1 /*- 2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/bus.h> 36 #include <sys/endian.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/mbuf.h> 40 #include <sys/module.h> 41 #include <sys/rman.h> 42 #include <sys/queue.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/sysctl.h> 46 #include <sys/taskqueue.h> 47 48 #include <net/bpf.h> 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/ethernet.h> 52 #include <net/if_dl.h> 53 #include <net/if_llc.h> 54 #include <net/if_media.h> 55 #include <net/if_types.h> 56 #include <net/if_vlan_var.h> 57 58 #include <netinet/in.h> 59 #include <netinet/in_systm.h> 60 #include <netinet/ip.h> 61 #include <netinet/tcp.h> 62 63 #include <dev/mii/mii.h> 64 #include <dev/mii/miivar.h> 65 66 #include <dev/pci/pcireg.h> 67 #include <dev/pci/pcivar.h> 68 69 #include <machine/bus.h> 70 #include <machine/in_cksum.h> 71 72 #include <dev/ale/if_alereg.h> 73 #include <dev/ale/if_alevar.h> 74 75 /* "device miibus" required. See GENERIC if you get errors here. */ 76 #include "miibus_if.h" 77 78 /* For more information about Tx checksum offload issues see ale_encap(). */ 79 #define ALE_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 80 81 MODULE_DEPEND(ale, pci, 1, 1, 1); 82 MODULE_DEPEND(ale, ether, 1, 1, 1); 83 MODULE_DEPEND(ale, miibus, 1, 1, 1); 84 85 /* Tunables. */ 86 static int msi_disable = 0; 87 static int msix_disable = 0; 88 TUNABLE_INT("hw.ale.msi_disable", &msi_disable); 89 TUNABLE_INT("hw.ale.msix_disable", &msix_disable); 90 91 /* 92 * Devices supported by this driver. 93 */ 94 static const struct ale_dev { 95 uint16_t ale_vendorid; 96 uint16_t ale_deviceid; 97 const char *ale_name; 98 } ale_devs[] = { 99 { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX, 100 "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" }, 101 }; 102 103 static int ale_attach(device_t); 104 static int ale_check_boundary(struct ale_softc *); 105 static int ale_detach(device_t); 106 static int ale_dma_alloc(struct ale_softc *); 107 static void ale_dma_free(struct ale_softc *); 108 static void ale_dmamap_cb(void *, bus_dma_segment_t *, int, int); 109 static int ale_encap(struct ale_softc *, struct mbuf **); 110 static void ale_get_macaddr(struct ale_softc *); 111 static void ale_init(void *); 112 static void ale_init_locked(struct ale_softc *); 113 static void ale_init_rx_pages(struct ale_softc *); 114 static void ale_init_tx_ring(struct ale_softc *); 115 static void ale_int_task(void *, int); 116 static int ale_intr(void *); 117 static int ale_ioctl(struct ifnet *, u_long, caddr_t); 118 static void ale_mac_config(struct ale_softc *); 119 static int ale_miibus_readreg(device_t, int, int); 120 static void ale_miibus_statchg(device_t); 121 static int ale_miibus_writereg(device_t, int, int, int); 122 static int ale_mediachange(struct ifnet *); 123 static void ale_mediastatus(struct ifnet *, struct ifmediareq *); 124 static void ale_phy_reset(struct ale_softc *); 125 static int ale_probe(device_t); 126 static void ale_reset(struct ale_softc *); 127 static int ale_resume(device_t); 128 static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **, 129 uint32_t, uint32_t *); 130 static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t); 131 static int ale_rxeof(struct ale_softc *sc, int); 132 static void ale_rxfilter(struct ale_softc *); 133 static void ale_rxvlan(struct ale_softc *); 134 static void ale_setlinkspeed(struct ale_softc *); 135 static void ale_setwol(struct ale_softc *); 136 static int ale_shutdown(device_t); 137 static void ale_start(struct ifnet *); 138 static void ale_start_locked(struct ifnet *); 139 static void ale_stats_clear(struct ale_softc *); 140 static void ale_stats_update(struct ale_softc *); 141 static void ale_stop(struct ale_softc *); 142 static void ale_stop_mac(struct ale_softc *); 143 static int ale_suspend(device_t); 144 static void ale_sysctl_node(struct ale_softc *); 145 static void ale_tick(void *); 146 static void ale_txeof(struct ale_softc *); 147 static void ale_watchdog(struct ale_softc *); 148 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); 149 static int sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS); 150 static int sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS); 151 152 static device_method_t ale_methods[] = { 153 /* Device interface. */ 154 DEVMETHOD(device_probe, ale_probe), 155 DEVMETHOD(device_attach, ale_attach), 156 DEVMETHOD(device_detach, ale_detach), 157 DEVMETHOD(device_shutdown, ale_shutdown), 158 DEVMETHOD(device_suspend, ale_suspend), 159 DEVMETHOD(device_resume, ale_resume), 160 161 /* MII interface. */ 162 DEVMETHOD(miibus_readreg, ale_miibus_readreg), 163 DEVMETHOD(miibus_writereg, ale_miibus_writereg), 164 DEVMETHOD(miibus_statchg, ale_miibus_statchg), 165 166 DEVMETHOD_END 167 }; 168 169 static driver_t ale_driver = { 170 "ale", 171 ale_methods, 172 sizeof(struct ale_softc) 173 }; 174 175 static devclass_t ale_devclass; 176 177 DRIVER_MODULE(ale, pci, ale_driver, ale_devclass, NULL, NULL); 178 DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, NULL, NULL); 179 180 static struct resource_spec ale_res_spec_mem[] = { 181 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 182 { -1, 0, 0 } 183 }; 184 185 static struct resource_spec ale_irq_spec_legacy[] = { 186 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 187 { -1, 0, 0 } 188 }; 189 190 static struct resource_spec ale_irq_spec_msi[] = { 191 { SYS_RES_IRQ, 1, RF_ACTIVE }, 192 { -1, 0, 0 } 193 }; 194 195 static struct resource_spec ale_irq_spec_msix[] = { 196 { SYS_RES_IRQ, 1, RF_ACTIVE }, 197 { -1, 0, 0 } 198 }; 199 200 static int 201 ale_miibus_readreg(device_t dev, int phy, int reg) 202 { 203 struct ale_softc *sc; 204 uint32_t v; 205 int i; 206 207 sc = device_get_softc(dev); 208 209 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ | 210 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 211 for (i = ALE_PHY_TIMEOUT; i > 0; i--) { 212 DELAY(5); 213 v = CSR_READ_4(sc, ALE_MDIO); 214 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 215 break; 216 } 217 218 if (i == 0) { 219 device_printf(sc->ale_dev, "phy read timeout : %d\n", reg); 220 return (0); 221 } 222 223 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT); 224 } 225 226 static int 227 ale_miibus_writereg(device_t dev, int phy, int reg, int val) 228 { 229 struct ale_softc *sc; 230 uint32_t v; 231 int i; 232 233 sc = device_get_softc(dev); 234 235 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE | 236 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT | 237 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 238 for (i = ALE_PHY_TIMEOUT; i > 0; i--) { 239 DELAY(5); 240 v = CSR_READ_4(sc, ALE_MDIO); 241 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 242 break; 243 } 244 245 if (i == 0) 246 device_printf(sc->ale_dev, "phy write timeout : %d\n", reg); 247 248 return (0); 249 } 250 251 static void 252 ale_miibus_statchg(device_t dev) 253 { 254 struct ale_softc *sc; 255 struct mii_data *mii; 256 struct ifnet *ifp; 257 uint32_t reg; 258 259 sc = device_get_softc(dev); 260 mii = device_get_softc(sc->ale_miibus); 261 ifp = sc->ale_ifp; 262 if (mii == NULL || ifp == NULL || 263 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 264 return; 265 266 sc->ale_flags &= ~ALE_FLAG_LINK; 267 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 268 (IFM_ACTIVE | IFM_AVALID)) { 269 switch (IFM_SUBTYPE(mii->mii_media_active)) { 270 case IFM_10_T: 271 case IFM_100_TX: 272 sc->ale_flags |= ALE_FLAG_LINK; 273 break; 274 case IFM_1000_T: 275 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0) 276 sc->ale_flags |= ALE_FLAG_LINK; 277 break; 278 default: 279 break; 280 } 281 } 282 283 /* Stop Rx/Tx MACs. */ 284 ale_stop_mac(sc); 285 286 /* Program MACs with resolved speed/duplex/flow-control. */ 287 if ((sc->ale_flags & ALE_FLAG_LINK) != 0) { 288 ale_mac_config(sc); 289 /* Reenable Tx/Rx MACs. */ 290 reg = CSR_READ_4(sc, ALE_MAC_CFG); 291 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB; 292 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 293 } 294 } 295 296 static void 297 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 298 { 299 struct ale_softc *sc; 300 struct mii_data *mii; 301 302 sc = ifp->if_softc; 303 ALE_LOCK(sc); 304 if ((ifp->if_flags & IFF_UP) == 0) { 305 ALE_UNLOCK(sc); 306 return; 307 } 308 mii = device_get_softc(sc->ale_miibus); 309 310 mii_pollstat(mii); 311 ifmr->ifm_status = mii->mii_media_status; 312 ifmr->ifm_active = mii->mii_media_active; 313 ALE_UNLOCK(sc); 314 } 315 316 static int 317 ale_mediachange(struct ifnet *ifp) 318 { 319 struct ale_softc *sc; 320 struct mii_data *mii; 321 struct mii_softc *miisc; 322 int error; 323 324 sc = ifp->if_softc; 325 ALE_LOCK(sc); 326 mii = device_get_softc(sc->ale_miibus); 327 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 328 PHY_RESET(miisc); 329 error = mii_mediachg(mii); 330 ALE_UNLOCK(sc); 331 332 return (error); 333 } 334 335 static int 336 ale_probe(device_t dev) 337 { 338 const struct ale_dev *sp; 339 int i; 340 uint16_t vendor, devid; 341 342 vendor = pci_get_vendor(dev); 343 devid = pci_get_device(dev); 344 sp = ale_devs; 345 for (i = 0; i < sizeof(ale_devs) / sizeof(ale_devs[0]); i++) { 346 if (vendor == sp->ale_vendorid && 347 devid == sp->ale_deviceid) { 348 device_set_desc(dev, sp->ale_name); 349 return (BUS_PROBE_DEFAULT); 350 } 351 sp++; 352 } 353 354 return (ENXIO); 355 } 356 357 static void 358 ale_get_macaddr(struct ale_softc *sc) 359 { 360 uint32_t ea[2], reg; 361 int i, vpdc; 362 363 reg = CSR_READ_4(sc, ALE_SPI_CTRL); 364 if ((reg & SPI_VPD_ENB) != 0) { 365 reg &= ~SPI_VPD_ENB; 366 CSR_WRITE_4(sc, ALE_SPI_CTRL, reg); 367 } 368 369 if (pci_find_cap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) { 370 /* 371 * PCI VPD capability found, let TWSI reload EEPROM. 372 * This will set ethernet address of controller. 373 */ 374 CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) | 375 TWSI_CTRL_SW_LD_START); 376 for (i = 100; i > 0; i--) { 377 DELAY(1000); 378 reg = CSR_READ_4(sc, ALE_TWSI_CTRL); 379 if ((reg & TWSI_CTRL_SW_LD_START) == 0) 380 break; 381 } 382 if (i == 0) 383 device_printf(sc->ale_dev, 384 "reloading EEPROM timeout!\n"); 385 } else { 386 if (bootverbose) 387 device_printf(sc->ale_dev, 388 "PCI VPD capability not found!\n"); 389 } 390 391 ea[0] = CSR_READ_4(sc, ALE_PAR0); 392 ea[1] = CSR_READ_4(sc, ALE_PAR1); 393 sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF; 394 sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF; 395 sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF; 396 sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF; 397 sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF; 398 sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF; 399 } 400 401 static void 402 ale_phy_reset(struct ale_softc *sc) 403 { 404 405 /* Reset magic from Linux. */ 406 CSR_WRITE_2(sc, ALE_GPHY_CTRL, 407 GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET | 408 GPHY_CTRL_PHY_PLL_ON); 409 DELAY(1000); 410 CSR_WRITE_2(sc, ALE_GPHY_CTRL, 411 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | 412 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON); 413 DELAY(1000); 414 415 #define ATPHY_DBG_ADDR 0x1D 416 #define ATPHY_DBG_DATA 0x1E 417 418 /* Enable hibernation mode. */ 419 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 420 ATPHY_DBG_ADDR, 0x0B); 421 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 422 ATPHY_DBG_DATA, 0xBC00); 423 /* Set Class A/B for all modes. */ 424 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 425 ATPHY_DBG_ADDR, 0x00); 426 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 427 ATPHY_DBG_DATA, 0x02EF); 428 /* Enable 10BT power saving. */ 429 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 430 ATPHY_DBG_ADDR, 0x12); 431 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 432 ATPHY_DBG_DATA, 0x4C04); 433 /* Adjust 1000T power. */ 434 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 435 ATPHY_DBG_ADDR, 0x04); 436 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 437 ATPHY_DBG_ADDR, 0x8BBB); 438 /* 10BT center tap voltage. */ 439 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 440 ATPHY_DBG_ADDR, 0x05); 441 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 442 ATPHY_DBG_ADDR, 0x2C46); 443 444 #undef ATPHY_DBG_ADDR 445 #undef ATPHY_DBG_DATA 446 DELAY(1000); 447 } 448 449 static int 450 ale_attach(device_t dev) 451 { 452 struct ale_softc *sc; 453 struct ifnet *ifp; 454 uint16_t burst; 455 int error, i, msic, msixc, pmc; 456 uint32_t rxf_len, txf_len; 457 458 error = 0; 459 sc = device_get_softc(dev); 460 sc->ale_dev = dev; 461 462 mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 463 MTX_DEF); 464 callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0); 465 TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc); 466 467 /* Map the device. */ 468 pci_enable_busmaster(dev); 469 sc->ale_res_spec = ale_res_spec_mem; 470 sc->ale_irq_spec = ale_irq_spec_legacy; 471 error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res); 472 if (error != 0) { 473 device_printf(dev, "cannot allocate memory resources.