1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */ 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/bus.h> 35 #include <sys/endian.h> 36 #include <sys/kernel.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/module.h> 40 #include <sys/rman.h> 41 #include <sys/queue.h> 42 #include <sys/socket.h> 43 #include <sys/sockio.h> 44 #include <sys/sysctl.h> 45 #include <sys/taskqueue.h> 46 47 #include <net/bpf.h> 48 #include <net/if.h> 49 #include <net/if_var.h> 50 #include <net/if_arp.h> 51 #include <net/ethernet.h> 52 #include <net/if_dl.h> 53 #include <net/if_llc.h> 54 #include <net/if_media.h> 55 #include <net/if_types.h> 56 #include <net/if_vlan_var.h> 57 58 #include <netinet/in.h> 59 #include <netinet/in_systm.h> 60 #include <netinet/ip.h> 61 #include <netinet/tcp.h> 62 63 #include <dev/mii/mii.h> 64 #include <dev/mii/miivar.h> 65 66 #include <dev/pci/pcireg.h> 67 #include <dev/pci/pcivar.h> 68 69 #include <machine/bus.h> 70 #include <machine/in_cksum.h> 71 72 #include <dev/ale/if_alereg.h> 73 #include <dev/ale/if_alevar.h> 74 75 /* "device miibus" required. See GENERIC if you get errors here. */ 76 #include "miibus_if.h" 77 78 /* For more information about Tx checksum offload issues see ale_encap(). */ 79 #define ALE_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 80 81 MODULE_DEPEND(ale, pci, 1, 1, 1); 82 MODULE_DEPEND(ale, ether, 1, 1, 1); 83 MODULE_DEPEND(ale, miibus, 1, 1, 1); 84 85 /* Tunables. */ 86 static int msi_disable = 0; 87 static int msix_disable = 0; 88 TUNABLE_INT("hw.ale.msi_disable", &msi_disable); 89 TUNABLE_INT("hw.ale.msix_disable", &msix_disable); 90 91 /* 92 * Devices supported by this driver. 93 */ 94 static const struct ale_dev { 95 uint16_t ale_vendorid; 96 uint16_t ale_deviceid; 97 const char *ale_name; 98 } ale_devs[] = { 99 { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX, 100 "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" }, 101 }; 102 103 static int ale_attach(device_t); 104 static int ale_check_boundary(struct ale_softc *); 105 static int ale_detach(device_t); 106 static int ale_dma_alloc(struct ale_softc *); 107 static void ale_dma_free(struct ale_softc *); 108 static void ale_dmamap_cb(void *, bus_dma_segment_t *, int, int); 109 static int ale_encap(struct ale_softc *, struct mbuf **); 110 static void ale_get_macaddr(struct ale_softc *); 111 static void ale_init(void *); 112 static void ale_init_locked(struct ale_softc *); 113 static void ale_init_rx_pages(struct ale_softc *); 114 static void ale_init_tx_ring(struct ale_softc *); 115 static void ale_int_task(void *, int); 116 static int ale_intr(void *); 117 static int ale_ioctl(if_t, u_long, caddr_t); 118 static void ale_mac_config(struct ale_softc *); 119 static int ale_miibus_readreg(device_t, int, int); 120 static void ale_miibus_statchg(device_t); 121 static int ale_miibus_writereg(device_t, int, int, int); 122 static int ale_mediachange(if_t); 123 static void ale_mediastatus(if_t, struct ifmediareq *); 124 static void ale_phy_reset(struct ale_softc *); 125 static int ale_probe(device_t); 126 static void ale_reset(struct ale_softc *); 127 static int ale_resume(device_t); 128 static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **, 129 uint32_t, uint32_t *); 130 static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t); 131 static int ale_rxeof(struct ale_softc *sc, int); 132 static void ale_rxfilter(struct ale_softc *); 133 static void ale_rxvlan(struct ale_softc *); 134 static void ale_setlinkspeed(struct ale_softc *); 135 static void ale_setwol(struct ale_softc *); 136 static int ale_shutdown(device_t); 137 static void ale_start(if_t); 138 static void ale_start_locked(if_t); 139 static void ale_stats_clear(struct ale_softc *); 140 static void ale_stats_update(struct ale_softc *); 141 static void ale_stop(struct ale_softc *); 142 static void ale_stop_mac(struct ale_softc *); 143 static int ale_suspend(device_t); 144 static void ale_sysctl_node(struct ale_softc *); 145 static void ale_tick(void *); 146 static void ale_txeof(struct ale_softc *); 147 static void ale_watchdog(struct ale_softc *); 148 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); 149 static int sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS); 150 static int sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS); 151 152 static device_method_t ale_methods[] = { 153 /* Device interface. */ 154 DEVMETHOD(device_probe, ale_probe), 155 DEVMETHOD(device_attach, ale_attach), 156 DEVMETHOD(device_detach, ale_detach), 157 DEVMETHOD(device_shutdown, ale_shutdown), 158 DEVMETHOD(device_suspend, ale_suspend), 159 DEVMETHOD(device_resume, ale_resume), 160 161 /* MII interface. */ 162 DEVMETHOD(miibus_readreg, ale_miibus_readreg), 163 DEVMETHOD(miibus_writereg, ale_miibus_writereg), 164 DEVMETHOD(miibus_statchg, ale_miibus_statchg), 165 166 DEVMETHOD_END 167 }; 168 169 static driver_t ale_driver = { 170 "ale", 171 ale_methods, 172 sizeof(struct ale_softc) 173 }; 174 175 DRIVER_MODULE(ale, pci, ale_driver, NULL, NULL); 176 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ale, ale_devs, 177 nitems(ale_devs)); 178 DRIVER_MODULE(miibus, ale, miibus_driver, NULL, NULL); 179 180 static struct resource_spec ale_res_spec_mem[] = { 181 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 182 { -1, 0, 0 } 183 }; 184 185 static struct resource_spec ale_irq_spec_legacy[] = { 186 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 187 { -1, 0, 0 } 188 }; 189 190 static struct resource_spec ale_irq_spec_msi[] = { 191 { SYS_RES_IRQ, 1, RF_ACTIVE }, 192 { -1, 0, 0 } 193 }; 194 195 static struct resource_spec ale_irq_spec_msix[] = { 196 { SYS_RES_IRQ, 1, RF_ACTIVE }, 197 { -1, 0, 0 } 198 }; 199 200 static int 201 ale_miibus_readreg(device_t dev, int phy, int reg) 202 { 203 struct ale_softc *sc; 204 uint32_t v; 205 int i; 206 207 sc = device_get_softc(dev); 208 209 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ | 210 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 211 for (i = ALE_PHY_TIMEOUT; i > 0; i--) { 212 DELAY(5); 213 v = CSR_READ_4(sc, ALE_MDIO); 214 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 215 break; 216 } 217 218 if (i == 0) { 219 device_printf(sc->ale_dev, "phy read timeout : %d\n", reg); 220 return (0); 221 } 222 223 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT); 224 } 225 226 static int 227 ale_miibus_writereg(device_t dev, int phy, int reg, int val) 228 { 229 struct ale_softc *sc; 230 uint32_t v; 231 int i; 232 233 sc = device_get_softc(dev); 234 235 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE | 236 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT | 237 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 238 for (i = ALE_PHY_TIMEOUT; i > 0; i--) { 239 DELAY(5); 240 v = CSR_READ_4(sc, ALE_MDIO); 241 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 242 break; 243 } 244 245 if (i == 0) 246 device_printf(sc->ale_dev, "phy write timeout : %d\n", reg); 247 248 return (0); 249 } 250 251 static void 252 ale_miibus_statchg(device_t dev) 253 { 254 struct ale_softc *sc; 255 struct mii_data *mii; 256 if_t ifp; 257 uint32_t reg; 258 259 sc = device_get_softc(dev); 260 mii = device_get_softc(sc->ale_miibus); 261 ifp = sc->ale_ifp; 262 if (mii == NULL || ifp == NULL || 263 (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) 264 return; 265 266 sc->ale_flags &= ~ALE_FLAG_LINK; 267 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 268 (IFM_ACTIVE | IFM_AVALID)) { 269 switch (IFM_SUBTYPE(mii->mii_media_active)) { 270 case IFM_10_T: 271 case IFM_100_TX: 272 sc->ale_flags |= ALE_FLAG_LINK; 273 break; 274 case IFM_1000_T: 275 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0) 276 sc->ale_flags |= ALE_FLAG_LINK; 277 break; 278 default: 279 break; 280 } 281 } 282 283 /* Stop Rx/Tx MACs. */ 284 ale_stop_mac(sc); 285 286 /* Program MACs with resolved speed/duplex/flow-control. */ 287 if ((sc->ale_flags & ALE_FLAG_LINK) != 0) { 288 ale_mac_config(sc); 289 /* Reenable Tx/Rx MACs. */ 290 reg = CSR_READ_4(sc, ALE_MAC_CFG); 291 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB; 292 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 293 } 294 } 295 296 static void 297 ale_mediastatus(if_t ifp, struct ifmediareq *ifmr) 298 { 299 struct ale_softc *sc; 300 struct mii_data *mii; 301 302 sc = if_getsoftc(ifp); 303 ALE_LOCK(sc); 304 if ((if_getflags(ifp) & IFF_UP) == 0) { 305 ALE_UNLOCK(sc); 306 return; 307 } 308 mii = device_get_softc(sc->ale_miibus); 309 310 mii_pollstat(mii); 311 ifmr->ifm_status = mii->mii_media_status; 312 ifmr->ifm_active = mii->mii_media_active; 313 ALE_UNLOCK(sc); 314 } 315 316 static int 317 ale_mediachange(if_t ifp) 318 { 319 struct ale_softc *sc; 320 struct mii_data *mii; 321 struct mii_softc *miisc; 322 int error; 323 324 sc = if_getsoftc(ifp); 325 ALE_LOCK(sc); 326 mii = device_get_softc(sc->ale_miibus); 327 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 328 PHY_RESET(miisc); 329 error = mii_mediachg(mii); 330 ALE_UNLOCK(sc); 331 332 return (error); 333 } 334 335 static int 336 ale_probe(device_t dev) 337 { 338 const struct ale_dev *sp; 339 int i; 340 uint16_t vendor, devid; 341 342 vendor = pci_get_vendor(dev); 343 devid = pci_get_device(dev); 344 sp = ale_devs; 345 for (i = 0; i < nitems(ale_devs); i++) { 346 if (vendor == sp->ale_vendorid && 347 devid == sp->ale_deviceid) { 348 device_set_desc(dev, sp->ale_name); 349 return (BUS_PROBE_DEFAULT); 350 } 351 sp++; 352 } 353 354 return (ENXIO); 355 } 356 357 static void 358 ale_get_macaddr(struct ale_softc *sc) 359 { 360 uint32_t ea[2], reg; 361 int i, vpdc; 362 363 reg = CSR_READ_4(sc, ALE_SPI_CTRL); 364 if ((reg & SPI_VPD_ENB) != 0) { 365 reg &= ~SPI_VPD_ENB; 366 CSR_WRITE_4(sc, ALE_SPI_CTRL, reg); 367 } 368 369 if (pci_find_cap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) { 370 /* 371 * PCI VPD capability found, let TWSI reload EEPROM. 372 * This will set ethernet address of controller. 373 */ 374 CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) | 375 TWSI_CTRL_SW_LD_START); 376 for (i = 100; i > 0; i--) { 377 DELAY(1000); 378 reg = CSR_READ_4(sc, ALE_TWSI_CTRL); 379 if ((reg & TWSI_CTRL_SW_LD_START) == 0) 380 break; 381 } 382 if (i == 0) 383 device_printf(sc->ale_dev, 384 "reloading EEPROM timeout!\n"); 385 } else { 386 if (bootverbose) 387 device_printf(sc->ale_dev, 388 "PCI VPD capability not found!\n"); 389 } 390 391 ea[0] = CSR_READ_4(sc, ALE_PAR0); 392 ea[1] = CSR_READ_4(sc, ALE_PAR1); 393 sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF; 394 sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF; 395 sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF; 396 sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF; 397 sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF; 398 sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF; 399 } 400 401 static void 402 ale_phy_reset(struct ale_softc *sc) 403 { 404 405 /* Reset magic from Linux. */ 406 CSR_WRITE_2(sc, ALE_GPHY_CTRL, 407 GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET | 408 GPHY_CTRL_PHY_PLL_ON); 409 DELAY(1000); 410 CSR_WRITE_2(sc, ALE_GPHY_CTRL, 411 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | 412 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON); 413 DELAY(1000); 414 415 #define ATPHY_DBG_ADDR 0x1D 416 #define ATPHY_DBG_DATA 0x1E 417 418 /* Enable hibernation mode. */ 419 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 420 ATPHY_DBG_ADDR, 0x0B); 421 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 422 ATPHY_DBG_DATA, 0xBC00); 423 /* Set Class A/B for all modes. */ 424 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 425 ATPHY_DBG_ADDR, 0x00); 426 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 427 ATPHY_DBG_DATA, 0x02EF); 428 /* Enable 10BT power saving. */ 429 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 430 ATPHY_DBG_ADDR, 0x12); 431 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 432 ATPHY_DBG_DATA, 0x4C04); 433 /* Adjust 1000T power. */ 434 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 435 ATPHY_DBG_ADDR, 0x04); 436 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 437 ATPHY_DBG_ADDR, 0x8BBB); 438 /* 10BT center tap voltage. */ 439 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 440 ATPHY_DBG_ADDR, 0x05); 441 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 442 ATPHY_DBG_ADDR, 0x2C46); 443 444 #undef ATPHY_DBG_ADDR 445 #undef ATPHY_DBG_DATA 446 DELAY(1000); 447 } 448 449 static int 450 ale_attach(device_t dev) 451 { 452 struct ale_softc *sc; 453 if_t ifp; 454 uint16_t burst; 455 int error, i, msic, msixc, pmc; 456 uint32_t rxf_len, txf_len; 457 458 error = 0; 459 sc = device_get_softc(dev); 460 sc->ale_dev = dev; 461 462 mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 463 MTX_DEF); 464 callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0); 465 NET_TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc); 466 467 /* Map the device. */ 468 pci_enable_busmaster(dev); 469 sc->ale_res_spec = ale_res_spec_mem; 470 sc->ale_irq_spec = ale_irq_spec_legacy; 471 error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res); 472 if (error != 0) { 473 device_printf(dev, "cannot allocate memory resources.