xref: /freebsd/sys/dev/alc/if_alc.c (revision eb6d21b4ca6d668cf89afd99eef7baeafa712197)
1 /*-
2  * Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Driver for Atheros AR8131/AR8132 PCIe Ethernet. */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/module.h>
42 #include <sys/mutex.h>
43 #include <sys/rman.h>
44 #include <sys/queue.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/taskqueue.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_llc.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 #include <net/if_vlan_var.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/ip.h>
63 #include <netinet/tcp.h>
64 
65 #include <dev/mii/mii.h>
66 #include <dev/mii/miivar.h>
67 
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70 
71 #include <machine/atomic.h>
72 #include <machine/bus.h>
73 #include <machine/in_cksum.h>
74 
75 #include <dev/alc/if_alcreg.h>
76 #include <dev/alc/if_alcvar.h>
77 
78 /* "device miibus" required.  See GENERIC if you get errors here. */
79 #include "miibus_if.h"
80 #undef ALC_USE_CUSTOM_CSUM
81 
82 #ifdef ALC_USE_CUSTOM_CSUM
83 #define	ALC_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
84 #else
85 #define	ALC_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
86 #endif
87 #ifndef	IFCAP_VLAN_HWTSO
88 #define	IFCAP_VLAN_HWTSO	0
89 #endif
90 
91 MODULE_DEPEND(alc, pci, 1, 1, 1);
92 MODULE_DEPEND(alc, ether, 1, 1, 1);
93 MODULE_DEPEND(alc, miibus, 1, 1, 1);
94 
95 /* Tunables. */
96 static int msi_disable = 0;
97 static int msix_disable = 0;
98 TUNABLE_INT("hw.alc.msi_disable", &msi_disable);
99 TUNABLE_INT("hw.alc.msix_disable", &msix_disable);
100 
101 /*
102  * Devices supported by this driver.
103  */
104 static struct alc_dev {
105 	uint16_t	alc_vendorid;
106 	uint16_t	alc_deviceid;
107 	const char	*alc_name;
108 } alc_devs[] = {
109 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8131,
110 		"Atheros AR8131 PCIe Gigabit Ethernet" },
111 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8132,
112 		"Atheros AR8132 PCIe Fast Ethernet" }
113 };
114 
115 static void	alc_aspm(struct alc_softc *);
116 static int	alc_attach(device_t);
117 static int	alc_check_boundary(struct alc_softc *);
118 static int	alc_detach(device_t);
119 static void	alc_disable_l0s_l1(struct alc_softc *);
120 static int	alc_dma_alloc(struct alc_softc *);
121 static void	alc_dma_free(struct alc_softc *);
122 static void	alc_dmamap_cb(void *, bus_dma_segment_t *, int, int);
123 static int	alc_encap(struct alc_softc *, struct mbuf **);
124 #ifndef __NO_STRICT_ALIGNMENT
125 static struct mbuf *
126 		alc_fixup_rx(struct ifnet *, struct mbuf *);
127 #endif
128 static void	alc_get_macaddr(struct alc_softc *);
129 static void	alc_init(void *);
130 static void	alc_init_cmb(struct alc_softc *);
131 static void	alc_init_locked(struct alc_softc *);
132 static void	alc_init_rr_ring(struct alc_softc *);
133 static int	alc_init_rx_ring(struct alc_softc *);
134 static void	alc_init_smb(struct alc_softc *);
135 static void	alc_init_tx_ring(struct alc_softc *);
136 static void	alc_int_task(void *, int);
137 static int	alc_intr(void *);
138 static int	alc_ioctl(struct ifnet *, u_long, caddr_t);
139 static void	alc_mac_config(struct alc_softc *);
140 static int	alc_miibus_readreg(device_t, int, int);
141 static void	alc_miibus_statchg(device_t);
142 static int	alc_miibus_writereg(device_t, int, int, int);
143 static int	alc_mediachange(struct ifnet *);
144 static void	alc_mediastatus(struct ifnet *, struct ifmediareq *);
145 static int	alc_newbuf(struct alc_softc *, struct alc_rxdesc *);
146 static void	alc_phy_down(struct alc_softc *);
147 static void	alc_phy_reset(struct alc_softc *);
148 static int	alc_probe(device_t);
149 static void	alc_reset(struct alc_softc *);
150 static int	alc_resume(device_t);
151 static void	alc_rxeof(struct alc_softc *, struct rx_rdesc *);
152 static int	alc_rxintr(struct alc_softc *, int);
153 static void	alc_rxfilter(struct alc_softc *);
154 static void	alc_rxvlan(struct alc_softc *);
155 static void	alc_setlinkspeed(struct alc_softc *);
156 static void	alc_setwol(struct alc_softc *);
157 static int	alc_shutdown(device_t);
158 static void	alc_start(struct ifnet *);
159 static void	alc_start_queue(struct alc_softc *);
160 static void	alc_stats_clear(struct alc_softc *);
161 static void	alc_stats_update(struct alc_softc *);
162 static void	alc_stop(struct alc_softc *);
163 static void	alc_stop_mac(struct alc_softc *);
164 static void	alc_stop_queue(struct alc_softc *);
165 static int	alc_suspend(device_t);
166 static void	alc_sysctl_node(struct alc_softc *);
167 static void	alc_tick(void *);
168 static void	alc_tx_task(void *, int);
169 static void	alc_txeof(struct alc_softc *);
170 static void	alc_watchdog(struct alc_softc *);
171 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
172 static int	sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS);
173 static int	sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS);
174 
175 static device_method_t alc_methods[] = {
176 	/* Device interface. */
177 	DEVMETHOD(device_probe,		alc_probe),
178 	DEVMETHOD(device_attach,	alc_attach),
179 	DEVMETHOD(device_detach,	alc_detach),
180 	DEVMETHOD(device_shutdown,	alc_shutdown),
181 	DEVMETHOD(device_suspend,	alc_suspend),
182 	DEVMETHOD(device_resume,	alc_resume),
183 
184 	/* MII interface. */
185 	DEVMETHOD(miibus_readreg,	alc_miibus_readreg),
186 	DEVMETHOD(miibus_writereg,	alc_miibus_writereg),
187 	DEVMETHOD(miibus_statchg,	alc_miibus_statchg),
188 
189 	{ NULL, NULL }
190 };
191 
192 static driver_t alc_driver = {
193 	"alc",
194 	alc_methods,
195 	sizeof(struct alc_softc)
196 };
197 
198 static devclass_t alc_devclass;
199 
200 DRIVER_MODULE(alc, pci, alc_driver, alc_devclass, 0, 0);
201 DRIVER_MODULE(miibus, alc, miibus_driver, miibus_devclass, 0, 0);
202 
203 static struct resource_spec alc_res_spec_mem[] = {
204 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
205 	{ -1,			0,		0 }
206 };
207 
208 static struct resource_spec alc_irq_spec_legacy[] = {
209 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
210 	{ -1,			0,		0 }
211 };
212 
213 static struct resource_spec alc_irq_spec_msi[] = {
214 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
215 	{ -1,			0,		0 }
216 };
217 
218 static struct resource_spec alc_irq_spec_msix[] = {
219 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
220 	{ -1,			0,		0 }
221 };
222 
223 static uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
224 
225 static int
226 alc_miibus_readreg(device_t dev, int phy, int reg)
227 {
228 	struct alc_softc *sc;
229 	uint32_t v;
230 	int i;
231 
232 	sc = device_get_softc(dev);
233 
234 	if (phy != sc->alc_phyaddr)
235 		return (0);
236 
237 	/*
238 	 * For AR8132 fast ethernet controller, do not report 1000baseT
239 	 * capability to mii(4). Even though AR8132 uses the same
240 	 * model/revision number of F1 gigabit PHY, the PHY has no
241 	 * ability to establish 1000baseT link.