\n"); 474 goto fail; 475 } 476 477 /* Set PHY address. */ 478 sc->ale_phyaddr = ALE_PHY_ADDR; 479 480 /* Reset PHY. */ 481 ale_phy_reset(sc); 482 483 /* Reset the ethernet controller. */ 484 ale_reset(sc); 485 486 /* Get PCI and chip id/revision. */ 487 sc->ale_rev = pci_get_revid(dev); 488 if (sc->ale_rev >= 0xF0) { 489 /* L2E Rev. B. AR8114 */ 490 sc->ale_flags |= ALE_FLAG_FASTETHER; 491 } else { 492 if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) { 493 /* L1E AR8121 */ 494 sc->ale_flags |= ALE_FLAG_JUMBO; 495 } else { 496 /* L2E Rev. A. AR8113 */ 497 sc->ale_flags |= ALE_FLAG_FASTETHER; 498 } 499 } 500 /* 501 * All known controllers seems to require 4 bytes alignment 502 * of Tx buffers to make Tx checksum offload with custom 503 * checksum generation method work. 504 */ 505 sc->ale_flags |= ALE_FLAG_TXCSUM_BUG; 506 /* 507 * All known controllers seems to have issues on Rx checksum 508 * offload for fragmented IP datagrams. 509 */ 510 sc->ale_flags |= ALE_FLAG_RXCSUM_BUG; 511 /* 512 * Don't use Tx CMB. It is known to cause RRS update failure 513 * under certain circumstances. Typical phenomenon of the 514 * issue would be unexpected sequence number encountered in 515 * Rx handler. 516 */ 517 sc->ale_flags |= ALE_FLAG_TXCMB_BUG; 518 sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >> 519 MASTER_CHIP_REV_SHIFT; 520 if (bootverbose) { 521 device_printf(dev, "PCI device revision : 0x%04x\n", 522 sc->ale_rev); 523 device_printf(dev, "Chip id/revision : 0x%04x\n", 524 sc->ale_chip_rev); 525 } 526 txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN); 527 rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN); 528 /* 529 * Uninitialized hardware returns an invalid chip id/revision 530 * as well as 0xFFFFFFFF for Tx/Rx fifo length. 531 */ 532 if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF || 533 rxf_len == 0xFFFFFFF) { 534 device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO " 535 "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev, 536 txf_len, rxf_len); 537 error = ENXIO; 538 goto fail; 539 } 540 device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len); 541 542 /* Allocate IRQ resources. */ 543 msixc = pci_msix_count(dev); 544 msic = pci_msi_count(dev); 545 if (bootverbose) { 546 device_printf(dev, "MSIX count : %d\n", msixc); 547 device_printf(dev, "MSI count : %d\n", msic); 548 } 549 550 /* Prefer MSIX over MSI. */ 551 if (msix_disable == 0 || msi_disable == 0) { 552 if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES && 553 pci_alloc_msix(dev, &msixc) == 0) { 554 if (msixc == ALE_MSIX_MESSAGES) { 555 device_printf(dev, "Using %d MSIX messages.\n", 556 msixc); 557 sc->ale_flags |= ALE_FLAG_MSIX; 558 sc->ale_irq_spec = ale_irq_spec_msix; 559 } else 560 pci_release_msi(dev); 561 } 562 if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 && 563 msic == ALE_MSI_MESSAGES && 564 pci_alloc_msi(dev, &msic) == 0) { 565 if (msic == ALE_MSI_MESSAGES) { 566 device_printf(dev, "Using %d MSI messages.\n", 567 msic); 568 sc->ale_flags |= ALE_FLAG_MSI; 569 sc->ale_irq_spec = ale_irq_spec_msi; 570 } else 571 pci_release_msi(dev); 572 } 573 } 574 575 error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq); 576 if (error != 0) { 577 device_printf(dev, "cannot allocate IRQ resources.\n"); 578 goto fail; 579 } 580 581 /* Get DMA parameters from PCIe device control register. */ 582 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 583 sc->ale_flags |= ALE_FLAG_PCIE; 584 burst = pci_read_config(dev, i + 0x08, 2); 585 /* Max read request size. */ 586 sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) << 587 DMA_CFG_RD_BURST_SHIFT; 588 /* Max payload size. */ 589 sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) << 590 DMA_CFG_WR_BURST_SHIFT; 591 if (bootverbose) { 592 device_printf(dev, "Read request size : %d bytes.\n", 593 128 << ((burst >> 12) & 0x07)); 594 device_printf(dev, "TLP payload size : %d bytes.\n", 595 128 << ((burst >> 5) & 0x07)); 596 } 597 } else { 598 sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128; 599 sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128; 600 } 601 602 /* Create device sysctl node. */ 603 ale_sysctl_node(sc); 604 605 if ((error = ale_dma_alloc(sc) != 0)) 606 goto fail; 607 608 /* Load station address. */ 609 ale_get_macaddr(sc); 610 611 ifp = sc->ale_ifp = if_alloc(IFT_ETHER); 612 if (ifp == NULL) { 613 device_printf(dev, "cannot allocate ifnet structure.\n"); 614 error = ENXIO; 615 goto fail; 616 } 617 618 ifp->if_softc = sc; 619 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 620 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 621 ifp->if_ioctl = ale_ioctl; 622 ifp->if_start = ale_start; 623 ifp->if_init = ale_init; 624 ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1; 625 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 626 IFQ_SET_READY(&ifp->if_snd); 627 ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4; 628 ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO; 629 if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) { 630 sc->ale_flags |= ALE_FLAG_PMCAP; 631 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST; 632 } 633 ifp->if_capenable = ifp->if_capabilities; 634 635 /* Set up MII bus. */ 636 error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange, 637 ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY, 638 MIIF_DOPAUSE); 639 if (error != 0) { 640 device_printf(dev, "attaching PHYs failed\n"); 641 goto fail; 642 } 643 644 ether_ifattach(ifp, sc->ale_eaddr); 645 646 /* VLAN capability setup. */ 647 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | 648 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO; 649 ifp->if_capenable = ifp->if_capabilities; 650 /* 651 * Even though controllers supported by ale(3) have Rx checksum 652 * offload bug the workaround for fragmented frames seemed to 653 * work so far. However it seems Rx checksum offload does not 654 * work under certain conditions. So disable Rx checksum offload 655 * until I find more clue about it but allow users to override it. 656 */ 657 ifp->if_capenable &= ~IFCAP_RXCSUM; 658 659 /* Tell the upper layer(s) we support long frames. */ 660 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 661 662 /* Create local taskq. */ 663 sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK, 664 taskqueue_thread_enqueue, &sc->ale_tq); 665 if (sc->ale_tq == NULL) { 666 device_printf(dev, "could not create taskqueue.\n"); 667 ether_ifdetach(ifp); 668 error = ENXIO; 669 goto fail; 670 } 671 taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq", 672 device_get_nameunit(sc->ale_dev)); 673 674 if ((sc->ale_flags & ALE_FLAG_MSIX) != 0) 675 msic = ALE_MSIX_MESSAGES; 676 else if ((sc->ale_flags & ALE_FLAG_MSI) != 0) 677 msic = ALE_MSI_MESSAGES; 678 else 679 msic = 1; 680 for (i = 0; i < msic; i++) { 681 error = bus_setup_intr(dev, sc->ale_irq[i], 682 INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc, 683 &sc->ale_intrhand[i]); 684 if (error != 0) 685 break; 686 } 687 if (error != 0) { 688 device_printf(dev, "could not set up interrupt handler.\n"); 689 taskqueue_free(sc->ale_tq); 690 sc->ale_tq = NULL; 691 ether_ifdetach(ifp); 692 goto fail; 693 } 694 695 fail: 696 if (error != 0) 697 ale_detach(dev); 698 699 return (error); 700 } 701 702 static int 703 ale_detach(device_t dev) 704 { 705 struct ale_softc *sc; 706 struct ifnet *ifp; 707 int i, msic; 708 709 sc = device_get_softc(dev); 710 711 ifp = sc->ale_ifp; 712 if (device_is_attached(dev)) { 713 ether_ifdetach(ifp); 714 ALE_LOCK(sc); 715 ale_stop(sc); 716 ALE_UNLOCK(sc); 717 callout_drain(&sc->ale_tick_ch); 718 taskqueue_drain(sc->ale_tq, &sc->ale_int_task); 719 } 720 721 if (sc->ale_tq != NULL) { 722 taskqueue_drain(sc->ale_tq, &sc->ale_int_task); 723 taskqueue_free(sc->ale_tq); 724 sc->ale_tq = NULL; 725 } 726 727 if (sc->ale_miibus != NULL) { 728 device_delete_child(dev, sc->ale_miibus); 729 sc->ale_miibus = NULL; 730 } 731 bus_generic_detach(dev); 732 ale_dma_free(sc); 733 734 if (ifp != NULL) { 735 if_free(ifp); 736 sc->ale_ifp = NULL; 737 } 738 739 if ((sc->ale_flags & ALE_FLAG_MSIX) != 0) 740 msic = ALE_MSIX_MESSAGES; 741 else if ((sc->ale_flags & ALE_FLAG_MSI) != 0) 742 msic = ALE_MSI_MESSAGES; 743 else 744 msic = 1; 745 for (i = 0; i < msic; i++) { 746 if (sc->ale_intrhand[i] != NULL) { 747 bus_teardown_intr(dev, sc->ale_irq[i], 748 sc->ale_intrhand[i]); 749 sc->ale_intrhand[i] = NULL; 750 } 751 } 752 753 bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq); 754 if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0) 755 pci_release_msi(dev); 756 bus_release_resources(dev, sc->ale_res_spec, sc->ale_res); 757 mtx_destroy(&sc->ale_mtx); 758 759 return (0); 760 } 761 762 #define ALE_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 763 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 764 765 #if __FreeBSD_version >= 900030 766 #define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 767 SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 768 #elif __FreeBSD_version > 800000 769 #define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 770 SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 771 #else 772 #define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 773 SYSCTL_ADD_ULONG(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 774 #endif 775 776 static void 777 ale_sysctl_node(struct ale_softc *sc) 778 { 779 struct sysctl_ctx_list *ctx; 780 struct sysctl_oid_list *child, *parent; 781 struct sysctl_oid *tree; 782 struct ale_hw_stats *stats; 783 int error; 784 785 stats = &sc->ale_stats; 786 ctx = device_get_sysctl_ctx(sc->ale_dev); 787 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev)); 788 789 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod", 790 CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_rx_mod, 0, 791 sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation"); 792 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod", 793 CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_tx_mod, 0, 794 sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation"); 795 /* Pull in device tunables. */ 796 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT; 797 error = resource_int_value(device_get_name(sc->ale_dev), 798 device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod); 799 if (error == 0) { 800 if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN || 801 sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) { 802 device_printf(sc->ale_dev, "int_rx_mod value out of " 803 "range; using default: %d\n", 804 ALE_IM_RX_TIMER_DEFAULT); 805 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT; 806 } 807 } 808 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT; 809 error = resource_int_value(device_get_name(sc->ale_dev), 810 device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod); 811 if (error == 0) { 812 if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN || 813 sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) { 814 device_printf(sc->ale_dev, "int_tx_mod value out of " 815 "range; using default: %d\n", 816 ALE_IM_TX_TIMER_DEFAULT); 817 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT; 818 } 819 } 820 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit", 821 CTLTYPE_INT | CTLFLAG_RW, &sc->ale_process_limit, 0, 822 sysctl_hw_ale_proc_limit, "I", 823 "max number of Rx events to process"); 824 /* Pull in device tunables. */ 825 sc->ale_process_limit = ALE_PROC_DEFAULT; 826 error = resource_int_value(device_get_name(sc->ale_dev), 827 device_get_unit(sc->ale_dev), "process_limit", 828 &sc->ale_process_limit); 829 if (error == 0) { 830 if (sc->ale_process_limit < ALE_PROC_MIN || 831 sc->ale_process_limit > ALE_PROC_MAX) { 832 device_printf(sc->ale_dev, 833 "process_limit value out of range; " 834 "using default: %d\n", ALE_PROC_DEFAULT); 835 sc->ale_process_limit = ALE_PROC_DEFAULT; 836 } 837 } 838 839 /* Misc statistics. */ 840 ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq", 841 &stats->reset_brk_seq, 842 "Controller resets due to broken Rx sequnce number"); 843 844 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 845 NULL, "ATE statistics"); 846 parent = SYSCTL_CHILDREN(tree); 847 848 /* Rx statistics. */ 849 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD, 850 NULL, "Rx MAC statistics"); 851 child = SYSCTL_CHILDREN(tree); 852 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames", 853 &stats->rx_frames, "Good frames"); 854 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames", 