\n"); 474 goto fail; 475 } 476 477 /* Set PHY address. */ 478 sc->ale_phyaddr = ALE_PHY_ADDR; 479 480 /* Reset PHY. */ 481 ale_phy_reset(sc); 482 483 /* Reset the ethernet controller. */ 484 ale_reset(sc); 485 486 /* Get PCI and chip id/revision. */ 487 sc->ale_rev = pci_get_revid(dev); 488 if (sc->ale_rev >= 0xF0) { 489 /* L2E Rev. B. AR8114 */ 490 sc->ale_flags |= ALE_FLAG_FASTETHER; 491 } else { 492 if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) { 493 /* L1E AR8121 */ 494 sc->ale_flags |= ALE_FLAG_JUMBO; 495 } else { 496 /* L2E Rev. A. AR8113 */ 497 sc->ale_flags |= ALE_FLAG_FASTETHER; 498 } 499 } 500 /* 501 * All known controllers seems to require 4 bytes alignment 502 * of Tx buffers to make Tx checksum offload with custom 503 * checksum generation method work. 504 */ 505 sc->ale_flags |= ALE_FLAG_TXCSUM_BUG; 506 /* 507 * All known controllers seems to have issues on Rx checksum 508 * offload for fragmented IP datagrams. 509 */ 510 sc->ale_flags |= ALE_FLAG_RXCSUM_BUG; 511 /* 512 * Don't use Tx CMB. It is known to cause RRS update failure 513 * under certain circumstances. Typical phenomenon of the 514 * issue would be unexpected sequence number encountered in 515 * Rx handler. 516 */ 517 sc->ale_flags |= ALE_FLAG_TXCMB_BUG; 518 sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >> 519 MASTER_CHIP_REV_SHIFT; 520 if (bootverbose) { 521 device_printf(dev, "PCI device revision : 0x%04x\n", 522 sc->ale_rev); 523 device_printf(dev, "Chip id/revision : 0x%04x\n", 524 sc->ale_chip_rev); 525 } 526 txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN); 527 rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN); 528 /* 529 * Uninitialized hardware returns an invalid chip id/revision 530 * as well as 0xFFFFFFFF for Tx/Rx fifo length. 531 */ 532 if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF || 533 rxf_len == 0xFFFFFFF) { 534 device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO " 535 "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev, 536 txf_len, rxf_len); 537 error = ENXIO; 538 goto fail; 539 } 540 device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len); 541 542 /* Allocate IRQ resources. */ 543 msixc = pci_msix_count(dev); 544 msic = pci_msi_count(dev); 545 if (bootverbose) { 546 device_printf(dev, "MSIX count : %d\n", msixc); 547 device_printf(dev, "MSI count : %d\n", msic); 548 } 549 550 /* Prefer MSIX over MSI. */ 551 if (msix_disable == 0 || msi_disable == 0) { 552 if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES && 553 pci_alloc_msix(dev, &msixc) == 0) { 554 if (msixc == ALE_MSIX_MESSAGES) { 555 device_printf(dev, "Using %d MSIX messages.\n", 556 msixc); 557 sc->ale_flags |= ALE_FLAG_MSIX; 558 sc->ale_irq_spec = ale_irq_spec_msix; 559 } else 560 pci_release_msi(dev); 561 } 562 if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 && 563 msic == ALE_MSI_MESSAGES && 564 pci_alloc_msi(dev, &msic) == 0) { 565 if (msic == ALE_MSI_MESSAGES) { 566 device_printf(dev, "Using %d MSI messages.\n", 567 msic); 568 sc->ale_flags |= ALE_FLAG_MSI; 569 sc->ale_irq_spec = ale_irq_spec_msi; 570 } else 571 pci_release_msi(dev); 572 } 573 } 574 575 error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq); 576 if (error != 0) { 577 device_printf(dev, "cannot allocate IRQ resources.\n"); 578 goto fail; 579 } 580 581 /* Get DMA parameters from PCIe device control register. */ 582 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 583 sc->ale_flags |= ALE_FLAG_PCIE; 584 burst = pci_read_config(dev, i + 0x08, 2); 585 /* Max read request size. */ 586 sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) << 587 DMA_CFG_RD_BURST_SHIFT; 588 /* Max payload size. */ 589 sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) << 590 DMA_CFG_WR_BURST_SHIFT; 591 if (bootverbose) { 592 device_printf(dev, "Read request size : %d bytes.\n", 593 128 << ((burst >> 12) & 0x07)); 594 device_printf(dev, "TLP payload size : %d bytes.\n", 595 128 << ((burst >> 5) & 0x07)); 596 } 597 } else { 598 sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128; 599 sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128; 600 } 601 602 /* Create device sysctl node. */ 603 ale_sysctl_node(sc); 604 605 if ((error = ale_dma_alloc(sc)) != 0) 606 goto fail; 607 608 /* Load station address. */ 609 ale_get_macaddr(sc); 610 611 ifp = sc->ale_ifp = if_alloc(IFT_ETHER); 612 if (ifp == NULL) { 613 device_printf(dev, "cannot allocate ifnet structure.\n"); 614 error = ENXIO; 615 goto fail; 616 } 617 618 if_setsoftc(ifp, sc); 619 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 620 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 621 if_setioctlfn(ifp, ale_ioctl); 622 if_setstartfn(ifp, ale_start); 623 if_setinitfn(ifp, ale_init); 624 if_setsendqlen(ifp, ALE_TX_RING_CNT - 1); 625 if_setsendqready(ifp); 626 if_setcapabilities(ifp, IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4); 627 if_sethwassist(ifp, ALE_CSUM_FEATURES | CSUM_TSO); 628 if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) { 629 sc->ale_flags |= ALE_FLAG_PMCAP; 630 if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST, 0); 631 } 632 if_setcapenable(ifp, if_getcapabilities(ifp)); 633 634 /* Set up MII bus. */ 635 error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange, 636 ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY, 637 MIIF_DOPAUSE); 638 if (error != 0) { 639 device_printf(dev, "attaching PHYs failed\n"); 640 goto fail; 641 } 642 643 ether_ifattach(ifp, sc->ale_eaddr); 644 645 /* VLAN capability setup. */ 646 if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | 647 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0); 648 if_setcapenable(ifp, if_getcapabilities(ifp)); 649 /* 650 * Even though controllers supported by ale(3) have Rx checksum 651 * offload bug the workaround for fragmented frames seemed to 652 * work so far. However it seems Rx checksum offload does not 653 * work under certain conditions. So disable Rx checksum offload 654 * until I find more clue about it but allow users to override it. 655 */ 656 if_setcapenablebit(ifp, 0, IFCAP_RXCSUM); 657 658 /* Tell the upper layer(s) we support long frames. */ 659 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); 660 661 /* Create local taskq. */ 662 sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK, 663 taskqueue_thread_enqueue, &sc->ale_tq); 664 if (sc->ale_tq == NULL) { 665 device_printf(dev, "could not create taskqueue.\n"); 666 ether_ifdetach(ifp); 667 error = ENXIO; 668 goto fail; 669 } 670 taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq", 671 device_get_nameunit(sc->ale_dev)); 672 673 if ((sc->ale_flags & ALE_FLAG_MSIX) != 0) 674 msic = ALE_MSIX_MESSAGES; 675 else if ((sc->ale_flags & ALE_FLAG_MSI) != 0) 676 msic = ALE_MSI_MESSAGES; 677 else 678 msic = 1; 679 for (i = 0; i < msic; i++) { 680 error = bus_setup_intr(dev, sc->ale_irq[i], 681 INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc, 682 &sc->ale_intrhand[i]); 683 if (error != 0) 684 break; 685 } 686 if (error != 0) { 687 device_printf(dev, "could not set up interrupt handler.\n"); 688 taskqueue_free(sc->ale_tq); 689 sc->ale_tq = NULL; 690 ether_ifdetach(ifp); 691 goto fail; 692 } 693 694 fail: 695 if (error != 0) 696 ale_detach(dev); 697 698 return (error); 699 } 700 701 static int 702 ale_detach(device_t dev) 703 { 704 struct ale_softc *sc; 705 if_t ifp; 706 int i, msic; 707 708 sc = device_get_softc(dev); 709 710 ifp = sc->ale_ifp; 711 if (device_is_attached(dev)) { 712 ether_ifdetach(ifp); 713 ALE_LOCK(sc); 714 ale_stop(sc); 715 ALE_UNLOCK(sc); 716 callout_drain(&sc->ale_tick_ch); 717 taskqueue_drain(sc->ale_tq, &sc->ale_int_task); 718 } 719 720 if (sc->ale_tq != NULL) { 721 taskqueue_drain(sc->ale_tq, &sc->ale_int_task); 722 taskqueue_free(sc->ale_tq); 723 sc->ale_tq = NULL; 724 } 725 726 if (sc->ale_miibus != NULL) { 727 device_delete_child(dev, sc->ale_miibus); 728 sc->ale_miibus = NULL; 729 } 730 bus_generic_detach(dev); 731 ale_dma_free(sc); 732 733 if (ifp != NULL) { 734 if_free(ifp); 735 sc->ale_ifp = NULL; 736 } 737 738 if ((sc->ale_flags & ALE_FLAG_MSIX) != 0) 739 msic = ALE_MSIX_MESSAGES; 740 else if ((sc->ale_flags & ALE_FLAG_MSI) != 0) 741 msic = ALE_MSI_MESSAGES; 742 else 743 msic = 1; 744 for (i = 0; i < msic; i++) { 745 if (sc->ale_intrhand[i] != NULL) { 746 bus_teardown_intr(dev, sc->ale_irq[i], 747 sc->ale_intrhand[i]); 748 sc->ale_intrhand[i] = NULL; 749 } 750 } 751 752 bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq); 753 if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0) 754 pci_release_msi(dev); 755 bus_release_resources(dev, sc->ale_res_spec, sc->ale_res); 756 mtx_destroy(&sc->ale_mtx); 757 758 return (0); 759 } 760 761 #define ALE_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 762 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 763 764 #define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 765 SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 766 767 static void 768 ale_sysctl_node(struct ale_softc *sc) 769 { 770 struct sysctl_ctx_list *ctx; 771 struct sysctl_oid_list *child, *parent; 772 struct sysctl_oid *tree; 773 struct ale_hw_stats *stats; 774 int error; 775 776 stats = &sc->ale_stats; 777 ctx = device_get_sysctl_ctx(sc->ale_dev); 778 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev)); 779 780 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod", 781 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->ale_int_rx_mod, 782 0, sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation"); 783 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod", 784 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->ale_int_tx_mod, 785 0, sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation"); 786 /* Pull in device tunables. */ 787 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT; 788 error = resource_int_value(device_get_name(sc->ale_dev), 789 device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod); 790 if (error == 0) { 791 if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN || 792 sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) { 793 device_printf(sc->ale_dev, "int_rx_mod value out of " 794 "range; using default: %d\n", 795 ALE_IM_RX_TIMER_DEFAULT); 796 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT; 797 } 798 } 799 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT; 800 error = resource_int_value(device_get_name(sc->ale_dev), 801 device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod); 802 if (error == 0) { 803 if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN || 804 sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) { 805 device_printf(sc->ale_dev, "int_tx_mod value out of " 806 "range; using default: %d\n", 807 ALE_IM_TX_TIMER_DEFAULT); 808 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT; 809 } 810 } 811 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit", 812 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 813 &sc->ale_process_limit, 0, sysctl_hw_ale_proc_limit, "I", 814 "max number of Rx events to process"); 815 /* Pull in device tunables. */ 816 sc->ale_process_limit = ALE_PROC_DEFAULT; 817 error = resource_int_value(device_get_name(sc->ale_dev), 818 device_get_unit(sc->ale_dev), "process_limit", 819 &sc->ale_process_limit); 820 if (error == 0) { 821 if (sc->ale_process_limit < ALE_PROC_MIN || 822 sc->ale_process_limit > ALE_PROC_MAX) { 823 device_printf(sc->ale_dev, 824 "process_limit value out of range; " 825 "using default: %d\n", ALE_PROC_DEFAULT); 826 sc->ale_process_limit = ALE_PROC_DEFAULT; 827 } 828 } 829 830 /* Misc statistics. */ 831 ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq", 832 &stats->reset_brk_seq, 833 "Controller resets due to broken Rx sequnce number"); 834 835 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", 836 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ATE statistics"); 837 parent = SYSCTL_CHILDREN(tree); 838 839 /* Rx statistics. */ 840 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", 841 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics"); 842 child = SYSCTL_CHILDREN(tree); 843 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames", 844 &stats->rx_frames, "Good frames"); 845 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames", 846 &stats->rx_bcast_frames, "Good