242 	 */
243 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 &&
244 	    reg == MII_EXTSR)
245 		return (0);
246 
247 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
248 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
249 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
250 		DELAY(5);
251 		v = CSR_READ_4(sc, ALC_MDIO);
252 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
253 			break;
254 	}
255 
256 	if (i == 0) {
257 		device_printf(sc->alc_dev, "phy read timeout : %d\n", reg);
258 		return (0);
259 	}
260 
261 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
262 }
263 
264 static int
265 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
266 {
267 	struct alc_softc *sc;
268 	uint32_t v;
269 	int i;
270 
271 	sc = device_get_softc(dev);
272 
273 	if (phy != sc->alc_phyaddr)
274 		return (0);
275 
276 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
277 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
278 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
279 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
280 		DELAY(5);
281 		v = CSR_READ_4(sc, ALC_MDIO);
282 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
283 			break;
284 	}
285 
286 	if (i == 0)
287 		device_printf(sc->alc_dev, "phy write timeout : %d\n", reg);
288 
289 	return (0);
290 }
291 
292 static void
293 alc_miibus_statchg(device_t dev)
294 {
295 	struct alc_softc *sc;
296 	struct mii_data *mii;
297 	struct ifnet *ifp;
298 	uint32_t reg;
299 
300 	sc = device_get_softc(dev);
301 
302 	mii = device_get_softc(sc->alc_miibus);
303 	ifp = sc->alc_ifp;
304 	if (mii == NULL || ifp == NULL ||
305 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
306 		return;
307 
308 	sc->alc_flags &= ~ALC_FLAG_LINK;
309 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
310 	    (IFM_ACTIVE | IFM_AVALID)) {
311 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
312 		case IFM_10_T:
313 		case IFM_100_TX:
314 			sc->alc_flags |= ALC_FLAG_LINK;
315 			break;
316 		case IFM_1000_T:
317 			if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
318 				sc->alc_flags |= ALC_FLAG_LINK;
319 			break;
320 		default:
321 			break;
322 		}
323 	}
324 	alc_stop_queue(sc);
325 	/* Stop Rx/Tx MACs. */
326 	alc_stop_mac(sc);
327 
328 	/* Program MACs with resolved speed/duplex/flow-control. */
329 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
330 		alc_start_queue(sc);
331 		alc_mac_config(sc);
332 		/* Re-enable Tx/Rx MACs. */
333 		reg = CSR_READ_4(sc, ALC_MAC_CFG);
334 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
335 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
336 	}
337 	alc_aspm(sc);
338 }
339 
340 static void
341 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
342 {
343 	struct alc_softc *sc;
344 	struct mii_data *mii;
345 
346 	sc = ifp->if_softc;
347 	ALC_LOCK(sc);
348 	if ((ifp->if_flags & IFF_UP) == 0) {
349 		ALC_UNLOCK(sc);
350 		return;
351 	}
352 	mii = device_get_softc(sc->alc_miibus);
353 
354 	mii_pollstat(mii);
355 	ALC_UNLOCK(sc);
356 	ifmr->ifm_status = mii->mii_media_status;
357 	ifmr->ifm_active = mii->mii_media_active;
358 }
359 
360 static int
361 alc_mediachange(struct ifnet *ifp)
362 {
363 	struct alc_softc *sc;
364 	struct mii_data *mii;
365 	struct mii_softc *miisc;
366 	int error;
367 
368 	sc = ifp->if_softc;
369 	ALC_LOCK(sc);
370 	mii = device_get_softc(sc->alc_miibus);
371 	if (mii->mii_instance != 0) {
372 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
373 			mii_phy_reset(miisc);
374 	}
375 	error = mii_mediachg(mii);
376 	ALC_UNLOCK(sc);
377 
378 	return (error);
379 }
380 
381 static int
382 alc_probe(device_t dev)
383 {
384 	struct alc_dev *sp;
385 	int i;
386 	uint16_t vendor, devid;
387 
388 	vendor = pci_get_vendor(dev);
389 	devid = pci_get_device(dev);
390 	sp = alc_devs;
391 	for (i = 0; i < sizeof(alc_devs) / sizeof(alc_devs[0]); i++) {
392 		if (vendor == sp->alc_vendorid &&
393 		    devid == sp->alc_deviceid) {
394 			device_set_desc(dev, sp->alc_name);
395 			return (BUS_PROBE_DEFAULT);
396 		}
397 		sp++;
398 	}
399 
400 	return (ENXIO);
401 }
402 
403 static void
404 alc_get_macaddr(struct alc_softc *sc)
405 {
406 	uint32_t ea[2], opt;
407 	int i;
408 
409 	opt = CSR_READ_4(sc, ALC_OPT_CFG);
410 	if ((CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
411 		/*
412 		 * EEPROM found, let TWSI reload EEPROM configuration.
413 		 * This will set ethernet address of controller.
414 		 */
415 		if ((opt & OPT_CFG_CLK_ENB) == 0) {
416 			opt |= OPT_CFG_CLK_ENB;
417 			CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
418 			CSR_READ_4(sc, ALC_OPT_CFG);
419 			DELAY(1000);
420 		}
421 		CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
422 		    TWSI_CFG_SW_LD_START);
423 		for (i = 100; i > 0; i--) {
424 			DELAY(1000);
425 			if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
426 			    TWSI_CFG_SW_LD_START) == 0)
427 				break;
428 		}
429 		if (i == 0)
430 			device_printf(sc->alc_dev,
431 			    "reloading EEPROM timeout!\n");
432 	} else {
433 		if (bootverbose)
434 			device_printf(sc->alc_dev, "EEPROM not found!\n");
435 	}
436 	if ((opt & OPT_CFG_CLK_ENB) != 0) {
437 		opt &= ~OPT_CFG_CLK_ENB;
438 		CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
439 		CSR_READ_4(sc, ALC_OPT_CFG);
440 		DELAY(1000);
441 	}
442 
443 	ea[0] = CSR_READ_4(sc, ALC_PAR0);
444 	ea[1] = CSR_READ_4(sc, ALC_PAR1);
445 	sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
446 	sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
447 	sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
448 	sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
449 	sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
450 	sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
451 }
452 
453 static void
454 alc_disable_l0s_l1(struct alc_softc *sc)
455 {
456 	uint32_t pmcfg;
457 
458 	/* Another magic from vendor. */
459 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
460 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
461 	    PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK |
462 	    PM_CFG_SERDES_PD_EX_L1);
463 	pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
464 	    PM_CFG_SERDES_L1_ENB;
465 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
466 }
467 
468 static void
469 alc_phy_reset(struct alc_softc *sc)
470 {
471 	uint16_t data;
472 
473 	/* Reset magic from Linux. */
474 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
475 	    GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | GPHY_CFG_SEL_ANA_RESET);
476 	CSR_READ_2(sc, ALC_GPHY_CFG);
477 	DELAY(10 * 1000);
478 
479 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
480 	    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
481 	    GPHY_CFG_SEL_ANA_RESET);
482 	CSR_READ_2(sc, ALC_GPHY_CFG);
483 	DELAY(10 * 1000);
484 
485 	/* Load DSP codes, vendor magic. */
486 	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
487 	    ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
488 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
489 	    ALC_MII_DBG_ADDR, MII_ANA_CFG18);
490 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
491 	    ALC_MII_DBG_DATA, data);
492 
493 	data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
494 	    ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
495 	    ANA_SERDES_EN_LCKDT;
496 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
497 	    ALC_MII_DBG_ADDR, MII_ANA_CFG5);
498 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
499 	    ALC_MII_DBG_DATA, data);
500 
501 	data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
502 	    ANA_LONG_CABLE_TH_100_MASK) |
503 	    ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
504 	    ANA_SHORT_CABLE_TH_100_SHIFT) |
505 	    ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
506 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
507 	    ALC_MII_DBG_ADDR, MII_ANA_CFG54);
508 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
509 	    ALC_MII_DBG_DATA, data);
510 
511 	data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
512 	    ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
513 	    ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
514 	    ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
515 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
516 	    ALC_MII_DBG_ADDR, MII_ANA_CFG4);
517 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
518 	    ALC_MII_DBG_DATA, data);
519 
520 	data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
521 	    ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
522 	    ANA_OEN_125M;
523 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
524 	    ALC_MII_DBG_ADDR, MII_ANA_CFG0);
525 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
526 	    ALC_MII_DBG_DATA, data);
527 	DELAY(1000);
528 }
529 
530 static void
531 alc_phy_down(struct alc_softc *sc)
532 {
533 
534 	/* Force PHY down. */
535 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
536 	    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
537 	    GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ | GPHY_CFG_PWDOWN_HW);
538 	DELAY(1000);
539 }
540 
541 static void
542 alc_aspm(struct alc_softc *sc)
543 {
544 	uint32_t pmcfg;
545 
546 	ALC_LOCK_ASSERT(sc);
547 
548 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
549 	pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
550 	pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB;
551 	pmcfg |= PM_CFG_SERDES_L1_ENB;
552 	pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
553 	pmcfg |= PM_CFG_MAC_ASPM_CHK;
554 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
555 		pmcfg |= PM_CFG_SERDES_PLL_L1_ENB;
556 		pmcfg &= ~PM_CFG_CLK_SWH_L1;
557 		pmcfg &= ~PM_CFG_ASPM_L1_ENB;
558 		pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
559 	} else {
560 		pmcfg &= ~PM_CFG_SERDES_PLL_L1_ENB;
561 		pmcfg |= PM_CFG_CLK_SWH_L1;
562 		pmcfg &= ~PM_CFG_ASPM_L1_ENB;
563 		pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
564 	}
565 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
566 }
567 
568 static int
569 alc_attach(device_t dev)
570 {
571 	struct alc_softc *sc;
572 	struct ifnet *ifp;
573 	char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/l1" };
574 	uint16_t burst;
575 	int base, error, i, msic, msixc, pmc, state;
576 	uint32_t cap, ctl, val;
577 
578 	error = 0;
579 	sc = device_get_softc(dev);
580 	sc->alc_dev = dev;
581 
582 	mtx_init(&sc->alc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
583 	    MTX_DEF);
584 	callout_init_mtx(&sc->alc_tick_ch, &sc->alc_mtx, 0);
585 	TASK_INIT(&sc->alc_int_task, 0, alc_int_task, sc);
586 
587 	/* Map the device. */
588 	pci_enable_busmaster(dev);
589 	sc->alc_res_spec = alc_res_spec_mem;
590 	sc->alc_irq_spec = alc_irq_spec_legacy;
591 	error = bus_alloc_resources(dev, sc->alc_res_spec, sc->alc_res);
592 	if (error != 0) {
593 		device_printf(dev, "cannot allocate memory resources.\n");
594 		goto fail;
595 	}
596 
597 	/* Set PHY address. */
598 	sc->alc_phyaddr = ALC_PHY_ADDR;
599 
600 	/* Initialize DMA parameters. */
601 	sc->alc_dma_rd_burst = 0;
602 	sc->alc_dma_wr_burst = 0;
603 	sc->alc_rcb = DMA_CFG_RCB_64;
604 	if (pci_find_extcap(dev, PCIY_EXPRESS, &base) == 0) {
605 		sc->alc_flags |= ALC_FLAG_PCIE;
606 		burst = CSR_READ_2(sc, base + PCIR_EXPRESS_DEVICE_CTL);
607 		sc->alc_dma_rd_burst =
608 		    (burst & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12;
609 		sc->alc_dma_wr_burst = (burst & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5;
610 		if (bootverbose) {
611 			device_printf(dev, "Read request size : %u bytes.\n",
612 			    alc_dma_burst[sc->alc_dma_rd_burst]);
613 			device_printf(dev, "TLP payload size : %u bytes.\n",
614 			    alc_dma_burst[sc->alc_dma_wr_burst]);
615 		}
616 		/* Clear data link and flow-control protocol error. */
617 		val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
618 		val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
619 		CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
620 		/* Disable ASPM L0S and L1. */
621 		cap = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CAP);
622 		if ((cap & PCIM_LINK_CAP_ASPM) != 0) {
623 			ctl = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CTL);
624 			if ((ctl & 0x08) != 0)
625 				sc->alc_rcb = DMA_CFG_RCB_128;
626 			if (bootverbose)
627 				device_printf(dev, "RCB %u bytes\n",
628 				    sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
629 			state = ctl & 0x03;
630 			if (bootverbose)
631 				device_printf(sc->alc_dev, "ASPM %s %s\n",
632 				    aspm_state[state],
633 				    state == 0 ? "disabled" : "enabled");
634 			if (state != 0)
635 				alc_disable_l0s_l1(sc);
636 		}
637 	}
638 
639 	/* Reset PHY. */
640 	alc_phy_reset(sc);
641 
642 	/* Reset the ethernet controller. */
643 	alc_reset(sc);
644 
645 	/*
646 	 * One odd thing is AR8132 uses the same PHY hardware(F1
647 	 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
648 	 * the PHY supports 1000Mbps but that's not true. The PHY
649 	 * used in AR8132 can't establish gigabit link even if it
650 	 * shows the same PHY model/revision number of AR8131.
