128 << ((burst >> 12) & 0x07));
595 			device_printf(dev, "TLP payload size : %d bytes.\n",
596 			    128 << ((burst >> 5) & 0x07));
597 		}
598 	} else {
599 		sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
600 		sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
601 	}
602 
603 	/* Create device sysctl node. */
604 	ale_sysctl_node(sc);
605 
606 	if ((error = ale_dma_alloc(sc)) != 0)
607 		goto fail;
608 
609 	/* Load station address. */
610 	ale_get_macaddr(sc);
611 
612 	ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
613 	if (ifp == NULL) {
614 		device_printf(dev, "cannot allocate ifnet structure.\n");
615 		error = ENXIO;
616 		goto fail;
617 	}
618 
619 	ifp->if_softc = sc;
620 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
621 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
622 	ifp->if_ioctl = ale_ioctl;
623 	ifp->if_start = ale_start;
624 	ifp->if_init = ale_init;
625 	ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1;
626 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
627 	IFQ_SET_READY(&ifp->if_snd);
628 	ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4;
629 	ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO;
630 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
631 		sc->ale_flags |= ALE_FLAG_PMCAP;
632 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
633 	}
634 	ifp->if_capenable = ifp->if_capabilities;
635 
636 	/* Set up MII bus. */
637 	error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange,
638 	    ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY,
639 	    MIIF_DOPAUSE);
640 	if (error != 0) {
641 		device_printf(dev, "attaching PHYs failed\n");
642 		goto fail;
643 	}
644 
645 	ether_ifattach(ifp, sc->ale_eaddr);
646 
647 	/* VLAN capability setup. */
648 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
649 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
650 	ifp->if_capenable = ifp->if_capabilities;
651 	/*
652 	 * Even though controllers supported by ale(3) have Rx checksum
653 	 * offload bug the workaround for fragmented frames seemed to
654 	 * work so far. However it seems Rx checksum offload does not
655 	 * work under certain conditions. So disable Rx checksum offload
656 	 * until I find more clue about it but allow users to override it.
657 	 */
658 	ifp->if_capenable &= ~IFCAP_RXCSUM;
659 
660 	/* Tell the upper layer(s) we support long frames. */
661 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
662 
663 	/* Create local taskq. */
664 	sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
665 	    taskqueue_thread_enqueue, &sc->ale_tq);
666 	if (sc->ale_tq == NULL) {
667 		device_printf(dev, "could not create taskqueue.\n");
668 		ether_ifdetach(ifp);
669 		error = ENXIO;
670 		goto fail;
671 	}
672 	taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
673 	    device_get_nameunit(sc->ale_dev));
674 
675 	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
676 		msic = ALE_MSIX_MESSAGES;
677 	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
678 		msic = ALE_MSI_MESSAGES;
679 	else
680 		msic = 1;
681 	for (i = 0; i < msic; i++) {
682 		error = bus_setup_intr(dev, sc->ale_irq[i],
683 		    INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
684 		    &sc->ale_intrhand[i]);
685 		if (error != 0)
686 			break;
687 	}
688 	if (error != 0) {
689 		device_printf(dev, "could not set up interrupt handler.\n");
690 		taskqueue_free(sc->ale_tq);
691 		sc->ale_tq = NULL;
692 		ether_ifdetach(ifp);
693 		goto fail;
694 	}
695 
696 fail:
697 	if (error != 0)
698 		ale_detach(dev);
699 
700 	return (error);
701 }
702 
703 static int
704 ale_detach(device_t dev)
705 {
706 	struct ale_softc *sc;
707 	struct ifnet *ifp;
708 	int i, msic;
709 
710 	sc = device_get_softc(dev);
711 
712 	ifp = sc->ale_ifp;
713 	if (device_is_attached(dev)) {
714 		ether_ifdetach(ifp);
715 		ALE_LOCK(sc);
716 		ale_stop(sc);
717 		ALE_UNLOCK(sc);
718 		callout_drain(&sc->ale_tick_ch);
719 		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
720 	}
721 
722 	if (sc->ale_tq != NULL) {
723 		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
724 		taskqueue_free(sc->ale_tq);
725 		sc->ale_tq = NULL;
726 	}
727 
728 	if (sc->ale_miibus != NULL) {
729 		device_delete_child(dev, sc->ale_miibus);
730 		sc->ale_miibus = NULL;
731 	}
732 	bus_generic_detach(dev);
733 	ale_dma_free(sc);
734 
735 	if (ifp != NULL) {
736 		if_free(ifp);
737 		sc->ale_ifp = NULL;
738 	}
739 
740 	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
741 		msic = ALE_MSIX_MESSAGES;
742 	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
743 		msic = ALE_MSI_MESSAGES;
744 	else
745 		msic = 1;
746 	for (i = 0; i < msic; i++) {
747 		if (sc->ale_intrhand[i] != NULL) {
748 			bus_teardown_intr(dev, sc->ale_irq[i],
749 			    sc->ale_intrhand[i]);
750 			sc->ale_intrhand[i] = NULL;
751 		}
752 	}
753 
754 	bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
755 	if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
756 		pci_release_msi(dev);
757 	bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
758 	mtx_destroy(&sc->ale_mtx);
759 
760 	return (0);
761 }
762 
763 #define	ALE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
764 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
765 
766 #if __FreeBSD_version >= 900030
767 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
768 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
769 #elif __FreeBSD_version > 800000
770 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
771 	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
772 #else
773 #define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
774 	    SYSCTL_ADD_ULONG(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
775 #endif
776 
777 static void
778 ale_sysctl_node(struct ale_softc *sc)
779 {
780 	struct sysctl_ctx_list *ctx;
781 	struct sysctl_oid_list *child, *parent;
782 	struct sysctl_oid *tree;
783 	struct ale_hw_stats *stats;
784 	int error;
785 
786 	stats = &sc->ale_stats;
787 	ctx = device_get_sysctl_ctx(sc->ale_dev);
788 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
789 
790 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
791 	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_rx_mod, 0,
792 	    sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
793 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
794 	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_tx_mod, 0,
795 	    sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
796 	/* Pull in device tunables. */
797 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
798 	error = resource_int_value(device_get_name(sc->ale_dev),
799 	    device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
800 	if (error == 0) {
801 		if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
802 		    sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
803 			device_printf(sc->ale_dev, "int_rx_mod value out of "
804 			    "range; using default: %d\n",
805 			    ALE_IM_RX_TIMER_DEFAULT);
806 			sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
807 		}
808 	}
809 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
810 	error = resource_int_value(device_get_name(sc->ale_dev),
811 	    device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
812 	if (error == 0) {
813 		if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
814 		    sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
815 			device_printf(sc->ale_dev, "int_tx_mod value out of "
816 			    "range; using default: %d\n",
817 			    ALE_IM_TX_TIMER_DEFAULT);
818 			sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
819 		}
820 	}
821 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
822 	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_process_limit, 0,
823 	    sysctl_hw_ale_proc_limit, "I",
824 	    "max number of Rx events to process");
825 	/* Pull in device tunables. */
826 	sc->ale_process_limit = ALE_PROC_DEFAULT;
827 	error = resource_int_value(device_get_name(sc->ale_dev),
828 	    device_get_unit(sc->ale_dev), "process_limit",
829 	    &sc->ale_process_limit);
830 	if (error == 0) {
831 		if (sc->ale_process_limit < ALE_PROC_MIN ||
832 		    sc->ale_process_limit > ALE_PROC_MAX) {
833 			device_printf(sc->ale_dev,
834 			    "process_limit value out of range; "
835 			    "using default: %d\n", ALE_PROC_DEFAULT);
836 			sc->ale_process_limit = ALE_PROC_DEFAULT;
837 		}
838 	}
839 
840 	/* Misc statistics. */
841 	ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
842 	    &stats->reset_brk_seq,
843 	    "Controller resets due to broken Rx sequnce number");
844 
845 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
846 	    NULL, "ATE statistics");
847 	parent = SYSCTL_CHILDREN(tree);
848 
849 	/* Rx statistics. */
850 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
851 	    NULL, "Rx MAC statistics");
852 	child = SYSCTL_CHILDREN(tree);
853 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
854 	    &stats->rx_frames, "Good frames");
855 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
856 	    &stats->rx_bcast_frames, "Good broadcast frames");
857 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
858 	    &stats->rx_mcast_frames, "Good multicast frames");
859 	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
860 	    &stats->rx_pause_frames, "Pause control frames");
861 	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
862 	    &stats->rx_control_frames, "Control frames");
863 	ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
864 	    &stats->rx_crcerrs, "CRC errors");
865 	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
866 	    &stats->rx_lenerrs, "Frames with length mismatched");
867 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
868 	    &stats->rx_bytes, "Good octets");
869 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
870 	    &stats->rx_bcast_bytes, "Good broadcast octets");
871 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
872 	    &stats->rx_mcast_bytes, "Good multicast octets");
873 	ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
874 	    &stats->rx_runts, "Too short frames");
875 	ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
876 	    &stats->rx_fragments, "Fragmented frames");
877 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
878 	    &stats->rx_pkts_64, "64 bytes frames");
879 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
880 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
881 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
882 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
883 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
884 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
885 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
886 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
887 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
888 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
889 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
890 	    &stats->rx_pkts_1519_max, "1519 to max frames");
891 	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
892 	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
893 	ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
894 	    &stats->rx_fifo_oflows, "FIFO overflows");
895 	ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
896 	    &stats->rx_rrs_errs, "Return status write-back errors");
897 	ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
898 	    &stats->rx_alignerrs, "Alignment errors");
899 	ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
900 	    &stats->rx_pkts_filtered,
901 	    "Frames dropped due to address filtering");
902 
903 	/* Tx statistics. */
904 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
905 	    NULL, "Tx MAC statistics");
906 	child = SYSCTL_CHILDREN(tree);
907 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
908 	    &stats->tx_frames, "Good frames");
909 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
910 	    &stats->tx_bcast_frames, "Good broadcast frames");
911 	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
912 	    &stats->tx_mcast_frames, "Good multicast frames");
913 	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
914 	    &stats->tx_pause_frames, "Pause control frames");
915 	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
916 	    &stats->tx_control_frames, "Control frames");
917 	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
918 	    &stats->tx_excess_defer, "Frames with excessive derferrals");
919 	ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
920 	    &stats->tx_excess_defer, "Frames with derferrals");
921 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
922 	    &stats->tx_bytes, "Good octets");
923 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
924 	    &stats->tx_bcast_bytes, "Good broadcast octets");
925 	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
926 	    &stats->tx_mcast_bytes, "Good multicast octets");
927 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
928 	    &stats->tx_pkts_64, "64 bytes frames");
929 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
930 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
931 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
932 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
933 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
934 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
935 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
936 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
937 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
938 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
939 	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
940 	    &stats->tx_pkts_1519_max, "1519 to max frames");
941 	ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
942 	    &stats->tx_single_colls, "Single collisions");
943 	ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
944 	    &stats->tx_multi_colls, "Multiple collisions");
945 	ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
946 	    &stats->tx_late_colls, "Late collisions");
947 	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
948 	    &stats->tx_excess_colls, "Excessive collisions");
949 	ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
950 	    &stats->tx_underrun, "FIFO underruns");
951 	ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
952 	    &stats->tx_desc_underrun, "Descriptor write-back errors");
953 	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
954 	    &stats->tx_lenerrs, "Frames with length mismatched");
955 	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
956 	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
957 }
958 
959 #undef ALE_SYSCTL_STAT_ADD32
960 #undef ALE_SYSCTL_STAT_ADD64
961 
962 struct ale_dmamap_arg {
963 	bus_addr_t	ale_busaddr;
964 };
965 
966 static void
967 ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
968 {
969 	struct ale_dmamap_arg *ctx;
970 
971 	if (error != 0)
972 		return;
973 
974 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
975 
976 	ctx = (struct ale_dmamap_arg *)arg;
977 	ctx->ale_busaddr = segs[0].ds_addr;
978 }
979 
980 /*
981  * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
982  * which specifies high address region of DMA blocks. Therefore these
983  * blocks should have the same high address of given 4GB address
984  * space(i.e. crossing 4GB boundary is not allowed).