broadcast frames"); 847 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames", 848 &stats->rx_mcast_frames, "Good multicast frames"); 849 ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames", 850 &stats->rx_pause_frames, "Pause control frames"); 851 ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames", 852 &stats->rx_control_frames, "Control frames"); 853 ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs", 854 &stats->rx_crcerrs, "CRC errors"); 855 ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs", 856 &stats->rx_lenerrs, "Frames with length mismatched"); 857 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets", 858 &stats->rx_bytes, "Good octets"); 859 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets", 860 &stats->rx_bcast_bytes, "Good broadcast octets"); 861 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets", 862 &stats->rx_mcast_bytes, "Good multicast octets"); 863 ALE_SYSCTL_STAT_ADD32(ctx, child, "runts", 864 &stats->rx_runts, "Too short frames"); 865 ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments", 866 &stats->rx_fragments, "Fragmented frames"); 867 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64", 868 &stats->rx_pkts_64, "64 bytes frames"); 869 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127", 870 &stats->rx_pkts_65_127, "65 to 127 bytes frames"); 871 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255", 872 &stats->rx_pkts_128_255, "128 to 255 bytes frames"); 873 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511", 874 &stats->rx_pkts_256_511, "256 to 511 bytes frames"); 875 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023", 876 &stats->rx_pkts_512_1023, "512 to 1023 bytes frames"); 877 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518", 878 &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames"); 879 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max", 880 &stats->rx_pkts_1519_max, "1519 to max frames"); 881 ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs", 882 &stats->rx_pkts_truncated, "Truncated frames due to MTU size"); 883 ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows", 884 &stats->rx_fifo_oflows, "FIFO overflows"); 885 ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs", 886 &stats->rx_rrs_errs, "Return status write-back errors"); 887 ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs", 888 &stats->rx_alignerrs, "Alignment errors"); 889 ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered", 890 &stats->rx_pkts_filtered, 891 "Frames dropped due to address filtering"); 892 893 /* Tx statistics. */ 894 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", 895 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics"); 896 child = SYSCTL_CHILDREN(tree); 897 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames", 898 &stats->tx_frames, "Good frames"); 899 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames", 900 &stats->tx_bcast_frames, "Good broadcast frames"); 901 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames", 902 &stats->tx_mcast_frames, "Good multicast frames"); 903 ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames", 904 &stats->tx_pause_frames, "Pause control frames"); 905 ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames", 906 &stats->tx_control_frames, "Control frames"); 907 ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers", 908 &stats->tx_excess_defer, "Frames with excessive derferrals"); 909 ALE_SYSCTL_STAT_ADD32(ctx, child, "defers", 910 &stats->tx_excess_defer, "Frames with derferrals"); 911 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets", 912 &stats->tx_bytes, "Good octets"); 913 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets", 914 &stats->tx_bcast_bytes, "Good broadcast octets"); 915 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets", 916 &stats->tx_mcast_bytes, "Good multicast octets"); 917 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64", 918 &stats->tx_pkts_64, "64 bytes frames"); 919 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127", 920 &stats->tx_pkts_65_127, "65 to 127 bytes frames"); 921 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255", 922 &stats->tx_pkts_128_255, "128 to 255 bytes frames"); 923 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511", 924 &stats->tx_pkts_256_511, "256 to 511 bytes frames"); 925 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023", 926 &stats->tx_pkts_512_1023, "512 to 1023 bytes frames"); 927 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518", 928 &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames"); 929 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max", 930 &stats->tx_pkts_1519_max, "1519 to max frames"); 931 ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls", 932 &stats->tx_single_colls, "Single collisions"); 933 ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls", 934 &stats->tx_multi_colls, "Multiple collisions"); 935 ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls", 936 &stats->tx_late_colls, "Late collisions"); 937 ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls", 938 &stats->tx_excess_colls, "Excessive collisions"); 939 ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns", 940 &stats->tx_underrun, "FIFO underruns"); 941 ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns", 942 &stats->tx_desc_underrun, "Descriptor write-back errors"); 943 ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs", 944 &stats->tx_lenerrs, "Frames with length mismatched"); 945 ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs", 946 &stats->tx_pkts_truncated, "Truncated frames due to MTU size"); 947 } 948 949 #undef ALE_SYSCTL_STAT_ADD32 950 #undef ALE_SYSCTL_STAT_ADD64 951 952 struct ale_dmamap_arg { 953 bus_addr_t ale_busaddr; 954 }; 955 956 static void 957 ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 958 { 959 struct ale_dmamap_arg *ctx; 960 961 if (error != 0) 962 return; 963 964 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 965 966 ctx = (struct ale_dmamap_arg *)arg; 967 ctx->ale_busaddr = segs[0].ds_addr; 968 } 969 970 /* 971 * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register 972 * which specifies high address region of DMA blocks. Therefore these 973 * blocks should have the same high address of given 4GB address 974 * space(i.e. crossing 4GB boundary is not allowed). 975 */ 976 static int 977 ale_check_boundary(struct ale_softc *sc) 978 { 979 bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end; 980 bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end; 981 982 rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr + 983 sc->ale_pagesize; 984 rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr + 985 sc->ale_pagesize; 986 tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ; 987 tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ; 988 rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ; 989 rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ; 990 991 if ((ALE_ADDR_HI(tx_ring_end) != 992 ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) || 993 (ALE_ADDR_HI(rx_page_end[0]) != 994 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) || 995 (ALE_ADDR_HI(rx_page_end[1]) != 996 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) || 997 (ALE_ADDR_HI(tx_cmb_end) != 998 ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) || 999 (ALE_ADDR_HI(rx_cmb_end[0]) != 1000 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) || 1001 (ALE_ADDR_HI(rx_cmb_end[1]) != 1002 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr))) 1003 return (EFBIG); 1004 1005 if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) || 1006 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) || 1007 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) || 1008 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) || 1009 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end))) 1010 return (EFBIG); 1011 1012 return (0); 1013 } 1014 1015 static int 1016 ale_dma_alloc(struct ale_softc *sc) 1017 { 1018 struct ale_txdesc *txd; 1019 bus_addr_t lowaddr; 1020 struct ale_dmamap_arg ctx; 1021 int error, guard_size, i; 1022 1023 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) 1024 guard_size = ALE_JUMBO_FRAMELEN; 1025 else 1026 guard_size = ALE_MAX_FRAMELEN; 1027 sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ, 1028 ALE_RX_PAGE_ALIGN); 1029 lowaddr = BUS_SPACE_MAXADDR; 1030 again: 1031 /* Create parent DMA tag. */ 1032 error = bus_dma_tag_create( 1033 bus_get_dma_tag(sc->ale_dev), /* parent */ 1034 1, 0, /* alignment, boundary */ 1035 lowaddr, /* lowaddr */ 1036 BUS_SPACE_MAXADDR, /* highaddr */ 1037 NULL, NULL, /* filter, filterarg */ 1038 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1039 0, /* nsegments */ 1040 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1041 0, /* flags */ 1042 NULL, NULL, /* lockfunc, lockarg */ 1043 &sc->ale_cdata.ale_parent_tag); 1044 if (error != 0) { 1045 device_printf(sc->ale_dev, 1046 "could not create parent DMA tag.\n"); 1047 goto fail; 1048 } 1049 1050 /* Create DMA tag for Tx descriptor ring. */ 1051 error = bus_dma_tag_create( 1052 sc->ale_cdata.ale_parent_tag, /* parent */ 1053 ALE_TX_RING_ALIGN, 0, /* alignment, boundary */ 1054 BUS_SPACE_MAXADDR, /* lowaddr */ 1055 BUS_SPACE_MAXADDR, /* highaddr */ 1056 NULL, NULL, /* filter, filterarg */ 1057 ALE_TX_RING_SZ, /* maxsize */ 1058 1, /* nsegments */ 1059 ALE_TX_RING_SZ, /* maxsegsize */ 1060 0, /* flags */ 1061 NULL, NULL, /* lockfunc, lockarg */ 1062 &sc->ale_cdata.ale_tx_ring_tag); 1063 if (error != 0) { 1064 device_printf(sc->ale_dev, 1065 "could not create Tx ring DMA tag.\n"); 1066 goto fail; 1067 } 1068 1069 /* Create DMA tag for Rx pages. */ 1070 for (i = 0; i < ALE_RX_PAGES; i++) { 1071 error = bus_dma_tag_create( 1072 sc->ale_cdata.ale_parent_tag, /* parent */ 1073 ALE_RX_PAGE_ALIGN, 0, /* alignment, boundary */ 1074 BUS_SPACE_MAXADDR, /* lowaddr */ 1075 BUS_SPACE_MAXADDR, /* highaddr */ 1076 NULL, NULL, /* filter, filterarg */ 1077 sc->ale_pagesize, /* maxsize */ 1078 1, /* nsegments */ 1079 sc->ale_pagesize, /* maxsegsize */ 1080 0, /* flags */ 1081 NULL, NULL, /* lockfunc, lockarg */ 1082 &sc->ale_cdata.ale_rx_page[i].page_tag); 1083 if (error != 0) { 1084 device_printf(sc->ale_dev, 1085 "could not create Rx page %d DMA tag.\n", i); 1086 goto fail; 1087 } 1088 } 1089 1090 /* Create DMA tag for Tx coalescing message block. */ 1091 error = bus_dma_tag_create( 1092 sc->ale_cdata.ale_parent_tag, /* parent */ 1093 ALE_CMB_ALIGN, 0, /* alignment, boundary */ 1094 BUS_SPACE_MAXADDR, /* lowaddr */ 1095 BUS_SPACE_MAXADDR, /* highaddr */ 1096 NULL, NULL, /* filter, filterarg */ 1097 ALE_TX_CMB_SZ, /* maxsize */ 1098 1, /* nsegments */ 1099 ALE_TX_CMB_SZ, /* maxsegsize */ 1100 0, /* flags */ 1101 NULL, NULL, /* lockfunc, lockarg */ 1102 &sc->ale_cdata.ale_tx_cmb_tag); 1103 if (error != 0) { 1104 device_printf(sc->ale_dev, 1105 "could not create Tx CMB DMA tag.\n"); 1106 goto fail; 1107 } 1108 1109 /* Create DMA tag for Rx coalescing message block. */ 1110 for (i = 0; i < ALE_RX_PAGES; i++) { 1111 error = bus_dma_tag_create( 1112 sc->ale_cdata.ale_parent_tag, /* parent */ 1113 ALE_CMB_ALIGN, 0, /* alignment, boundary */ 1114 BUS_SPACE_MAXADDR, /* lowaddr */ 1115 BUS_SPACE_MAXADDR, /* highaddr */ 1116 NULL, NULL, /* filter, filterarg */ 1117 ALE_RX_CMB_SZ, /* maxsize */ 1118 1, /* nsegments */ 1119 ALE_RX_CMB_SZ, /* maxsegsize */ 1120 0, /* flags */ 1121 NULL, NULL, /* lockfunc, lockarg */ 1122 &sc->ale_cdata.ale_rx_page[i].cmb_tag); 1123 if (error != 0) { 1124 device_printf(sc->ale_dev, 1125 "could not create Rx page %d CMB DMA tag.\n", i); 1126 goto fail; 1127 } 1128 } 1129 1130 /* Allocate DMA'able memory and load the DMA map for Tx ring. */ 1131 error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag, 1132 (void **)&sc->ale_cdata.ale_tx_ring, 1133 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1134 &sc->ale_cdata.ale_tx_ring_map); 1135 if (error != 0) { 1136 device_printf(sc->ale_dev, 1137 "could not allocate DMA'able memory for Tx ring.\n"); 1138 goto fail; 1139 } 1140 ctx.ale_busaddr = 0; 1141 error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag, 1142 sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring, 1143 ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0); 1144 if (error != 0 || ctx.ale_busaddr == 0) { 1145 device_printf(sc->ale_dev, 1146 "could not load DMA'able memory for Tx ring.\n"); 1147 goto fail; 1148 } 1149 sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr; 1150 1151 /* Rx pages. */ 1152 for (i = 0; i < ALE_RX_PAGES; i++) { 1153 error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag, 1154 (void **)&sc->ale_cdata.ale_rx_page[i].page_addr, 1155 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1156 &sc->ale_cdata.ale_rx_page[i].page_map); 1157 if (error != 0) { 1158 device_printf(sc->ale_dev, 1159 "could not allocate DMA'able memory for " 1160 "Rx page %d.