651 	 */
652 	if (pci_get_device(dev) == DEVICEID_ATHEROS_AR8132)
653 		sc->alc_flags |= ALC_FLAG_FASTETHER | ALC_FLAG_JUMBO;
654 	else
655 		sc->alc_flags |= ALC_FLAG_JUMBO | ALC_FLAG_ASPM_MON;
656 	/*
657 	 * It seems that AR8131/AR8132 has silicon bug for SMB. In
658 	 * addition, Atheros said that enabling SMB wouldn't improve
659 	 * performance. However I think it's bad to access lots of
660 	 * registers to extract MAC statistics.
661 	 */
662 	sc->alc_flags |= ALC_FLAG_SMB_BUG;
663 	/*
664 	 * Don't use Tx CMB. It is known to have silicon bug.
665 	 */
666 	sc->alc_flags |= ALC_FLAG_CMB_BUG;
667 	sc->alc_rev = pci_get_revid(dev);
668 	sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
669 	    MASTER_CHIP_REV_SHIFT;
670 	if (bootverbose) {
671 		device_printf(dev, "PCI device revision : 0x%04x\n",
672 		    sc->alc_rev);
673 		device_printf(dev, "Chip id/revision : 0x%04x\n",
674 		    sc->alc_chip_rev);
675 	}
676 	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n",
677 	    CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
678 	    CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
679 
680 	/* Allocate IRQ resources. */
681 	msixc = pci_msix_count(dev);
682 	msic = pci_msi_count(dev);
683 	if (bootverbose) {
684 		device_printf(dev, "MSIX count : %d\n", msixc);
685 		device_printf(dev, "MSI count : %d\n", msic);
686 	}
687 	/* Prefer MSIX over MSI. */
688 	if (msix_disable == 0 || msi_disable == 0) {
689 		if (msix_disable == 0 && msixc == ALC_MSIX_MESSAGES &&
690 		    pci_alloc_msix(dev, &msixc) == 0) {
691 			if (msic == ALC_MSIX_MESSAGES) {
692 				device_printf(dev,
693 				    "Using %d MSIX message(s).\n", msixc);
694 				sc->alc_flags |= ALC_FLAG_MSIX;
695 				sc->alc_irq_spec = alc_irq_spec_msix;
696 			} else
697 				pci_release_msi(dev);
698 		}
699 		if (msi_disable == 0 && (sc->alc_flags & ALC_FLAG_MSIX) == 0 &&
700 		    msic == ALC_MSI_MESSAGES &&
701 		    pci_alloc_msi(dev, &msic) == 0) {
702 			if (msic == ALC_MSI_MESSAGES) {
703 				device_printf(dev,
704 				    "Using %d MSI message(s).\n", msic);
705 				sc->alc_flags |= ALC_FLAG_MSI;
706 				sc->alc_irq_spec = alc_irq_spec_msi;
707 			} else
708 				pci_release_msi(dev);
709 		}
710 	}
711 
712 	error = bus_alloc_resources(dev, sc->alc_irq_spec, sc->alc_irq);
713 	if (error != 0) {
714 		device_printf(dev, "cannot allocate IRQ resources.\n");
715 		goto fail;
716 	}
717 
718 	/* Create device sysctl node. */
719 	alc_sysctl_node(sc);
720 
721 	if ((error = alc_dma_alloc(sc) != 0))
722 		goto fail;
723 
724 	/* Load station address. */
725 	alc_get_macaddr(sc);
726 
727 	ifp = sc->alc_ifp = if_alloc(IFT_ETHER);
728 	if (ifp == NULL) {
729 		device_printf(dev, "cannot allocate ifnet structure.\n");
730 		error = ENXIO;
731 		goto fail;
732 	}
733 
734 	ifp->if_softc = sc;
735 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
736 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
737 	ifp->if_ioctl = alc_ioctl;
738 	ifp->if_start = alc_start;
739 	ifp->if_init = alc_init;
740 	ifp->if_snd.ifq_drv_maxlen = ALC_TX_RING_CNT - 1;
741 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
742 	IFQ_SET_READY(&ifp->if_snd);
743 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
744 	ifp->if_hwassist = ALC_CSUM_FEATURES | CSUM_TSO;
745 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
746 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
747 	ifp->if_capenable = ifp->if_capabilities;
748 
749 	/* Set up MII bus. */
750 	if ((error = mii_phy_probe(dev, &sc->alc_miibus, alc_mediachange,
751 	    alc_mediastatus)) != 0) {
752 		device_printf(dev, "no PHY found!\n");
753 		goto fail;
754 	}
755 
756 	ether_ifattach(ifp, sc->alc_eaddr);
757 
758 	/* VLAN capability setup. */
759 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
760 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
761 	ifp->if_capenable = ifp->if_capabilities;
762 	/*
763 	 * XXX
764 	 * It seems enabling Tx checksum offloading makes more trouble.
765 	 * Sometimes the controller does not receive any frames when
766 	 * Tx checksum offloading is enabled. I'm not sure whether this
767 	 * is a bug in Tx checksum offloading logic or I got broken
768 	 * sample boards. To safety, don't enable Tx checksum offloading
769 	 * by default but give chance to users to toggle it if they know
770 	 * their controllers work without problems.