985  */
986 static int
987 ale_check_boundary(struct ale_softc *sc)
988 {
989 	bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
990 	bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
991 
992 	rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
993 	    sc->ale_pagesize;
994 	rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
995 	    sc->ale_pagesize;
996 	tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
997 	tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
998 	rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
999 	rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
1000 
1001 	if ((ALE_ADDR_HI(tx_ring_end) !=
1002 	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
1003 	    (ALE_ADDR_HI(rx_page_end[0]) !=
1004 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
1005 	    (ALE_ADDR_HI(rx_page_end[1]) !=
1006 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
1007 	    (ALE_ADDR_HI(tx_cmb_end) !=
1008 	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
1009 	    (ALE_ADDR_HI(rx_cmb_end[0]) !=
1010 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
1011 	    (ALE_ADDR_HI(rx_cmb_end[1]) !=
1012 	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
1013 		return (EFBIG);
1014 
1015 	if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
1016 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
1017 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
1018 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
1019 	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
1020 		return (EFBIG);
1021 
1022 	return (0);
1023 }
1024 
1025 static int
1026 ale_dma_alloc(struct ale_softc *sc)
1027 {
1028 	struct ale_txdesc *txd;
1029 	bus_addr_t lowaddr;
1030 	struct ale_dmamap_arg ctx;
1031 	int error, guard_size, i;
1032 
1033 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
1034 		guard_size = ALE_JUMBO_FRAMELEN;
1035 	else
1036 		guard_size = ALE_MAX_FRAMELEN;
1037 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
1038 	    ALE_RX_PAGE_ALIGN);
1039 	lowaddr = BUS_SPACE_MAXADDR;
1040 again:
1041 	/* Create parent DMA tag. */
1042 	error = bus_dma_tag_create(
1043 	    bus_get_dma_tag(sc->ale_dev), /* parent */
1044 	    1, 0,			/* alignment, boundary */
1045 	    lowaddr,			/* lowaddr */
1046 	    BUS_SPACE_MAXADDR,		/* highaddr */
1047 	    NULL, NULL,			/* filter, filterarg */
1048 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1049 	    0,				/* nsegments */
1050 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1051 	    0,				/* flags */
1052 	    NULL, NULL,			/* lockfunc, lockarg */
1053 	    &sc->ale_cdata.ale_parent_tag);
1054 	if (error != 0) {
1055 		device_printf(sc->ale_dev,
1056 		    "could not create parent DMA tag.\n");
1057 		goto fail;
1058 	}
1059 
1060 	/* Create DMA tag for Tx descriptor ring. */
1061 	error = bus_dma_tag_create(
1062 	    sc->ale_cdata.ale_parent_tag, /* parent */
1063 	    ALE_TX_RING_ALIGN, 0,	/* alignment, boundary */
1064 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1065 	    BUS_SPACE_MAXADDR,		/* highaddr */
1066 	    NULL, NULL,			/* filter, filterarg */
1067 	    ALE_TX_RING_SZ,		/* maxsize */
1068 	    1,				/* nsegments */
1069 	    ALE_TX_RING_SZ,		/* maxsegsize */
1070 	    0,				/* flags */
1071 	    NULL, NULL,			/* lockfunc, lockarg */
1072 	    &sc->ale_cdata.ale_tx_ring_tag);
1073 	if (error != 0) {
1074 		device_printf(sc->ale_dev,
1075 		    "could not create Tx ring DMA tag.\n");
1076 		goto fail;
1077 	}
1078 
1079 	/* Create DMA tag for Rx pages. */
1080 	for (i = 0; i < ALE_RX_PAGES; i++) {
1081 		error = bus_dma_tag_create(
1082 		    sc->ale_cdata.ale_parent_tag, /* parent */
1083 		    ALE_RX_PAGE_ALIGN, 0,	/* alignment, boundary */
1084 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1085 		    BUS_SPACE_MAXADDR,		/* highaddr */
1086 		    NULL, NULL,			/* filter, filterarg */
1087 		    sc->ale_pagesize,		/* maxsize */
1088 		    1,				/* nsegments */
1089 		    sc->ale_pagesize,		/* maxsegsize */
1090 		    0,				/* flags */
1091 		    NULL, NULL,			/* lockfunc, lockarg */
1092 		    &sc->ale_cdata.ale_rx_page[i].page_tag);
1093 		if (error != 0) {
1094 			device_printf(sc->ale_dev,
1095 			    "could not create Rx page %d DMA tag.\n", i);
1096 			goto fail;
1097 		}
1098 	}
1099 
1100 	/* Create DMA tag for Tx coalescing message block. */
1101 	error = bus_dma_tag_create(
1102 	    sc->ale_cdata.ale_parent_tag, /* parent */
1103 	    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1104 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1105 	    BUS_SPACE_MAXADDR,		/* highaddr */
1106 	    NULL, NULL,			/* filter, filterarg */
1107 	    ALE_TX_CMB_SZ,		/* maxsize */
1108 	    1,				/* nsegments */
1109 	    ALE_TX_CMB_SZ,		/* maxsegsize */
1110 	    0,				/* flags */
1111 	    NULL, NULL,			/* lockfunc, lockarg */
1112 	    &sc->ale_cdata.ale_tx_cmb_tag);
1113 	if (error != 0) {
1114 		device_printf(sc->ale_dev,
1115 		    "could not create Tx CMB DMA tag.\n");
1116 		goto fail;
1117 	}
1118 
1119 	/* Create DMA tag for Rx coalescing message block. */
1120 	for (i = 0; i < ALE_RX_PAGES; i++) {
1121 		error = bus_dma_tag_create(
1122 		    sc->ale_cdata.ale_parent_tag, /* parent */
1123 		    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1124 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1125 		    BUS_SPACE_MAXADDR,		/* highaddr */
1126 		    NULL, NULL,			/* filter, filterarg */
1127 		    ALE_RX_CMB_SZ,		/* maxsize */
1128 		    1,				/* nsegments */
1129 		    ALE_RX_CMB_SZ,		/* maxsegsize */
1130 		    0,				/* flags */
1131 		    NULL, NULL,			/* lockfunc, lockarg */
1132 		    &sc->ale_cdata.ale_rx_page[i].cmb_tag);
1133 		if (error != 0) {
1134 			device_printf(sc->ale_dev,
1135 			    "could not create Rx page %d CMB DMA tag.\n", i);
1136 			goto fail;
1137 		}
1138 	}
1139 
1140 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1141 	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
1142 	    (void **)&sc->ale_cdata.ale_tx_ring,
1143 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1144 	    &sc->ale_cdata.ale_tx_ring_map);
1145 	if (error != 0) {
1146 		device_printf(sc->ale_dev,
1147 		    "could not allocate DMA'able memory for Tx ring.\n");
1148 		goto fail;
1149 	}
1150 	ctx.ale_busaddr = 0;
1151 	error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
1152 	    sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
1153 	    ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
1154 	if (error != 0 || ctx.ale_busaddr == 0) {
1155 		device_printf(sc->ale_dev,
1156 		    "could not load DMA'able memory for Tx ring.\n");
1157 		goto fail;
1158 	}
1159 	sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
1160 
1161 	/* Rx pages. */
1162 	for (i = 0; i < ALE_RX_PAGES; i++) {
1163 		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
1164 		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
1165 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1166 		    &sc->ale_cdata.ale_rx_page[i].page_map);
1167 		if (error != 0) {
1168 			device_printf(sc->ale_dev,
1169 			    "could not allocate DMA'able memory for "
1170 			    "Rx page %d.\n", i);
1171 			goto fail;
1172 		}
1173 		ctx.ale_busaddr = 0;
1174 		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
1175 		    sc->ale_cdata.ale_rx_page[i].page_map,
1176 		    sc->ale_cdata.ale_rx_page[i].page_addr,
1177 		    sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
1178 		if (error != 0 || ctx.ale_busaddr == 0) {
1179 			device_printf(sc->ale_dev,
1180 			    "could not load DMA'able memory for "
1181 			    "Rx page %d.\n", i);
1182 			goto fail;
1183 		}
1184 		sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
1185 	}
1186 
1187 	/* Tx CMB. */
1188 	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
1189 	    (void **)&sc->ale_cdata.ale_tx_cmb,
1190 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1191 	    &sc->ale_cdata.ale_tx_cmb_map);
1192 	if (error != 0) {
1193 		device_printf(sc->ale_dev,
1194 		    "could not allocate DMA'able memory for Tx CMB.\n");
1195 		goto fail;
1196 	}
1197 	ctx.ale_busaddr = 0;
1198 	error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
1199 	    sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
1200 	    ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1201 	if (error != 0 || ctx.ale_busaddr == 0) {
1202 		device_printf(sc->ale_dev,
1203 		    "could not load DMA'able memory for Tx CMB.\n");
1204 		goto fail;
1205 	}
1206 	sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
1207 
1208 	/* Rx CMB. */
1209 	for (i = 0; i < ALE_RX_PAGES; i++) {
1210 		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1211 		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
1212 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1213 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
1214 		if (error != 0) {
1215 			device_printf(sc->ale_dev, "could not allocate "
1216 			    "DMA'able memory for Rx page %d CMB.\n", i);
1217 			goto fail;
1218 		}
1219 		ctx.ale_busaddr = 0;
1220 		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1221 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
1222 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1223 		    ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1224 		if (error != 0 || ctx.ale_busaddr == 0) {
1225 			device_printf(sc->ale_dev, "could not load DMA'able "
1226 			    "memory for Rx page %d CMB.\n", i);
1227 			goto fail;
1228 		}
1229 		sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
1230 	}
1231 
1232 	/*
1233 	 * Tx descriptors/RXF0/CMB DMA blocks share the same
1234 	 * high address region of 64bit DMA address space.