\n", i); 1161 goto fail; 1162 } 1163 ctx.ale_busaddr = 0; 1164 error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag, 1165 sc->ale_cdata.ale_rx_page[i].page_map, 1166 sc->ale_cdata.ale_rx_page[i].page_addr, 1167 sc->ale_pagesize, ale_dmamap_cb, &ctx, 0); 1168 if (error != 0 || ctx.ale_busaddr == 0) { 1169 device_printf(sc->ale_dev, 1170 "could not load DMA'able memory for " 1171 "Rx page %d.\n", i); 1172 goto fail; 1173 } 1174 sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr; 1175 } 1176 1177 /* Tx CMB. */ 1178 error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag, 1179 (void **)&sc->ale_cdata.ale_tx_cmb, 1180 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1181 &sc->ale_cdata.ale_tx_cmb_map); 1182 if (error != 0) { 1183 device_printf(sc->ale_dev, 1184 "could not allocate DMA'able memory for Tx CMB.\n"); 1185 goto fail; 1186 } 1187 ctx.ale_busaddr = 0; 1188 error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag, 1189 sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb, 1190 ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0); 1191 if (error != 0 || ctx.ale_busaddr == 0) { 1192 device_printf(sc->ale_dev, 1193 "could not load DMA'able memory for Tx CMB.\n"); 1194 goto fail; 1195 } 1196 sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr; 1197 1198 /* Rx CMB. */ 1199 for (i = 0; i < ALE_RX_PAGES; i++) { 1200 error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag, 1201 (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr, 1202 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1203 &sc->ale_cdata.ale_rx_page[i].cmb_map); 1204 if (error != 0) { 1205 device_printf(sc->ale_dev, "could not allocate " 1206 "DMA'able memory for Rx page %d CMB.\n", i); 1207 goto fail; 1208 } 1209 ctx.ale_busaddr = 0; 1210 error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag, 1211 sc->ale_cdata.ale_rx_page[i].cmb_map, 1212 sc->ale_cdata.ale_rx_page[i].cmb_addr, 1213 ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0); 1214 if (error != 0 || ctx.ale_busaddr == 0) { 1215 device_printf(sc->ale_dev, "could not load DMA'able " 1216 "memory for Rx page %d CMB.\n", i); 1217 goto fail; 1218 } 1219 sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr; 1220 } 1221 1222 /* 1223 * Tx descriptors/RXF0/CMB DMA blocks share the same 1224 * high address region of 64bit DMA address space. 1225 */ 1226 if (lowaddr != BUS_SPACE_MAXADDR_32BIT && 1227 (error = ale_check_boundary(sc)) != 0) { 1228 device_printf(sc->ale_dev, "4GB boundary crossed, " 1229 "switching to 32bit DMA addressing mode.\n"); 1230 ale_dma_free(sc); 1231 /* 1232 * Limit max allowable DMA address space to 32bit 1233 * and try again. 1234 */ 1235 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1236 goto again; 1237 } 1238 1239 /* 1240 * Create Tx buffer parent tag. 1241 * AR81xx allows 64bit DMA addressing of Tx buffers so it 1242 * needs separate parent DMA tag as parent DMA address space 1243 * could be restricted to be within 32bit address space by 1244 * 4GB boundary crossing. 1245 */ 1246 error = bus_dma_tag_create( 1247 bus_get_dma_tag(sc->ale_dev), /* parent */ 1248 1, 0, /* alignment, boundary */ 1249 BUS_SPACE_MAXADDR, /* lowaddr */ 1250 BUS_SPACE_MAXADDR, /* highaddr */ 1251 NULL, NULL, /* filter, filterarg */ 1252 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1253 0, /* nsegments */ 1254 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1255 0, /* flags */ 1256 NULL, NULL, /* lockfunc, lockarg */ 1257 &sc->ale_cdata.ale_buffer_tag); 1258 if (error != 0) { 1259 device_printf(sc->ale_dev, 1260 "could not create parent buffer DMA tag.\n"); 1261 goto fail; 1262 } 1263 1264 /* Create DMA tag for Tx buffers. */ 1265 error = bus_dma_tag_create( 1266 sc->ale_cdata.ale_buffer_tag, /* parent */ 1267 1, 0, /* alignment, boundary */ 1268 BUS_SPACE_MAXADDR, /* lowaddr */ 1269 BUS_SPACE_MAXADDR, /* highaddr */ 1270 NULL, NULL, /* filter, filterarg */ 1271 ALE_TSO_MAXSIZE, /* maxsize */ 1272 ALE_MAXTXSEGS, /* nsegments */ 1273 ALE_TSO_MAXSEGSIZE, /* maxsegsize */ 1274 0, /* flags */ 1275 NULL, NULL, /* lockfunc, lockarg */ 1276 &sc->ale_cdata.ale_tx_tag); 1277 if (error != 0) { 1278 device_printf(sc->ale_dev, "could not create Tx DMA tag.\n"); 1279 goto fail; 1280 } 1281 1282 /* Create DMA maps for Tx buffers. */ 1283 for (i = 0; i < ALE_TX_RING_CNT; i++) { 1284 txd = &sc->ale_cdata.ale_txdesc[i]; 1285 txd->tx_m = NULL; 1286 txd->tx_dmamap = NULL; 1287 error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0, 1288 &txd->tx_dmamap); 1289 if (error != 0) { 1290 device_printf(sc->ale_dev, 1291 "could not create Tx dmamap.\n"); 1292 goto fail; 1293 } 1294 } 1295 1296 fail: 1297 return (error); 1298 } 1299 1300 static void 1301 ale_dma_free(struct ale_softc *sc) 1302 { 1303 struct ale_txdesc *txd; 1304 int i; 1305 1306 /* Tx buffers. */ 1307 if (sc->ale_cdata.ale_tx_tag != NULL) { 1308 for (i = 0; i < ALE_TX_RING_CNT; i++) { 1309 txd = &sc->ale_cdata.ale_txdesc[i]; 1310 if (txd->tx_dmamap != NULL) { 1311 bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag, 1312 txd->tx_dmamap); 1313 txd->tx_dmamap = NULL; 1314 } 1315 } 1316 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag); 1317 sc->ale_cdata.ale_tx_tag = NULL; 1318 } 1319 /* Tx descriptor ring. */ 1320 if (sc->ale_cdata.ale_tx_ring_tag != NULL) { 1321 if (sc->ale_cdata.ale_tx_ring_paddr != 0) 1322 bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag, 1323 sc->ale_cdata.ale_tx_ring_map); 1324 if (sc->ale_cdata.ale_tx_ring != NULL) 1325 bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag, 1326 sc->ale_cdata.ale_tx_ring, 1327 sc->ale_cdata.ale_tx_ring_map); 1328 sc->ale_cdata.ale_tx_ring_paddr = 0; 1329 sc->ale_cdata.ale_tx_ring = NULL; 1330 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag); 1331 sc->ale_cdata.ale_tx_ring_tag = NULL; 1332 } 1333 /* Rx page block. */ 1334 for (i = 0; i < ALE_RX_PAGES; i++) { 1335 if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) { 1336 if (sc->ale_cdata.ale_rx_page[i].page_paddr != 0) 1337 bus_dmamap_unload( 1338 sc->ale_cdata.ale_rx_page[i].page_tag, 1339 sc->ale_cdata.ale_rx_page[i].page_map); 1340 if (sc->ale_cdata.ale_rx_page[i].page_addr != NULL) 1341 bus_dmamem_free( 1342 sc->ale_cdata.ale_rx_page[i].page_tag, 1343 sc->ale_cdata.ale_rx_page[i].page_addr, 1344 sc->ale_cdata.ale_rx_page[i].page_map); 1345 sc->ale_cdata.ale_rx_page[i].page_paddr = 0; 1346 sc->ale_cdata.ale_rx_page[i].page_addr = NULL; 1347 bus_dma_tag_destroy( 1348 sc->ale_cdata.ale_rx_page[i].page_tag); 1349 sc->ale_cdata.ale_rx_page[i].page_tag = NULL; 1350 } 1351 } 1352 /* Rx CMB. */ 1353 for (i = 0; i < ALE_RX_PAGES; i++) { 1354 if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) { 1355 if (sc->ale_cdata.ale_rx_page[i].cmb_paddr != 0) 1356 bus_dmamap_unload( 1357 sc->ale_cdata.ale_rx_page[i].cmb_tag, 1358 sc->ale_cdata.ale_rx_page[i].cmb_map); 1359 if (sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL) 1360 bus_dmamem_free( 1361 sc->ale_cdata.ale_rx_page[i].cmb_tag, 1362 sc->ale_cdata.ale_rx_page[i].cmb_addr, 1363 sc->ale_cdata.ale_rx_page[i].cmb_map); 1364 sc->ale_cdata.ale_rx_page[i].cmb_paddr = 0; 1365 sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL; 1366 bus_dma_tag_destroy( 1367 sc->ale_cdata.ale_rx_page[i].cmb_tag); 1368 sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL; 1369 } 1370 } 1371 /* Tx CMB. */ 1372 if (sc->ale_cdata.ale_tx_cmb_tag != NULL) { 1373 if (sc->ale_cdata.ale_tx_cmb_paddr != 0) 1374 bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag, 1375 sc->ale_cdata.ale_tx_cmb_map); 1376 if (sc->ale_cdata.ale_tx_cmb != NULL) 1377 bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag, 1378 sc->ale_cdata.ale_tx_cmb, 1379 sc->ale_cdata.ale_tx_cmb_map); 1380 sc->ale_cdata.ale_tx_cmb_paddr = 0; 1381 sc->ale_cdata.ale_tx_cmb = NULL; 1382 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag); 1383 sc->ale_cdata.ale_tx_cmb_tag = NULL; 1384 } 1385 if (sc->ale_cdata.ale_buffer_tag != NULL) { 1386 bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag); 1387 sc->ale_cdata.ale_buffer_tag = NULL; 1388 } 1389 if (sc->ale_cdata.ale_parent_tag != NULL) { 1390 bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag); 1391 sc->ale_cdata.ale_parent_tag = NULL; 1392 } 1393 } 1394 1395 static int 1396 ale_shutdown(device_t dev) 1397 { 1398 1399 return (ale_suspend(dev)); 1400 } 1401 1402 /* 1403 * Note, this driver resets the link speed to 10/100Mbps by 1404 * restarting auto-negotiation in suspend/shutdown phase but we 1405 * don't know whether that auto-negotiation would succeed or not 1406 * as driver has no control after powering off/suspend operation. 1407 * If the renegotiation fail WOL may not work. Running at 1Gbps 1408 * will draw more power than 375mA at 3.3V which is specified in 1409 * PCI specification and that would result in complete 1410 * shutdowning power to ethernet controller. 1411 * 1412 * TODO 1413 * Save current negotiated media speed/duplex/flow-control to 1414 * softc and restore the same link again after resuming. PHY 1415 * handling such as power down/resetting to 100Mbps may be better 1416 * handled in suspend method in phy driver. 1417 */ 1418 static void 1419 ale_setlinkspeed(struct ale_softc *sc) 1420 { 1421 struct mii_data *mii; 1422 int aneg, i; 1423 1424 mii = device_get_softc(sc->ale_miibus); 1425 mii_pollstat(mii); 1426 aneg = 0; 1427 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 1428 (IFM_ACTIVE | IFM_AVALID)) { 1429 switch IFM_SUBTYPE(mii->mii_media_active) { 1430 case IFM_10_T: 1431 case IFM_100_TX: 1432 return; 1433 case IFM_1000_T: 1434 aneg++; 1435 break; 1436 default: 1437 break; 1438 } 1439 } 1440 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0); 1441 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 1442 MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA); 1443 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, 1444 MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG); 1445 DELAY(1000); 1446 if (aneg != 0) { 1447 /* 1448 * Poll link state until ale(4) get a 10/100Mbps link. 1449 */ 1450 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { 1451 mii_pollstat(mii); 1452 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) 1453 == (IFM_ACTIVE | IFM_AVALID)) { 1454 switch (IFM_SUBTYPE( 1455 mii->mii_media_active)) { 1456 case IFM_10_T: 1457 case IFM_100_TX: 1458 ale_mac_config(sc); 1459 return; 1460 default: 1461 break; 1462 } 1463 } 1464 ALE_UNLOCK(sc); 1465 pause("alelnk", hz); 1466 ALE_LOCK(sc); 1467 } 1468 if (i == MII_ANEGTICKS_GIGE) 1469 device_printf(sc->ale_dev, 1470 "establishing a link failed, WOL may not work!"); 1471 } 1472 /* 1473 * No link, force MAC to have 100Mbps, full-duplex link. 1474 * This is the last resort and may/may not work. 1475 */ 1476 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; 1477 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; 1478 ale_mac_config(sc); 1479 } 1480 1481 static void 1482 ale_setwol(struct ale_softc *sc) 1483 { 1484 if_t ifp; 1485 uint32_t reg, pmcs; 1486 uint16_t pmstat; 1487 int pmc; 1488 1489 ALE_LOCK_ASSERT(sc); 1490 1491 if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) != 0) { 1492 /* Disable WOL. */ 1493 CSR_WRITE_4(sc, ALE_WOL_CFG, 0); 1494 reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC); 1495 reg |= PCIE_PHYMISC_FORCE_RCV_DET; 1496 CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg); 1497 /* Force PHY power down. */ 1498 CSR_WRITE_2(sc, ALE_GPHY_CTRL, 1499 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | 1500 GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON | 1501 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ | 1502 GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW); 1503 return; 1504 } 1505 1506 ifp = sc->ale_ifp; 1507 if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) { 1508 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0) 1509 ale_setlinkspeed(sc); 1510 } 1511 1512 pmcs = 0; 1513 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) 1514 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB; 1515 CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs); 1516 reg = CSR_READ_4(sc, ALE_MAC_CFG); 1517 reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI | 1518 MAC_CFG_BCAST); 1519 if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) != 0) 1520 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST; 1521 if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) 1522 reg |= MAC_CFG_RX_ENB; 1523 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 