771 	 */
772 	ifp->if_capenable &= ~IFCAP_TXCSUM;
773 	ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
774 
775 	/* Tell the upper layer(s) we support long frames. */
776 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
777 
778 	/* Create local taskq. */
779 	TASK_INIT(&sc->alc_tx_task, 1, alc_tx_task, ifp);
780 	sc->alc_tq = taskqueue_create_fast("alc_taskq", M_WAITOK,
781 	    taskqueue_thread_enqueue, &sc->alc_tq);
782 	if (sc->alc_tq == NULL) {
783 		device_printf(dev, "could not create taskqueue.\n");
784 		ether_ifdetach(ifp);
785 		error = ENXIO;
786 		goto fail;
787 	}
788 	taskqueue_start_threads(&sc->alc_tq, 1, PI_NET, "%s taskq",
789 	    device_get_nameunit(sc->alc_dev));
790 
791 	if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
792 		msic = ALC_MSIX_MESSAGES;
793 	else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
794 		msic = ALC_MSI_MESSAGES;
795 	else
796 		msic = 1;
797 	for (i = 0; i < msic; i++) {
798 		error = bus_setup_intr(dev, sc->alc_irq[i],
799 		    INTR_TYPE_NET | INTR_MPSAFE, alc_intr, NULL, sc,
800 		    &sc->alc_intrhand[i]);
801 		if (error != 0)
802 			break;
803 	}
804 	if (error != 0) {
805 		device_printf(dev, "could not set up interrupt handler.\n");
806 		taskqueue_free(sc->alc_tq);
807 		sc->alc_tq = NULL;
808 		ether_ifdetach(ifp);
809 		goto fail;
810 	}
811 
812 fail:
813 	if (error != 0)
814 		alc_detach(dev);
815 
816 	return (error);
817 }
818 
819 static int
820 alc_detach(device_t dev)
821 {
822 	struct alc_softc *sc;
823 	struct ifnet *ifp;
824 	int i, msic;
825 
826 	sc = device_get_softc(dev);
827 
828 	ifp = sc->alc_ifp;
829 	if (device_is_attached(dev)) {
830 		ALC_LOCK(sc);
831 		sc->alc_flags |= ALC_FLAG_DETACH;
832 		alc_stop(sc);
833 		ALC_UNLOCK(sc);
834 		callout_drain(&sc->alc_tick_ch);
835 		taskqueue_drain(sc->alc_tq, &sc->alc_int_task);
836 		taskqueue_drain(sc->alc_tq, &sc->alc_tx_task);
837 		ether_ifdetach(ifp);
838 	}
839 
840 	if (sc->alc_tq != NULL) {
841 		taskqueue_drain(sc->alc_tq, &sc->alc_int_task);
842 		taskqueue_free(sc->alc_tq);
843 		sc->alc_tq = NULL;
844 	}
845 
846 	if (sc->alc_miibus != NULL) {
847 		device_delete_child(dev, sc->alc_miibus);
848 		sc->alc_miibus = NULL;
849 	}
850 	bus_generic_detach(dev);
851 	alc_dma_free(sc);
852 
853 	if (ifp != NULL) {
854 		if_free(ifp);
855 		sc->alc_ifp = NULL;
856 	}
857 
858 	if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
859 		msic = ALC_MSIX_MESSAGES;
860 	else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
861 		msic = ALC_MSI_MESSAGES;
862 	else
863 		msic = 1;
864 	for (i = 0; i < msic; i++) {
865 		if (sc->alc_intrhand[i] != NULL) {
866 			bus_teardown_intr(dev, sc->alc_irq[i],
867 			    sc->alc_intrhand[i]);
868 			sc->alc_intrhand[i] = NULL;
869 		}
870 	}
871 	if (sc->alc_res[0] != NULL)
872 		alc_phy_down(sc);
873 	bus_release_resources(dev, sc->alc_irq_spec, sc->alc_irq);
874 	if ((sc->alc_flags & (ALC_FLAG_MSI | ALC_FLAG_MSIX)) != 0)
875 		pci_release_msi(dev);
876 	bus_release_resources(dev, sc->alc_res_spec, sc->alc_res);
877 	mtx_destroy(&sc->alc_mtx);
878 
879 	return (0);
880 }
881 
882 #define	ALC_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
883 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
884 #define	ALC_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
885 	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
886 
887 static void
888 alc_sysctl_node(struct alc_softc *sc)
889 {
890 	struct sysctl_ctx_list *ctx;
891 	struct sysctl_oid_list *child, *parent;
892 	struct sysctl_oid *tree;
893 	struct alc_hw_stats *stats;
894 	int error;
895 
896 	stats = &sc->alc_stats;
897 	ctx = device_get_sysctl_ctx(sc->alc_dev);
898 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->alc_dev));
899 
900 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
901 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_rx_mod, 0,
902 	    sysctl_hw_alc_int_mod, "I", "alc Rx interrupt moderation");
903 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
904 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_tx_mod, 0,
905 	    sysctl_hw_alc_int_mod, "I", "alc Tx interrupt moderation");
906 	/* Pull in device tunables. */
907 	sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
908 	error = resource_int_value(device_get_name(sc->alc_dev),
909 	    device_get_unit(sc->alc_dev), "int_rx_mod", &sc->alc_int_rx_mod);
910 	if (error == 0) {
911 		if (sc->alc_int_rx_mod < ALC_IM_TIMER_MIN ||
912 		    sc->alc_int_rx_mod > ALC_IM_TIMER_MAX) {
913 			device_printf(sc->alc_dev, "int_rx_mod value out of "
914 			    "range; using default: %d\n",
915 			    ALC_IM_RX_TIMER_DEFAULT);
916 			sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
917 		}
918 	}
919 	sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
920 	error = resource_int_value(device_get_name(sc->alc_dev),
921 	    device_get_unit(sc->alc_dev), "int_tx_mod", &sc->alc_int_tx_mod);
922 	if (error == 0) {
923 		if (sc->alc_int_tx_mod < ALC_IM_TIMER_MIN ||
924 		    sc->alc_int_tx_mod > ALC_IM_TIMER_MAX) {
925 			device_printf(sc->alc_dev, "int_tx_mod value out of "
926 			    "range; using default: %d\n",
927 			    ALC_IM_TX_TIMER_DEFAULT);
928 			sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
929 		}
930 	}
931 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
932 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_process_limit, 0,
933 	    sysctl_hw_alc_proc_limit, "I",
934 	    "max number of Rx events to process");
935 	/* Pull in device tunables. */
936 	sc->alc_process_limit = ALC_PROC_DEFAULT;
937 	error = resource_int_value(device_get_name(sc->alc_dev),
938 	    device_get_unit(sc->alc_dev), "process_limit",
939 	    &sc->alc_process_limit);
940 	if (error == 0) {
941 		if (sc->alc_process_limit < ALC_PROC_MIN ||
942 		    sc->alc_process_limit > ALC_PROC_MAX) {
943 			device_printf(sc->alc_dev,
944 			    "process_limit value out of range; "
945 			    "using default: %d\n", ALC_PROC_DEFAULT);
946 			sc->alc_process_limit = ALC_PROC_DEFAULT;
947 		}
948 	}
949 
950 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
951 	    NULL, "ALC statistics");
952 	parent = SYSCTL_CHILDREN(tree);
953 
954 	/* Rx statistics. */
955 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
956 	    NULL, "Rx MAC statistics");
957 	child = SYSCTL_CHILDREN(tree);
958 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
959 	    &stats->rx_frames, "Good frames");
960 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
961 	    &stats->rx_bcast_frames, "Good broadcast frames");
962 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
963 	    &stats->rx_mcast_frames, "Good multicast frames");
964 	ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
965 	    &stats->rx_pause_frames, "Pause control frames");
966 	ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
967 	    &stats->rx_control_frames, "Control frames");
968 	ALC_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
969 	    &stats->rx_crcerrs, "CRC errors");
970 	ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
971 	    &stats->rx_lenerrs, "Frames with length mismatched");
972 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
973 	    &stats->rx_bytes, "Good octets");
974 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
975 	    &stats->rx_bcast_bytes, "Good broadcast octets");
976 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
977 	    &stats->rx_mcast_bytes, "Good multicast octets");
978 	ALC_SYSCTL_STAT_ADD32(ctx, child, "runts",
979 	    &stats->rx_runts, "Too short frames");
980 	ALC_SYSCTL_STAT_ADD32(ctx, child, "fragments",
981 	    &stats->rx_fragments, "Fragmented frames");
982 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
983 	    &stats->rx_pkts_64, "64 bytes frames");
984 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
985 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
986 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
987 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
988 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
989 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
990 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
991 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
992 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
993 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
994 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
995 	    &stats->rx_pkts_1519_max, "1519 to max frames");
996 	ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
997 	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
998 	ALC_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
999 	    &stats->rx_fifo_oflows, "FIFO overflows");
1000 	ALC_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
1001 	    &stats->rx_rrs_errs, "Return status write-back errors");
1002 	ALC_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
1003 	    &stats->rx_alignerrs, "Alignment errors");
1004 	ALC_SYSCTL_STAT_ADD32(ctx, child, "filtered",
1005 	    &stats->rx_pkts_filtered,
1006 	    "Frames dropped due to address filtering");
1007 
1008 	/* Tx statistics. */
1009 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
1010 	    NULL, "Tx MAC statistics");
1011 	child = SYSCTL_CHILDREN(tree);
1012 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1013 	    &stats->tx_frames, "Good frames");
1014 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
1015 	    &stats->tx_bcast_frames, "Good broadcast frames");
1016 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
1017 	    &stats->tx_mcast_frames, "Good multicast frames");
1018 	ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
1019 	    &stats->tx_pause_frames, "Pause control frames");
1020 	ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
1021 	    &stats->tx_control_frames, "Control frames");
1022 	ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
1023 	    &stats->tx_excess_defer, "Frames with excessive derferrals");
1024 	ALC_SYSCTL_STAT_ADD32(ctx, child, "defers",
1025 	    &stats->tx_excess_defer, "Frames with derferrals");
1026 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
1027 	    &stats->tx_bytes, "Good octets");
1028 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
1029 	    &stats->tx_bcast_bytes, "Good broadcast octets");
1030 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
1031 	    &stats->tx_mcast_bytes, "Good multicast octets");
1032 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
1033 	    &stats->tx_pkts_64, "64 bytes frames");
1034 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
1035 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
1036 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
1037 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
1038 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
1039 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
1040 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
1041 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
1042 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
1043 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
1044 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
1045 	    &stats->tx_pkts_1519_max, "1519 to max frames");
1046 	ALC_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
1047 	    &stats->tx_single_colls, "Single collisions");
1048 	ALC_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
1049 	    &stats->tx_multi_colls, "Multiple collisions");
1050 	ALC_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
1051 	    &stats->tx_late_colls, "Late collisions");
1052 	ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
1053 	    &stats->tx_excess_colls, "Excessive collisions");
1054 	ALC_SYSCTL_STAT_ADD32(ctx, child, "abort",
1055 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
1056 	ALC_SYSCTL_STAT_ADD32(ctx, child, "underruns",
1057 	    &stats->tx_underrun, "FIFO underruns");
1058 	ALC_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
1059 	    &stats->tx_desc_underrun, "Descriptor write-back errors");
1060 	ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
1061 	    &stats->tx_lenerrs, "Frames with length mismatched");
1062 	ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
1063 	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
1064 }
1065 
1066 #undef ALC_SYSCTL_STAT_ADD32
1067 #undef ALC_SYSCTL_STAT_ADD64
1068 
1069 struct alc_dmamap_arg {
1070 	bus_addr_t	alc_busaddr;
1071 };
1072 
1073 static void
1074 alc_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1075 {
1076 	struct alc_dmamap_arg *ctx;
1077 
1078 	if (error != 0)
1079 		return;
1080 
1081 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1082 
1083 	ctx = (struct alc_dmamap_arg *)arg;
1084 	ctx->alc_busaddr = segs[0].ds_addr;
1085 }
1086 
1087 /*
1088  * Normal and high Tx descriptors shares single Tx high address.