1235 	 */
1236 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1237 	    (error = ale_check_boundary(sc)) != 0) {
1238 		device_printf(sc->ale_dev, "4GB boundary crossed, "
1239 		    "switching to 32bit DMA addressing mode.\n");
1240 		ale_dma_free(sc);
1241 		/*
1242 		 * Limit max allowable DMA address space to 32bit
1243 		 * and try again.
1244 		 */
1245 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1246 		goto again;
1247 	}
1248 
1249 	/*
1250 	 * Create Tx buffer parent tag.
1251 	 * AR81xx allows 64bit DMA addressing of Tx buffers so it
1252 	 * needs separate parent DMA tag as parent DMA address space
1253 	 * could be restricted to be within 32bit address space by
1254 	 * 4GB boundary crossing.
1255 	 */
1256 	error = bus_dma_tag_create(
1257 	    bus_get_dma_tag(sc->ale_dev), /* parent */
1258 	    1, 0,			/* alignment, boundary */
1259 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1260 	    BUS_SPACE_MAXADDR,		/* highaddr */
1261 	    NULL, NULL,			/* filter, filterarg */
1262 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1263 	    0,				/* nsegments */
1264 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1265 	    0,				/* flags */
1266 	    NULL, NULL,			/* lockfunc, lockarg */
1267 	    &sc->ale_cdata.ale_buffer_tag);
1268 	if (error != 0) {
1269 		device_printf(sc->ale_dev,
1270 		    "could not create parent buffer DMA tag.\n");
1271 		goto fail;
1272 	}
1273 
1274 	/* Create DMA tag for Tx buffers. */
1275 	error = bus_dma_tag_create(
1276 	    sc->ale_cdata.ale_buffer_tag, /* parent */
1277 	    1, 0,			/* alignment, boundary */
1278 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1279 	    BUS_SPACE_MAXADDR,		/* highaddr */
1280 	    NULL, NULL,			/* filter, filterarg */
1281 	    ALE_TSO_MAXSIZE,		/* maxsize */
1282 	    ALE_MAXTXSEGS,		/* nsegments */
1283 	    ALE_TSO_MAXSEGSIZE,		/* maxsegsize */
1284 	    0,				/* flags */
1285 	    NULL, NULL,			/* lockfunc, lockarg */
1286 	    &sc->ale_cdata.ale_tx_tag);
1287 	if (error != 0) {
1288 		device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
1289 		goto fail;
1290 	}
1291 
1292 	/* Create DMA maps for Tx buffers. */
1293 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1294 		txd = &sc->ale_cdata.ale_txdesc[i];
1295 		txd->tx_m = NULL;
1296 		txd->tx_dmamap = NULL;
1297 		error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
1298 		    &txd->tx_dmamap);
1299 		if (error != 0) {
1300 			device_printf(sc->ale_dev,
1301 			    "could not create Tx dmamap.\n");
1302 			goto fail;
1303 		}
1304 	}
1305 
1306 fail:
1307 	return (error);
1308 }
1309 
1310 static void
1311 ale_dma_free(struct ale_softc *sc)
1312 {
1313 	struct ale_txdesc *txd;
1314 	int i;
1315 
1316 	/* Tx buffers. */
1317 	if (sc->ale_cdata.ale_tx_tag != NULL) {
1318 		for (i = 0; i < ALE_TX_RING_CNT; i++) {
1319 			txd = &sc->ale_cdata.ale_txdesc[i];
1320 			if (txd->tx_dmamap != NULL) {
1321 				bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
1322 				    txd->tx_dmamap);
1323 				txd->tx_dmamap = NULL;
1324 			}
1325 		}
1326 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
1327 		sc->ale_cdata.ale_tx_tag = NULL;
1328 	}
1329 	/* Tx descriptor ring. */
1330 	if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
1331 		if (sc->ale_cdata.ale_tx_ring_paddr != 0)
1332 			bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
1333 			    sc->ale_cdata.ale_tx_ring_map);
1334 		if (sc->ale_cdata.ale_tx_ring != NULL)
1335 			bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
1336 			    sc->ale_cdata.ale_tx_ring,
1337 			    sc->ale_cdata.ale_tx_ring_map);
1338 		sc->ale_cdata.ale_tx_ring_paddr = 0;
1339 		sc->ale_cdata.ale_tx_ring = NULL;
1340 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
1341 		sc->ale_cdata.ale_tx_ring_tag = NULL;
1342 	}
1343 	/* Rx page block. */
1344 	for (i = 0; i < ALE_RX_PAGES; i++) {
1345 		if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
1346 			if (sc->ale_cdata.ale_rx_page[i].page_paddr != 0)
1347 				bus_dmamap_unload(
1348 				    sc->ale_cdata.ale_rx_page[i].page_tag,
1349 				    sc->ale_cdata.ale_rx_page[i].page_map);
1350 			if (sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
1351 				bus_dmamem_free(
1352 				    sc->ale_cdata.ale_rx_page[i].page_tag,
1353 				    sc->ale_cdata.ale_rx_page[i].page_addr,
1354 				    sc->ale_cdata.ale_rx_page[i].page_map);
1355 			sc->ale_cdata.ale_rx_page[i].page_paddr = 0;
1356 			sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
1357 			bus_dma_tag_destroy(
1358 			    sc->ale_cdata.ale_rx_page[i].page_tag);
1359 			sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
1360 		}
1361 	}
1362 	/* Rx CMB. */
1363 	for (i = 0; i < ALE_RX_PAGES; i++) {
1364 		if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
1365 			if (sc->ale_cdata.ale_rx_page[i].cmb_paddr != 0)
1366 				bus_dmamap_unload(
1367 				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1368 				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1369 			if (sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
1370 				bus_dmamem_free(
1371 				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1372 				    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1373 				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1374 			sc->ale_cdata.ale_rx_page[i].cmb_paddr = 0;
1375 			sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
1376 			bus_dma_tag_destroy(
1377 			    sc->ale_cdata.ale_rx_page[i].cmb_tag);
1378 			sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
1379 		}
1380 	}
1381 	/* Tx CMB. */
1382 	if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
1383 		if (sc->ale_cdata.ale_tx_cmb_paddr != 0)
1384 			bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
1385 			    sc->ale_cdata.ale_tx_cmb_map);
1386 		if (sc->ale_cdata.ale_tx_cmb != NULL)
1387 			bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
1388 			    sc->ale_cdata.ale_tx_cmb,
1389 			    sc->ale_cdata.ale_tx_cmb_map);
1390 		sc->ale_cdata.ale_tx_cmb_paddr = 0;
1391 		sc->ale_cdata.ale_tx_cmb = NULL;
1392 		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
1393 		sc->ale_cdata.ale_tx_cmb_tag = NULL;
1394 	}
1395 	if (sc->ale_cdata.ale_buffer_tag != NULL) {
1396 		bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
1397 		sc->ale_cdata.ale_buffer_tag = NULL;
1398 	}
1399 	if (sc->ale_cdata.ale_parent_tag != NULL) {
1400 		bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
1401 		sc->ale_cdata.ale_parent_tag = NULL;
1402 	}
1403 }
1404 
1405 static int
1406 ale_shutdown(device_t dev)
1407 {
1408 
1409 	return (ale_suspend(dev));
1410 }
1411 
1412 /*
1413  * Note, this driver resets the link speed to 10/100Mbps by
1414  * restarting auto-negotiation in suspend/shutdown phase but we
1415  * don't know whether that auto-negotiation would succeed or not
1416  * as driver has no control after powering off/suspend operation.
1417  * If the renegotiation fail WOL may not work. Running at 1Gbps
1418  * will draw more power than 375mA at 3.3V which is specified in
1419  * PCI specification and that would result in complete
1420  * shutdowning power to ethernet controller.
1421  *
1422  * TODO
1423  * Save current negotiated media speed/duplex/flow-control to
1424  * softc and restore the same link again after resuming. PHY
1425  * handling such as power down/resetting to 100Mbps may be better
1426  * handled in suspend method in phy driver.
1427  */
1428 static void
1429 ale_setlinkspeed(struct ale_softc *sc)
1430 {
1431 	struct mii_data *mii;
1432 	int aneg, i;
1433 
1434 	mii = device_get_softc(sc->ale_miibus);
1435 	mii_pollstat(mii);
1436 	aneg = 0;
1437 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1438 	    (IFM_ACTIVE | IFM_AVALID)) {
1439 		switch IFM_SUBTYPE(mii->mii_media_active) {
1440 		case IFM_10_T:
1441 		case IFM_100_TX:
1442 			return;
1443 		case IFM_1000_T:
1444 			aneg++;
1445 			break;
1446 		default:
1447 			break;
1448 		}
1449 	}
1450 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
1451 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1452 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1453 	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1454 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1455 	DELAY(1000);
1456 	if (aneg != 0) {
1457 		/*
1458 		 * Poll link state until ale(4) get a 10/100Mbps link.