1524 1525 if ((if_getcapenable(ifp) & IFCAP_WOL) == 0) { 1526 /* WOL disabled, PHY power down. */ 1527 reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC); 1528 reg |= PCIE_PHYMISC_FORCE_RCV_DET; 1529 CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg); 1530 CSR_WRITE_2(sc, ALE_GPHY_CTRL, 1531 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | 1532 GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET | 1533 GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS | 1534 GPHY_CTRL_PWDOWN_HW); 1535 } 1536 /* Request PME. */ 1537 pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2); 1538 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 1539 if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) 1540 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 1541 pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1542 } 1543 1544 static int 1545 ale_suspend(device_t dev) 1546 { 1547 struct ale_softc *sc; 1548 1549 sc = device_get_softc(dev); 1550 1551 ALE_LOCK(sc); 1552 ale_stop(sc); 1553 ale_setwol(sc); 1554 ALE_UNLOCK(sc); 1555 1556 return (0); 1557 } 1558 1559 static int 1560 ale_resume(device_t dev) 1561 { 1562 struct ale_softc *sc; 1563 if_t ifp; 1564 int pmc; 1565 uint16_t pmstat; 1566 1567 sc = device_get_softc(dev); 1568 1569 ALE_LOCK(sc); 1570 if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) == 0) { 1571 /* Disable PME and clear PME status. */ 1572 pmstat = pci_read_config(sc->ale_dev, 1573 pmc + PCIR_POWER_STATUS, 2); 1574 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) { 1575 pmstat &= ~PCIM_PSTAT_PMEENABLE; 1576 pci_write_config(sc->ale_dev, 1577 pmc + PCIR_POWER_STATUS, pmstat, 2); 1578 } 1579 } 1580 /* Reset PHY. */ 1581 ale_phy_reset(sc); 1582 ifp = sc->ale_ifp; 1583 if ((if_getflags(ifp) & IFF_UP) != 0) { 1584 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 1585 ale_init_locked(sc); 1586 } 1587 ALE_UNLOCK(sc); 1588 1589 return (0); 1590 } 1591 1592 static int 1593 ale_encap(struct ale_softc *sc, struct mbuf **m_head) 1594 { 1595 struct ale_txdesc *txd, *txd_last; 1596 struct tx_desc *desc; 1597 struct mbuf *m; 1598 struct ip *ip; 1599 struct tcphdr *tcp; 1600 bus_dma_segment_t txsegs[ALE_MAXTXSEGS]; 1601 bus_dmamap_t map; 1602 uint32_t cflags, hdrlen, ip_off, poff, vtag; 1603 int error, i, nsegs, prod, si; 1604 1605 ALE_LOCK_ASSERT(sc); 1606 1607 M_ASSERTPKTHDR((*m_head)); 1608 1609 m = *m_head; 1610 ip = NULL; 1611 tcp = NULL; 1612 cflags = vtag = 0; 1613 ip_off = poff = 0; 1614 if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) { 1615 /* 1616 * AR81xx requires offset of TCP/UDP payload in its Tx 1617 * descriptor to perform hardware Tx checksum offload. 1618 * Additionally, TSO requires IP/TCP header size and 1619 * modification of IP/TCP header in order to make TSO 1620 * engine work. This kind of operation takes many CPU 1621 * cycles on FreeBSD so fast host CPU is required to 1622 * get smooth TSO performance. 1623 */ 1624 struct ether_header *eh; 1625 1626 if (M_WRITABLE(m) == 0) { 1627 /* Get a writable copy. */ 1628 m = m_dup(*m_head, M_NOWAIT); 1629 /* Release original mbufs. */ 1630 m_freem(*m_head); 1631 if (m == NULL) { 1632 *m_head = NULL; 1633 return (ENOBUFS); 1634 } 1635 *m_head = m; 1636 } 1637 1638 /* 1639 * Buggy-controller requires 4 byte aligned Tx buffer 1640 * to make custom checksum offload work. 1641 */ 1642 if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 && 1643 (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 && 1644 (mtod(m, intptr_t) & 3) != 0) { 1645 m = m_defrag(*m_head, M_NOWAIT); 1646 if (m == NULL) { 1647 m_freem(*m_head); 1648 *m_head = NULL; 1649 return (ENOBUFS); 1650 } 1651 *m_head = m; 1652 } 1653 1654 ip_off = sizeof(struct ether_header); 1655 m = m_pullup(m, ip_off); 1656 if (m == NULL) { 1657 *m_head = NULL; 1658 return (ENOBUFS); 1659 } 1660 eh = mtod(m, struct ether_header *); 1661 /* 1662 * Check if hardware VLAN insertion is off. 1663 * Additional check for LLC/SNAP frame? 1664 */ 1665 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 1666 ip_off = sizeof(struct ether_vlan_header); 1667 m = m_pullup(m, ip_off); 1668 if (m == NULL) { 1669 *m_head = NULL; 1670 return (ENOBUFS); 1671 } 1672 } 1673 m = m_pullup(m, ip_off + sizeof(struct ip)); 1674 if (m == NULL) { 1675 *m_head = NULL; 1676 return (ENOBUFS); 1677 } 1678 ip = (struct ip *)(mtod(m, char *) + ip_off); 1679 poff = ip_off + (ip->ip_hl << 2); 1680 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1681 /* 1682 * XXX 1683 * AR81xx requires the first descriptor should 1684 * not include any TCP playload for TSO case. 1685 * (i.e. ethernet header + IP + TCP header only) 1686 * m_pullup(9) above will ensure this too. 1687 * However it's not correct if the first mbuf 1688 * of the chain does not use cluster. 1689 */ 1690 m = m_pullup(m, poff + sizeof(struct tcphdr)); 1691 if (m == NULL) { 1692 *m_head = NULL; 1693 return (ENOBUFS); 1694 } 1695 ip = (struct ip *)(mtod(m, char *) + ip_off); 1696 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1697 m = m_pullup(m, poff + (tcp->th_off << 2)); 1698 if (m == NULL) { 1699 *m_head = NULL; 1700 return (ENOBUFS); 1701 } 1702 /* 1703 * AR81xx requires IP/TCP header size and offset as 1704 * well as TCP pseudo checksum which complicates 1705 * TSO configuration. I guess this comes from the 1706 * adherence to Microsoft NDIS Large Send 1707 * specification which requires insertion of 1708 * pseudo checksum by upper stack. The pseudo 1709 * checksum that NDIS refers to doesn't include 1710 * TCP payload length so ale(4) should recompute 1711 * the pseudo checksum here. Hopefully this wouldn't 1712 * be much burden on modern CPUs. 1713 * Reset IP checksum and recompute TCP pseudo 1714 * checksum as NDIS specification said. 1715 */ 1716 ip->ip_sum = 0; 1717 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, 1718 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 1719 } 1720 *m_head = m; 1721 } 1722 1723 si = prod = sc->ale_cdata.ale_tx_prod; 1724 txd = &sc->ale_cdata.ale_txdesc[prod]; 1725 txd_last = txd; 1726 map = txd->tx_dmamap; 1727 1728 error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map, 1729 *m_head, txsegs, &nsegs, 0); 1730 if (error == EFBIG) { 1731 m = m_collapse(*m_head, M_NOWAIT, ALE_MAXTXSEGS); 1732 if (m == NULL) { 1733 m_freem(*m_head); 1734 *m_head = NULL; 1735 return (ENOMEM); 1736 } 1737 *m_head = m; 1738 error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map, 1739 *m_head, txsegs, &nsegs, 0); 1740 if (error != 0) { 1741 m_freem(*m_head); 1742 *m_head = NULL; 1743 return (error); 1744 } 1745 } else if (error != 0) 1746 return (error); 1747 if (nsegs == 0) { 1748 m_freem(*m_head); 1749 *m_head = NULL; 1750 return (EIO); 1751 } 1752 1753 /* Check descriptor overrun. */ 1754 if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) { 1755 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map); 1756 return (ENOBUFS); 1757 } 1758 bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE); 1759 1760 m = *m_head; 1761 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1762 /* Request TSO and set MSS. */ 1763 cflags |= ALE_TD_TSO; 1764 cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT); 1765 /* Set IP/TCP header size. */ 1766 cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT; 1767 cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT; 1768 } else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) { 1769 /* 1770 * AR81xx supports Tx custom checksum offload feature 1771 * that offloads single 16bit checksum computation. 1772 * So you can choose one among IP, TCP and UDP. 1773 * Normally driver sets checksum start/insertion 1774 * position from the information of TCP/UDP frame as 1775 * TCP/UDP checksum takes more time than that of IP. 1776 * However it seems that custom checksum offload 1777 * requires 4 bytes aligned Tx buffers due to hardware 1778 * bug. 1779 * AR81xx also supports explicit Tx checksum computation 1780 * if it is told that the size of IP header and TCP 1781 * header(for UDP, the header size does not matter 1782 * because it's fixed length). However with this scheme 1783 * TSO does not work so you have to choose one either 1784 * TSO or explicit Tx checksum offload. I chosen TSO 1785 * plus custom checksum offload with work-around which 1786 * will cover most common usage for this consumer 1787 * ethernet controller. The work-around takes a lot of 1788 * CPU cycles if Tx buffer is not aligned on 4 bytes 1789 * boundary, though. 1790 */ 1791 cflags |= ALE_TD_CXSUM; 1792 /* Set checksum start offset. */ 1793 cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT); 1794 /* Set checksum insertion position of TCP/UDP. */ 1795 cflags |= ((poff + m->m_pkthdr.csum_data) << 1796 ALE_TD_CSUM_XSUMOFFSET_SHIFT); 1797 } 1798 1799 /* Configure VLAN hardware tag insertion. */ 1800 if ((m->m_flags & M_VLANTAG) != 0) { 1801 vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag); 1802 vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK); 1803 cflags |= ALE_TD_INSERT_VLAN_TAG; 1804 } 1805 1806 i = 0; 1807 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1808 /* 1809 * Make sure the first fragment contains 1810 * only ethernet and IP/TCP header with options. 1811 */ 1812 hdrlen = poff + (tcp->th_off << 2); 1813 desc = &sc->ale_cdata.ale_tx_ring[prod]; 1814 desc->addr = htole64(txsegs[i].ds_addr); 1815 desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag); 1816 desc->flags = htole32(cflags); 1817 sc->ale_cdata.ale_tx_cnt++; 1818 ALE_DESC_INC(prod, ALE_TX_RING_CNT); 1819 if (m->m_len - hdrlen > 0) { 1820 /* Handle remaining payload of the first fragment. */ 1821 desc = &sc->ale_cdata.ale_tx_ring[prod]; 1822 desc->addr = htole64(txsegs[i].ds_addr + hdrlen); 1823 desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) | 1824 vtag); 1825 desc->flags = htole32(cflags); 1826 sc->ale_cdata.ale_tx_cnt++; 1827 ALE_DESC_INC(prod, ALE_TX_RING_CNT); 1828 } 1829 i = 1; 1830 } 1831 for (; i < nsegs; i++) { 1832 desc = &sc->ale_cdata.ale_tx_ring[prod]; 1833 desc->addr = htole64(txsegs[i].ds_addr); 1834 desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag); 1835 desc->flags = htole32(cflags); 1836 sc->ale_cdata.ale_tx_cnt++; 1837 ALE_DESC_INC(prod, ALE_TX_RING_CNT); 1838 } 1839 /* Update producer index. */ 1840 sc->ale_cdata.ale_tx_prod = prod; 1841 /* Set TSO header on the first descriptor. */ 1842 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1843 desc = &sc->ale_cdata.ale_tx_ring[si]; 1844 desc->flags |= htole32(ALE_TD_TSO_HDR); 1845 } 1846 1847 /* Finally set EOP on the last descriptor. */ 1848 prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT; 1849 desc = &sc->ale_cdata.ale_tx_ring[prod]; 1850 desc->flags |= htole32(ALE_TD_EOP); 1851 1852 /* Swap dmamap of the first and the last. */ 1853 txd = &sc->ale_cdata.ale_txdesc[prod]; 1854 map = txd_last->tx_dmamap; 1855 txd_last->tx_dmamap = txd->tx_dmamap; 1856 txd->tx_dmamap = map; 1857 txd->tx_m = m; 1858 1859 /* Sync descriptors. */ 1860 bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag, 1861 sc->ale_cdata.ale_tx_ring_map, 1862 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1863 1864 return (0); 1865 } 1866 1867 static void 1868 ale_start(if_t ifp) 1869 { 1870 struct ale_softc *sc; 1871 1872 sc = if_getsoftc(ifp); 1873 ALE_LOCK(sc); 1874 ale_start_locked(ifp); 1875 ALE_UNLOCK(sc); 1876 } 1877 1878 static void 1879 ale_start_locked(if_t ifp) 1880 { 1881 struct ale_softc *sc; 1882 struct mbuf *m_head; 1883 int enq; 1884 1885 sc = if_getsoftc(ifp); 1886 1887 ALE_LOCK_ASSERT(sc); 1888 1889 /* Reclaim transmitted frames. */ 1890 if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT) 1891 ale_txeof(sc); 1892 1893 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1894 IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0) 1895 return; 1896 1897 for (enq = 0; !if_sendq_empty(ifp); ) { 1898 m_head = if_dequeue(ifp); 1899 if (m_head == NULL) 1900 break; 1901 /* 1902 * Pack the data into the transmit ring. If we 1903 * don't have room, set the OACTIVE flag and wait 1904 * for the NIC to drain the ring. 1905 */ 1906 if (ale_encap(sc, &m_head)) { 1907 if (m_head == NULL) 1908 break; 1909 if_sendq_prepend(ifp, m_head); 1910 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 1911 break; 1912 } 1913 1914 enq++; 1915 /* 1916 * If there's a BPF listener, bounce a copy of this frame 1917 * to him. 1918 */ 1919 ETHER_BPF_MTAP(ifp, m_head); 1920 } 1921 1922 if (enq > 0) { 1923 /* Kick. */ 1924 CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX, 1925 sc->ale_cdata.ale_tx_prod); 1926 /* Set a timeout in case the chip goes out to lunch. */ 1927 sc->ale_watchdog_timer = ALE_TX_TIMEOUT; 1928 } 1929 } 1930 1931 static void 1932 ale_watchdog(struct