855 &stats->rx_bcast_frames, "Good broadcast frames"); 856 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames", 857 &stats->rx_mcast_frames, "Good multicast frames"); 858 ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames", 859 &stats->rx_pause_frames, "Pause control frames"); 860 ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames", 861 &stats->rx_control_frames, "Control frames"); 862 ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs", 863 &stats->rx_crcerrs, "CRC errors"); 864 ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs", 865 &stats->rx_lenerrs, "Frames with length mismatched"); 866 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets", 867 &stats->rx_bytes, "Good octets"); 868 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets", 869 &stats->rx_bcast_bytes, "Good broadcast octets"); 870 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets", 871 &stats->rx_mcast_bytes, "Good multicast octets"); 872 ALE_SYSCTL_STAT_ADD32(ctx, child, "runts", 873 &stats->rx_runts, "Too short frames"); 874 ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments", 875 &stats->rx_fragments, "Fragmented frames"); 876 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64", 877 &stats->rx_pkts_64, "64 bytes frames"); 878 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127", 879 &stats->rx_pkts_65_127, "65 to 127 bytes frames"); 880 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255", 881 &stats->rx_pkts_128_255, "128 to 255 bytes frames"); 882 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511", 883 &stats->rx_pkts_256_511, "256 to 511 bytes frames"); 884 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023", 885 &stats->rx_pkts_512_1023, "512 to 1023 bytes frames"); 886 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518", 887 &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames"); 888 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max", 889 &stats->rx_pkts_1519_max, "1519 to max frames"); 890 ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs", 891 &stats->rx_pkts_truncated, "Truncated frames due to MTU size"); 892 ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows", 893 &stats->rx_fifo_oflows, "FIFO overflows"); 894 ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs", 895 &stats->rx_rrs_errs, "Return status write-back errors"); 896 ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs", 897 &stats->rx_alignerrs, "Alignment errors"); 898 ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered", 899 &stats->rx_pkts_filtered, 900 "Frames dropped due to address filtering"); 901 902 /* Tx statistics. */ 903 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD, 904 NULL, "Tx MAC statistics"); 905 child = SYSCTL_CHILDREN(tree); 906 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames", 907 &stats->tx_frames, "Good frames"); 908 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames", 909 &stats->tx_bcast_frames, "Good broadcast frames"); 910 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames", 911 &stats->tx_mcast_frames, "Good multicast frames"); 912 ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames", 913 &stats->tx_pause_frames, "Pause control frames"); 914 ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames", 915 &stats->tx_control_frames, "Control frames"); 916 ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers", 917 &stats->tx_excess_defer, "Frames with excessive derferrals"); 918 ALE_SYSCTL_STAT_ADD32(ctx, child, "defers", 919 &stats->tx_excess_defer, "Frames with derferrals"); 920 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets", 921 &stats->tx_bytes, "Good octets"); 922 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets", 923 &stats->tx_bcast_bytes, "Good broadcast octets"); 924 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets", 925 &stats->tx_mcast_bytes, "Good multicast octets"); 926 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64", 927 &stats->tx_pkts_64, "64 bytes frames"); 928 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127", 929 &stats->tx_pkts_65_127, "65 to 127 bytes frames"); 930 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255", 931 &stats->tx_pkts_128_255, "128 to 255 bytes frames"); 932 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511", 933 &stats->tx_pkts_256_511, "256 to 511 bytes frames"); 934 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023", 935 &stats->tx_pkts_512_1023, "512 to 1023 bytes frames"); 936 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518", 937 &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames"); 938 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max", 939 &stats->tx_pkts_1519_max, "1519 to max frames"); 940 ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls", 941 &stats->tx_single_colls, "Single collisions"); 942 ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls", 943 &stats->tx_multi_colls, "Multiple collisions"); 944 ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls", 945 &stats->tx_late_colls, "Late collisions"); 946 ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls", 947 &stats->tx_excess_colls, "Excessive collisions"); 948 ALE_SYSCTL_STAT_ADD32(ctx, child, "abort", 949 &stats->tx_abort, "Aborted frames due to Excessive collisions"); 950 ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns", 951 &stats->tx_underrun, "FIFO underruns"); 952 ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns", 953 &stats->tx_desc_underrun, "Descriptor write-back errors"); 954 ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs", 955 &stats->tx_lenerrs, "Frames with length mismatched"); 956 ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs", 957 &stats->tx_pkts_truncated, "Truncated frames due to MTU size"); 958 } 959 960 #undef ALE_SYSCTL_STAT_ADD32 961 #undef ALE_SYSCTL_STAT_ADD64 962 963 struct ale_dmamap_arg { 964 bus_addr_t ale_busaddr; 965 }; 966 967 static void 968 ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 969 { 970 struct ale_dmamap_arg *ctx; 971 972 if (error != 0) 973 return; 974 975 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 976 977 ctx = (struct ale_dmamap_arg *)arg; 978 ctx->ale_busaddr = segs[0].ds_addr; 979 } 980 981 /* 982 * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register 983 * which specifies high address region of DMA blocks. Therefore these 984 * blocks should have the same high address of given 4GB address 985 * space(i.e. crossing 4GB boundary is not allowed). 986 */ 987 static int 988 ale_check_boundary(struct ale_softc *sc) 989 { 990 bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end; 991 bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end; 992 993 rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr + 994 sc->ale_pagesize; 995 rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr + 996 sc->ale_pagesize; 997 tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ; 998 tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ; 999 rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ; 1000 rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ; 1001 1002 if ((ALE_ADDR_HI(tx_ring_end) != 1003 ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) || 1004 (ALE_ADDR_HI(rx_page_end[0]) != 1005 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) || 1006 (ALE_ADDR_HI(rx_page_end[1]) != 1007 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) || 1008 (ALE_ADDR_HI(tx_cmb_end) != 1009 ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) || 1010 (ALE_ADDR_HI(rx_cmb_end[0]) != 1011 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) || 1012 (ALE_ADDR_HI(rx_cmb_end[1]) != 1013 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr))) 1014 return (EFBIG); 1015 1016 if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) || 1017 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) || 1018 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) || 1019 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) || 1020 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end))) 1021 return (EFBIG); 1022 1023 return (0); 1024 } 1025 1026 static int 1027 ale_dma_alloc(struct ale_softc *sc) 1028 { 1029 struct ale_txdesc *txd; 1030 bus_addr_t lowaddr; 1031 struct ale_dmamap_arg ctx; 1032 int error, guard_size, i; 1033 1034 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) 1035 guard_size = ALE_JUMBO_FRAMELEN; 1036 else 1037 guard_size = ALE_MAX_FRAMELEN; 1038 sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ, 1039 ALE_RX_PAGE_ALIGN); 1040 lowaddr = BUS_SPACE_MAXADDR; 1041 again: 1042 /* Create parent DMA tag. */ 1043 error = bus_dma_tag_create( 1044 bus_get_dma_tag(sc->ale_dev), /* parent */ 1045 1, 0, /* alignment, boundary */ 1046 lowaddr, /* lowaddr */ 1047 BUS_SPACE_MAXADDR, /* highaddr */ 1048 NULL, NULL, /* filter, filterarg */ 1049 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1050 0, /* nsegments */ 1051 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1052 0, /* flags */ 1053 NULL, NULL, /* lockfunc, lockarg */ 1054 &sc->ale_cdata.ale_parent_tag); 1055 if (error != 0) { 1056 device_printf(sc->ale_dev, 1057 "could not create parent DMA tag.\n"); 1058 goto fail; 1059 } 1060 1061 /* Create DMA tag for Tx descriptor ring. */ 1062 error = bus_dma_tag_create( 1063 sc->ale_cdata.ale_parent_tag, /* parent */ 1064 ALE_TX_RING_ALIGN, 0, /* alignment, boundary */ 1065 BUS_SPACE_MAXADDR, /* lowaddr */ 1066 BUS_SPACE_MAXADDR, /* highaddr */ 1067 NULL, NULL, /* filter, filterarg */ 1068 ALE_TX_RING_SZ, /* maxsize */ 1069 1, /* nsegments */ 1070 ALE_TX_RING_SZ, /* maxsegsize */ 1071 0, /* flags */ 1072 NULL, NULL, /* lockfunc, lockarg */ 1073 &sc->ale_cdata.ale_tx_ring_tag); 1074 if (error != 0) { 1075 device_printf(sc->ale_dev, 1076 "could not create Tx ring DMA tag.\n"); 1077 goto fail; 1078 } 1079 1080 /* Create DMA tag for Rx pages. */ 1081 for (i = 0; i < ALE_RX_PAGES; i++) { 1082 error = bus_dma_tag_create( 1083 sc->ale_cdata.ale_parent_tag, /* parent */ 1084 ALE_RX_PAGE_ALIGN, 0, /* alignment, boundary */ 1085 BUS_SPACE_MAXADDR, /* lowaddr */ 1086 BUS_SPACE_MAXADDR, /* highaddr */ 1087 NULL, NULL, /* filter, filterarg */ 1088 sc->ale_pagesize, /* maxsize */ 1089 1, /* nsegments */ 1090 sc->ale_pagesize, /* maxsegsize */ 1091 0, /* flags */ 1092 NULL, NULL, /* lockfunc, lockarg */ 1093 &sc->ale_cdata.ale_rx_page[i].page_tag); 1094 if (error != 0) { 1095 device_printf(sc->ale_dev, 1096 "could not create Rx page %d DMA tag.\n", i); 1097 goto fail; 1098 } 1099 } 1100 1101 /* Create DMA tag for Tx coalescing message block. */ 1102 error = bus_dma_tag_create( 1103 sc->ale_cdata.ale_parent_tag, /* parent */ 1104 ALE_CMB_ALIGN, 0, /* alignment, boundary */ 1105 BUS_SPACE_MAXADDR, /* lowaddr */ 1106 BUS_SPACE_MAXADDR, /* highaddr */ 1107 NULL, NULL, /* filter, filterarg */ 1108 ALE_TX_CMB_SZ, /* maxsize */ 1109 1, /* nsegments */ 1110 ALE_TX_CMB_SZ, /* maxsegsize */ 1111 0, /* flags */ 1112 NULL, NULL, /* lockfunc, lockarg */ 1113 &sc->ale_cdata.ale_tx_cmb_tag); 1114 if (error != 0) { 1115 device_printf(sc->ale_dev, 1116 "could not create Tx CMB DMA tag.\n"); 1117 goto fail; 1118 } 1119 1120 /* Create DMA tag for Rx coalescing message block. */ 1121 for (i = 0; i < ALE_RX_PAGES; i++) { 1122 error = bus_dma_tag_create( 1123 sc->ale_cdata.ale_parent_tag, /* parent */ 1124 ALE_CMB_ALIGN, 0, /* alignment, boundary */ 1125 BUS_SPACE_MAXADDR, /* lowaddr */ 1126 BUS_SPACE_MAXADDR, /* highaddr */ 1127 NULL, NULL, /* filter, filterarg */ 1128 ALE_RX_CMB_SZ, /* maxsize */ 1129 1, /* nsegments */ 1130 ALE_RX_CMB_SZ, /* maxsegsize */ 1131 0, /* flags */ 1132 NULL, NULL, /* lockfunc, lockarg */ 1133 &sc->ale_cdata.ale_rx_page[i].cmb_tag); 1134 if (error != 0) { 1135 device_printf(sc->ale_dev, 1136 "could not create Rx page %d CMB DMA tag.\n", i); 1137 goto fail; 1138 } 1139 } 1140 1141 /* Allocate DMA'able memory and load the DMA map for Tx ring. */ 1142 error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag, 1143 (void **)&sc->ale_cdata.ale_tx_ring, 1144 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1145 &sc->ale_cdata.ale_tx_ring_map); 1146 if (error != 0) { 1147 device_printf(sc->ale_dev, 1148 "could not allocate DMA'able memory for Tx ring.\n"); 1149 goto fail; 1150 } 1151 ctx.ale_busaddr = 0; 1152 error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag, 1153 sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring, 1154 ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0); 1155 if (error != 0 || ctx.ale_busaddr == 0) { 1156 device_printf(sc->ale_dev, 1157 "could not load DMA'able memory for Tx ring.