1459 		 */
1460 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1461 			mii_pollstat(mii);
1462 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1463 			    == (IFM_ACTIVE | IFM_AVALID)) {
1464 				switch (IFM_SUBTYPE(
1465 				    mii->mii_media_active)) {
1466 				case IFM_10_T:
1467 				case IFM_100_TX:
1468 					ale_mac_config(sc);
1469 					return;
1470 				default:
1471 					break;
1472 				}
1473 			}
1474 			ALE_UNLOCK(sc);
1475 			pause("alelnk", hz);
1476 			ALE_LOCK(sc);
1477 		}
1478 		if (i == MII_ANEGTICKS_GIGE)
1479 			device_printf(sc->ale_dev,
1480 			    "establishing a link failed, WOL may not work!");
1481 	}
1482 	/*
1483 	 * No link, force MAC to have 100Mbps, full-duplex link.
1484 	 * This is the last resort and may/may not work.
1485 	 */
1486 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1487 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1488 	ale_mac_config(sc);
1489 }
1490 
1491 static void
1492 ale_setwol(struct ale_softc *sc)
1493 {
1494 	struct ifnet *ifp;
1495 	uint32_t reg, pmcs;
1496 	uint16_t pmstat;
1497 	int pmc;
1498 
1499 	ALE_LOCK_ASSERT(sc);
1500 
1501 	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
1502 		/* Disable WOL. */
1503 		CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1504 		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1505 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1506 		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1507 		/* Force PHY power down. */
1508 		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1509 		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1510 		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
1511 		    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
1512 		    GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
1513 		return;
1514 	}
1515 
1516 	ifp = sc->ale_ifp;
1517 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1518 		if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
1519 			ale_setlinkspeed(sc);
1520 	}
1521 
1522 	pmcs = 0;
1523 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1524 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1525 	CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
1526 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1527 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1528 	    MAC_CFG_BCAST);
1529 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1530 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1531 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1532 		reg |= MAC_CFG_RX_ENB;
1533 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1534 
1535 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1536 		/* WOL disabled, PHY power down. */
1537 		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1538 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1539 		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1540 		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1541 		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1542 		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
1543 		    GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
1544 		    GPHY_CTRL_PWDOWN_HW);
1545 	}
1546 	/* Request PME. */
1547 	pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
1548 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1549 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1550 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1551 	pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1552 }
1553 
1554 static int
1555 ale_suspend(device_t dev)
1556 {
1557 	struct ale_softc *sc;
1558 
1559 	sc = device_get_softc(dev);
1560 
1561 	ALE_LOCK(sc);
1562 	ale_stop(sc);
1563 	ale_setwol(sc);
1564 	ALE_UNLOCK(sc);
1565 
1566 	return (0);
1567 }
1568 
1569 static int
1570 ale_resume(device_t dev)
1571 {
1572 	struct ale_softc *sc;
1573 	struct ifnet *ifp;
1574 	int pmc;
1575 	uint16_t pmstat;
1576 
1577 	sc = device_get_softc(dev);
1578 
1579 	ALE_LOCK(sc);
1580 	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
1581 		/* Disable PME and clear PME status. */
1582 		pmstat = pci_read_config(sc->ale_dev,
1583 		    pmc + PCIR_POWER_STATUS, 2);
1584 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1585 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1586 			pci_write_config(sc->ale_dev,
1587 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
1588 		}
1589 	}
1590 	/* Reset PHY. */
1591 	ale_phy_reset(sc);
1592 	ifp = sc->ale_ifp;
1593 	if ((ifp->if_flags & IFF_UP) != 0) {
1594 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1595 		ale_init_locked(sc);
1596 	}
1597 	ALE_UNLOCK(sc);
1598 
1599 	return (0);
1600 }
1601 
1602 static int
1603 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
1604 {
1605 	struct ale_txdesc *txd, *txd_last;
1606 	struct tx_desc *desc;
1607 	struct mbuf *m;
1608 	struct ip *ip;
1609 	struct tcphdr *tcp;
1610 	bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
1611 	bus_dmamap_t map;
1612 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1613 	int error, i, nsegs, prod, si;
1614 
1615 	ALE_LOCK_ASSERT(sc);
1616 
1617 	M_ASSERTPKTHDR((*m_head));
1618 
1619 	m = *m_head;
1620 	ip = NULL;
1621 	tcp = NULL;
1622 	cflags = vtag = 0;
1623 	ip_off = poff = 0;
1624 	if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1625 		/*
1626 		 * AR81xx requires offset of TCP/UDP payload in its Tx
1627 		 * descriptor to perform hardware Tx checksum offload.
1628 		 * Additionally, TSO requires IP/TCP header size and
1629 		 * modification of IP/TCP header in order to make TSO
1630 		 * engine work. This kind of operation takes many CPU
1631 		 * cycles on FreeBSD so fast host CPU is required to
1632 		 * get smooth TSO performance.
1633 		 */
1634 		struct ether_header *eh;
1635 
1636 		if (M_WRITABLE(m) == 0) {
1637 			/* Get a writable copy. */
1638 			m = m_dup(*m_head, M_NOWAIT);
1639 			/* Release original mbufs. */
1640 			m_freem(*m_head);
1641 			if (m == NULL) {
1642 				*m_head = NULL;
1643 				return (ENOBUFS);
1644 			}
1645 			*m_head = m;
1646 		}
1647 
1648 		/*
1649 		 * Buggy-controller requires 4 byte aligned Tx buffer
1650 		 * to make custom checksum offload work.
1651 		 */
1652 		if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
1653 		    (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
1654 		    (mtod(m, intptr_t) & 3) != 0) {
1655 			m = m_defrag(*m_head, M_NOWAIT);
1656 			if (m == NULL) {
1657 				m_freem(*m_head);
1658 				*m_head = NULL;
1659 				return (ENOBUFS);
1660 			}
1661 			*m_head = m;
1662 		}
1663 
1664 		ip_off = sizeof(struct ether_header);
1665 		m = m_pullup(m, ip_off);
1666 		if (m == NULL) {
1667 			*m_head = NULL;
1668 			return (ENOBUFS);
1669 		}
1670 		eh = mtod(m, struct ether_header *);
1671 		/*
1672 		 * Check if hardware VLAN insertion is off.
1673 		 * Additional check for LLC/SNAP frame?
1674 		 */
1675 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1676 			ip_off = sizeof(struct ether_vlan_header);
1677 			m = m_pullup(m, ip_off);
1678 			if (m == NULL) {
1679 				*m_head = NULL;
1680 				return (ENOBUFS);
1681 			}
1682 		}
1683 		m = m_pullup(m, ip_off + sizeof(struct ip));
1684 		if (m == NULL) {
1685 			*m_head = NULL;
1686 			return (ENOBUFS);
1687 		}
1688 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1689 		poff = ip_off + (ip->ip_hl << 2);
1690 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1691 			/*
1692 			 * XXX
1693 			 * AR81xx requires the first descriptor should
1694 			 * not include any TCP playload for TSO case.
1695 			 * (i.e. ethernet header + IP + TCP header only)
1696 			 * m_pullup(9) above will ensure this too.
1697 			 * However it's not correct if the first mbuf
1698 			 * of the chain does not use cluster.
1699 			 */
1700 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1701 			if (m == NULL) {
1702 				*m_head = NULL;
1703 				return (ENOBUFS);
1704 			}
1705 			ip = (struct ip *)(mtod(m, char *) + ip_off);
1706 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1707 			m = m_pullup(m, poff + (tcp->th_off << 2));
1708 			if (m == NULL) {
1709 				*m_head = NULL;
1710 				return (ENOBUFS);
1711 			}
1712 			/*
1713 			 * AR81xx requires IP/TCP header size and offset as
1714 			 * well as TCP pseudo checksum which complicates
1715 			 * TSO configuration. I guess this comes from the
1716 			 * adherence to Microsoft NDIS Large Send
1717 			 * specification which requires insertion of
1718 			 * pseudo checksum by upper stack. The pseudo
1719 			 * checksum that NDIS refers to doesn't include
1720 			 * TCP payload length so ale(4) should recompute
1721 			 * the pseudo checksum here. Hopefully this wouldn't
1722 			 * be much burden on modern CPUs.
1723 			 * Reset IP checksum and recompute TCP pseudo
1724 			 * checksum as NDIS specification said.
1725 			 */
1726 			ip->ip_sum = 0;
1727 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1728 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1729 		}
1730 		*m_head = m;
1731 	}
1732 
1733 	si = prod = sc->ale_cdata.ale_tx_prod;
1734 	txd = &sc->ale_cdata.ale_txdesc[prod];
1735 	txd_last = txd;
1736 	map = txd->tx_dmamap;
1737 
1738 	error =  bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1739 	    *m_head, txsegs, &nsegs, 0);
1740 	if (error == EFBIG) {
1741 		m = m_collapse(*m_head, M_NOWAIT, ALE_MAXTXSEGS);
1742 		if (m == NULL) {
1743 			m_freem(*m_head);
1744 			*m_head = NULL;
1745 			return (ENOMEM);
1746 		}
1747 		*m_head = m;
1748 		error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1749 		    *m_head, txsegs, &nsegs, 0);
1750 		if (error != 0) {
1751 			m_freem(*m_head);
1752 			*m_head = NULL;
1753 			return (error);
1754 		}
1755 	} else if (error != 0)
1756 		return (error);
1757 	if (nsegs == 0) {
1758 		m_freem(*m_head);
1759 		*m_head = NULL;
1760 		return (EIO);
1761 	}
1762 
1763 	/* Check descriptor overrun. */
1764 	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) {
1765 		bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
1766 		return (ENOBUFS);
1767 	}
1768 	bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
1769 
1770 	m = *m_head;
1771 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1772 		/* Request TSO and set MSS. */
1773 		cflags |= ALE_TD_TSO;
1774 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
1775 		/* Set IP/TCP header size. */
1776 		cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
1777 		cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
1778 	} else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
1779 		/*
1780 		 * AR81xx supports Tx custom checksum offload feature
1781 		 * that offloads single 16bit checksum computation.