1089  * Four Rx descriptor/return rings and CMB shares the same Rx
1090  * high address.
1091  */
1092 static int
1093 alc_check_boundary(struct alc_softc *sc)
1094 {
1095 	bus_addr_t cmb_end, rx_ring_end, rr_ring_end, tx_ring_end;
1096 
1097 	rx_ring_end = sc->alc_rdata.alc_rx_ring_paddr + ALC_RX_RING_SZ;
1098 	rr_ring_end = sc->alc_rdata.alc_rr_ring_paddr + ALC_RR_RING_SZ;
1099 	cmb_end = sc->alc_rdata.alc_cmb_paddr + ALC_CMB_SZ;
1100 	tx_ring_end = sc->alc_rdata.alc_tx_ring_paddr + ALC_TX_RING_SZ;
1101 
1102 	/* 4GB boundary crossing is not allowed. */
1103 	if ((ALC_ADDR_HI(rx_ring_end) !=
1104 	    ALC_ADDR_HI(sc->alc_rdata.alc_rx_ring_paddr)) ||
1105 	    (ALC_ADDR_HI(rr_ring_end) !=
1106 	    ALC_ADDR_HI(sc->alc_rdata.alc_rr_ring_paddr)) ||
1107 	    (ALC_ADDR_HI(cmb_end) !=
1108 	    ALC_ADDR_HI(sc->alc_rdata.alc_cmb_paddr)) ||
1109 	    (ALC_ADDR_HI(tx_ring_end) !=
1110 	    ALC_ADDR_HI(sc->alc_rdata.alc_tx_ring_paddr)))
1111 		return (EFBIG);
1112 	/*
1113 	 * Make sure Rx return descriptor/Rx descriptor/CMB use
1114 	 * the same high address.
1115 	 */
1116 	if ((ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(rr_ring_end)) ||
1117 	    (ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(cmb_end)))
1118 		return (EFBIG);
1119 
1120 	return (0);
1121 }
1122 
1123 static int
1124 alc_dma_alloc(struct alc_softc *sc)
1125 {
1126 	struct alc_txdesc *txd;
1127 	struct alc_rxdesc *rxd;
1128 	bus_addr_t lowaddr;
1129 	struct alc_dmamap_arg ctx;
1130 	int error, i;
1131 
1132 	lowaddr = BUS_SPACE_MAXADDR;
1133 again:
1134 	/* Create parent DMA tag. */
1135 	error = bus_dma_tag_create(
1136 	    bus_get_dma_tag(sc->alc_dev), /* parent */
1137 	    1, 0,			/* alignment, boundary */
1138 	    lowaddr,			/* lowaddr */
1139 	    BUS_SPACE_MAXADDR,		/* highaddr */
1140 	    NULL, NULL,			/* filter, filterarg */
1141 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1142 	    0,				/* nsegments */
1143 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1144 	    0,				/* flags */
1145 	    NULL, NULL,			/* lockfunc, lockarg */
1146 	    &sc->alc_cdata.alc_parent_tag);
1147 	if (error != 0) {
1148 		device_printf(sc->alc_dev,
1149 		    "could not create parent DMA tag.\n");
1150 		goto fail;
1151 	}
1152 
1153 	/* Create DMA tag for Tx descriptor ring. */
1154 	error = bus_dma_tag_create(
1155 	    sc->alc_cdata.alc_parent_tag, /* parent */
1156 	    ALC_TX_RING_ALIGN, 0,	/* alignment, boundary */
1157 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1158 	    BUS_SPACE_MAXADDR,		/* highaddr */
1159 	    NULL, NULL,			/* filter, filterarg */
1160 	    ALC_TX_RING_SZ,		/* maxsize */
1161 	    1,				/* nsegments */
1162 	    ALC_TX_RING_SZ,		/* maxsegsize */
1163 	    0,				/* flags */
1164 	    NULL, NULL,			/* lockfunc, lockarg */
1165 	    &sc->alc_cdata.alc_tx_ring_tag);
1166 	if (error != 0) {
1167 		device_printf(sc->alc_dev,
1168 		    "could not create Tx ring DMA tag.\n");
1169 		goto fail;
1170 	}
1171 
1172 	/* Create DMA tag for Rx free descriptor ring. */
1173 	error = bus_dma_tag_create(
1174 	    sc->alc_cdata.alc_parent_tag, /* parent */
1175 	    ALC_RX_RING_ALIGN, 0,	/* alignment, boundary */
1176 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1177 	    BUS_SPACE_MAXADDR,		/* highaddr */
1178 	    NULL, NULL,			/* filter, filterarg */
1179 	    ALC_RX_RING_SZ,		/* maxsize */
1180 	    1,				/* nsegments */
1181 	    ALC_RX_RING_SZ,		/* maxsegsize */
1182 	    0,				/* flags */
1183 	    NULL, NULL,			/* lockfunc, lockarg */
1184 	    &sc->alc_cdata.alc_rx_ring_tag);
1185 	if (error != 0) {
1186 		device_printf(sc->alc_dev,
1187 		    "could not create Rx ring DMA tag.\n");
1188 		goto fail;
1189 	}
1190 	/* Create DMA tag for Rx return descriptor ring. */
1191 	error = bus_dma_tag_create(
1192 	    sc->alc_cdata.alc_parent_tag, /* parent */
1193 	    ALC_RR_RING_ALIGN, 0,	/* alignment, boundary */
1194 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1195 	    BUS_SPACE_MAXADDR,		/* highaddr */
1196 	    NULL, NULL,			/* filter, filterarg */
1197 	    ALC_RR_RING_SZ,		/* maxsize */
1198 	    1,				/* nsegments */
1199 	    ALC_RR_RING_SZ,		/* maxsegsize */
1200 	    0,				/* flags */
1201 	    NULL, NULL,			/* lockfunc, lockarg */
1202 	    &sc->alc_cdata.alc_rr_ring_tag);
1203 	if (error != 0) {
1204 		device_printf(sc->alc_dev,
1205 		    "could not create Rx return ring DMA tag.\n");
1206 		goto fail;
1207 	}
1208 
1209 	/* Create DMA tag for coalescing message block. */
1210 	error = bus_dma_tag_create(
1211 	    sc->alc_cdata.alc_parent_tag, /* parent */
1212 	    ALC_CMB_ALIGN, 0,		/* alignment, boundary */
1213 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1214 	    BUS_SPACE_MAXADDR,		/* highaddr */
1215 	    NULL, NULL,			/* filter, filterarg */
1216 	    ALC_CMB_SZ,			/* maxsize */
1217 	    1,				/* nsegments */
1218 	    ALC_CMB_SZ,			/* maxsegsize */
1219 	    0,				/* flags */
1220 	    NULL, NULL,			/* lockfunc, lockarg */
1221 	    &sc->alc_cdata.alc_cmb_tag);
1222 	if (error != 0) {
1223 		device_printf(sc->alc_dev,
1224 		    "could not create CMB DMA tag.\n");
1225 		goto fail;
1226 	}
1227 	/* Create DMA tag for status message block. */
1228 	error = bus_dma_tag_create(
1229 	    sc->alc_cdata.alc_parent_tag, /* parent */
1230 	    ALC_SMB_ALIGN, 0,		/* alignment, boundary */
1231 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1232 	    BUS_SPACE_MAXADDR,		/* highaddr */
1233 	    NULL, NULL,			/* filter, filterarg */
1234 	    ALC_SMB_SZ,			/* maxsize */
1235 	    1,				/* nsegments */
1236 	    ALC_SMB_SZ,			/* maxsegsize */
1237 	    0,				/* flags */
1238 	    NULL, NULL,			/* lockfunc, lockarg */
1239 	    &sc->alc_cdata.alc_smb_tag);
1240 	if (error != 0) {
1241 		device_printf(sc->alc_dev,
1242 		    "could not create SMB DMA tag.\n");
1243 		goto fail;
1244 	}
1245 
1246 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1247 	error = bus_dmamem_alloc(sc->alc_cdata.alc_tx_ring_tag,
1248 	    (void **)&sc->alc_rdata.alc_tx_ring,
1249 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1250 	    &sc->alc_cdata.alc_tx_ring_map);
1251 	if (error != 0) {
1252 		device_printf(sc->alc_dev,
1253 		    "could not allocate DMA'able memory for Tx ring.\n");
1254 		goto fail;
1255 	}
1256 	ctx.alc_busaddr = 0;
1257 	error = bus_dmamap_load(sc->alc_cdata.alc_tx_ring_tag,
1258 	    sc->alc_cdata.alc_tx_ring_map, sc->alc_rdata.alc_tx_ring,
1259 	    ALC_TX_RING_SZ, alc_dmamap_cb, &ctx, 0);
1260 	if (error != 0 || ctx.alc_busaddr == 0) {
1261 		device_printf(sc->alc_dev,
1262 		    "could not load DMA'able memory for Tx ring.\n");
1263 		goto fail;
1264 	}
1265 	sc->alc_rdata.alc_tx_ring_paddr = ctx.alc_busaddr;
1266 
1267 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1268 	error = bus_dmamem_alloc(sc->alc_cdata.alc_rx_ring_tag,
1269 	    (void **)&sc->alc_rdata.alc_rx_ring,
1270 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1271 	    &sc->alc_cdata.alc_rx_ring_map);