\n"); 1158 goto fail; 1159 } 1160 sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr; 1161 1162 /* Rx pages. */ 1163 for (i = 0; i < ALE_RX_PAGES; i++) { 1164 error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag, 1165 (void **)&sc->ale_cdata.ale_rx_page[i].page_addr, 1166 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1167 &sc->ale_cdata.ale_rx_page[i].page_map); 1168 if (error != 0) { 1169 device_printf(sc->ale_dev, 1170 "could not allocate DMA'able memory for " 1171 "Rx page %d.\n", i); 1172 goto fail; 1173 } 1174 ctx.ale_busaddr = 0; 1175 error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag, 1176 sc->ale_cdata.ale_rx_page[i].page_map, 1177 sc->ale_cdata.ale_rx_page[i].page_addr, 1178 sc->ale_pagesize, ale_dmamap_cb, &ctx, 0); 1179 if (error != 0 || ctx.ale_busaddr == 0) { 1180 device_printf(sc->ale_dev, 1181 "could not load DMA'able memory for " 1182 "Rx page %d.\n", i); 1183 goto fail; 1184 } 1185 sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr; 1186 } 1187 1188 /* Tx CMB. */ 1189 error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag, 1190 (void **)&sc->ale_cdata.ale_tx_cmb, 1191 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1192 &sc->ale_cdata.ale_tx_cmb_map); 1193 if (error != 0) { 1194 device_printf(sc->ale_dev, 1195 "could not allocate DMA'able memory for Tx CMB.\n"); 1196 goto fail; 1197 } 1198 ctx.ale_busaddr = 0; 1199 error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag, 1200 sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb, 1201 ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0); 1202 if (error != 0 || ctx.ale_busaddr == 0) { 1203 device_printf(sc->ale_dev, 1204 "could not load DMA'able memory for Tx CMB.\n"); 1205 goto fail; 1206 } 1207 sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr; 1208 1209 /* Rx CMB. */ 1210 for (i = 0; i < ALE_RX_PAGES; i++) { 1211 error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag, 1212 (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr, 1213 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1214 &sc->ale_cdata.ale_rx_page[i].cmb_map); 1215 if (error != 0) { 1216 device_printf(sc->ale_dev, "could not allocate " 1217 "DMA'able memory for Rx page %d CMB.\n", i); 1218 goto fail; 1219 } 1220 ctx.ale_busaddr = 0; 1221 error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag, 1222 sc->ale_cdata.ale_rx_page[i].cmb_map, 1223 sc->ale_cdata.ale_rx_page[i].cmb_addr, 1224 ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0); 1225 if (error != 0 || ctx.ale_busaddr == 0) { 1226 device_printf(sc->ale_dev, "could not load DMA'able " 1227 "memory for Rx page %d CMB.\n", i); 1228 goto fail; 1229 } 1230 sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr; 1231 } 1232 1233 /* 1234 * Tx descriptors/RXF0/CMB DMA blocks share the same 1235 * high address region of 64bit DMA address space. 1236 */ 1237 if (lowaddr != BUS_SPACE_MAXADDR_32BIT && 1238 (error = ale_check_boundary(sc)) != 0) { 1239 device_printf(sc->ale_dev, "4GB boundary crossed, " 1240 "switching to 32bit DMA addressing mode.\n"); 1241 ale_dma_free(sc); 1242 /* 1243 * Limit max allowable DMA address space to 32bit 1244 * and try again. 1245 */ 1246 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1247 goto again; 1248 } 1249 1250 /* 1251 * Create Tx buffer parent tag. 1252 * AR81xx allows 64bit DMA addressing of Tx buffers so it 1253 * needs separate parent DMA tag as parent DMA address space 1254 * could be restricted to be within 32bit address space by 1255 * 4GB boundary crossing. 1256 */ 1257 error = bus_dma_tag_create( 1258 bus_get_dma_tag(sc->ale_dev), /* parent */ 1259 1, 0, /* alignment, boundary */ 1260 BUS_SPACE_MAXADDR, /* lowaddr */ 1261 BUS_SPACE_MAXADDR, /* highaddr */ 1262 NULL, NULL, /* filter, filterarg */ 1263 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1264 0, /* nsegments */ 1265 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1266 0, /* flags */ 1267 NULL, NULL, /* lockfunc, lockarg */ 1268 &sc->ale_cdata.ale_buffer_tag); 1269 if (error != 0) { 1270 device_printf(sc->ale_dev, 1271 "could not create parent buffer DMA tag.\n"); 1272 goto fail; 1273 } 1274 1275 /* Create DMA tag for Tx buffers. */ 1276 error = bus_dma_tag_create( 1277 sc->ale_cdata.ale_buffer_tag, /* parent */ 1278 1, 0, /* alignment, boundary */ 1279 BUS_SPACE_MAXADDR, /* lowaddr */ 1280 BUS_SPACE_MAXADDR, /* highaddr */ 1281 NULL, NULL, /* filter, filterarg */ 1282 ALE_TSO_MAXSIZE, /* maxsize */ 1283 ALE_MAXTXSEGS, /* nsegments */ 1284 ALE_TSO_MAXSEGSIZE, /* maxsegsize */ 1285 0, /* flags */ 1286 NULL, NULL, /* lockfunc, lockarg */ 1287 &sc->ale_cdata.ale_tx_tag); 1288 if (error != 0) { 1289 device_printf(sc->ale_dev, "could not create Tx DMA tag.\n"); 1290 goto fail; 1291 } 1292 1293 /* Create DMA maps for Tx buffers. */ 1294 for (i = 0; i < ALE_TX_RING_CNT; i++) { 1295 txd = &sc->ale_cdata.ale_txdesc[i]; 1296 txd->tx_m = NULL; 1297 txd->tx_dmamap = NULL; 1298 error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0, 1299 &txd->tx_dmamap); 1300 if (error != 0) { 1301 device_printf(sc->ale_dev, 1302 "could not create Tx dmamap.\n"); 1303 goto fail; 1304 } 1305 } 1306 1307 fail: 1308 return (error); 1309 } 1310 1311 static void 1312 ale_dma_free(struct ale_softc *sc) 1313 { 1314 struct ale_txdesc *txd; 1315 int i; 1316 1317 /* Tx buffers. */ 1318 if (sc->ale_cdata.ale_tx_tag != NULL) { 1319 for (i = 0; i < ALE_TX_RING_CNT; i++) { 1320 txd = &sc->ale_cdata.ale_txdesc[i]; 1321 if (txd->tx_dmamap != NULL) { 1322 bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag, 1323 txd->tx_dmamap); 1324 txd->tx_dmamap = NULL; 1325 } 1326 } 1327 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag); 1328 sc->ale_cdata.ale_tx_tag = NULL; 1329 } 1330 /* Tx descriptor ring. */ 1331 if (sc->ale_cdata.ale_tx_ring_tag != NULL) { 1332 if (sc->ale_cdata.ale_tx_ring_map != NULL) 1333 bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag, 1334 sc->ale_cdata.ale_tx_ring_map); 1335 if (sc->ale_cdata.ale_tx_ring_map != NULL && 1336 sc->ale_cdata.ale_tx_ring != NULL) 1337 bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag, 1338 sc->ale_cdata.ale_tx_ring, 1339 sc->ale_cdata.ale_tx_ring_map); 1340 sc->ale_cdata.ale_tx_ring = NULL; 1341 sc->ale_cdata.ale_tx_ring_map = NULL; 1342 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag); 1343 sc->ale_cdata.ale_tx_ring_tag = NULL; 1344 } 1345 /* Rx page block. */ 1346 for (i = 0; i < ALE_RX_PAGES; i++) { 1347 if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) { 1348 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL) 1349 bus_dmamap_unload( 1350 sc->ale_cdata.ale_rx_page[i].page_tag, 1351 sc->ale_cdata.ale_rx_page[i].page_map); 1352 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL && 1353 sc->ale_cdata.ale_rx_page[i].page_addr != NULL) 1354 bus_dmamem_free( 1355 sc->ale_cdata.ale_rx_page[i].page_tag, 1356 sc->ale_cdata.ale_rx_page[i].page_addr, 1357 sc->ale_cdata.ale_rx_page[i].page_map); 1358 sc->ale_cdata.ale_rx_page[i].page_addr = NULL; 1359 sc->ale_cdata.ale_rx_page[i].page_map = NULL; 1360 bus_dma_tag_destroy( 1361 sc->ale_cdata.ale_rx_page[i].page_tag); 1362 sc->ale_cdata.ale_rx_page[i].page_tag = NULL; 1363 } 1364 } 1365 /* Rx CMB. */ 1366 for (i = 0; i < ALE_RX_PAGES; i++) { 1367 if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) { 1368 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL) 1369 bus_dmamap_unload( 1370 sc->ale_cdata.ale_rx_page[i].cmb_tag, 1371 sc->ale_cdata.ale_rx_page[i].cmb_map); 1372 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL && 1373 sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL) 1374 bus_dmamem_free( 1375 sc->ale_cdata.ale_rx_page[i].cmb_tag, 1376 sc->ale_cdata.ale_rx_page[i].cmb_addr, 1377 sc->ale_cdata.ale_rx_page[i].cmb_map); 1378 sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL; 1379 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL; 1380 bus_dma_tag_destroy( 1381 sc->ale_cdata.ale_rx_page[i].cmb_tag); 1382 sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL; 1383 } 1384 } 1385 /* Tx CMB. */ 1386 if (sc->ale_cdata.ale_tx_cmb_tag != NULL) { 1387 if (sc->ale_cdata.ale_tx_cmb_map != NULL) 1388 bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag, 1389 sc->ale_cdata.ale_tx_cmb_map); 1390 if (sc->ale_cdata.ale_tx_cmb_map != NULL && 1391 sc->ale_cdata.ale_tx_cmb != NULL) 1392 bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag, 1393 sc->ale_cdata.ale_tx_cmb, 1394 sc->ale_cdata.ale_tx_cmb_map); 1395 sc->ale_cdata.ale_tx_cmb = NULL; 1396 sc->ale_cdata.ale_tx_cmb_map = NULL; 1397 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag); 1398 sc->ale_cdata.ale_tx_cmb_tag = NULL; 1399 } 1400 if (sc->ale_cdata.ale_buffer_tag != NULL) { 1401 bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag); 1402 sc->ale_cdata.ale_buffer_tag = NULL; 1403 } 1404 if (sc->ale_cdata.ale_parent_tag != NULL) { 1405 bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag); 1406 sc->ale_cdata.ale_parent_tag = NULL; 1407 } 1408 } 1409 1410 static int 1411 ale_shutdown(device_t dev) 1412 { 1413 1414 return (ale_suspend(dev)); 1415 } 1416 1417 /* 1418 * Note, this driver resets the link speed to 10/100Mbps by 1419 * restarting auto-negotiation in suspend/shutdown phase but we 1420 * don't know whether that auto-negotiation would succeed or not 1421 * as driver has no control after powering off/suspend operation. 1422 * If the renegotiation fail WOL may not work. Running at 1Gbps 1423 * will draw more power than 375mA at 3.3V which is specified in 1424 * PCI specification and that would result in complete 1425 * shutdowning power to ethernet controller. 1426 * 1427 * TODO 1428 * Save current negotiated media speed/duplex/flow-control to 1429 * softc and restore the same link again after resuming. PHY 1430 * handling such as power down/resetting to 100Mbps may be better 1431 * handled in suspend method in phy driver. 1432 */ 1433 static void 1434 ale_setlinkspeed(struct ale_softc *sc) 1435 { 1436 struct mii_data *mii; 1437 int aneg, i; 1438 1439 mii = device_get_softc(sc->ale_miibus); 1440 mii_pollstat(mii); 1441 aneg = 0; 1442 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 1443 (IFM_ACTIVE | IFM_AVALID)) { 1444 switch IFM_SUBTYPE(mii->mii_media_active) { 1445 case IFM_10_T: 1446 case IFM_100_TX: 1447 return; 1448 case IFM_1000_T: 1449 aneg++; 1450 break; 1451 default: 1452 break; 1453 } 1454 } 1455 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0); 1456 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 1457 MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA); 1458 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 1459 MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG); 1460 DELAY(1000); 1461 if (aneg != 0) { 1462 /* 1463 * Poll link state until ale(4) get a 10/100Mbps link. 1464 */ 1465 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { 1466 mii_pollstat(mii); 1467 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) 1468 == (IFM_ACTIVE | IFM_AVALID)) { 1469 switch (IFM_SUBTYPE( 1470 mii->mii_media_active)) { 1471 case IFM_10_T: 1472 case IFM_100_TX: 1473 ale_mac_config(sc); 1474 return; 1475 default: 1476 break; 1477 } 1478 } 1479 ALE_UNLOCK(sc); 1480 pause("alelnk", hz); 1481 ALE_LOCK(sc); 1482 } 1483 if (i == MII_ANEGTICKS_GIGE) 1484 device_printf(sc->ale_dev, 1485 "establishing a link failed, WOL may not work!"); 1486 } 1487 /* 1488 * No link, force MAC to have 100Mbps, full-duplex link. 1489 * This is the last resort and may/may not work. 1490 */ 1491 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; 1492 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; 1493 ale_mac_config(sc); 1494 } 1495 1496 static void 1497 ale_setwol(struct ale_softc *sc) 1498 { 1499 struct ifnet *ifp; 1500 uint32_t reg, pmcs; 1501 uint16_t pmstat; 1502 int pmc; 1503 1504 ALE_LOCK_ASSERT(sc); 1505 1506 if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) != 0) { 1507 /* Disable WOL. */ 1508 CSR_WRITE_4(sc, ALE_WOL_CFG, 0); 1509 reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC); 1510 reg |= PCIE_PHYMISC_FORCE_RCV_DET; 1511 CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg); 1512 /* Force PHY power down. */ 1513 CSR_WRITE_2(sc, ALE_GPHY_CTRL, 1514 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | 1515 GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON | 1516 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ | 1517 GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW); 1518 return; 1519 } 1520 1521 ifp = sc->ale_ifp; 1522 if ((ifp->if_capenable & IFCAP_WOL) != 0) { 1523 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0) 1524 ale_setlinkspeed(sc); 1525 } 1526 1527 pmcs = 0; 1528 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 1529 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB; 1530 CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs); 1531 reg = CSR_READ_4(sc, ALE_MAC_CFG); 1532 reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI | 1533 MAC_CFG_BCAST); 1534 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) 1535 