1782 		 * So you can choose one among IP, TCP and UDP.
1783 		 * Normally driver sets checksum start/insertion
1784 		 * position from the information of TCP/UDP frame as
1785 		 * TCP/UDP checksum takes more time than that of IP.
1786 		 * However it seems that custom checksum offload
1787 		 * requires 4 bytes aligned Tx buffers due to hardware
1788 		 * bug.
1789 		 * AR81xx also supports explicit Tx checksum computation
1790 		 * if it is told that the size of IP header and TCP
1791 		 * header(for UDP, the header size does not matter
1792 		 * because it's fixed length). However with this scheme
1793 		 * TSO does not work so you have to choose one either
1794 		 * TSO or explicit Tx checksum offload. I chosen TSO
1795 		 * plus custom checksum offload with work-around which
1796 		 * will cover most common usage for this consumer
1797 		 * ethernet controller. The work-around takes a lot of
1798 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
1799 		 * boundary, though.
1800 		 */
1801 		cflags |= ALE_TD_CXSUM;
1802 		/* Set checksum start offset. */
1803 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1804 		/* Set checksum insertion position of TCP/UDP. */
1805 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1806 		    ALE_TD_CSUM_XSUMOFFSET_SHIFT);
1807 	}
1808 
1809 	/* Configure VLAN hardware tag insertion. */
1810 	if ((m->m_flags & M_VLANTAG) != 0) {
1811 		vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1812 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1813 		cflags |= ALE_TD_INSERT_VLAN_TAG;
1814 	}
1815 
1816 	i = 0;
1817 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1818 		/*
1819 		 * Make sure the first fragment contains
1820 		 * only ethernet and IP/TCP header with options.
1821 		 */
1822 		hdrlen =  poff + (tcp->th_off << 2);
1823 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1824 		desc->addr = htole64(txsegs[i].ds_addr);
1825 		desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag);
1826 		desc->flags = htole32(cflags);
1827 		sc->ale_cdata.ale_tx_cnt++;
1828 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1829 		if (m->m_len - hdrlen > 0) {
1830 			/* Handle remaining payload of the first fragment. */
1831 			desc = &sc->ale_cdata.ale_tx_ring[prod];
1832 			desc->addr = htole64(txsegs[i].ds_addr + hdrlen);
1833 			desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) |
1834 			    vtag);
1835 			desc->flags = htole32(cflags);
1836 			sc->ale_cdata.ale_tx_cnt++;
1837 			ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1838 		}
1839 		i = 1;
1840 	}
1841 	for (; i < nsegs; i++) {
1842 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1843 		desc->addr = htole64(txsegs[i].ds_addr);
1844 		desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
1845 		desc->flags = htole32(cflags);
1846 		sc->ale_cdata.ale_tx_cnt++;
1847 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1848 	}
1849 	/* Update producer index. */
1850 	sc->ale_cdata.ale_tx_prod = prod;
1851 	/* Set TSO header on the first descriptor. */
1852 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1853 		desc = &sc->ale_cdata.ale_tx_ring[si];
1854 		desc->flags |= htole32(ALE_TD_TSO_HDR);
1855 	}
1856 
1857 	/* Finally set EOP on the last descriptor. */
1858 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1859 	desc = &sc->ale_cdata.ale_tx_ring[prod];
1860 	desc->flags |= htole32(ALE_TD_EOP);
1861 
1862 	/* Swap dmamap of the first and the last. */
1863 	txd = &sc->ale_cdata.ale_txdesc[prod];
1864 	map = txd_last->tx_dmamap;
1865 	txd_last->tx_dmamap = txd->tx_dmamap;
1866 	txd->tx_dmamap = map;
1867 	txd->tx_m = m;
1868 
1869 	/* Sync descriptors. */
1870 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
1871 	    sc->ale_cdata.ale_tx_ring_map,
1872 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1873 
1874 	return (0);
1875 }
1876 
1877 static void
1878 ale_start(struct ifnet *ifp)
1879 {
1880         struct ale_softc *sc;
1881 
1882 	sc = ifp->if_softc;
1883 	ALE_LOCK(sc);
1884 	ale_start_locked(ifp);
1885 	ALE_UNLOCK(sc);
1886 }
1887 
1888 static void
1889 ale_start_locked(struct ifnet *ifp)
1890 {
1891         struct ale_softc *sc;
1892         struct mbuf *m_head;
1893 	int enq;
1894 
1895 	sc = ifp->if_softc;
1896 
1897 	ALE_LOCK_ASSERT(sc);
1898 
1899 	/* Reclaim transmitted frames. */
1900 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1901 		ale_txeof(sc);
1902 
1903 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1904 	    IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0)
1905 		return;
1906 
1907 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1908 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1909 		if (m_head == NULL)
1910 			break;
1911 		/*
1912 		 * Pack the data into the transmit ring. If we
1913 		 * don't have room, set the OACTIVE flag and wait
1914 		 * for the NIC to drain the ring.
1915 		 */
1916 		if (ale_encap(sc, &m_head)) {
1917 			if (m_head == NULL)
1918 				break;
1919 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1920 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1921 			break;
1922 		}
1923 
1924 		enq++;
1925 		/*
1926 		 * If there's a BPF listener, bounce a copy of this frame
1927 		 * to him.
1928 		 */
1929 		ETHER_BPF_MTAP(ifp, m_head);
1930 	}
1931 
1932 	if (enq > 0) {
1933 		/* Kick. */
1934 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1935 		    sc->ale_cdata.ale_tx_prod);
1936 		/* Set a timeout in case the chip goes out to lunch. */
1937 		sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
1938 	}
1939 }
1940 
1941 static void
1942 ale_watchdog(struct ale_softc *sc)
1943 {
1944 	struct ifnet *ifp;
1945 
1946 	ALE_LOCK_ASSERT(sc);
1947 
1948 	if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
1949 		return;
1950 
1951 	ifp = sc->ale_ifp;
1952 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1953 		if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
1954 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1955 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1956 		ale_init_locked(sc);
1957 		return;
1958 	}
1959 	if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
1960 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1961 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1962 	ale_init_locked(sc);
1963 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1964 		ale_start_locked(ifp);
1965 }
1966 
1967 static int
1968 ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1969 {
1970 	struct ale_softc *sc;
1971 	struct ifreq *ifr;
1972 	struct mii_data *mii;
1973 	int error, mask;
1974 
1975 	sc = ifp->if_softc;
1976 	ifr = (struct ifreq *)data;
1977 	error = 0;
1978 	switch (cmd) {
1979 	case SIOCSIFMTU:
1980 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
1981 		    ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
1982 		    ifr->ifr_mtu > ETHERMTU))
1983 			error = EINVAL;
1984 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1985 			ALE_LOCK(sc);
1986 			ifp->if_mtu = ifr->ifr_mtu;
1987 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1988 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1989 				ale_init_locked(sc);
1990 			}
1991 			ALE_UNLOCK(sc);
1992 		}
1993 		break;
1994 	case SIOCSIFFLAGS:
1995 		ALE_LOCK(sc);
1996 		if ((ifp->if_flags & IFF_UP) != 0) {
1997 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1998 				if (((ifp->if_flags ^ sc->ale_if_flags)
1999 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2000 					ale_rxfilter(sc);
2001 			} else {
2002 				ale_init_locked(sc);
2003 			}
2004 		} else {
2005 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2006 				ale_stop(sc);
2007 		}
2008 		sc->ale_if_flags = ifp->if_flags;
2009 		ALE_UNLOCK(sc);
2010 		break;
2011 	case SIOCADDMULTI:
2012 	case SIOCDELMULTI:
2013 		ALE_LOCK(sc);
2014 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2015 			ale_rxfilter(sc);
2016 		ALE_UNLOCK(sc);
2017 		break;
2018 	case SIOCSIFMEDIA:
2019 	case SIOCGIFMEDIA:
2020 		mii = device_get_softc(sc->ale_miibus);
2021 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2022 		break;
2023 	case SIOCSIFCAP:
2024 		ALE_LOCK(sc);
2025 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2026 		if ((mask & IFCAP_TXCSUM) != 0 &&
2027 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2028 			ifp->if_capenable ^= IFCAP_TXCSUM;
2029 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2030 				ifp->if_hwassist |= ALE_CSUM_FEATURES;
2031 			else
2032 				ifp->if_hwassist &= ~ALE_CSUM_FEATURES;
2033 		}
2034 		if ((mask & IFCAP_RXCSUM) != 0 &&
2035 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2036 			ifp->if_capenable ^= IFCAP_RXCSUM;
2037 		if ((mask & IFCAP_TSO4) != 0 &&
2038 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2039 			ifp->if_capenable ^= IFCAP_TSO4;
2040 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2041 				ifp->if_hwassist |= CSUM_TSO;
2042 			else
2043 				ifp->if_hwassist &= ~CSUM_TSO;
2044 		}
2045 
2046 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2047 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2048 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2049 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2050 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2051 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2052 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2053 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2054 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2055 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2056 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2057 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2058 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2059 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2060 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2061 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2062 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
2063 			ale_rxvlan(sc);
2064 		}
2065 		ALE_UNLOCK(sc);
2066 		VLAN_CAPABILITIES(ifp);
2067 		break;
2068 	default:
2069 		error = ether_ioctl(ifp, cmd, data);
2070 		break;
2071 	}
2072 
2073 	return (error);
2074 }
2075 
2076 static void
2077 ale_mac_config(struct ale_softc *sc)
2078 {
2079 	struct mii_data *mii;
2080 	uint32_t reg;
2081 
2082 	ALE_LOCK_ASSERT(sc);
2083 
2084 	mii = device_get_softc(sc->ale_miibus);
2085 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2086 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2087 	    MAC_CFG_SPEED_MASK);
2088 	/* Reprogram MAC with resolved speed/duplex. */
2089 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2090 	case IFM_10_T:
2091 	case IFM_100_TX:
2092 		reg |= MAC_CFG_SPEED_10_100;
2093 		break;
2094 	case IFM_1000_T:
2095 		reg |= MAC_CFG_SPEED_1000;
2096 		break;
2097 	}
2098 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2099 		reg |= MAC_CFG_FULL_DUPLEX;