1272 	if (error != 0) {
1273 		device_printf(sc->alc_dev,
1274 		    "could not allocate DMA'able memory for Rx ring.\n");
1275 		goto fail;
1276 	}
1277 	ctx.alc_busaddr = 0;
1278 	error = bus_dmamap_load(sc->alc_cdata.alc_rx_ring_tag,
1279 	    sc->alc_cdata.alc_rx_ring_map, sc->alc_rdata.alc_rx_ring,
1280 	    ALC_RX_RING_SZ, alc_dmamap_cb, &ctx, 0);
1281 	if (error != 0 || ctx.alc_busaddr == 0) {
1282 		device_printf(sc->alc_dev,
1283 		    "could not load DMA'able memory for Rx ring.\n");
1284 		goto fail;
1285 	}
1286 	sc->alc_rdata.alc_rx_ring_paddr = ctx.alc_busaddr;
1287 
1288 	/* Allocate DMA'able memory and load the DMA map for Rx return ring. */
1289 	error = bus_dmamem_alloc(sc->alc_cdata.alc_rr_ring_tag,
1290 	    (void **)&sc->alc_rdata.alc_rr_ring,
1291 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1292 	    &sc->alc_cdata.alc_rr_ring_map);
1293 	if (error != 0) {
1294 		device_printf(sc->alc_dev,
1295 		    "could not allocate DMA'able memory for Rx return ring.\n");
1296 		goto fail;
1297 	}
1298 	ctx.alc_busaddr = 0;
1299 	error = bus_dmamap_load(sc->alc_cdata.alc_rr_ring_tag,
1300 	    sc->alc_cdata.alc_rr_ring_map, sc->alc_rdata.alc_rr_ring,
1301 	    ALC_RR_RING_SZ, alc_dmamap_cb, &ctx, 0);
1302 	if (error != 0 || ctx.alc_busaddr == 0) {
1303 		device_printf(sc->alc_dev,
1304 		    "could not load DMA'able memory for Tx ring.\n");
1305 		goto fail;
1306 	}
1307 	sc->alc_rdata.alc_rr_ring_paddr = ctx.alc_busaddr;
1308 
1309 	/* Allocate DMA'able memory and load the DMA map for CMB. */
1310 	error = bus_dmamem_alloc(sc->alc_cdata.alc_cmb_tag,
1311 	    (void **)&sc->alc_rdata.alc_cmb,
1312 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1313 	    &sc->alc_cdata.alc_cmb_map);
1314 	if (error != 0) {
1315 		device_printf(sc->alc_dev,
1316 		    "could not allocate DMA'able memory for CMB.\n");
1317 		goto fail;
1318 	}
1319 	ctx.alc_busaddr = 0;
1320 	error = bus_dmamap_load(sc->alc_cdata.alc_cmb_tag,
1321 	    sc->alc_cdata.alc_cmb_map, sc->alc_rdata.alc_cmb,
1322 	    ALC_CMB_SZ, alc_dmamap_cb, &ctx, 0);
1323 	if (error != 0 || ctx.alc_busaddr == 0) {
1324 		device_printf(sc->alc_dev,
1325 		    "could not load DMA'able memory for CMB.\n");
1326 		goto fail;
1327 	}
1328 	sc->alc_rdata.alc_cmb_paddr = ctx.alc_busaddr;
1329 
1330 	/* Allocate DMA'able memory and load the DMA map for SMB. */
1331 	error = bus_dmamem_alloc(sc->alc_cdata.alc_smb_tag,
1332 	    (void **)&sc->alc_rdata.alc_smb,
1333 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1334 	    &sc->alc_cdata.alc_smb_map);
1335 	if (error != 0) {
1336 		device_printf(sc->alc_dev,
1337 		    "could not allocate DMA'able memory for SMB.\n");
1338 		goto fail;
1339 	}
1340 	ctx.alc_busaddr = 0;
1341 	error = bus_dmamap_load(sc->alc_cdata.alc_smb_tag,
1342 	    sc->alc_cdata.alc_smb_map, sc->alc_rdata.alc_smb,
1343 	    ALC_SMB_SZ, alc_dmamap_cb, &ctx, 0);
1344 	if (error != 0 || ctx.alc_busaddr == 0) {
1345 		device_printf(sc->alc_dev,
1346 		    "could not load DMA'able memory for CMB.\n");
1347 		goto fail;
1348 	}
1349 	sc->alc_rdata.alc_smb_paddr = ctx.alc_busaddr;
1350 
1351 	/* Make sure we've not crossed 4GB boundary. */
1352 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1353 	    (error = alc_check_boundary(sc)) != 0) {
1354 		device_printf(sc->alc_dev, "4GB boundary crossed, "
1355 		    "switching to 32bit DMA addressing mode.\n");
1356 		alc_dma_free(sc);
1357 		/*
1358 		 * Limit max allowable DMA address space to 32bit
1359 		 * and try again.
1360 		 */
1361 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1362 		goto again;
1363 	}
1364 
1365 	/*
1366 	 * Create Tx buffer parent tag.
1367 	 * AR8131/AR8132 allows 64bit DMA addressing of Tx/Rx buffers
1368 	 * so it needs separate parent DMA tag as parent DMA address
1369 	 * space could be restricted to be within 32bit address space
1370 	 * by 4GB boundary crossing.
1371 	 */
1372 	error = bus_dma_tag_create(
1373 	    bus_get_dma_tag(sc->alc_dev), /* parent */
1374 	    1, 0,			/* alignment, boundary */
1375 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1376 	    BUS_SPACE_MAXADDR,		/* highaddr */
1377 	    NULL, NULL,			/* filter, filterarg */
1378 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1379 	    0,				/* nsegments */
1380 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1381 	    0,				/* flags */
1382 	    NULL, NULL,			/* lockfunc, lockarg */
1383 	    &sc->alc_cdata.alc_buffer_tag);
1384 	if (error != 0) {
1385 		device_printf(sc->alc_dev,
1386 		    "could not create parent buffer DMA tag.\n");
1387 		goto fail;
1388 	}
1389 
1390 	/* Create DMA tag for Tx buffers. */
1391 	error = bus_dma_tag_create(
1392 	    sc->alc_cdata.alc_buffer_tag, /* parent */
1393 	    1, 0,			/* alignment, boundary */
1394 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1395 	    BUS_SPACE_MAXADDR,		/* highaddr */
1396 	    NULL, NULL,			/* filter, filterarg */
1397 	    ALC_TSO_MAXSIZE,		/* maxsize */
1398 	    ALC_MAXTXSEGS,		/* nsegments */
1399 	    ALC_TSO_MAXSEGSIZE,		/* maxsegsize */
1400 	    0,				/* flags */
1401 	    NULL, NULL,			/* lockfunc, lockarg */
1402 	    &sc->alc_cdata.alc_tx_tag);
1403 	if (error != 0) {
1404 		device_printf(sc->alc_dev, "could not create Tx DMA tag.\n");
1405 		goto fail;
1406 	}
1407 
1408 	/* Create DMA tag for Rx buffers. */
1409 	error = bus_dma_tag_create(
1410 	    sc->alc_cdata.alc_buffer_tag, /* parent */
1411 	    ALC_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1412 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1413 	    BUS_SPACE_MAXADDR,		/* highaddr */
1414 	    NULL, NULL,			/* filter, filterarg */
1415 	    MCLBYTES,			/* maxsize */
1416 	    1,				/* nsegments */
1417 	    MCLBYTES,			/* maxsegsize */
1418 	    0,				/* flags */
1419 	    NULL, NULL,			/* lockfunc, lockarg */
1420 	    &sc->alc_cdata.alc_rx_tag);
1421 	if (error != 0) {
1422 		device_printf(sc->alc_dev, "could not create Rx DMA tag.\n");
1423 		goto fail;
1424 	}
1425 	/* Create DMA maps for Tx buffers. */
1426 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1427 		txd = &sc->alc_cdata.alc_txdesc[i];
1428 		txd->tx_m = NULL;
1429 		txd->tx_dmamap = NULL;
1430 		error = bus_dmamap_create(sc->alc_cdata.alc_tx_tag, 0,
1431 		    &txd->tx_dmamap);
1432 		if (error != 0) {
1433 			device_printf(sc->alc_dev,
1434 			    "could not create Tx dmamap.\n");
1435 			goto fail;
1436 		}
1437 	}
1438 	/* Create DMA maps for Rx buffers. */
1439 	if ((error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag, 0,
1440 	    &sc->alc_cdata.alc_rx_sparemap)) != 0) {
1441 		device_printf(sc->alc_dev,
1442 		    "could not create spare Rx dmamap.\n");
1443 		goto fail;
1444 	}
1445 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1446 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1447 		rxd->rx_m = NULL;
1448 		rxd->rx_dmamap = NULL;