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST; 1536 if ((ifp->if_capenable & IFCAP_WOL) != 0) 1537 reg |= MAC_CFG_RX_ENB; 1538 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 1539 1540 if ((ifp->if_capenable & IFCAP_WOL) == 0) { 1541 /* WOL disabled, PHY power down. */ 1542 reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC); 1543 reg |= PCIE_PHYMISC_FORCE_RCV_DET; 1544 CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg); 1545 CSR_WRITE_2(sc, ALE_GPHY_CTRL, 1546 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | 1547 GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET | 1548 GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS | 1549 GPHY_CTRL_PWDOWN_HW); 1550 } 1551 /* Request PME. */ 1552 pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2); 1553 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 1554 if ((ifp->if_capenable & IFCAP_WOL) != 0) 1555 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 1556 pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1557 } 1558 1559 static int 1560 ale_suspend(device_t dev) 1561 { 1562 struct ale_softc *sc; 1563 1564 sc = device_get_softc(dev); 1565 1566 ALE_LOCK(sc); 1567 ale_stop(sc); 1568 ale_setwol(sc); 1569 ALE_UNLOCK(sc); 1570 1571 return (0); 1572 } 1573 1574 static int 1575 ale_resume(device_t dev) 1576 { 1577 struct ale_softc *sc; 1578 struct ifnet *ifp; 1579 int pmc; 1580 uint16_t pmstat; 1581 1582 sc = device_get_softc(dev); 1583 1584 ALE_LOCK(sc); 1585 if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) == 0) { 1586 /* Disable PME and clear PME status. */ 1587 pmstat = pci_read_config(sc->ale_dev, 1588 pmc + PCIR_POWER_STATUS, 2); 1589 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) { 1590 pmstat &= ~PCIM_PSTAT_PMEENABLE; 1591 pci_write_config(sc->ale_dev, 1592 pmc + PCIR_POWER_STATUS, pmstat, 2); 1593 } 1594 } 1595 /* Reset PHY. */ 1596 ale_phy_reset(sc); 1597 ifp = sc->ale_ifp; 1598 if ((ifp->if_flags & IFF_UP) != 0) { 1599 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1600 ale_init_locked(sc); 1601 } 1602 ALE_UNLOCK(sc); 1603 1604 return (0); 1605 } 1606 1607 static int 1608 ale_encap(struct ale_softc *sc, struct mbuf **m_head) 1609 { 1610 struct ale_txdesc *txd, *txd_last; 1611 struct tx_desc *desc; 1612 struct mbuf *m; 1613 struct ip *ip; 1614 struct tcphdr *tcp; 1615 bus_dma_segment_t txsegs[ALE_MAXTXSEGS]; 1616 bus_dmamap_t map; 1617 uint32_t cflags, hdrlen, ip_off, poff, vtag; 1618 int error, i, nsegs, prod, si; 1619 1620 ALE_LOCK_ASSERT(sc); 1621 1622 M_ASSERTPKTHDR((*m_head)); 1623 1624 m = *m_head; 1625 ip = NULL; 1626 tcp = NULL; 1627 cflags = vtag = 0; 1628 ip_off = poff = 0; 1629 if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) { 1630 /* 1631 * AR81xx requires offset of TCP/UDP payload in its Tx 1632 * descriptor to perform hardware Tx checksum offload. 1633 * Additionally, TSO requires IP/TCP header size and 1634 * modification of IP/TCP header in order to make TSO 1635 * engine work. This kind of operation takes many CPU 1636 * cycles on FreeBSD so fast host CPU is required to 1637 * get smooth TSO performance. 1638 */ 1639 struct ether_header *eh; 1640 1641 if (M_WRITABLE(m) == 0) { 1642 /* Get a writable copy. */ 1643 m = m_dup(*m_head, M_NOWAIT); 1644 /* Release original mbufs. */ 1645 m_freem(*m_head); 1646 if (m == NULL) { 1647 *m_head = NULL; 1648 return (ENOBUFS); 1649 } 1650 *m_head = m; 1651 } 1652 1653 /* 1654 * Buggy-controller requires 4 byte aligned Tx buffer 1655 * to make custom checksum offload work. 1656 */ 1657 if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 && 1658 (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 && 1659 (mtod(m, intptr_t) & 3) != 0) { 1660 m = m_defrag(*m_head, M_NOWAIT); 1661 if (m == NULL) { 1662 *m_head = NULL; 1663 return (ENOBUFS); 1664 } 1665 *m_head = m; 1666 } 1667 1668 ip_off = sizeof(struct ether_header); 1669 m = m_pullup(m, ip_off); 1670 if (m == NULL) { 1671 *m_head = NULL; 1672 return (ENOBUFS); 1673 } 1674 eh = mtod(m, struct ether_header *); 1675 /* 1676 * Check if hardware VLAN insertion is off. 1677 * Additional check for LLC/SNAP frame? 1678 */ 1679 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 1680 ip_off = sizeof(struct ether_vlan_header); 1681 m = m_pullup(m, ip_off); 1682 if (m == NULL) { 1683 *m_head = NULL; 1684 return (ENOBUFS); 1685 } 1686 } 1687 m = m_pullup(m, ip_off + sizeof(struct ip)); 1688 if (m == NULL) { 1689 *m_head = NULL; 1690 return (ENOBUFS); 1691 } 1692 ip = (struct ip *)(mtod(m, char *) + ip_off); 1693 poff = ip_off + (ip->ip_hl << 2); 1694 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1695 /* 1696 * XXX 1697 * AR81xx requires the first descriptor should 1698 * not include any TCP playload for TSO case. 1699 * (i.e. ethernet header + IP + TCP header only) 1700 * m_pullup(9) above will ensure this too. 1701 * However it's not correct if the first mbuf 1702 * of the chain does not use cluster. 1703 */ 1704 m = m_pullup(m, poff + sizeof(struct tcphdr)); 1705 if (m == NULL) { 1706 *m_head = NULL; 1707 return (ENOBUFS); 1708 } 1709 ip = (struct ip *)(mtod(m, char *) + ip_off); 1710 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1711 m = m_pullup(m, poff + (tcp->th_off << 2)); 1712 if (m == NULL) { 1713 *m_head = NULL; 1714 return (ENOBUFS); 1715 } 1716 /* 1717 * AR81xx requires IP/TCP header size and offset as 1718 * well as TCP pseudo checksum which complicates 1719 * TSO configuration. I guess this comes from the 1720 * adherence to Microsoft NDIS Large Send 1721 * specification which requires insertion of 1722 * pseudo checksum by upper stack. The pseudo 1723 * checksum that NDIS refers to doesn't include 1724 * TCP payload length so ale(4) should recompute 1725 * the pseudo checksum here. Hopefully this wouldn't 1726 * be much burden on modern CPUs. 1727 * Reset IP checksum and recompute TCP pseudo 1728 * checksum as NDIS specification said. 1729 */ 1730 ip->ip_sum = 0; 1731 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, 1732 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 1733 } 1734 *m_head = m; 1735 } 1736 1737 si = prod = sc->ale_cdata.ale_tx_prod; 1738 txd = &sc->ale_cdata.ale_txdesc[prod]; 1739 txd_last = txd; 1740 map = txd->tx_dmamap; 1741 1742 error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map, 1743 *m_head, txsegs, &nsegs, 0); 1744 if (error == EFBIG) { 1745 m = m_collapse(*m_head, M_NOWAIT, ALE_MAXTXSEGS); 1746 if (m == NULL) { 1747 m_freem(*m_head); 1748 *m_head = NULL; 1749 return (ENOMEM); 1750 } 1751 *m_head = m; 1752 error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map, 1753 *m_head, txsegs, &nsegs, 0); 1754 if (error != 0) { 1755 m_freem(*m_head); 1756 *m_head = NULL; 1757 return (error); 1758 } 1759 } else if (error != 0) 1760 return (error); 1761 if (nsegs == 0) { 1762 m_freem(*m_head); 1763 *m_head = NULL; 1764 return (EIO); 1765 } 1766 1767 /* Check descriptor overrun. */ 1768 if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) { 1769 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map); 1770 return (ENOBUFS); 1771 } 1772 bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE); 1773 1774 m = *m_head; 1775 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1776 /* Request TSO and set MSS. */ 1777 cflags |= ALE_TD_TSO; 1778 cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT); 1779 /* Set IP/TCP header size. */ 1780 cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT; 1781 cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT; 1782 } else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) { 1783 /* 1784 * AR81xx supports Tx custom checksum offload feature 1785 * that offloads single 16bit checksum computation. 1786 * So you can choose one among IP, TCP and UDP. 1787 * Normally driver sets checksum start/insertion 1788 * position from the information of TCP/UDP frame as 1789 * TCP/UDP checksum takes more time than that of IP. 1790 * However it seems that custom checksum offload 1791 * requires 4 bytes aligned Tx buffers due to hardware 1792 * bug. 1793 * AR81xx also supports explicit Tx checksum computation 1794 * if it is told that the size of IP header and TCP 1795 * header(for UDP, the header size does not matter 1796 * because it's fixed length). However with this scheme 1797 * TSO does not work so you have to choose one either 1798 * TSO or explicit Tx checksum offload. I chosen TSO 1799 * plus custom checksum offload with work-around which 1800 * will cover most common usage for this consumer 1801 * ethernet controller. The work-around takes a lot of 1802 * CPU cycles if Tx buffer is not aligned on 4 bytes 1803 * boundary, though. 1804 */ 1805 cflags |= ALE_TD_CXSUM; 1806 /* Set checksum start offset. */ 1807 cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT); 1808 /* Set checksum insertion position of TCP/UDP. */ 1809 cflags |= ((poff + m->m_pkthdr.csum_data) << 1810 ALE_TD_CSUM_XSUMOFFSET_SHIFT); 1811 } 1812 1813 /* Configure VLAN hardware tag insertion. */ 1814 if ((m->m_flags & M_VLANTAG) != 0) { 1815 vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag); 1816 vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK); 1817 cflags |= ALE_TD_INSERT_VLAN_TAG; 1818 } 1819 1820 i = 0; 1821 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1822 /* 1823 * Make sure the first fragment contains 1824 * only ethernet and IP/TCP header with options. 1825 */ 1826 hdrlen = poff + (tcp->th_off << 2); 1827 desc = &sc->ale_cdata.ale_tx_ring[prod]; 1828 desc->addr = htole64(txsegs[i].ds_addr); 1829 desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag); 1830 desc->flags = htole32(cflags); 1831 sc->ale_cdata.ale_tx_cnt++; 1832 ALE_DESC_INC(prod, ALE_TX_RING_CNT); 1833 if (m->m_len - hdrlen > 0) { 1834 /* Handle remaining payload of the first fragment. */ 1835 desc = &sc->ale_cdata.ale_tx_ring[prod]; 1836 desc->addr = htole64(txsegs[i].ds_addr + hdrlen); 1837 desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) | 1838 vtag); 1839 desc->flags = htole32(cflags); 1840 sc->ale_cdata.ale_tx_cnt++; 1841 ALE_DESC_INC(prod, ALE_TX_RING_CNT); 1842 } 1843 i = 1; 1844 } 1845 for (; i < nsegs; i++) { 1846 desc = &sc->ale_cdata.ale_tx_ring[prod]; 1847 desc->addr = htole64(txsegs[i].ds_addr); 1848 desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag); 1849 desc->flags = htole32(cflags); 1850 sc->ale_cdata.ale_tx_cnt++; 1851 ALE_DESC_INC(prod, ALE_TX_RING_CNT); 1852 } 1853 /* Update producer index. */ 1854 sc->ale_cdata.ale_tx_prod = prod; 1855 /* Set TSO header on the first descriptor. */ 1856 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1857 desc = &sc->ale_cdata.ale_tx_ring[si]; 1858 desc->flags |= htole32(ALE_TD_TSO_HDR); 1859 } 1860 1861 /* Finally set EOP on the last descriptor. */ 1862 prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT; 1863 desc = &sc->ale_cdata.ale_tx_ring[prod]; 1864 desc->flags |= htole32(ALE_TD_EOP); 1865 1866 /* Swap dmamap of the first and the last. */ 1867 txd = &sc->ale_cdata.ale_txdesc[prod]; 1868 map = txd_last->tx_dmamap; 1869 txd_last->tx_dmamap = txd->tx_dmamap; 1870 txd->tx_dmamap = map; 1871 txd->tx_m = m; 1872 1873 /* Sync descriptors. */ 1874 bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag, 1875 sc->ale_cdata.ale_tx_ring_map, 1876 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1877 1878 return (0); 1879 } 1880 1881 static void 1882 ale_start(struct ifnet *ifp) 1883 { 1884 struct ale_softc *sc; 1885 1886 sc = ifp->if_softc; 1887 ALE_LOCK(sc); 1888 ale_start_locked(ifp); 1889 ALE_UNLOCK(sc); 1890 } 1891 1892 static void 1893 ale_start_locked(struct ifnet *ifp) 1894 { 1895 struct ale_softc *sc; 1896 struct mbuf *m_head; 1897 int enq; 1898 1899 sc = ifp->if_softc; 1900 1901 ALE_LOCK_ASSERT(sc); 1902 1903 /* Reclaim transmitted frames. */ 1904 if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT) 1905 ale_txeof(sc); 1906 1907 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1908 IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0) 1909 return; 1910 1911 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) { 1912 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 1913 if (m_head == NULL) 1914 break; 1915 /* 1916 * Pack the data into the transmit ring. If we 1917 * don't have room, set the OACTIVE flag and wait 1918 * for the NIC to drain the ring. 1919 */ 1920 if (ale_encap(sc, &m_head)) { 1921 if (m_head == NULL) 1922 break; 1923 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 1924 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1925 break; 1926 } 1927 1928 enq++; 1929 /* 1930 * If there's a BPF listener, bounce a copy of this frame 1931 * to him. 1932 */ 1933 ETHER_BPF_MTAP(ifp, m_head); 1934 } 1935 1936 if (enq > 0) { 1937 /* Kick. */ 1938 CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX, 1939 sc->ale_cdata.ale_tx_prod); 1940 /* Set a timeout in case the