2100 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2101 			reg |= MAC_CFG_TX_FC;
2102 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2103 			reg |= MAC_CFG_RX_FC;
2104 	}
2105 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2106 }
2107 
2108 static void
2109 ale_stats_clear(struct ale_softc *sc)
2110 {
2111 	struct smb sb;
2112 	uint32_t *reg;
2113 	int i;
2114 
2115 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2116 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2117 		i += sizeof(uint32_t);
2118 	}
2119 	/* Read Tx statistics. */
2120 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2121 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2122 		i += sizeof(uint32_t);
2123 	}
2124 }
2125 
2126 static void
2127 ale_stats_update(struct ale_softc *sc)
2128 {
2129 	struct ale_hw_stats *stat;
2130 	struct smb sb, *smb;
2131 	struct ifnet *ifp;
2132 	uint32_t *reg;
2133 	int i;
2134 
2135 	ALE_LOCK_ASSERT(sc);
2136 
2137 	ifp = sc->ale_ifp;
2138 	stat = &sc->ale_stats;
2139 	smb = &sb;
2140 
2141 	/* Read Rx statistics. */
2142 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2143 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2144 		i += sizeof(uint32_t);
2145 	}
2146 	/* Read Tx statistics. */
2147 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2148 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2149 		i += sizeof(uint32_t);
2150 	}
2151 
2152 	/* Rx stats. */
2153 	stat->rx_frames += smb->rx_frames;
2154 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2155 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2156 	stat->rx_pause_frames += smb->rx_pause_frames;
2157 	stat->rx_control_frames += smb->rx_control_frames;
2158 	stat->rx_crcerrs += smb->rx_crcerrs;
2159 	stat->rx_lenerrs += smb->rx_lenerrs;
2160 	stat->rx_bytes += smb->rx_bytes;
2161 	stat->rx_runts += smb->rx_runts;
2162 	stat->rx_fragments += smb->rx_fragments;
2163 	stat->rx_pkts_64 += smb->rx_pkts_64;
2164 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2165 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2166 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2167 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2168 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2169 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2170 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2171 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2172 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2173 	stat->rx_alignerrs += smb->rx_alignerrs;
2174 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2175 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2176 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2177 
2178 	/* Tx stats. */
2179 	stat->tx_frames += smb->tx_frames;
2180 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2181 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2182 	stat->tx_pause_frames += smb->tx_pause_frames;
2183 	stat->tx_excess_defer += smb->tx_excess_defer;
2184 	stat->tx_control_frames += smb->tx_control_frames;
2185 	stat->tx_deferred += smb->tx_deferred;
2186 	stat->tx_bytes += smb->tx_bytes;
2187 	stat->tx_pkts_64 += smb->tx_pkts_64;
2188 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2189 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2190 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2191 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2192 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2193 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2194 	stat->tx_single_colls += smb->tx_single_colls;
2195 	stat->tx_multi_colls += smb->tx_multi_colls;
2196 	stat->tx_late_colls += smb->tx_late_colls;
2197 	stat->tx_excess_colls += smb->tx_excess_colls;
2198 	stat->tx_underrun += smb->tx_underrun;
2199 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2200 	stat->tx_lenerrs += smb->tx_lenerrs;
2201 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2202 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2203 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2204 
2205 	/* Update counters in ifnet. */
2206 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2207 
2208 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2209 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2210 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2211 
2212 	if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_late_colls +
2213 	    smb->tx_excess_colls + smb->tx_underrun + smb->tx_pkts_truncated);
2214 
2215 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2216 
2217 	if_inc_counter(ifp, IFCOUNTER_IERRORS,
2218 	    smb->rx_crcerrs + smb->rx_lenerrs +
2219 	    smb->rx_runts + smb->rx_pkts_truncated +
2220 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2221 	    smb->rx_alignerrs);
2222 }
2223 
2224 static int
2225 ale_intr(void *arg)
2226 {
2227 	struct ale_softc *sc;
2228 	uint32_t status;
2229 
2230 	sc = (struct ale_softc *)arg;
2231 
2232 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2233 	if ((status & ALE_INTRS) == 0)
2234 		return (FILTER_STRAY);
2235 	/* Disable interrupts. */
2236 	CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
2237 	taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2238 
2239 	return (FILTER_HANDLED);
2240 }
2241 
2242 static void
2243 ale_int_task(void *arg, int pending)
2244 {
2245 	struct ale_softc *sc;
2246 	struct ifnet *ifp;
2247 	uint32_t status;
2248 	int more;
2249 
2250 	sc = (struct ale_softc *)arg;
2251 
2252 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2253 	ALE_LOCK(sc);
2254 	if (sc->ale_morework != 0)
2255 		status |= INTR_RX_PKT;
2256 	if ((status & ALE_INTRS) == 0)
2257 		goto done;
2258 
2259 	/* Acknowledge interrupts but still disable interrupts. */
2260 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
2261 
2262 	ifp = sc->ale_ifp;
2263 	more = 0;
2264 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2265 		more = ale_rxeof(sc, sc->ale_process_limit);
2266 		if (more == EAGAIN)
2267 			sc->ale_morework = 1;
2268 		else if (more == EIO) {
2269 			sc->ale_stats.reset_brk_seq++;
2270 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2271 			ale_init_locked(sc);
2272 			ALE_UNLOCK(sc);
2273 			return;
2274 		}
2275 
2276 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2277 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2278 				device_printf(sc->ale_dev,
2279 				    "DMA read error! -- resetting\n");
2280 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2281 				device_printf(sc->ale_dev,
2282 				    "DMA write error! -- resetting\n");
2283 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2284 			ale_init_locked(sc);
2285 			ALE_UNLOCK(sc);
2286 			return;
2287 		}
2288 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2289 			ale_start_locked(ifp);
2290 	}
2291 
2292 	if (more == EAGAIN ||
2293 	    (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
2294 		ALE_UNLOCK(sc);
2295 		taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2296 		return;
2297 	}
2298 
2299 done:
2300 	ALE_UNLOCK(sc);
2301 
2302 	/* Re-enable interrupts. */
2303 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
2304 }
2305 
2306 static void
2307 ale_txeof(struct ale_softc *sc)
2308 {
2309 	struct ifnet *ifp;
2310 	struct ale_txdesc *txd;
2311 	uint32_t cons, prod;
2312 	int prog;
2313 
2314 	ALE_LOCK_ASSERT(sc);
2315 
2316 	ifp = sc->ale_ifp;
2317 
2318 	if (sc->ale_cdata.ale_tx_cnt == 0)
2319 		return;
2320 
2321 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2322 	    sc->ale_cdata.ale_tx_ring_map,
2323 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2324 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
2325 		bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2326 		    sc->ale_cdata.ale_tx_cmb_map,
2327 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2328 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
2329 	} else
2330 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
2331 	cons = sc->ale_cdata.ale_tx_cons;
2332 	/*
2333 	 * Go through our Tx list and free mbufs for those
2334 	 * frames which have been transmitted.
2335 	 */
2336 	for (prog = 0; cons != prod; prog++,
2337 	    ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
2338 		if (sc->ale_cdata.ale_tx_cnt <= 0)
2339 			break;
2340 		prog++;
2341 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2342 		sc->ale_cdata.ale_tx_cnt--;
2343 		txd = &sc->ale_cdata.ale_txdesc[cons];
2344 		if (txd->tx_m != NULL) {
2345 			/* Reclaim transmitted mbufs. */
2346 			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2347 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2348 			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2349 			    txd->tx_dmamap);
2350 			m_freem(txd->tx_m);
2351 			txd->tx_m = NULL;
2352 		}
2353 	}
2354 
2355 	if (prog > 0) {
2356 		sc->ale_cdata.ale_tx_cons = cons;
2357 		/*
2358 		 * Unarm watchdog timer only when there is no pending
2359 		 * Tx descriptors in queue.
2360 		 */
2361 		if (sc->ale_cdata.ale_tx_cnt == 0)
2362 			sc->ale_watchdog_timer = 0;
2363 	}
2364 }
2365 
2366 static void
2367 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
2368     uint32_t length, uint32_t *prod)
2369 {
2370 	struct ale_rx_page *rx_page;
2371 
2372 	rx_page = *page;
2373 	/* Update consumer position. */
2374 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
2375 	    ALE_RX_PAGE_ALIGN);
2376 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
2377 		/*
2378 		 * End of Rx page reached, let hardware reuse
2379 		 * this page.
2380 		 */
2381 		rx_page->cons = 0;
2382 		*rx_page->cmb_addr = 0;
2383 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2384 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2385 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
2386 		    RXF_VALID);
2387 		/* Switch to alternate Rx page. */
2388 		sc->ale_cdata.ale_rx_curp ^= 1;
2389 		rx_page = *page =
2390 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2391 		/* Page flipped, sync CMB and Rx page. */
2392 		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2393 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2394 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2395 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2396 		/* Sync completed, cache updated producer index. */
2397 		*prod = *rx_page->cmb_addr;
2398 	}
2399 }
2400 
2401 
2402 /*
2403  * It seems that AR81xx controller can compute partial checksum.
2404  * The partial checksum value can be used to accelerate checksum
2405  * computation for fragmented TCP/UDP packets. Upper network stack
2406  * already takes advantage of the partial checksum value in IP
2407  * reassembly stage. But I'm not sure the correctness of the
2408  * partial hardware checksum assistance due to lack of data sheet.
2409  * In addition, the Rx feature of controller that requires copying
2410  * for every frames effectively nullifies one of most nice offload
2411  * capability of controller.