1449 		error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag, 0,
1450 		    &rxd->rx_dmamap);
1451 		if (error != 0) {
1452 			device_printf(sc->alc_dev,
1453 			    "could not create Rx dmamap.\n");
1454 			goto fail;
1455 		}
1456 	}
1457 
1458 fail:
1459 	return (error);
1460 }
1461 
1462 static void
1463 alc_dma_free(struct alc_softc *sc)
1464 {
1465 	struct alc_txdesc *txd;
1466 	struct alc_rxdesc *rxd;
1467 	int i;
1468 
1469 	/* Tx buffers. */
1470 	if (sc->alc_cdata.alc_tx_tag != NULL) {
1471 		for (i = 0; i < ALC_TX_RING_CNT; i++) {
1472 			txd = &sc->alc_cdata.alc_txdesc[i];
1473 			if (txd->tx_dmamap != NULL) {
1474 				bus_dmamap_destroy(sc->alc_cdata.alc_tx_tag,
1475 				    txd->tx_dmamap);
1476 				txd->tx_dmamap = NULL;
1477 			}
1478 		}
1479 		bus_dma_tag_destroy(sc->alc_cdata.alc_tx_tag);
1480 		sc->alc_cdata.alc_tx_tag = NULL;
1481 	}
1482 	/* Rx buffers */
1483 	if (sc->alc_cdata.alc_rx_tag != NULL) {
1484 		for (i = 0; i < ALC_RX_RING_CNT; i++) {
1485 			rxd = &sc->alc_cdata.alc_rxdesc[i];
1486 			if (rxd->rx_dmamap != NULL) {
1487 				bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
1488 				    rxd->rx_dmamap);
1489 				rxd->rx_dmamap = NULL;
1490 			}
1491 		}
1492 		if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1493 			bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
1494 			    sc->alc_cdata.alc_rx_sparemap);
1495 			sc->alc_cdata.alc_rx_sparemap = NULL;
1496 		}
1497 		bus_dma_tag_destroy(sc->alc_cdata.alc_rx_tag);
1498 		sc->alc_cdata.alc_rx_tag = NULL;
1499 	}
1500 	/* Tx descriptor ring. */
1501 	if (sc->alc_cdata.alc_tx_ring_tag != NULL) {
1502 		if (sc->alc_cdata.alc_tx_ring_map != NULL)
1503 			bus_dmamap_unload(sc->alc_cdata.alc_tx_ring_tag,
1504 			    sc->alc_cdata.alc_tx_ring_map);
1505 		if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1506 		    sc->alc_rdata.alc_tx_ring != NULL)
1507 			bus_dmamem_free(sc->alc_cdata.alc_tx_ring_tag,
1508 			    sc->alc_rdata.alc_tx_ring,
1509 			    sc->alc_cdata.alc_tx_ring_map);
1510 		sc->alc_rdata.alc_tx_ring = NULL;
1511 		sc->alc_cdata.alc_tx_ring_map = NULL;
1512 		bus_dma_tag_destroy(sc->alc_cdata.alc_tx_ring_tag);
1513 		sc->alc_cdata.alc_tx_ring_tag = NULL;
1514 	}
1515 	/* Rx ring. */
1516 	if (sc->alc_cdata.alc_rx_ring_tag != NULL) {
1517 		if (sc->alc_cdata.alc_rx_ring_map != NULL)
1518 			bus_dmamap_unload(sc->alc_cdata.alc_rx_ring_tag,
1519 			    sc->alc_cdata.alc_rx_ring_map);
1520 		if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1521 		    sc->alc_rdata.alc_rx_ring != NULL)
1522 			bus_dmamem_free(sc->alc_cdata.alc_rx_ring_tag,
1523 			    sc->alc_rdata.alc_rx_ring,
1524 			    sc->alc_cdata.alc_rx_ring_map);
1525 		sc->alc_rdata.alc_rx_ring = NULL;
1526 		sc->alc_cdata.alc_rx_ring_map = NULL;
1527 		bus_dma_tag_destroy(sc->alc_cdata.alc_rx_ring_tag);
1528 		sc->alc_cdata.alc_rx_ring_tag = NULL;
1529 	}
1530 	/* Rx return ring. */
1531 	if (sc->alc_cdata.alc_rr_ring_tag != NULL) {
1532 		if (sc->alc_cdata.alc_rr_ring_map != NULL)
1533 			bus_dmamap_unload(sc->alc_cdata.alc_rr_ring_tag,
1534 			    sc->alc_cdata.alc_rr_ring_map);
1535 		if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1536 		    sc->alc_rdata.alc_rr_ring != NULL)
1537 			bus_dmamem_free(sc->alc_cdata.alc_rr_ring_tag,
1538 			    sc->alc_rdata.alc_rr_ring,
1539 			    sc->alc_cdata.alc_rr_ring_map);
1540 		sc->alc_rdata.alc_rr_ring = NULL;
1541 		sc->alc_cdata.alc_rr_ring_map = NULL;
1542 		bus_dma_tag_destroy(sc->alc_cdata.alc_rr_ring_tag);
1543 		sc->alc_cdata.alc_rr_ring_tag = NULL;
1544 	}
1545 	/* CMB block */
1546 	if (sc->alc_cdata.alc_cmb_tag != NULL) {
1547 		if (sc->alc_cdata.alc_cmb_map != NULL)
1548 			bus_dmamap_unload(sc->alc_cdata.alc_cmb_tag,
1549 			    sc->alc_cdata.alc_cmb_map);
1550 		if (sc->alc_cdata.alc_cmb_map != NULL &&
1551 		    sc->alc_rdata.alc_cmb != NULL)
1552 			bus_dmamem_free(sc->alc_cdata.alc_cmb_tag,
1553 			    sc->alc_rdata.alc_cmb,
1554 			    sc->alc_cdata.alc_cmb_map);
1555 		sc->alc_rdata.alc_cmb = NULL;
1556 		sc->alc_cdata.alc_cmb_map = NULL;
1557 		bus_dma_tag_destroy(sc->alc_cdata.alc_cmb_tag);
1558 		sc->alc_cdata.alc_cmb_tag = NULL;
1559 	}
1560 	/* SMB block */
1561 	if (sc->alc_cdata.alc_smb_tag != NULL) {
1562 		if (sc->alc_cdata.alc_smb_map != NULL)
1563 			bus_dmamap_unload(sc->alc_cdata.alc_smb_tag,
1564 			    sc->alc_cdata.alc_smb_map);
1565 		if (sc->alc_cdata.alc_smb_map != NULL &&
1566 		    sc->alc_rdata.alc_smb != NULL)
1567 			bus_dmamem_free(sc->alc_cdata.alc_smb_tag,
1568 			    sc->alc_rdata.alc_smb,
1569 			    sc->alc_cdata.alc_smb_map);
1570 		sc->alc_rdata.alc_smb = NULL;
1571 		sc->alc_cdata.alc_smb_map = NULL;
1572 		bus_dma_tag_destroy(sc->alc_cdata.alc_smb_tag);
1573 		sc->alc_cdata.alc_smb_tag = NULL;
1574 	}
1575 	if (sc->alc_cdata.alc_buffer_tag != NULL) {
1576 		bus_dma_tag_destroy(sc->alc_cdata.alc_buffer_tag);
1577 		sc->alc_cdata.alc_buffer_tag = NULL;
1578 	}
1579 	if (sc->alc_cdata.alc_parent_tag != NULL) {
1580 		bus_dma_tag_destroy(sc->alc_cdata.alc_parent_tag);
1581 		sc->alc_cdata.alc_parent_tag = NULL;
1582 	}
1583 }
1584 
1585 static int
1586 alc_shutdown(device_t dev)
1587 {
1588 
1589 	return (alc_suspend(dev));
1590 }
1591 
1592 /*
1593  * Note, this driver resets the link speed to 10/100Mbps by
1594  * restarting auto-negotiation in suspend/shutdown phase but we
1595  * don't know whether that auto-negotiation would succeed or not
1596  * as driver has no control after powering off/suspend operation.
1597  * If the renegotiation fail WOL may not work. Running at 1Gbps
1598  * will draw more power than 375mA at 3.3V which is specified in
1599  * PCI specification and that would result in complete
1600  * shutdowning power to ethernet controller.
1601  *
1602  * TODO
1603  * Save current negotiated media speed/duplex/flow-control to
1604  * softc and restore the same link again after resuming. PHY
1605  * handling such as power down/resetting to 100Mbps may be better
1606  * handled in suspend method in phy driver.
1607  */
1608 static void
1609 alc_setlinkspeed(struct alc_softc *sc)
1610 {
1611 	struct mii_data *mii;
1612 	int aneg, i;
1613 
1614 	mii = device_get_softc(sc->alc_miibus);
1615 	mii_pollstat(mii);
1616 	aneg = 0;
1617 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1618 	    (IFM_ACTIVE | IFM_AVALID)) {
1619 		switch IFM_SUBTYPE(mii->mii_media_active) {
1620 		case IFM_10_T:
1621 		case IFM_100_TX:
1622 			return;
1623 		case IFM_1000_T:
1624 			aneg++;
1625 			break;
1626 		default:
1627 			break;
1628 		}
1629 	}
1630 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, MII_100T2CR, 0);
1631 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
1632 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1633 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
1634 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1635 	DELAY(1000);
1636 	if (aneg != 0) {
1637 		/*
1638 		 * Poll link state until alc(4) get a 10/100Mbps link.