chip goes out to lunch. */ 1941 sc->ale_watchdog_timer = ALE_TX_TIMEOUT; 1942 } 1943 } 1944 1945 static void 1946 ale_watchdog(struct ale_softc *sc) 1947 { 1948 struct ifnet *ifp; 1949 1950 ALE_LOCK_ASSERT(sc); 1951 1952 if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer) 1953 return; 1954 1955 ifp = sc->ale_ifp; 1956 if ((sc->ale_flags & ALE_FLAG_LINK) == 0) { 1957 if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n"); 1958 ifp->if_oerrors++; 1959 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1960 ale_init_locked(sc); 1961 return; 1962 } 1963 if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n"); 1964 ifp->if_oerrors++; 1965 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1966 ale_init_locked(sc); 1967 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1968 ale_start_locked(ifp); 1969 } 1970 1971 static int 1972 ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1973 { 1974 struct ale_softc *sc; 1975 struct ifreq *ifr; 1976 struct mii_data *mii; 1977 int error, mask; 1978 1979 sc = ifp->if_softc; 1980 ifr = (struct ifreq *)data; 1981 error = 0; 1982 switch (cmd) { 1983 case SIOCSIFMTU: 1984 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU || 1985 ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 && 1986 ifr->ifr_mtu > ETHERMTU)) 1987 error = EINVAL; 1988 else if (ifp->if_mtu != ifr->ifr_mtu) { 1989 ALE_LOCK(sc); 1990 ifp->if_mtu = ifr->ifr_mtu; 1991 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1992 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1993 ale_init_locked(sc); 1994 } 1995 ALE_UNLOCK(sc); 1996 } 1997 break; 1998 case SIOCSIFFLAGS: 1999 ALE_LOCK(sc); 2000 if ((ifp->if_flags & IFF_UP) != 0) { 2001 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2002 if (((ifp->if_flags ^ sc->ale_if_flags) 2003 & (IFF_PROMISC | IFF_ALLMULTI)) != 0) 2004 ale_rxfilter(sc); 2005 } else { 2006 ale_init_locked(sc); 2007 } 2008 } else { 2009 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2010 ale_stop(sc); 2011 } 2012 sc->ale_if_flags = ifp->if_flags; 2013 ALE_UNLOCK(sc); 2014 break; 2015 case SIOCADDMULTI: 2016 case SIOCDELMULTI: 2017 ALE_LOCK(sc); 2018 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2019 ale_rxfilter(sc); 2020 ALE_UNLOCK(sc); 2021 break; 2022 case SIOCSIFMEDIA: 2023 case SIOCGIFMEDIA: 2024 mii = device_get_softc(sc->ale_miibus); 2025 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 2026 break; 2027 case SIOCSIFCAP: 2028 ALE_LOCK(sc); 2029 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2030 if ((mask & IFCAP_TXCSUM) != 0 && 2031 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { 2032 ifp->if_capenable ^= IFCAP_TXCSUM; 2033 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 2034 ifp->if_hwassist |= ALE_CSUM_FEATURES; 2035 else 2036 ifp->if_hwassist &= ~ALE_CSUM_FEATURES; 2037 } 2038 if ((mask & IFCAP_RXCSUM) != 0 && 2039 (ifp->if_capabilities & IFCAP_RXCSUM) != 0) 2040 ifp->if_capenable ^= IFCAP_RXCSUM; 2041 if ((mask & IFCAP_TSO4) != 0 && 2042 (ifp->if_capabilities & IFCAP_TSO4) != 0) { 2043 ifp->if_capenable ^= IFCAP_TSO4; 2044 if ((ifp->if_capenable & IFCAP_TSO4) != 0) 2045 ifp->if_hwassist |= CSUM_TSO; 2046 else 2047 ifp->if_hwassist &= ~CSUM_TSO; 2048 } 2049 2050 if ((mask & IFCAP_WOL_MCAST) != 0 && 2051 (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0) 2052 ifp->if_capenable ^= IFCAP_WOL_MCAST; 2053 if ((mask & IFCAP_WOL_MAGIC) != 0 && 2054 (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0) 2055 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 2056 if ((mask & IFCAP_VLAN_HWCSUM) != 0 && 2057 (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0) 2058 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 2059 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 2060 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 2061 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 2062 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 2063 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 2064 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2065 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 2066 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO; 2067 ale_rxvlan(sc); 2068 } 2069 ALE_UNLOCK(sc); 2070 VLAN_CAPABILITIES(ifp); 2071 break; 2072 default: 2073 error = ether_ioctl(ifp, cmd, data); 2074 break; 2075 } 2076 2077 return (error); 2078 } 2079 2080 static void 2081 ale_mac_config(struct ale_softc *sc) 2082 { 2083 struct mii_data *mii; 2084 uint32_t reg; 2085 2086 ALE_LOCK_ASSERT(sc); 2087 2088 mii = device_get_softc(sc->ale_miibus); 2089 reg = CSR_READ_4(sc, ALE_MAC_CFG); 2090 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC | 2091 MAC_CFG_SPEED_MASK); 2092 /* Reprogram MAC with resolved speed/duplex. */ 2093 switch (IFM_SUBTYPE(mii->mii_media_active)) { 2094 case IFM_10_T: 2095 case IFM_100_TX: 2096 reg |= MAC_CFG_SPEED_10_100; 2097 break; 2098 case IFM_1000_T: 2099 reg |= MAC_CFG_SPEED_1000; 2100 break; 2101 } 2102 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 2103 reg |= MAC_CFG_FULL_DUPLEX; 2104 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 2105 reg |= MAC_CFG_TX_FC; 2106 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 2107 reg |= MAC_CFG_RX_FC; 2108 } 2109 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 2110 } 2111 2112 static void 2113 ale_stats_clear(struct ale_softc *sc) 2114 { 2115 struct smb sb; 2116 uint32_t *reg; 2117 int i; 2118 2119 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) { 2120 CSR_READ_4(sc, ALE_RX_MIB_BASE + i); 2121 i += sizeof(uint32_t); 2122 } 2123 /* Read Tx statistics. */ 2124 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) { 2125 CSR_READ_4(sc, ALE_TX_MIB_BASE + i); 2126 i += sizeof(uint32_t); 2127 } 2128 } 2129 2130 static void 2131 ale_stats_update(struct ale_softc *sc) 2132 { 2133 struct ale_hw_stats *stat; 2134 struct smb sb, *smb; 2135 struct ifnet *ifp; 2136 uint32_t *reg; 2137 int i; 2138 2139 ALE_LOCK_ASSERT(sc); 2140 2141 ifp = sc->ale_ifp; 2142 stat = &sc->ale_stats; 2143 smb = &sb; 2144 2145 /* Read Rx statistics. */ 2146 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) { 2147 *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i); 2148 i += sizeof(uint32_t); 2149 } 2150 /* Read Tx statistics. */ 2151 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) { 2152 *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i); 2153 i += sizeof(uint32_t); 2154 } 2155 2156 /* Rx stats. */ 2157 stat->rx_frames += smb->rx_frames; 2158 stat->rx_bcast_frames += smb->rx_bcast_frames; 2159 stat->rx_mcast_frames += smb->rx_mcast_frames; 2160 stat->rx_pause_frames += smb->rx_pause_frames; 2161 stat->rx_control_frames += smb->rx_control_frames; 2162 stat->rx_crcerrs += smb->rx_crcerrs; 2163 stat->rx_lenerrs += smb->rx_lenerrs; 2164 stat->rx_bytes += smb->rx_bytes; 2165 stat->rx_runts += smb->rx_runts; 2166 stat->rx_fragments += smb->rx_fragments; 2167 stat->rx_pkts_64 += smb->rx_pkts_64; 2168 stat->rx_pkts_65_127 += smb->rx_pkts_65_127; 2169 stat->rx_pkts_128_255 += smb->rx_pkts_128_255; 2170 stat->rx_pkts_256_511 += smb->rx_pkts_256_511; 2171 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023; 2172 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518; 2173 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max; 2174 stat->rx_pkts_truncated += smb->rx_pkts_truncated; 2175 stat->rx_fifo_oflows += smb->rx_fifo_oflows; 2176 stat->rx_rrs_errs += smb->rx_rrs_errs; 2177 stat->rx_alignerrs += smb->rx_alignerrs; 2178 stat->rx_bcast_bytes += smb->rx_bcast_bytes; 2179 stat->rx_mcast_bytes += smb->rx_mcast_bytes; 2180 stat->rx_pkts_filtered += smb->rx_pkts_filtered; 2181 2182 /* Tx stats. */ 2183 stat->tx_frames += smb->tx_frames; 2184 stat->tx_bcast_frames += smb->tx_bcast_frames; 2185 stat->tx_mcast_frames += smb->tx_mcast_frames; 2186 stat->tx_pause_frames += smb->tx_pause_frames; 2187 stat->tx_excess_defer += smb->tx_excess_defer; 2188 stat->tx_control_frames += smb->tx_control_frames; 2189 stat->tx_deferred += smb->tx_deferred; 2190 stat->tx_bytes += smb->tx_bytes; 2191 stat->tx_pkts_64 += smb->tx_pkts_64; 2192 stat->tx_pkts_65_127 += smb->tx_pkts_65_127; 2193 stat->tx_pkts_128_255 += smb->tx_pkts_128_255; 2194 stat->tx_pkts_256_511 += smb->tx_pkts_256_511; 2195 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023; 2196 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518; 2197 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max; 2198 stat->tx_single_colls += smb->tx_single_colls; 2199 stat->tx_multi_colls += smb->tx_multi_colls; 2200 stat->tx_late_colls += smb->tx_late_colls; 2201 stat->tx_excess_colls += smb->tx_excess_colls; 2202 stat->tx_abort += smb->tx_abort; 2203 stat->tx_underrun += smb->tx_underrun; 2204 stat->tx_desc_underrun += smb->tx_desc_underrun; 2205 stat->tx_lenerrs += smb->tx_lenerrs; 2206 stat->tx_pkts_truncated += smb->tx_pkts_truncated; 2207 stat->tx_bcast_bytes += smb->tx_bcast_bytes; 2208 stat->tx_mcast_bytes += smb->tx_mcast_bytes; 2209 2210 /* Update counters in ifnet. */ 2211 ifp->if_opackets += smb->tx_frames; 2212 2213 ifp->if_collisions += smb->tx_single_colls + 2214 smb->tx_multi_colls * 2 + smb->tx_late_colls + 2215 smb->tx_abort * HDPX_CFG_RETRY_DEFAULT; 2216 2217 /* 2218 * XXX 2219 * tx_pkts_truncated counter looks suspicious. It constantly 2220 * increments with no sign of Tx errors. This may indicate 2221 * the counter name is not correct one so I've removed the 2222 * counter in output errors. 2223 */ 2224 ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls + 2225 smb->tx_underrun; 2226 2227 ifp->if_ipackets += smb->rx_frames; 2228 2229 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs + 2230 smb->rx_runts + smb->rx_pkts_truncated + 2231 smb->rx_fifo_oflows + smb->rx_rrs_errs + 2232 smb->rx_alignerrs; 2233 } 2234 2235 static int 2236 ale_intr(void *arg) 2237 { 2238 struct ale_softc *sc; 2239 uint32_t status; 2240 2241 sc = (struct ale_softc *)arg; 2242 2243 status = CSR_READ_4(sc, ALE_INTR_STATUS); 2244 if ((status & ALE_INTRS) == 0) 2245 return (FILTER_STRAY); 2246 /* Disable interrupts. */ 2247 CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT); 2248 taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task); 2249 2250 return (FILTER_HANDLED); 2251 } 2252 2253 static void 2254 ale_int_task(void *arg, int pending) 2255 { 2256 struct ale_softc *sc; 2257 struct ifnet *ifp; 2258 uint32_t status; 2259 int more; 2260 2261 sc = (struct ale_softc *)arg; 2262 2263 status = CSR_READ_4(sc, ALE_INTR_STATUS); 2264 ALE_LOCK(sc); 2265 if (sc->ale_morework != 0) 2266 status |= INTR_RX_PKT; 2267 if ((status & ALE_INTRS) == 0) 2268 goto done; 2269 2270 /* Acknowledge interrupts but still disable interrupts. */ 2271 CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT); 2272 2273 ifp = sc->ale_ifp; 2274 more = 0; 2275 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2276 more = ale_rxeof(sc, sc->ale_process_limit); 2277 if (more == EAGAIN) 2278 sc->ale_morework = 1; 2279 else if (more == EIO) { 2280 sc->ale_stats.reset_brk_seq++; 2281 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2282 ale_init_locked(sc); 2283 ALE_UNLOCK(sc); 2284 return; 2285 } 2286 2287 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) { 2288 if ((status & INTR_DMA_RD_TO_RST) != 0) 2289 device_printf(sc->ale_dev, 2290 "DMA read error! -- resetting\n"); 2291 if ((status & INTR_DMA_WR_TO_RST) != 0) 2292 device_printf(sc->ale_dev, 2293 "DMA write error! -- resetting\n"); 2294 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2295 ale_init_locked(sc); 2296 ALE_UNLOCK(sc); 2297 return; 2298 } 2299 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2300 ale_start_locked(ifp); 2301 } 2302 2303 if (more == EAGAIN || 2304 (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) { 2305 ALE_UNLOCK(sc); 2306 taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task); 2307 return; 2308 } 2309 2310 done: 2311 ALE_UNLOCK(sc); 2312 2313 /* Re-enable interrupts. */ 2314 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF); 2315 } 2316 2317 static void 2318 ale_txeof(struct ale_softc *sc) 2319 { 2320 struct ifnet *ifp; 2321 struct ale_txdesc *txd; 2322 uint32_t cons, prod; 2323 int prog; 2324 2325 ALE_LOCK_ASSERT(sc); 2326 2327 ifp = sc->ale_ifp; 2328 2329 if (sc->ale_cdata.ale_tx_cnt == 0) 2330 return; 2331 2332 bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag, 2333 sc->ale_cdata.ale_tx_ring_map, 2334 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2335 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) { 2336 bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag, 2337 sc->ale_cdata.ale_tx_cmb_map, 2338 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2339 prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK; 2340 } else 2341 prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX); 2342 cons = sc->ale_cdata.ale_tx_cons; 2343 /* 2344 * Go through our Tx list and free mbufs for those 2345 * frames which have been transmitted. 