ale_softc *sc) 1933 { 1934 if_t ifp; 1935 1936 ALE_LOCK_ASSERT(sc); 1937 1938 if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer) 1939 return; 1940 1941 ifp = sc->ale_ifp; 1942 if ((sc->ale_flags & ALE_FLAG_LINK) == 0) { 1943 if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n"); 1944 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1945 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 1946 ale_init_locked(sc); 1947 return; 1948 } 1949 if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n"); 1950 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1951 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 1952 ale_init_locked(sc); 1953 if (!if_sendq_empty(ifp)) 1954 ale_start_locked(ifp); 1955 } 1956 1957 static int 1958 ale_ioctl(if_t ifp, u_long cmd, caddr_t data) 1959 { 1960 struct ale_softc *sc; 1961 struct ifreq *ifr; 1962 struct mii_data *mii; 1963 int error, mask; 1964 1965 sc = if_getsoftc(ifp); 1966 ifr = (struct ifreq *)data; 1967 error = 0; 1968 switch (cmd) { 1969 case SIOCSIFMTU: 1970 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU || 1971 ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 && 1972 ifr->ifr_mtu > ETHERMTU)) 1973 error = EINVAL; 1974 else if (if_getmtu(ifp) != ifr->ifr_mtu) { 1975 ALE_LOCK(sc); 1976 if_setmtu(ifp, ifr->ifr_mtu); 1977 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 1978 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 1979 ale_init_locked(sc); 1980 } 1981 ALE_UNLOCK(sc); 1982 } 1983 break; 1984 case SIOCSIFFLAGS: 1985 ALE_LOCK(sc); 1986 if ((if_getflags(ifp) & IFF_UP) != 0) { 1987 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 1988 if (((if_getflags(ifp) ^ sc->ale_if_flags) 1989 & (IFF_PROMISC | IFF_ALLMULTI)) != 0) 1990 ale_rxfilter(sc); 1991 } else { 1992 ale_init_locked(sc); 1993 } 1994 } else { 1995 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) 1996 ale_stop(sc); 1997 } 1998 sc->ale_if_flags = if_getflags(ifp); 1999 ALE_UNLOCK(sc); 2000 break; 2001 case SIOCADDMULTI: 2002 case SIOCDELMULTI: 2003 ALE_LOCK(sc); 2004 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) 2005 ale_rxfilter(sc); 2006 ALE_UNLOCK(sc); 2007 break; 2008 case SIOCSIFMEDIA: 2009 case SIOCGIFMEDIA: 2010 mii = device_get_softc(sc->ale_miibus); 2011 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 2012 break; 2013 case SIOCSIFCAP: 2014 ALE_LOCK(sc); 2015 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 2016 if ((mask & IFCAP_TXCSUM) != 0 && 2017 (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) { 2018 if_togglecapenable(ifp, IFCAP_TXCSUM); 2019 if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0) 2020 if_sethwassistbits(ifp, ALE_CSUM_FEATURES, 0); 2021 else 2022 if_sethwassistbits(ifp, 0, ALE_CSUM_FEATURES); 2023 } 2024 if ((mask & IFCAP_RXCSUM) != 0 && 2025 (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) 2026 if_togglecapenable(ifp, IFCAP_RXCSUM); 2027 if ((mask & IFCAP_TSO4) != 0 && 2028 (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) { 2029 if_togglecapenable(ifp, IFCAP_TSO4); 2030 if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0) 2031 if_sethwassistbits(ifp, CSUM_TSO, 0); 2032 else 2033 if_sethwassistbits(ifp, 0, CSUM_TSO); 2034 } 2035 2036 if ((mask & IFCAP_WOL_MCAST) != 0 && 2037 (if_getcapabilities(ifp) & IFCAP_WOL_MCAST) != 0) 2038 if_togglecapenable(ifp, IFCAP_WOL_MCAST); 2039 if ((mask & IFCAP_WOL_MAGIC) != 0 && 2040 (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0) 2041 if_togglecapenable(ifp, IFCAP_WOL_MAGIC); 2042 if ((mask & IFCAP_VLAN_HWCSUM) != 0 && 2043 (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0) 2044 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM); 2045 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 2046 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0) 2047 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 2048 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 2049 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) { 2050 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 2051 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0) 2052 if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO); 2053 ale_rxvlan(sc); 2054 } 2055 ALE_UNLOCK(sc); 2056 VLAN_CAPABILITIES(ifp); 2057 break; 2058 default: 2059 error = ether_ioctl(ifp, cmd, data); 2060 break; 2061 } 2062 2063 return (error); 2064 } 2065 2066 static void 2067 ale_mac_config(struct ale_softc *sc) 2068 { 2069 struct mii_data *mii; 2070 uint32_t reg; 2071 2072 ALE_LOCK_ASSERT(sc); 2073 2074 mii = device_get_softc(sc->ale_miibus); 2075 reg = CSR_READ_4(sc, ALE_MAC_CFG); 2076 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC | 2077 MAC_CFG_SPEED_MASK); 2078 /* Reprogram MAC with resolved speed/duplex. */ 2079 switch (IFM_SUBTYPE(mii->mii_media_active)) { 2080 case IFM_10_T: 2081 case IFM_100_TX: 2082 reg |= MAC_CFG_SPEED_10_100; 2083 break; 2084 case IFM_1000_T: 2085 reg |= MAC_CFG_SPEED_1000; 2086 break; 2087 } 2088 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 2089 reg |= MAC_CFG_FULL_DUPLEX; 2090 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 2091 reg |= MAC_CFG_TX_FC; 2092 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 2093 reg |= MAC_CFG_RX_FC; 2094 } 2095 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 2096 } 2097 2098 static void 2099 ale_stats_clear(struct ale_softc *sc) 2100 { 2101 struct smb sb; 2102 uint32_t *reg; 2103 int i; 2104 2105 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) { 2106 CSR_READ_4(sc, ALE_RX_MIB_BASE + i); 2107 i += sizeof(uint32_t); 2108 } 2109 /* Read Tx statistics. */ 2110 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) { 2111 CSR_READ_4(sc, ALE_TX_MIB_BASE + i); 2112 i += sizeof(uint32_t); 2113 } 2114 } 2115 2116 static void 2117 ale_stats_update(struct ale_softc *sc) 2118 { 2119 struct ale_hw_stats *stat; 2120 struct smb sb, *smb; 2121 if_t ifp; 2122 uint32_t *reg; 2123 int i; 2124 2125 ALE_LOCK_ASSERT(sc); 2126 2127 ifp = sc->ale_ifp; 2128 stat = &sc->ale_stats; 2129 smb = &sb; 2130 2131 /* Read Rx statistics. */ 2132 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) { 2133 *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i); 2134 i += sizeof(uint32_t); 2135 } 2136 /* Read Tx statistics. */ 2137 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) { 2138 *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i); 2139 i += sizeof(uint32_t); 2140 } 2141 2142 /* Rx stats. */ 2143 stat->rx_frames += smb->rx_frames; 2144 stat->rx_bcast_frames += smb->rx_bcast_frames; 2145 stat->rx_mcast_frames += smb->rx_mcast_frames; 2146 stat->rx_pause_frames += smb->rx_pause_frames; 2147 stat->rx_control_frames += smb->rx_control_frames; 2148 stat->rx_crcerrs += smb->rx_crcerrs; 2149 stat->rx_lenerrs += smb->rx_lenerrs; 2150 stat->rx_bytes += smb->rx_bytes; 2151 stat->rx_runts += smb->rx_runts; 2152 stat->rx_fragments += smb->rx_fragments; 2153 stat->rx_pkts_64 += smb->rx_pkts_64; 2154 stat->rx_pkts_65_127 += smb->rx_pkts_65_127; 2155 stat->rx_pkts_128_255 += smb->rx_pkts_128_255; 2156 stat->rx_pkts_256_511 += smb->rx_pkts_256_511; 2157 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023; 2158 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518; 2159 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max; 2160 stat->rx_pkts_truncated += smb->rx_pkts_truncated; 2161 stat->rx_fifo_oflows += smb->rx_fifo_oflows; 2162 stat->rx_rrs_errs += smb->rx_rrs_errs; 2163 stat->rx_alignerrs += smb->rx_alignerrs; 2164 stat->rx_bcast_bytes += smb->rx_bcast_bytes; 2165 stat->rx_mcast_bytes += smb->rx_mcast_bytes; 2166 stat->rx_pkts_filtered += smb->rx_pkts_filtered; 2167 2168 /* Tx stats. */ 2169 stat->tx_frames += smb->tx_frames; 2170 stat->tx_bcast_frames += smb->tx_bcast_frames; 2171 stat->tx_mcast_frames += smb->tx_mcast_frames; 2172 stat->tx_pause_frames += smb->tx_pause_frames; 2173 stat->tx_excess_defer += smb->tx_excess_defer; 2174 stat->tx_control_frames += smb->tx_control_frames; 2175 stat->tx_deferred += smb->tx_deferred; 2176 stat->tx_bytes += smb->tx_bytes; 2177 stat->tx_pkts_64 += smb->tx_pkts_64; 2178 stat->tx_pkts_65_127 += smb->tx_pkts_65_127; 2179 stat->tx_pkts_128_255 += smb->tx_pkts_128_255; 2180 stat->tx_pkts_256_511 += smb->tx_pkts_256_511; 2181 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023; 2182 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518; 2183 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max; 2184 stat->tx_single_colls += smb->tx_single_colls; 2185 stat->tx_multi_colls += smb->tx_multi_colls; 2186 stat->tx_late_colls += smb->tx_late_colls; 2187 stat->tx_excess_colls += smb->tx_excess_colls; 2188 stat->tx_underrun += smb->tx_underrun; 2189 stat->tx_desc_underrun += smb->tx_desc_underrun; 2190 stat->tx_lenerrs += smb->tx_lenerrs; 2191 stat->tx_pkts_truncated += smb->tx_pkts_truncated; 2192 stat->tx_bcast_bytes += smb->tx_bcast_bytes; 2193 stat->tx_mcast_bytes += smb->tx_mcast_bytes; 2194 2195 /* Update counters in ifnet. */ 2196 if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames); 2197 2198 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls + 2199 smb->tx_multi_colls * 2 + smb->tx_late_colls + 2200 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT); 2201 2202 if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_late_colls + 2203 smb->tx_excess_colls + smb->tx_underrun + smb->tx_pkts_truncated); 2204 2205 if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames); 2206 2207 if_inc_counter(ifp, IFCOUNTER_IERRORS, 2208 smb->rx_crcerrs + smb->rx_lenerrs + 2209 smb->rx_runts + smb->rx_pkts_truncated + 2210 smb->rx_fifo_oflows + smb->rx_rrs_errs + 2211 smb->rx_alignerrs); 2212 } 2213 2214 static int 2215 ale_intr(void *arg) 2216 { 2217 struct ale_softc *sc; 2218 uint32_t status; 2219 2220 sc = (struct ale_softc *)arg; 2221 2222 status = CSR_READ_4(sc, ALE_INTR_STATUS); 2223 if ((status & ALE_INTRS) == 0) 2224 return (FILTER_STRAY); 2225 /* Disable interrupts. */ 2226 CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT); 2227 taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task); 2228 2229 return (FILTER_HANDLED); 2230 } 2231 2232 static void 2233 ale_int_task(void *arg, int pending) 2234 { 2235 struct ale_softc *sc; 2236 if_t ifp; 2237 uint32_t status; 2238 int more; 2239 2240 sc = (struct ale_softc *)arg; 2241 2242 status = CSR_READ_4(sc, ALE_INTR_STATUS); 2243 ALE_LOCK(sc); 2244 if (sc->ale_morework != 0) 2245 status |= INTR_RX_PKT; 2246 if ((status & ALE_INTRS) == 0) 2247 goto done; 2248 2249 /* Acknowledge interrupts but still disable interrupts. */ 2250 CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT); 2251 2252 ifp = sc->ale_ifp; 2253 more = 0; 2254 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 2255 more = ale_rxeof(sc, sc->ale_process_limit); 2256 if (more == EAGAIN) 2257 sc->ale_morework = 1; 2258 else if (more == EIO) { 2259 sc->ale_stats.reset_brk_seq++; 2260 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2261 ale_init_locked(sc); 2262 ALE_UNLOCK(sc); 2263 return; 2264 } 2265 2266 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) { 2267 if ((status & INTR_DMA_RD_TO_RST) != 0) 2268 device_printf(sc->ale_dev, 2269 "DMA read error! -- resetting\n"); 2270 if ((status & INTR_DMA_WR_TO_RST) != 0) 2271 device_printf(sc->ale_dev, 2272 "DMA write error! -- resetting\n"); 2273 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2274 ale_init_locked(sc); 2275 ALE_UNLOCK(sc); 2276 return; 2277 } 2278 if (!if_sendq_empty(ifp)) 2279 ale_start_locked(ifp); 2280 } 2281 2282 if (more == EAGAIN || 2283 (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) { 2284 ALE_UNLOCK(sc); 2285 taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task); 2286 return; 2287 } 2288 2289 done: 2290 ALE_UNLOCK(sc); 2291 2292 /* Re-enable interrupts. */ 2293 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF); 2294 } 2295 2296 static void 2297 ale_txeof(struct ale_softc *sc) 2298 { 2299 if_t ifp; 2300 struct ale_txdesc *txd; 2301 uint32_t cons, prod; 2302 int prog; 2303 2304 ALE_LOCK_ASSERT(sc); 2305 2306 ifp = sc->ale_ifp; 2307 2308 if (sc->ale_cdata.ale_tx_cnt == 0) 2309 return; 2310 2311 bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag, 2312 sc->ale_cdata.ale_tx_ring_map, 2313 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2314 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) { 2315 bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag, 2316 sc->ale_cdata.ale_tx_cmb_map, 2317 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2318 prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK; 2319 } else 2320 prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX); 2321 cons = sc->ale_cdata.ale_tx_cons; 2322 /* 2323 * Go through our Tx list and free mbufs for those 2324 * frames which have been transmitted. 