2412  */
2413 static void
2414 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
2415 {
2416 	struct ifnet *ifp;
2417 	struct ip *ip;
2418 	char *p;
2419 
2420 	ifp = sc->ale_ifp;
2421 	m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2422 	if ((status & ALE_RD_IPCSUM_NOK) == 0)
2423 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2424 
2425 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
2426 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
2427 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
2428 		    ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
2429 			m->m_pkthdr.csum_flags |=
2430 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2431 			m->m_pkthdr.csum_data = 0xffff;
2432 		}
2433 	} else {
2434 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
2435 		    (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
2436 			p = mtod(m, char *);
2437 			p += ETHER_HDR_LEN;
2438 			if ((status & ALE_RD_802_3) != 0)
2439 				p += LLC_SNAPFRAMELEN;
2440 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 &&
2441 			    (status & ALE_RD_VLAN) != 0)
2442 				p += ETHER_VLAN_ENCAP_LEN;
2443 			ip = (struct ip *)p;
2444 			if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
2445 				return;
2446 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2447 			    CSUM_PSEUDO_HDR;
2448 			m->m_pkthdr.csum_data = 0xffff;
2449 		}
2450 	}
2451 	/*
2452 	 * Don't mark bad checksum for TCP/UDP frames
2453 	 * as fragmented frames may always have set
2454 	 * bad checksummed bit of frame status.
2455 	 */
2456 }
2457 
2458 /* Process received frames. */
2459 static int
2460 ale_rxeof(struct ale_softc *sc, int count)
2461 {
2462 	struct ale_rx_page *rx_page;
2463 	struct rx_rs *rs;
2464 	struct ifnet *ifp;
2465 	struct mbuf *m;
2466 	uint32_t length, prod, seqno, status, vtags;
2467 	int prog;
2468 
2469 	ifp = sc->ale_ifp;
2470 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2471 	bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2472 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2473 	bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2474 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2475 	/*
2476 	 * Don't directly access producer index as hardware may
2477 	 * update it while Rx handler is in progress. It would
2478 	 * be even better if there is a way to let hardware
2479 	 * know how far driver processed its received frames.
2480 	 * Alternatively, hardware could provide a way to disable
2481 	 * CMB updates until driver acknowledges the end of CMB
2482 	 * access.
2483 	 */
2484 	prod = *rx_page->cmb_addr;
2485 	for (prog = 0; prog < count; prog++) {
2486 		if (rx_page->cons >= prod)
2487 			break;
2488 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
2489 		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
2490 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
2491 			/*
2492 			 * Normally I believe this should not happen unless
2493 			 * severe driver bug or corrupted memory. However
2494 			 * it seems to happen under certain conditions which
2495 			 * is triggered by abrupt Rx events such as initiation
2496 			 * of bulk transfer of remote host. It's not easy to
2497 			 * reproduce this and I doubt it could be related
2498 			 * with FIFO overflow of hardware or activity of Tx
2499 			 * CMB updates. I also remember similar behaviour
2500 			 * seen on RealTek 8139 which uses resembling Rx
2501 			 * scheme.
2502 			 */
2503 			if (bootverbose)
2504 				device_printf(sc->ale_dev,
2505 				    "garbled seq: %u, expected: %u -- "
2506 				    "resetting!\n", seqno,
2507 				    sc->ale_cdata.ale_rx_seqno);
2508 			return (EIO);
2509 		}
2510 		/* Frame received. */
2511 		sc->ale_cdata.ale_rx_seqno++;
2512 		length = ALE_RX_BYTES(le32toh(rs->length));
2513 		status = le32toh(rs->flags);
2514 		if ((status & ALE_RD_ERROR) != 0) {
2515 			/*
2516 			 * We want to pass the following frames to upper
2517 			 * layer regardless of error status of Rx return
2518 			 * status.
2519 			 *
2520 			 *  o IP/TCP/UDP checksum is bad.
2521 			 *  o frame length and protocol specific length
2522 			 *     does not match.
2523 			 */
2524 			if ((status & (ALE_RD_CRC | ALE_RD_CODE |
2525 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
2526 			    ALE_RD_TRUNC)) != 0) {
2527 				ale_rx_update_page(sc, &rx_page, length, &prod);
2528 				continue;
2529 			}
2530 		}
2531 		/*
2532 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
2533 		 * from hardware limitation). For jumbo frames we could
2534 		 * get a slightly better performance if driver use
2535 		 * m_getjcl(9) with proper buffer size argument. However
2536 		 * that would make code more complicated and I don't
2537 		 * think users would expect good Rx performance numbers
2538 		 * on these low-end consumer ethernet controller.
2539 		 */
2540 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
2541 		    ETHER_ALIGN, ifp, NULL);
2542 		if (m == NULL) {
2543 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2544 			ale_rx_update_page(sc, &rx_page, length, &prod);
2545 			continue;
2546 		}
2547 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2548 		    (status & ALE_RD_IPV4) != 0)
2549 			ale_rxcsum(sc, m, status);
2550 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2551 		    (status & ALE_RD_VLAN) != 0) {
2552 			vtags = ALE_RX_VLAN(le32toh(rs->vtags));
2553 			m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
2554 			m->m_flags |= M_VLANTAG;
2555 		}
2556 
2557 		/* Pass it to upper layer. */
2558 		ALE_UNLOCK(sc);
2559 		(*ifp->if_input)(ifp, m);
2560 		ALE_LOCK(sc);
2561 
2562 		ale_rx_update_page(sc, &rx_page, length, &prod);
2563 	}
2564 
2565 	return (count > 0 ? 0 : EAGAIN);
2566 }
2567 
2568 static void
2569 ale_tick(void *arg)
2570 {
2571 	struct ale_softc *sc;
2572 	struct mii_data *mii;
2573 
2574 	sc = (struct ale_softc *)arg;
2575 
2576 	ALE_LOCK_ASSERT(sc);
2577 
2578 	mii = device_get_softc(sc->ale_miibus);
2579 	mii_tick(mii);
2580 	ale_stats_update(sc);
2581 	/*
2582 	 * Reclaim Tx buffers that have been transferred. It's not
2583 	 * needed here but it would release allocated mbuf chains
2584 	 * faster and limit the maximum delay to a hz.
2585 	 */
2586 	ale_txeof(sc);
2587 	ale_watchdog(sc);
2588 	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2589 }
2590 
2591 static void
2592 ale_reset(struct ale_softc *sc)
2593 {
2594 	uint32_t reg;
2595 	int i;
2596 
2597 	/* Initialize PCIe module. From Linux. */
2598 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2599 
2600 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
2601 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2602 		DELAY(10);
2603 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
2604 			break;
2605 	}
2606 	if (i == 0)
2607 		device_printf(sc->ale_dev, "master reset timeout!\n");
2608 
2609 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2610 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
2611 			break;
2612 		DELAY(10);
2613 	}
2614 
2615 	if (i == 0)
2616 		device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
2617 }
2618 
2619 static void
2620 ale_init(void *xsc)
2621 {
2622 	struct ale_softc *sc;
2623 
2624 	sc = (struct ale_softc *)xsc;
2625 	ALE_LOCK(sc);
2626 	ale_init_locked(sc);
2627 	ALE_UNLOCK(sc);
2628 }
2629 
2630 static void
2631 ale_init_locked(struct ale_softc *sc)
2632 {
2633 	struct ifnet *ifp;
2634 	struct mii_data *mii;
2635 	uint8_t eaddr[ETHER_ADDR_LEN];
2636 	bus_addr_t paddr;
2637 	uint32_t reg, rxf_hi, rxf_lo;
2638 
2639 	ALE_LOCK_ASSERT(sc);
2640 
2641 	ifp = sc->ale_ifp;
2642 	mii = device_get_softc(sc->ale_miibus);
2643 
2644 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2645 		return;
2646 	/*
2647 	 * Cancel any pending I/O.
2648 	 */
2649 	ale_stop(sc);
2650 	/*
2651 	 * Reset the chip to a known state.
2652 	 */
2653 	ale_reset(sc);
2654 	/* Initialize Tx descriptors, DMA memory blocks. */
2655 	ale_init_rx_pages(sc);
2656 	ale_init_tx_ring(sc);
2657 
2658 	/* Reprogram the station address. */
2659 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2660 	CSR_WRITE_4(sc, ALE_PAR0,
2661 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2662 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
2663 	/*
2664 	 * Clear WOL status and disable all WOL feature as WOL
2665 	 * would interfere Rx operation under normal environments.
2666 	 */
2667 	CSR_READ_4(sc, ALE_WOL_CFG);
2668 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
2669 	/*
2670 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
2671 	 * the same high address part of DMAable region.
2672 	 */
2673 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
2674 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
2675 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
2676 	CSR_WRITE_4(sc, ALE_TPD_CNT,
2677 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
2678 	/* Set Rx page base address, note we use single queue. */
2679 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
2680 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
2681 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
2682 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
2683 	/* Set Tx/Rx CMB addresses. */
2684 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
2685 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
2686 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
2687 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
2688 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
2689 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
2690 	/* Mark RXF0 is valid. */
2691 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
2692 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
2693 	/*
2694 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
2695 	 * multi-queue yet.
2696 	 */
2697 
2698 	/* Set Rx page size, excluding guard frame size. */
2699 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
2700 	/* Tell hardware that we're ready to load DMA blocks. */
2701 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
2702 
2703 	/* Set Rx/Tx interrupt trigger threshold. */
2704 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
2705 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
2706 	/*
2707 	 * XXX
2708 	 * Set interrupt trigger timer, its purpose and relation
2709 	 * with interrupt moderation mechanism is not clear yet.