2346 */ 2347 for (prog = 0; cons != prod; prog++, 2348 ALE_DESC_INC(cons, ALE_TX_RING_CNT)) { 2349 if (sc->ale_cdata.ale_tx_cnt <= 0) 2350 break; 2351 prog++; 2352 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2353 sc->ale_cdata.ale_tx_cnt--; 2354 txd = &sc->ale_cdata.ale_txdesc[cons]; 2355 if (txd->tx_m != NULL) { 2356 /* Reclaim transmitted mbufs. */ 2357 bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, 2358 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2359 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, 2360 txd->tx_dmamap); 2361 m_freem(txd->tx_m); 2362 txd->tx_m = NULL; 2363 } 2364 } 2365 2366 if (prog > 0) { 2367 sc->ale_cdata.ale_tx_cons = cons; 2368 /* 2369 * Unarm watchdog timer only when there is no pending 2370 * Tx descriptors in queue. 2371 */ 2372 if (sc->ale_cdata.ale_tx_cnt == 0) 2373 sc->ale_watchdog_timer = 0; 2374 } 2375 } 2376 2377 static void 2378 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page, 2379 uint32_t length, uint32_t *prod) 2380 { 2381 struct ale_rx_page *rx_page; 2382 2383 rx_page = *page; 2384 /* Update consumer position. */ 2385 rx_page->cons += roundup(length + sizeof(struct rx_rs), 2386 ALE_RX_PAGE_ALIGN); 2387 if (rx_page->cons >= ALE_RX_PAGE_SZ) { 2388 /* 2389 * End of Rx page reached, let hardware reuse 2390 * this page. 2391 */ 2392 rx_page->cons = 0; 2393 *rx_page->cmb_addr = 0; 2394 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map, 2395 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2396 CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp, 2397 RXF_VALID); 2398 /* Switch to alternate Rx page. */ 2399 sc->ale_cdata.ale_rx_curp ^= 1; 2400 rx_page = *page = 2401 &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp]; 2402 /* Page flipped, sync CMB and Rx page. */ 2403 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map, 2404 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2405 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map, 2406 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2407 /* Sync completed, cache updated producer index. */ 2408 *prod = *rx_page->cmb_addr; 2409 } 2410 } 2411 2412 2413 /* 2414 * It seems that AR81xx controller can compute partial checksum. 2415 * The partial checksum value can be used to accelerate checksum 2416 * computation for fragmented TCP/UDP packets. Upper network stack 2417 * already takes advantage of the partial checksum value in IP 2418 * reassembly stage. But I'm not sure the correctness of the 2419 * partial hardware checksum assistance due to lack of data sheet. 2420 * In addition, the Rx feature of controller that requires copying 2421 * for every frames effectively nullifies one of most nice offload 2422 * capability of controller. 2423 */ 2424 static void 2425 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status) 2426 { 2427 struct ifnet *ifp; 2428 struct ip *ip; 2429 char *p; 2430 2431 ifp = sc->ale_ifp; 2432 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 2433 if ((status & ALE_RD_IPCSUM_NOK) == 0) 2434 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2435 2436 if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) { 2437 if (((status & ALE_RD_IPV4_FRAG) == 0) && 2438 ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) && 2439 ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) { 2440 m->m_pkthdr.csum_flags |= 2441 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2442 m->m_pkthdr.csum_data = 0xffff; 2443 } 2444 } else { 2445 if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 && 2446 (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) { 2447 p = mtod(m, char *); 2448 p += ETHER_HDR_LEN; 2449 if ((status & ALE_RD_802_3) != 0) 2450 p += LLC_SNAPFRAMELEN; 2451 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 && 2452 (status & ALE_RD_VLAN) != 0) 2453 p += ETHER_VLAN_ENCAP_LEN; 2454 ip = (struct ip *)p; 2455 if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0) 2456 return; 2457 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 2458 CSUM_PSEUDO_HDR; 2459 m->m_pkthdr.csum_data = 0xffff; 2460 } 2461 } 2462 /* 2463 * Don't mark bad checksum for TCP/UDP frames 2464 * as fragmented frames may always have set 2465 * bad checksummed bit of frame status. 2466 */ 2467 } 2468 2469 /* Process received frames. */ 2470 static int 2471 ale_rxeof(struct ale_softc *sc, int count) 2472 { 2473 struct ale_rx_page *rx_page; 2474 struct rx_rs *rs; 2475 struct ifnet *ifp; 2476 struct mbuf *m; 2477 uint32_t length, prod, seqno, status, vtags; 2478 int prog; 2479 2480 ifp = sc->ale_ifp; 2481 rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp]; 2482 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map, 2483 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2484 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map, 2485 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2486 /* 2487 * Don't directly access producer index as hardware may 2488 * update it while Rx handler is in progress. It would 2489 * be even better if there is a way to let hardware 2490 * know how far driver processed its received frames. 2491 * Alternatively, hardware could provide a way to disable 2492 * CMB updates until driver acknowledges the end of CMB 2493 * access. 2494 */ 2495 prod = *rx_page->cmb_addr; 2496 for (prog = 0; prog < count; prog++) { 2497 if (rx_page->cons >= prod) 2498 break; 2499 rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons); 2500 seqno = ALE_RX_SEQNO(le32toh(rs->seqno)); 2501 if (sc->ale_cdata.ale_rx_seqno != seqno) { 2502 /* 2503 * Normally I believe this should not happen unless 2504 * severe driver bug or corrupted memory. However 2505 * it seems to happen under certain conditions which 2506 * is triggered by abrupt Rx events such as initiation 2507 * of bulk transfer of remote host. It's not easy to 2508 * reproduce this and I doubt it could be related 2509 * with FIFO overflow of hardware or activity of Tx 2510 * CMB updates. I also remember similar behaviour 2511 * seen on RealTek 8139 which uses resembling Rx 2512 * scheme. 2513 */ 2514 if (bootverbose) 2515 device_printf(sc->ale_dev, 2516 "garbled seq: %u, expected: %u -- " 2517 "resetting!\n", seqno, 2518 sc->ale_cdata.ale_rx_seqno); 2519 return (EIO); 2520 } 2521 /* Frame received. */ 2522 sc->ale_cdata.ale_rx_seqno++; 2523 length = ALE_RX_BYTES(le32toh(rs->length)); 2524 status = le32toh(rs->flags); 2525 if ((status & ALE_RD_ERROR) != 0) { 2526 /* 2527 * We want to pass the following frames to upper 2528 * layer regardless of error status of Rx return 2529 * status. 2530 * 2531 * o IP/TCP/UDP checksum is bad. 2532 * o frame length and protocol specific length 2533 * does not match. 2534 */ 2535 if ((status & (ALE_RD_CRC | ALE_RD_CODE | 2536 ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW | 2537 ALE_RD_TRUNC)) != 0) { 2538 ale_rx_update_page(sc, &rx_page, length, &prod); 2539 continue; 2540 } 2541 } 2542 /* 2543 * m_devget(9) is major bottle-neck of ale(4)(It comes 2544 * from hardware limitation). For jumbo frames we could 2545 * get a slightly better performance if driver use 2546 * m_getjcl(9) with proper buffer size argument. However 2547 * that would make code more complicated and I don't 2548 * think users would expect good Rx performance numbers 2549 * on these low-end consumer ethernet controller. 2550 */ 2551 m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN, 2552 ETHER_ALIGN, ifp, NULL); 2553 if (m == NULL) { 2554 ifp->if_iqdrops++; 2555 ale_rx_update_page(sc, &rx_page, length, &prod); 2556 continue; 2557 } 2558 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 && 2559 (status & ALE_RD_IPV4) != 0) 2560 ale_rxcsum(sc, m, status); 2561 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && 2562 (status & ALE_RD_VLAN) != 0) { 2563 vtags = ALE_RX_VLAN(le32toh(rs->vtags)); 2564 m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags); 2565 m->m_flags |= M_VLANTAG; 2566 } 2567 2568 /* Pass it to upper layer. */ 2569 ALE_UNLOCK(sc); 2570 (*ifp->if_input)(ifp, m); 2571 ALE_LOCK(sc); 2572 2573 ale_rx_update_page(sc, &rx_page, length, &prod); 2574 } 2575 2576 return (count > 0 ? 0 : EAGAIN); 2577 } 2578 2579 static void 2580 ale_tick(void *arg) 2581 { 2582 struct ale_softc *sc; 2583 struct mii_data *mii; 2584 2585 sc = (struct ale_softc *)arg; 2586 2587 ALE_LOCK_ASSERT(sc); 2588 2589 mii = device_get_softc(sc->ale_miibus); 2590 mii_tick(mii); 2591 ale_stats_update(sc); 2592 /* 2593 * Reclaim Tx buffers that have been transferred. It's not 2594 * needed here but it would release allocated mbuf chains 2595 * faster and limit the maximum delay to a hz. 2596 */ 2597 ale_txeof(sc); 2598 ale_watchdog(sc); 2599 callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc); 2600 } 2601 2602 static void 2603 ale_reset(struct ale_softc *sc) 2604 { 2605 uint32_t reg; 2606 int i; 2607 2608 /* Initialize PCIe module. From Linux. */ 2609 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000); 2610 2611 CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET); 2612 for (i = ALE_RESET_TIMEOUT; i > 0; i--) { 2613 DELAY(10); 2614 if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0) 2615 break; 2616 } 2617 if (i == 0) 2618 device_printf(sc->ale_dev, "master reset timeout!\n"); 2619 2620 for (i = ALE_RESET_TIMEOUT; i > 0; i--) { 2621 if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0) 2622 break; 2623 DELAY(10); 2624 } 2625 2626 if (i == 0) 2627 device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg); 2628 } 2629 2630 static void 2631 ale_init(void *xsc) 2632 { 2633 struct ale_softc *sc; 2634 2635 sc = (struct ale_softc *)xsc; 2636 ALE_LOCK(sc); 2637 ale_init_locked(sc); 2638 ALE_UNLOCK(sc); 2639 } 2640 2641 static void 2642 ale_init_locked(struct ale_softc *sc) 2643 { 2644 struct ifnet *ifp; 2645 struct mii_data *mii; 2646 uint8_t eaddr[ETHER_ADDR_LEN]; 2647 bus_addr_t paddr; 2648 uint32_t reg, rxf_hi, rxf_lo; 2649 2650 ALE_LOCK_ASSERT(sc); 2651 2652 ifp = sc->ale_ifp; 2653 mii = device_get_softc(sc->ale_miibus); 2654 2655 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2656 return; 2657 /* 2658 * Cancel any pending I/O. 2659 */ 2660 ale_stop(sc); 2661 /* 2662 * Reset the chip to a known state. 2663 */ 2664 ale_reset(sc); 2665 /* Initialize Tx descriptors, DMA memory blocks. */ 2666 ale_init_rx_pages(sc); 2667 ale_init_tx_ring(sc); 2668 2669 /* Reprogram the station address. */ 2670 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN); 2671 CSR_WRITE_4(sc, ALE_PAR0, 2672 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]); 2673 CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]); 2674 /* 2675 * Clear WOL status and disable all WOL feature as WOL 2676 * would interfere Rx operation under normal environments. 2677 */ 2678 CSR_READ_4(sc, ALE_WOL_CFG); 2679 CSR_WRITE_4(sc, ALE_WOL_CFG, 0); 2680 /* 2681 * Set Tx descriptor/RXF0/CMB base addresses. They share 2682 * the same high address part of DMAable region. 