2325 */ 2326 for (prog = 0; cons != prod; prog++, 2327 ALE_DESC_INC(cons, ALE_TX_RING_CNT)) { 2328 if (sc->ale_cdata.ale_tx_cnt <= 0) 2329 break; 2330 prog++; 2331 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 2332 sc->ale_cdata.ale_tx_cnt--; 2333 txd = &sc->ale_cdata.ale_txdesc[cons]; 2334 if (txd->tx_m != NULL) { 2335 /* Reclaim transmitted mbufs. */ 2336 bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, 2337 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2338 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, 2339 txd->tx_dmamap); 2340 m_freem(txd->tx_m); 2341 txd->tx_m = NULL; 2342 } 2343 } 2344 2345 if (prog > 0) { 2346 sc->ale_cdata.ale_tx_cons = cons; 2347 /* 2348 * Unarm watchdog timer only when there is no pending 2349 * Tx descriptors in queue. 2350 */ 2351 if (sc->ale_cdata.ale_tx_cnt == 0) 2352 sc->ale_watchdog_timer = 0; 2353 } 2354 } 2355 2356 static void 2357 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page, 2358 uint32_t length, uint32_t *prod) 2359 { 2360 struct ale_rx_page *rx_page; 2361 2362 rx_page = *page; 2363 /* Update consumer position. */ 2364 rx_page->cons += roundup(length + sizeof(struct rx_rs), 2365 ALE_RX_PAGE_ALIGN); 2366 if (rx_page->cons >= ALE_RX_PAGE_SZ) { 2367 /* 2368 * End of Rx page reached, let hardware reuse 2369 * this page. 2370 */ 2371 rx_page->cons = 0; 2372 *rx_page->cmb_addr = 0; 2373 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map, 2374 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2375 CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp, 2376 RXF_VALID); 2377 /* Switch to alternate Rx page. */ 2378 sc->ale_cdata.ale_rx_curp ^= 1; 2379 rx_page = *page = 2380 &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp]; 2381 /* Page flipped, sync CMB and Rx page. */ 2382 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map, 2383 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2384 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map, 2385 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2386 /* Sync completed, cache updated producer index. */ 2387 *prod = *rx_page->cmb_addr; 2388 } 2389 } 2390 2391 /* 2392 * It seems that AR81xx controller can compute partial checksum. 2393 * The partial checksum value can be used to accelerate checksum 2394 * computation for fragmented TCP/UDP packets. Upper network stack 2395 * already takes advantage of the partial checksum value in IP 2396 * reassembly stage. But I'm not sure the correctness of the 2397 * partial hardware checksum assistance due to lack of data sheet. 2398 * In addition, the Rx feature of controller that requires copying 2399 * for every frames effectively nullifies one of most nice offload 2400 * capability of controller. 2401 */ 2402 static void 2403 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status) 2404 { 2405 if_t ifp; 2406 struct ip *ip; 2407 char *p; 2408 2409 ifp = sc->ale_ifp; 2410 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 2411 if ((status & ALE_RD_IPCSUM_NOK) == 0) 2412 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2413 2414 if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) { 2415 if (((status & ALE_RD_IPV4_FRAG) == 0) && 2416 ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) && 2417 ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) { 2418 m->m_pkthdr.csum_flags |= 2419 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2420 m->m_pkthdr.csum_data = 0xffff; 2421 } 2422 } else { 2423 if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 && 2424 (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) { 2425 p = mtod(m, char *); 2426 p += ETHER_HDR_LEN; 2427 if ((status & ALE_RD_802_3) != 0) 2428 p += LLC_SNAPFRAMELEN; 2429 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0 && 2430 (status & ALE_RD_VLAN) != 0) 2431 p += ETHER_VLAN_ENCAP_LEN; 2432 ip = (struct ip *)p; 2433 if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0) 2434 return; 2435 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 2436 CSUM_PSEUDO_HDR; 2437 m->m_pkthdr.csum_data = 0xffff; 2438 } 2439 } 2440 /* 2441 * Don't mark bad checksum for TCP/UDP frames 2442 * as fragmented frames may always have set 2443 * bad checksummed bit of frame status. 2444 */ 2445 } 2446 2447 /* Process received frames. */ 2448 static int 2449 ale_rxeof(struct ale_softc *sc, int count) 2450 { 2451 struct ale_rx_page *rx_page; 2452 struct rx_rs *rs; 2453 if_t ifp; 2454 struct mbuf *m; 2455 uint32_t length, prod, seqno, status, vtags; 2456 int prog; 2457 2458 ifp = sc->ale_ifp; 2459 rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp]; 2460 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map, 2461 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2462 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map, 2463 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2464 /* 2465 * Don't directly access producer index as hardware may 2466 * update it while Rx handler is in progress. It would 2467 * be even better if there is a way to let hardware 2468 * know how far driver processed its received frames. 2469 * Alternatively, hardware could provide a way to disable 2470 * CMB updates until driver acknowledges the end of CMB 2471 * access. 2472 */ 2473 prod = *rx_page->cmb_addr; 2474 for (prog = 0; prog < count; prog++) { 2475 if (rx_page->cons >= prod) 2476 break; 2477 rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons); 2478 seqno = ALE_RX_SEQNO(le32toh(rs->seqno)); 2479 if (sc->ale_cdata.ale_rx_seqno != seqno) { 2480 /* 2481 * Normally I believe this should not happen unless 2482 * severe driver bug or corrupted memory. However 2483 * it seems to happen under certain conditions which 2484 * is triggered by abrupt Rx events such as initiation 2485 * of bulk transfer of remote host. It's not easy to 2486 * reproduce this and I doubt it could be related 2487 * with FIFO overflow of hardware or activity of Tx 2488 * CMB updates. I also remember similar behaviour 2489 * seen on RealTek 8139 which uses resembling Rx 2490 * scheme. 2491 */ 2492 if (bootverbose) 2493 device_printf(sc->ale_dev, 2494 "garbled seq: %u, expected: %u -- " 2495 "resetting!\n", seqno, 2496 sc->ale_cdata.ale_rx_seqno); 2497 return (EIO); 2498 } 2499 /* Frame received. */ 2500 sc->ale_cdata.ale_rx_seqno++; 2501 length = ALE_RX_BYTES(le32toh(rs->length)); 2502 status = le32toh(rs->flags); 2503 if ((status & ALE_RD_ERROR) != 0) { 2504 /* 2505 * We want to pass the following frames to upper 2506 * layer regardless of error status of Rx return 2507 * status. 2508 * 2509 * o IP/TCP/UDP checksum is bad. 2510 * o frame length and protocol specific length 2511 * does not match. 2512 */ 2513 if ((status & (ALE_RD_CRC | ALE_RD_CODE | 2514 ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW | 2515 ALE_RD_TRUNC)) != 0) { 2516 ale_rx_update_page(sc, &rx_page, length, &prod); 2517 continue; 2518 } 2519 } 2520 /* 2521 * m_devget(9) is major bottle-neck of ale(4)(It comes 2522 * from hardware limitation). For jumbo frames we could 2523 * get a slightly better performance if driver use 2524 * m_getjcl(9) with proper buffer size argument. However 2525 * that would make code more complicated and I don't 2526 * think users would expect good Rx performance numbers 2527 * on these low-end consumer ethernet controller. 2528 */ 2529 m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN, 2530 ETHER_ALIGN, ifp, NULL); 2531 if (m == NULL) { 2532 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 2533 ale_rx_update_page(sc, &rx_page, length, &prod); 2534 continue; 2535 } 2536 if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 && 2537 (status & ALE_RD_IPV4) != 0) 2538 ale_rxcsum(sc, m, status); 2539 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 && 2540 (status & ALE_RD_VLAN) != 0) { 2541 vtags = ALE_RX_VLAN(le32toh(rs->vtags)); 2542 m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags); 2543 m->m_flags |= M_VLANTAG; 2544 } 2545 2546 /* Pass it to upper layer. */ 2547 ALE_UNLOCK(sc); 2548 if_input(ifp, m); 2549 ALE_LOCK(sc); 2550 2551 ale_rx_update_page(sc, &rx_page, length, &prod); 2552 } 2553 2554 return (count > 0 ? 0 : EAGAIN); 2555 } 2556 2557 static void 2558 ale_tick(void *arg) 2559 { 2560 struct ale_softc *sc; 2561 struct mii_data *mii; 2562 2563 sc = (struct ale_softc *)arg; 2564 2565 ALE_LOCK_ASSERT(sc); 2566 2567 mii = device_get_softc(sc->ale_miibus); 2568 mii_tick(mii); 2569 ale_stats_update(sc); 2570 /* 2571 * Reclaim Tx buffers that have been transferred. It's not 2572 * needed here but it would release allocated mbuf chains 2573 * faster and limit the maximum delay to a hz. 2574 */ 2575 ale_txeof(sc); 2576 ale_watchdog(sc); 2577 callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc); 2578 } 2579 2580 static void 2581 ale_reset(struct ale_softc *sc) 2582 { 2583 uint32_t reg; 2584 int i; 2585 2586 /* Initialize PCIe module. From Linux. */ 2587 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000); 2588 2589 CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET); 2590 for (i = ALE_RESET_TIMEOUT; i > 0; i--) { 2591 DELAY(10); 2592 if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0) 2593 break; 2594 } 2595 if (i == 0) 2596 device_printf(sc->ale_dev, "master reset timeout!\n"); 2597 2598 for (i = ALE_RESET_TIMEOUT; i > 0; i--) { 2599 if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0) 2600 break; 2601 DELAY(10); 2602 } 2603 2604 if (i == 0) 2605 device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg); 2606 } 2607 2608 static void 2609 ale_init(void *xsc) 2610 { 2611 struct ale_softc *sc; 2612 2613 sc = (struct ale_softc *)xsc; 2614 ALE_LOCK(sc); 2615 ale_init_locked(sc); 2616 ALE_UNLOCK(sc); 2617 } 2618 2619 static void 2620 ale_init_locked(struct ale_softc *sc) 2621 { 2622 if_t ifp; 2623 struct mii_data *mii; 2624 uint8_t eaddr[ETHER_ADDR_LEN]; 2625 bus_addr_t paddr; 2626 uint32_t reg, rxf_hi, rxf_lo; 2627 2628 ALE_LOCK_ASSERT(sc); 2629 2630 ifp = sc->ale_ifp; 2631 mii = device_get_softc(sc->ale_miibus); 2632 2633 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) 2634 return; 2635 /* 2636 * Cancel any pending I/O. 2637 */ 2638 ale_stop(sc); 2639 /* 2640 * Reset the chip to a known state. 2641 */ 2642 ale_reset(sc); 2643 /* Initialize Tx descriptors, DMA memory blocks. */ 2644 ale_init_rx_pages(sc); 2645 ale_init_tx_ring(sc); 2646 2647 /* Reprogram the station address. */ 2648 bcopy(if_getlladdr(ifp), eaddr, ETHER_ADDR_LEN); 2649 CSR_WRITE_4(sc, ALE_PAR0, 2650 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]); 2651 CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]); 2652 /* 2653 * Clear WOL status and disable all WOL feature as WOL 2654 * would interfere Rx operation under normal environments. 2655 */ 2656 CSR_READ_4(sc, ALE_WOL_CFG); 2657 CSR_WRITE_4(sc, ALE_WOL_CFG, 0); 2658 /* 2659 * Set Tx descriptor/RXF0/CMB base addresses. They share 2660 * the same high address part of DMAable region. 