2710 	 */
2711 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
2712 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
2713 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
2714 
2715 	/* Configure interrupt moderation timer. */
2716 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
2717 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
2718 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
2719 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
2720 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
2721 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2722 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
2723 		reg |= MASTER_IM_RX_TIMER_ENB;
2724 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
2725 		reg |= MASTER_IM_TX_TIMER_ENB;
2726 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
2727 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
2728 
2729 	/* Set Maximum frame size of controller. */
2730 	if (ifp->if_mtu < ETHERMTU)
2731 		sc->ale_max_frame_size = ETHERMTU;
2732 	else
2733 		sc->ale_max_frame_size = ifp->if_mtu;
2734 	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2735 	    ETHER_CRC_LEN;
2736 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
2737 	/* Configure IPG/IFG parameters. */
2738 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
2739 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2740 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2741 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2742 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2743 	/* Set parameters for half-duplex media. */
2744 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
2745 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2746 	    HDPX_CFG_LCOL_MASK) |
2747 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2748 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2749 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2750 	    HDPX_CFG_ABEBT_MASK) |
2751 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2752 	    HDPX_CFG_JAMIPG_MASK));
2753 
2754 	/* Configure Tx jumbo frame parameters. */
2755 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2756 		if (ifp->if_mtu < ETHERMTU)
2757 			reg = sc->ale_max_frame_size;
2758 		else if (ifp->if_mtu < 6 * 1024)
2759 			reg = (sc->ale_max_frame_size * 2) / 3;
2760 		else
2761 			reg = sc->ale_max_frame_size / 2;
2762 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
2763 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
2764 		    TX_JUMBO_THRESH_UNIT_SHIFT);
2765 	}
2766 	/* Configure TxQ. */
2767 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
2768 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
2769 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2770 	    TXQ_CFG_TPD_BURST_MASK;
2771 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
2772 
2773 	/* Configure Rx jumbo frame & flow control parameters. */
2774 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2775 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
2776 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
2777 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
2778 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
2779 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
2780 		    RX_JUMBO_LKAH_MASK));
2781 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
2782 		rxf_hi = (reg * 7) / 10;
2783 		rxf_lo = (reg * 3)/ 10;
2784 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
2785 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2786 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
2787 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2788 		    RX_FIFO_PAUSE_THRESH_HI_MASK));
2789 	}
2790 
2791 	/* Disable RSS. */
2792 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
2793 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
2794 
2795 	/* Configure RxQ. */
2796 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
2797 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2798 
2799 	/* Configure DMA parameters. */
2800 	reg = 0;
2801 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
2802 		reg |= DMA_CFG_TXCMB_ENB;
2803 	CSR_WRITE_4(sc, ALE_DMA_CFG,
2804 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
2805 	    sc->ale_dma_rd_burst | reg |
2806 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
2807 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2808 	    DMA_CFG_RD_DELAY_CNT_MASK) |
2809 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2810 	    DMA_CFG_WR_DELAY_CNT_MASK));
2811 
2812 	/*
2813 	 * Hardware can be configured to issue SMB interrupt based
2814 	 * on programmed interval. Since there is a callout that is
2815 	 * invoked for every hz in driver we use that instead of
2816 	 * relying on periodic SMB interrupt.
2817 	 */
2818 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
2819 	/* Clear MAC statistics. */
2820 	ale_stats_clear(sc);
2821 
2822 	/*
2823 	 * Configure Tx/Rx MACs.
2824 	 *  - Auto-padding for short frames.
2825 	 *  - Enable CRC generation.
2826 	 *  Actual reconfiguration of MAC for resolved speed/duplex
2827 	 *  is followed after detection of link establishment.
2828 	 *  AR81xx always does checksum computation regardless of
2829 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
2830 	 *  cause Rx handling issue for fragmented IP datagrams due
2831 	 *  to silicon bug.
2832 	 */
2833 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2834 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2835 	    MAC_CFG_PREAMBLE_MASK);
2836 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
2837 		reg |= MAC_CFG_SPEED_10_100;
2838 	else
2839 		reg |= MAC_CFG_SPEED_1000;
2840 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2841 
2842 	/* Set up the receive filter. */
2843 	ale_rxfilter(sc);
2844 	ale_rxvlan(sc);
2845 
2846 	/* Acknowledge all pending interrupts and clear it. */
2847 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
2848 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2849 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
2850 
2851 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2852 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2853 
2854 	sc->ale_flags &= ~ALE_FLAG_LINK;
2855 	/* Switch to the current media. */
2856 	mii_mediachg(mii);
2857 
2858 	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2859 }
2860 
2861 static void
2862 ale_stop(struct ale_softc *sc)
2863 {
2864 	struct ifnet *ifp;
2865 	struct ale_txdesc *txd;
2866 	uint32_t reg;
2867 	int i;
2868 
2869 	ALE_LOCK_ASSERT(sc);
2870 	/*
2871 	 * Mark the interface down and cancel the watchdog timer.
2872 	 */
2873 	ifp = sc->ale_ifp;
2874 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2875 	sc->ale_flags &= ~ALE_FLAG_LINK;
2876 	callout_stop(&sc->ale_tick_ch);
2877 	sc->ale_watchdog_timer = 0;
2878 	ale_stats_update(sc);
2879 	/* Disable interrupts. */
2880 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
2881 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2882 	/* Disable queue processing and DMA. */
2883 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
2884 	reg &= ~TXQ_CFG_ENB;
2885 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
2886 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
2887 	reg &= ~RXQ_CFG_ENB;
2888 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
2889 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
2890 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
2891 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
2892 	DELAY(1000);
2893 	/* Stop Rx/Tx MACs. */
2894 	ale_stop_mac(sc);
2895 	/* Disable interrupts which might be touched in taskq handler. */
2896 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2897 
2898 	/*
2899 	 * Free TX mbufs still in the queues.
2900 	 */
2901 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2902 		txd = &sc->ale_cdata.ale_txdesc[i];
2903 		if (txd->tx_m != NULL) {
2904 			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2905 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2906 			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2907 			    txd->tx_dmamap);
2908 			m_freem(txd->tx_m);
2909 			txd->tx_m = NULL;
2910 		}
2911         }
2912 }
2913 
2914 static void
2915 ale_stop_mac(struct ale_softc *sc)
2916 {
2917 	uint32_t reg;
2918 	int i;
2919 
2920 	ALE_LOCK_ASSERT(sc);
2921 
2922 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2923 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2924 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2925 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2926 	}
2927 
2928 	for (i = ALE_TIMEOUT; i > 0; i--) {
2929 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
2930 		if (reg == 0)
2931 			break;
2932 		DELAY(10);
2933 	}
2934 	if (i == 0)
2935 		device_printf(sc->ale_dev,
2936 		    "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
2937 }
2938 
2939 static void
2940 ale_init_tx_ring(struct ale_softc *sc)
2941 {
2942 	struct ale_txdesc *txd;
2943 	int i;
2944 
2945 	ALE_LOCK_ASSERT(sc);
2946 
2947 	sc->ale_cdata.ale_tx_prod = 0;
2948 	sc->ale_cdata.ale_tx_cons = 0;
2949 	sc->ale_cdata.ale_tx_cnt = 0;
2950 
2951 	bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
2952 	bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
2953 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2954 		txd = &sc->ale_cdata.ale_txdesc[i];
2955 		txd->tx_m = NULL;
2956 	}
2957 	*sc->ale_cdata.ale_tx_cmb = 0;
2958 	bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2959 	    sc->ale_cdata.ale_tx_cmb_map,
2960 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2961 	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2962 	    sc->ale_cdata.ale_tx_ring_map,
2963 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2964 }
2965 
2966 static void
2967 ale_init_rx_pages(struct ale_softc *sc)
2968 {
2969 	struct ale_rx_page *rx_page;
2970 	int i;
2971 
2972 	ALE_LOCK_ASSERT(sc);
2973 
2974 	sc->ale_morework = 0;
2975 	sc->ale_cdata.ale_rx_seqno = 0;
2976 	sc->ale_cdata.ale_rx_curp = 0;
2977 
2978 	for (i = 0; i < ALE_RX_PAGES; i++) {
2979 		rx_page = &sc->ale_cdata.ale_rx_page[i];
2980 		bzero(rx_page->page_addr, sc->ale_pagesize);
2981 		bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
2982 		rx_page->cons = 0;
2983 		*rx_page->cmb_addr = 0;
2984 		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2985 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2986 		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2987 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2988 	}
2989 }
2990 
2991 static void
2992 ale_rxvlan(struct ale_softc *sc)
2993 {
2994 	struct ifnet *ifp;
2995 	uint32_t reg;
2996 
2997 	ALE_LOCK_ASSERT(sc);
2998 
2999 	ifp = sc->ale_ifp;
3000 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
3001 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3002 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3003 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3004 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
3005 }
3006 
3007 static void
3008 ale_rxfilter(struct ale_softc *sc)
3009 {
3010 	struct ifnet *ifp;
3011 	struct ifmultiaddr *ifma;
3012 	uint32_t crc;
3013 	uint32_t mchash[2];
3014 	uint32_t rxcfg;
3015 
3016 	ALE_LOCK_ASSERT(sc);
3017 
3018 	ifp = sc->ale_ifp;
3019 
3020 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
3021 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3022 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3023 		rxcfg |= MAC_CFG_BCAST;
3024 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3025 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3026 			rxcfg |= MAC_CFG_PROMISC;
3027 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3028 			rxcfg |= MAC_CFG_ALLMULTI;
3029 		CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
3030 		CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
3031 		CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3032 		return;
3033 	}
3034 
3035 	/* Program new filter. */
3036 	bzero(mchash, sizeof(mchash));
3037 
3038 	if_maddr_rlock(ifp);
3039 	TAILQ_FOREACH(ifma, &sc->ale_ifp->if_multiaddrs, ifma_link) {
3040 		if (ifma->ifma_addr->sa_family != AF_LINK)
3041 			continue;
3042 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3043 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3044 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3045 	}
3046 	if_maddr_runlock(ifp);
3047 
3048 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
3049 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
3050 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3051 }
3052 
3053 static int
3054 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3055 {
3056 	int error, value;
3057 
3058 	if (arg1 == NULL)
3059 		return (EINVAL);
3060 	value = *(int *)arg1;
3061 	error = sysctl_handle_int(oidp, &value, 0, req);
3062 	if (error || req->newptr == NULL)
3063 		return (error);
3064 	if (value < low || value > high)
3065 		return (EINVAL);
3066         *(int *)arg1 = value;
3067 
3068         return (0);
3069 }
3070 
3071 static int
3072 sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
3073 {
3074 	return (sysctl_int_range(oidp, arg1, arg2, req,
3075 	    ALE_PROC_MIN, ALE_PROC_MAX));
3076 }
3077 
3078 static int
3079 sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
3080 {
3081 
3082 	return (sysctl_int_range(oidp, arg1, arg2, req,
3083 	    ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
3084 }
3085