2683 */ 2684 paddr = sc->ale_cdata.ale_tx_ring_paddr; 2685 CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr)); 2686 CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr)); 2687 CSR_WRITE_4(sc, ALE_TPD_CNT, 2688 (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK); 2689 /* Set Rx page base address, note we use single queue. */ 2690 paddr = sc->ale_cdata.ale_rx_page[0].page_paddr; 2691 CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr)); 2692 paddr = sc->ale_cdata.ale_rx_page[1].page_paddr; 2693 CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr)); 2694 /* Set Tx/Rx CMB addresses. */ 2695 paddr = sc->ale_cdata.ale_tx_cmb_paddr; 2696 CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr)); 2697 paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr; 2698 CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr)); 2699 paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr; 2700 CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr)); 2701 /* Mark RXF0 is valid. */ 2702 CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID); 2703 CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID); 2704 /* 2705 * No need to initialize RFX1/RXF2/RXF3. We don't use 2706 * multi-queue yet. 2707 */ 2708 2709 /* Set Rx page size, excluding guard frame size. */ 2710 CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ); 2711 /* Tell hardware that we're ready to load DMA blocks. */ 2712 CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD); 2713 2714 /* Set Rx/Tx interrupt trigger threshold. */ 2715 CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) | 2716 (4 << INT_TRIG_TX_THRESH_SHIFT)); 2717 /* 2718 * XXX 2719 * Set interrupt trigger timer, its purpose and relation 2720 * with interrupt moderation mechanism is not clear yet. 2721 */ 2722 CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER, 2723 ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) | 2724 (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT))); 2725 2726 /* Configure interrupt moderation timer. */ 2727 reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT; 2728 reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT; 2729 CSR_WRITE_4(sc, ALE_IM_TIMER, reg); 2730 reg = CSR_READ_4(sc, ALE_MASTER_CFG); 2731 reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK); 2732 reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB); 2733 if (ALE_USECS(sc->ale_int_rx_mod) != 0) 2734 reg |= MASTER_IM_RX_TIMER_ENB; 2735 if (ALE_USECS(sc->ale_int_tx_mod) != 0) 2736 reg |= MASTER_IM_TX_TIMER_ENB; 2737 CSR_WRITE_4(sc, ALE_MASTER_CFG, reg); 2738 CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000)); 2739 2740 /* Set Maximum frame size of controller. */ 2741 if (ifp->if_mtu < ETHERMTU) 2742 sc->ale_max_frame_size = ETHERMTU; 2743 else 2744 sc->ale_max_frame_size = ifp->if_mtu; 2745 sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 2746 ETHER_CRC_LEN; 2747 CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size); 2748 /* Configure IPG/IFG parameters. */ 2749 CSR_WRITE_4(sc, ALE_IPG_IFG_CFG, 2750 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) | 2751 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) | 2752 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) | 2753 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK)); 2754 /* Set parameters for half-duplex media. */ 2755 CSR_WRITE_4(sc, ALE_HDPX_CFG, 2756 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) & 2757 HDPX_CFG_LCOL_MASK) | 2758 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) & 2759 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN | 2760 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) & 2761 HDPX_CFG_ABEBT_MASK) | 2762 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) & 2763 HDPX_CFG_JAMIPG_MASK)); 2764 2765 /* Configure Tx jumbo frame parameters. */ 2766 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) { 2767 if (ifp->if_mtu < ETHERMTU) 2768 reg = sc->ale_max_frame_size; 2769 else if (ifp->if_mtu < 6 * 1024) 2770 reg = (sc->ale_max_frame_size * 2) / 3; 2771 else 2772 reg = sc->ale_max_frame_size / 2; 2773 CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH, 2774 roundup(reg, TX_JUMBO_THRESH_UNIT) >> 2775 TX_JUMBO_THRESH_UNIT_SHIFT); 2776 } 2777 /* Configure TxQ. */ 2778 reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT)) 2779 << TXQ_CFG_TX_FIFO_BURST_SHIFT; 2780 reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) & 2781 TXQ_CFG_TPD_BURST_MASK; 2782 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB); 2783 2784 /* Configure Rx jumbo frame & flow control parameters. */ 2785 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) { 2786 reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT); 2787 CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH, 2788 (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) << 2789 RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) | 2790 ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) & 2791 RX_JUMBO_LKAH_MASK)); 2792 reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN); 2793 rxf_hi = (reg * 7) / 10; 2794 rxf_lo = (reg * 3)/ 10; 2795 CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH, 2796 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) & 2797 RX_FIFO_PAUSE_THRESH_LO_MASK) | 2798 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) & 2799 RX_FIFO_PAUSE_THRESH_HI_MASK)); 2800 } 2801 2802 /* Disable RSS. */ 2803 CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0); 2804 CSR_WRITE_4(sc, ALE_RSS_CPU, 0); 2805 2806 /* Configure RxQ. */ 2807 CSR_WRITE_4(sc, ALE_RXQ_CFG, 2808 RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB); 2809 2810 /* Configure DMA parameters. */ 2811 reg = 0; 2812 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) 2813 reg |= DMA_CFG_TXCMB_ENB; 2814 CSR_WRITE_4(sc, ALE_DMA_CFG, 2815 DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 | 2816 sc->ale_dma_rd_burst | reg | 2817 sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB | 2818 ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) & 2819 DMA_CFG_RD_DELAY_CNT_MASK) | 2820 ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) & 2821 DMA_CFG_WR_DELAY_CNT_MASK)); 2822 2823 /* 2824 * Hardware can be configured to issue SMB interrupt based 2825 * on programmed interval. Since there is a callout that is 2826 * invoked for every hz in driver we use that instead of 2827 * relying on periodic SMB interrupt. 2828 */ 2829 CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0)); 2830 /* Clear MAC statistics. */ 2831 ale_stats_clear(sc); 2832 2833 /* 2834 * Configure Tx/Rx MACs. 2835 * - Auto-padding for short frames. 2836 * - Enable CRC generation. 2837 * Actual reconfiguration of MAC for resolved speed/duplex 2838 * is followed after detection of link establishment. 2839 * AR81xx always does checksum computation regardless of 2840 * MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will 2841 * cause Rx handling issue for fragmented IP datagrams due 2842 * to silicon bug. 2843 */ 2844 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX | 2845 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) & 2846 MAC_CFG_PREAMBLE_MASK); 2847 if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0) 2848 reg |= MAC_CFG_SPEED_10_100; 2849 else 2850 reg |= MAC_CFG_SPEED_1000; 2851 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 2852 2853 /* Set up the receive filter. */ 2854 ale_rxfilter(sc); 2855 ale_rxvlan(sc); 2856 2857 /* Acknowledge all pending interrupts and clear it. */ 2858 CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS); 2859 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF); 2860 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0); 2861 2862 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2863 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2864 2865 sc->ale_flags &= ~ALE_FLAG_LINK; 2866 /* Switch to the current media. */ 2867 mii_mediachg(mii); 2868 2869 callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc); 2870 } 2871 2872 static void 2873 ale_stop(struct ale_softc *sc) 2874 { 2875 struct ifnet *ifp; 2876 struct ale_txdesc *txd; 2877 uint32_t reg; 2878 int i; 2879 2880 ALE_LOCK_ASSERT(sc); 2881 /* 2882 * Mark the interface down and cancel the watchdog timer. 2883 */ 2884 ifp = sc->ale_ifp; 2885 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2886 sc->ale_flags &= ~ALE_FLAG_LINK; 2887 callout_stop(&sc->ale_tick_ch); 2888 sc->ale_watchdog_timer = 0; 2889 ale_stats_update(sc); 2890 /* Disable interrupts. */ 2891 CSR_WRITE_4(sc, ALE_INTR_MASK, 0); 2892 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF); 2893 /* Disable queue processing and DMA. */ 2894 reg = CSR_READ_4(sc, ALE_TXQ_CFG); 2895 reg &= ~TXQ_CFG_ENB; 2896 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg); 2897 reg = CSR_READ_4(sc, ALE_RXQ_CFG); 2898 reg &= ~RXQ_CFG_ENB; 2899 CSR_WRITE_4(sc, ALE_RXQ_CFG, reg); 2900 reg = CSR_READ_4(sc, ALE_DMA_CFG); 2901 reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB); 2902 CSR_WRITE_4(sc, ALE_DMA_CFG, reg); 2903 DELAY(1000); 2904 /* Stop Rx/Tx MACs. */ 2905 ale_stop_mac(sc); 2906 /* Disable interrupts which might be touched in taskq handler. */ 2907 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF); 2908 2909 /* 2910 * Free TX mbufs still in the queues. 2911 */ 2912 for (i = 0; i < ALE_TX_RING_CNT; i++) { 2913 txd = &sc->ale_cdata.ale_txdesc[i]; 2914 if (txd->tx_m != NULL) { 2915 bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, 2916 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2917 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, 2918 txd->tx_dmamap); 2919 m_freem(txd->tx_m); 2920 txd->tx_m = NULL; 2921 } 2922 } 2923 } 2924 2925 static void 2926 ale_stop_mac(struct ale_softc *sc) 2927 { 2928 uint32_t reg; 2929 int i; 2930 2931 ALE_LOCK_ASSERT(sc); 2932 2933 reg = CSR_READ_4(sc, ALE_MAC_CFG); 2934 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) { 2935 reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB); 2936 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 2937 } 2938 2939 for (i = ALE_TIMEOUT; i > 0; i--) { 2940 reg = CSR_READ_4(sc, ALE_IDLE_STATUS); 2941 if (reg == 0) 2942 break; 2943 DELAY(10); 2944 } 2945 if (i == 0) 2946 device_printf(sc->ale_dev, 2947 "could not disable Tx/Rx MAC(0x%08x)!\n", reg); 2948 } 2949 2950 static void 2951 ale_init_tx_ring(struct ale_softc *sc) 2952 { 2953 struct ale_txdesc *txd; 2954 int i; 2955 2956 ALE_LOCK_ASSERT(sc); 2957 2958 sc->ale_cdata.ale_tx_prod = 0; 2959 sc->ale_cdata.ale_tx_cons = 0; 2960 sc->ale_cdata.ale_tx_cnt = 0; 2961 2962 bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ); 2963 bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ); 2964 for (i = 0; i < ALE_TX_RING_CNT; i++) { 2965 txd = &sc->ale_cdata.ale_txdesc[i]; 2966 txd->tx_m = NULL; 2967 } 2968 *sc->ale_cdata.ale_tx_cmb = 0; 2969 bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag, 2970 sc->ale_cdata.ale_tx_cmb_map, 2971 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2972 bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag, 2973 sc->ale_cdata.ale_tx_ring_map, 2974 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2975 } 2976 2977 static void 2978 ale_init_rx_pages(struct ale_softc *sc) 2979 { 2980 struct ale_rx_page *rx_page; 2981 int i; 2982 2983 ALE_LOCK_ASSERT(sc); 2984 2985 sc->ale_morework = 0; 2986 sc->ale_cdata.ale_rx_seqno = 0; 2987 sc->ale_cdata.ale_rx_curp = 0; 2988 2989 for (i = 0; i < ALE_RX_PAGES; i++) { 2990 rx_page = &sc->ale_cdata.ale_rx_page[i]; 2991 bzero(rx_page->page_addr, sc->ale_pagesize); 2992 bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ); 2993 rx_page->cons = 0; 2994 *rx_page->cmb_addr = 0; 2995 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map, 2996 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2997 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map, 2998 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2999 } 3000 } 3001 3002 static void 3003 ale_rxvlan(struct ale_softc *sc) 3004 { 3005 struct ifnet *ifp; 3006 uint32_t reg; 3007 3008 ALE_LOCK_ASSERT(sc); 3009 3010 ifp = sc->ale_ifp; 3011 reg = CSR_READ_4(sc, ALE_MAC_CFG); 3012 reg &= ~MAC_CFG_VLAN_TAG_STRIP; 3013 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 3014 reg |= MAC_CFG_VLAN_TAG_STRIP; 3015 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 3016 } 3017 3018 static void 3019 ale_rxfilter(struct ale_softc *sc) 3020 { 3021 struct ifnet *ifp; 3022 struct ifmultiaddr *ifma; 3023 uint32_t crc; 3024 uint32_t mchash[2]; 3025 uint32_t rxcfg; 3026 3027 ALE_LOCK_ASSERT(sc); 3028 3029 ifp = sc->ale_ifp; 3030 3031 rxcfg = CSR_READ_4(sc, ALE_MAC_CFG); 3032 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC); 3033 if ((ifp->if_flags & IFF_BROADCAST) != 0) 3034 rxcfg |= MAC_CFG_BCAST; 3035 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 3036 if ((ifp->if_flags & IFF_PROMISC) != 0) 3037 rxcfg |= MAC_CFG_PROMISC; 3038 if ((ifp->if_flags & IFF_ALLMULTI) != 0) 3039 rxcfg |= MAC_CFG_ALLMULTI; 3040 CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF); 3041 CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF); 3042 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg); 3043 return; 3044 } 3045 3046 /* Program new filter. */ 3047 bzero(mchash, sizeof(mchash)); 3048 3049 if_maddr_rlock(ifp); 3050 TAILQ_FOREACH(ifma, &sc->ale_ifp->if_multiaddrs, ifma_link) { 3051 if (ifma->ifma_addr->sa_family != AF_LINK) 3052 continue; 3053 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) 3054 ifma->ifma_addr), ETHER_ADDR_LEN); 3055 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); 3056 } 3057 if_maddr_runlock(ifp); 3058 3059 CSR_WRITE_4(sc, ALE_MAR0, mchash[0]); 3060 CSR_WRITE_4(sc, ALE_MAR1, mchash[1]); 3061 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg); 3062 } 3063 3064 static int 3065 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3066 { 3067 int error, value; 3068 3069 if (arg1 == NULL) 3070 return (EINVAL); 3071 value = *(int *)arg1; 3072 error = sysctl_handle_int(oidp, &value, 0, req); 3073 if (error || req->newptr == NULL) 3074 return (error); 3075 if (value < low || value > high) 3076 return (EINVAL); 3077 *(int *)arg1 = value; 3078 3079 return (0); 3080 } 3081 3082 static int 3083 sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS) 3084 { 3085 return (sysctl_int_range(oidp, arg1, arg2, req, 3086 ALE_PROC_MIN, ALE_PROC_MAX)); 3087 } 3088 3089 static int 3090 sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS) 3091 { 3092 3093 return (sysctl_int_range(oidp, arg1, arg2, req, 3094 ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX)); 3095 } 3096