2661 */ 2662 paddr = sc->ale_cdata.ale_tx_ring_paddr; 2663 CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr)); 2664 CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr)); 2665 CSR_WRITE_4(sc, ALE_TPD_CNT, 2666 (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK); 2667 /* Set Rx page base address, note we use single queue. */ 2668 paddr = sc->ale_cdata.ale_rx_page[0].page_paddr; 2669 CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr)); 2670 paddr = sc->ale_cdata.ale_rx_page[1].page_paddr; 2671 CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr)); 2672 /* Set Tx/Rx CMB addresses. */ 2673 paddr = sc->ale_cdata.ale_tx_cmb_paddr; 2674 CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr)); 2675 paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr; 2676 CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr)); 2677 paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr; 2678 CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr)); 2679 /* Mark RXF0 is valid. */ 2680 CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID); 2681 CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID); 2682 /* 2683 * No need to initialize RFX1/RXF2/RXF3. We don't use 2684 * multi-queue yet. 2685 */ 2686 2687 /* Set Rx page size, excluding guard frame size. */ 2688 CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ); 2689 /* Tell hardware that we're ready to load DMA blocks. */ 2690 CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD); 2691 2692 /* Set Rx/Tx interrupt trigger threshold. */ 2693 CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) | 2694 (4 << INT_TRIG_TX_THRESH_SHIFT)); 2695 /* 2696 * XXX 2697 * Set interrupt trigger timer, its purpose and relation 2698 * with interrupt moderation mechanism is not clear yet. 2699 */ 2700 CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER, 2701 ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) | 2702 (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT))); 2703 2704 /* Configure interrupt moderation timer. */ 2705 reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT; 2706 reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT; 2707 CSR_WRITE_4(sc, ALE_IM_TIMER, reg); 2708 reg = CSR_READ_4(sc, ALE_MASTER_CFG); 2709 reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK); 2710 reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB); 2711 if (ALE_USECS(sc->ale_int_rx_mod) != 0) 2712 reg |= MASTER_IM_RX_TIMER_ENB; 2713 if (ALE_USECS(sc->ale_int_tx_mod) != 0) 2714 reg |= MASTER_IM_TX_TIMER_ENB; 2715 CSR_WRITE_4(sc, ALE_MASTER_CFG, reg); 2716 CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000)); 2717 2718 /* Set Maximum frame size of controller. */ 2719 if (if_getmtu(ifp) < ETHERMTU) 2720 sc->ale_max_frame_size = ETHERMTU; 2721 else 2722 sc->ale_max_frame_size = if_getmtu(ifp); 2723 sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 2724 ETHER_CRC_LEN; 2725 CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size); 2726 /* Configure IPG/IFG parameters. */ 2727 CSR_WRITE_4(sc, ALE_IPG_IFG_CFG, 2728 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) | 2729 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) | 2730 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) | 2731 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK)); 2732 /* Set parameters for half-duplex media. */ 2733 CSR_WRITE_4(sc, ALE_HDPX_CFG, 2734 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) & 2735 HDPX_CFG_LCOL_MASK) | 2736 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) & 2737 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN | 2738 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) & 2739 HDPX_CFG_ABEBT_MASK) | 2740 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) & 2741 HDPX_CFG_JAMIPG_MASK)); 2742 2743 /* Configure Tx jumbo frame parameters. */ 2744 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) { 2745 if (if_getmtu(ifp) < ETHERMTU) 2746 reg = sc->ale_max_frame_size; 2747 else if (if_getmtu(ifp) < 6 * 1024) 2748 reg = (sc->ale_max_frame_size * 2) / 3; 2749 else 2750 reg = sc->ale_max_frame_size / 2; 2751 CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH, 2752 roundup(reg, TX_JUMBO_THRESH_UNIT) >> 2753 TX_JUMBO_THRESH_UNIT_SHIFT); 2754 } 2755 /* Configure TxQ. */ 2756 reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT)) 2757 << TXQ_CFG_TX_FIFO_BURST_SHIFT; 2758 reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) & 2759 TXQ_CFG_TPD_BURST_MASK; 2760 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB); 2761 2762 /* Configure Rx jumbo frame & flow control parameters. */ 2763 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) { 2764 reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT); 2765 CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH, 2766 (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) << 2767 RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) | 2768 ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) & 2769 RX_JUMBO_LKAH_MASK)); 2770 reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN); 2771 rxf_hi = (reg * 7) / 10; 2772 rxf_lo = (reg * 3)/ 10; 2773 CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH, 2774 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) & 2775 RX_FIFO_PAUSE_THRESH_LO_MASK) | 2776 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) & 2777 RX_FIFO_PAUSE_THRESH_HI_MASK)); 2778 } 2779 2780 /* Disable RSS. */ 2781 CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0); 2782 CSR_WRITE_4(sc, ALE_RSS_CPU, 0); 2783 2784 /* Configure RxQ. */ 2785 CSR_WRITE_4(sc, ALE_RXQ_CFG, 2786 RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB); 2787 2788 /* Configure DMA parameters. */ 2789 reg = 0; 2790 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) 2791 reg |= DMA_CFG_TXCMB_ENB; 2792 CSR_WRITE_4(sc, ALE_DMA_CFG, 2793 DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 | 2794 sc->ale_dma_rd_burst | reg | 2795 sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB | 2796 ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) & 2797 DMA_CFG_RD_DELAY_CNT_MASK) | 2798 ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) & 2799 DMA_CFG_WR_DELAY_CNT_MASK)); 2800 2801 /* 2802 * Hardware can be configured to issue SMB interrupt based 2803 * on programmed interval. Since there is a callout that is 2804 * invoked for every hz in driver we use that instead of 2805 * relying on periodic SMB interrupt. 2806 */ 2807 CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0)); 2808 /* Clear MAC statistics. */ 2809 ale_stats_clear(sc); 2810 2811 /* 2812 * Configure Tx/Rx MACs. 2813 * - Auto-padding for short frames. 2814 * - Enable CRC generation. 2815 * Actual reconfiguration of MAC for resolved speed/duplex 2816 * is followed after detection of link establishment. 2817 * AR81xx always does checksum computation regardless of 2818 * MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will 2819 * cause Rx handling issue for fragmented IP datagrams due 2820 * to silicon bug. 2821 */ 2822 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX | 2823 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) & 2824 MAC_CFG_PREAMBLE_MASK); 2825 if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0) 2826 reg |= MAC_CFG_SPEED_10_100; 2827 else 2828 reg |= MAC_CFG_SPEED_1000; 2829 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 2830 2831 /* Set up the receive filter. */ 2832 ale_rxfilter(sc); 2833 ale_rxvlan(sc); 2834 2835 /* Acknowledge all pending interrupts and clear it. */ 2836 CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS); 2837 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF); 2838 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0); 2839 2840 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 2841 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 2842 2843 sc->ale_flags &= ~ALE_FLAG_LINK; 2844 /* Switch to the current media. */ 2845 mii_mediachg(mii); 2846 2847 callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc); 2848 } 2849 2850 static void 2851 ale_stop(struct ale_softc *sc) 2852 { 2853 if_t ifp; 2854 struct ale_txdesc *txd; 2855 uint32_t reg; 2856 int i; 2857 2858 ALE_LOCK_ASSERT(sc); 2859 /* 2860 * Mark the interface down and cancel the watchdog timer. 2861 */ 2862 ifp = sc->ale_ifp; 2863 if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)); 2864 sc->ale_flags &= ~ALE_FLAG_LINK; 2865 callout_stop(&sc->ale_tick_ch); 2866 sc->ale_watchdog_timer = 0; 2867 ale_stats_update(sc); 2868 /* Disable interrupts. */ 2869 CSR_WRITE_4(sc, ALE_INTR_MASK, 0); 2870 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF); 2871 /* Disable queue processing and DMA. */ 2872 reg = CSR_READ_4(sc, ALE_TXQ_CFG); 2873 reg &= ~TXQ_CFG_ENB; 2874 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg); 2875 reg = CSR_READ_4(sc, ALE_RXQ_CFG); 2876 reg &= ~RXQ_CFG_ENB; 2877 CSR_WRITE_4(sc, ALE_RXQ_CFG, reg); 2878 reg = CSR_READ_4(sc, ALE_DMA_CFG); 2879 reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB); 2880 CSR_WRITE_4(sc, ALE_DMA_CFG, reg); 2881 DELAY(1000); 2882 /* Stop Rx/Tx MACs. */ 2883 ale_stop_mac(sc); 2884 /* Disable interrupts which might be touched in taskq handler. */ 2885 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF); 2886 2887 /* 2888 * Free TX mbufs still in the queues. 2889 */ 2890 for (i = 0; i < ALE_TX_RING_CNT; i++) { 2891 txd = &sc->ale_cdata.ale_txdesc[i]; 2892 if (txd->tx_m != NULL) { 2893 bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, 2894 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2895 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, 2896 txd->tx_dmamap); 2897 m_freem(txd->tx_m); 2898 txd->tx_m = NULL; 2899 } 2900 } 2901 } 2902 2903 static void 2904 ale_stop_mac(struct ale_softc *sc) 2905 { 2906 uint32_t reg; 2907 int i; 2908 2909 ALE_LOCK_ASSERT(sc); 2910 2911 reg = CSR_READ_4(sc, ALE_MAC_CFG); 2912 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) { 2913 reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB); 2914 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 2915 } 2916 2917 for (i = ALE_TIMEOUT; i > 0; i--) { 2918 reg = CSR_READ_4(sc, ALE_IDLE_STATUS); 2919 if (reg == 0) 2920 break; 2921 DELAY(10); 2922 } 2923 if (i == 0) 2924 device_printf(sc->ale_dev, 2925 "could not disable Tx/Rx MAC(0x%08x)!\n", reg); 2926 } 2927 2928 static void 2929 ale_init_tx_ring(struct ale_softc *sc) 2930 { 2931 struct ale_txdesc *txd; 2932 int i; 2933 2934 ALE_LOCK_ASSERT(sc); 2935 2936 sc->ale_cdata.ale_tx_prod = 0; 2937 sc->ale_cdata.ale_tx_cons = 0; 2938 sc->ale_cdata.ale_tx_cnt = 0; 2939 2940 bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ); 2941 bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ); 2942 for (i = 0; i < ALE_TX_RING_CNT; i++) { 2943 txd = &sc->ale_cdata.ale_txdesc[i]; 2944 txd->tx_m = NULL; 2945 } 2946 *sc->ale_cdata.ale_tx_cmb = 0; 2947 bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag, 2948 sc->ale_cdata.ale_tx_cmb_map, 2949 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2950 bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag, 2951 sc->ale_cdata.ale_tx_ring_map, 2952 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2953 } 2954 2955 static void 2956 ale_init_rx_pages(struct ale_softc *sc) 2957 { 2958 struct ale_rx_page *rx_page; 2959 int i; 2960 2961 ALE_LOCK_ASSERT(sc); 2962 2963 sc->ale_morework = 0; 2964 sc->ale_cdata.ale_rx_seqno = 0; 2965 sc->ale_cdata.ale_rx_curp = 0; 2966 2967 for (i = 0; i < ALE_RX_PAGES; i++) { 2968 rx_page = &sc->ale_cdata.ale_rx_page[i]; 2969 bzero(rx_page->page_addr, sc->ale_pagesize); 2970 bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ); 2971 rx_page->cons = 0; 2972 *rx_page->cmb_addr = 0; 2973 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map, 2974 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2975 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map, 2976 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2977 } 2978 } 2979 2980 static void 2981 ale_rxvlan(struct ale_softc *sc) 2982 { 2983 if_t ifp; 2984 uint32_t reg; 2985 2986 ALE_LOCK_ASSERT(sc); 2987 2988 ifp = sc->ale_ifp; 2989 reg = CSR_READ_4(sc, ALE_MAC_CFG); 2990 reg &= ~MAC_CFG_VLAN_TAG_STRIP; 2991 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) 2992 reg |= MAC_CFG_VLAN_TAG_STRIP; 2993 CSR_WRITE_4(sc, ALE_MAC_CFG, reg); 2994 } 2995 2996 static u_int 2997 ale_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 2998 { 2999 uint32_t crc, *mchash = arg; 3000 3001 crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN); 3002 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); 3003 3004 return (1); 3005 } 3006 3007 static void 3008 ale_rxfilter(struct ale_softc *sc) 3009 { 3010 if_t ifp; 3011 uint32_t mchash[2]; 3012 uint32_t rxcfg; 3013 3014 ALE_LOCK_ASSERT(sc); 3015 3016 ifp = sc->ale_ifp; 3017 3018 rxcfg = CSR_READ_4(sc, ALE_MAC_CFG); 3019 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC); 3020 if ((if_getflags(ifp) & IFF_BROADCAST) != 0) 3021 rxcfg |= MAC_CFG_BCAST; 3022 if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 3023 if ((if_getflags(ifp) & IFF_PROMISC) != 0) 3024 rxcfg |= MAC_CFG_PROMISC; 3025 if ((if_getflags(ifp) & IFF_ALLMULTI) != 0) 3026 rxcfg |= MAC_CFG_ALLMULTI; 3027 CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF); 3028 CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF); 3029 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg); 3030 return; 3031 } 3032 3033 /* Program new filter. */ 3034 bzero(mchash, sizeof(mchash)); 3035 if_foreach_llmaddr(ifp, ale_hash_maddr, &mchash); 3036 3037 CSR_WRITE_4(sc, ALE_MAR0, mchash[0]); 3038 CSR_WRITE_4(sc, ALE_MAR1, mchash[1]); 3039 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg); 3040 } 3041 3042 static int 3043 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3044 { 3045 int error, value; 3046 3047 if (arg1 == NULL) 3048 return (EINVAL); 3049 value = *(int *)arg1; 3050 error = sysctl_handle_int(oidp, &value, 0, req); 3051 if (error || req->newptr == NULL) 3052 return (error); 3053 if (value < low || value > high) 3054 return (EINVAL); 3055 *(int *)arg1 = value; 3056 3057 return (0); 3058 } 3059 3060 static int 3061 sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS) 3062 { 3063 return (sysctl_int_range(oidp, arg1, arg2, req, 3064 ALE_PROC_MIN, ALE_PROC_MAX)); 3065 } 3066 3067 static int 3068 sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS) 3069 { 3070 3071 return (sysctl_int_range(oidp, arg1, arg2, req, 3072 ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX)); 3073 } 3074