1639 		 */
1640 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1641 			mii_pollstat(mii);
1642 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1643 			    == (IFM_ACTIVE | IFM_AVALID)) {
1644 				switch (IFM_SUBTYPE(
1645 				    mii->mii_media_active)) {
1646 				case IFM_10_T:
1647 				case IFM_100_TX:
1648 					alc_mac_config(sc);
1649 					return;
1650 				default:
1651 					break;
1652 				}
1653 			}
1654 			ALC_UNLOCK(sc);
1655 			pause("alclnk", hz);
1656 			ALC_LOCK(sc);
1657 		}
1658 		if (i == MII_ANEGTICKS_GIGE)
1659 			device_printf(sc->alc_dev,
1660 			    "establishing a link failed, WOL may not work!");
1661 	}
1662 	/*
1663 	 * No link, force MAC to have 100Mbps, full-duplex link.
1664 	 * This is the last resort and may/may not work.
1665 	 */
1666 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1667 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1668 	alc_mac_config(sc);
1669 }
1670 
1671 static void
1672 alc_setwol(struct alc_softc *sc)
1673 {
1674 	struct ifnet *ifp;
1675 	uint32_t cap, reg, pmcs;
1676 	uint16_t pmstat;
1677 	int base, pmc;
1678 
1679 	ALC_LOCK_ASSERT(sc);
1680 
1681 	if (pci_find_extcap(sc->alc_dev, PCIY_EXPRESS, &base) == 0) {
1682 		cap = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CAP);
1683 		if ((cap & PCIM_LINK_CAP_ASPM) != 0) {
1684 			cap = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CTL);
1685 			alc_disable_l0s_l1(sc);
1686 		}
1687 	}
1688 	if (pci_find_extcap(sc->alc_dev, PCIY_PMG, &pmc) != 0) {
1689 		/* Disable WOL. */
1690 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
1691 		reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
1692 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1693 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
1694 		/* Force PHY power down. */
1695 		alc_phy_down(sc);
1696 		return;
1697 	}
1698 
1699 	ifp = sc->alc_ifp;
1700 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1701 		if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
1702 			alc_setlinkspeed(sc);
1703 		reg = CSR_READ_4(sc, ALC_MASTER_CFG);
1704 		reg &= ~MASTER_CLK_SEL_DIS;
1705 		CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
1706 	}
1707 
1708 	pmcs = 0;
1709 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1710 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1711 	CSR_WRITE_4(sc, ALC_WOL_CFG, pmcs);
1712 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
1713 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1714 	    MAC_CFG_BCAST);
1715 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1716 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1717 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1718 		reg |= MAC_CFG_RX_ENB;
1719 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
1720 
1721 	reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
1722 	reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1723 	CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
1724 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1725 		/* WOL disabled, PHY power down. */
1726 		alc_phy_down(sc);
1727 	}
1728 	/* Request PME. */
1729 	pmstat = pci_read_config(sc->alc_dev, pmc + PCIR_POWER_STATUS, 2);
1730 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1731 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1732 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1733 	pci_write_config(sc->alc_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1734 }
1735 
1736 static int
1737 alc_suspend(device_t dev)
1738 {
1739 	struct alc_softc *sc;
1740 
1741 	sc = device_get_softc(dev);
1742 
1743 	ALC_LOCK(sc);
1744 	alc_stop(sc);
1745 	alc_setwol(sc);
1746 	ALC_UNLOCK(sc);
1747 
1748 	return (0);
1749 }
1750 
1751 static int
1752 alc_resume(device_t dev)
1753 {
1754 	struct alc_softc *sc;
1755 	struct ifnet *ifp;
1756 	int pmc;
1757 	uint16_t pmstat;
1758 
1759 	sc = device_get_softc(dev);
1760 
1761 	ALC_LOCK(sc);
1762 	if (pci_find_extcap(sc->alc_dev, PCIY_PMG, &pmc) == 0) {
1763 		/* Disable PME and clear PME status. */
1764 		pmstat = pci_read_config(sc->alc_dev,
1765 		    pmc + PCIR_POWER_STATUS, 2);
1766 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1767 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1768 			pci_write_config(sc->alc_dev,
1769 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
1770 		}
1771 	}
1772 	/* Reset PHY. */
1773 	alc_phy_reset(sc);
1774 	ifp = sc->alc_ifp;
1775 	if ((ifp->if_flags & IFF_UP) != 0) {
1776 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1777 		alc_init_locked(sc);
1778 	}
1779 	ALC_UNLOCK(sc);
1780 
1781 	return (0);
1782 }
1783 
1784 static int
1785 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
1786 {
1787 	struct alc_txdesc *txd, *txd_last;
1788 	struct tx_desc *desc;
1789 	struct mbuf *m;
1790 	struct ip *ip;
1791 	struct tcphdr *tcp;
1792 	bus_dma_segment_t txsegs[ALC_MAXTXSEGS];
1793 	bus_dmamap_t map;
1794 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1795 	int error, idx, nsegs, prod;
1796 
1797 	ALC_LOCK_ASSERT(sc);
1798 
1799 	M_ASSERTPKTHDR((*m_head));
1800 
1801 	m = *m_head;
1802 	ip = NULL;
1803 	tcp = NULL;
1804 	ip_off = poff = 0;
1805 	if ((m->m_pkthdr.csum_flags & (ALC_CSUM_FEATURES | CSUM_TSO)) != 0) {
1806 		/*
1807 		 * AR8131/AR8132 requires offset of TCP/UDP header in its
1808 		 * Tx descriptor to perform Tx checksum offloading. TSO
1809 		 * also requires TCP header offset and modification of
1810 		 * IP/TCP header. This kind of operation takes many CPU
1811 		 * cycles on FreeBSD so fast host CPU is required to get
1812 		 * smooth TSO performance.
1813 		 */
1814 		struct ether_header *eh;
1815 
1816 		if (M_WRITABLE(m) == 0) {
1817 			/* Get a writable copy. */
1818 			m = m_dup(*m_head, M_DONTWAIT);
1819 			/* Release original mbufs. */
1820 			m_freem(*m_head);
1821 			if (m == NULL) {
1822 				*m_head = NULL;
1823 				return (ENOBUFS);
1824 			}
1825 			*m_head = m;
1826 		}
1827 
1828 		ip_off = sizeof(struct ether_header);
1829 		m = m_pullup(m, ip_off);
1830 		if (m == NULL) {
1831 			*m_head = NULL;
1832 			return (ENOBUFS);
1833 		}
1834 		eh = mtod(m, struct ether_header *);
1835 		/*
1836 		 * Check if hardware VLAN insertion is off.
1837 		 * Additional check for LLC/SNAP frame?
1838 		 */
1839 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1840 			ip_off = sizeof(struct ether_vlan_header);
1841 			m = m_pullup(m, ip_off);
1842 			if (m == NULL) {
1843 				*m_head = NULL;
1844 				return (ENOBUFS);
1845 			}
1846 		}
1847 		m = m_pullup(m, ip_off + sizeof(struct ip));
1848 		if (m == NULL) {
1849 			*m_head = NULL;
1850 			return (ENOBUFS);
1851 		}
1852 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1853 		poff = ip_off + (ip->ip_hl << 2);
1854 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1855 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1856 			if (m == NULL) {
1857 				*m_head = NULL;
1858 				return (ENOBUFS);
1859 			}
1860 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1861 			m = m_pullup(m, poff + (tcp->th_off << 2));
1862 			if (m == NULL) {
1863 				*m_head = NULL;
1864 				return (ENOBUFS);
1865 			}
1866 			/*
1867 			 * Due to strict adherence of Microsoft NDIS
1868 			 * Large Send specification, hardware expects
1869 			 * a pseudo TCP checksum inserted by upper
1870 			 * stack. Unfortunately the pseudo TCP
1871 			 * checksum that NDIS refers to does not include
1872 			 * TCP payload length so driver should recompute
1873 			 * the pseudo checksum here. Hopefully this
1874 			 * wouldn't be much burden on modern CPUs.
1875 			 *
1876 			 * Reset IP checksum and recompute TCP pseudo
1877 			 * checksum as NDIS specification said.
1878 			 */
1879 			ip->ip_sum = 0;
1880 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1881 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1882 		}
1883 		*m_head = m;
1884 	}
1885 
1886 	prod = sc->alc_cdata.alc_tx_prod;
1887 	txd = &sc->alc_cdata.alc_txdesc[prod];
1888 	txd_last = txd;
1889 	map = txd->tx_dmamap;
1890 
1891 	error = bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_tx_tag, map,
1892 	    *m_head, txsegs, &nsegs, 0);
1893 	if (error == EFBIG) {
1894 		m = m_collapse(*m_head, M_DONTWAIT, ALC_MAXTXSEGS);
1895 		if (m == NULL) {
1896 			m_freem(*m_head);
1897 			*m_head = NULL;
1898 			return (ENOMEM);
1899 		}
1900 		*m_head = m;
1901 		error = bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_tx_tag, map,
1902 		    *m_head, txsegs, &nsegs, 0);
1903 		if (error != 0) {
1904 			m_freem(*m_head);
1905 			*m_head = NULL;
1906 			return (error);
1907 		}
1908 	} else if (error != 0)
1909 		return (error);
1910 	if (nsegs == 0) {
1911 		m_freem(*m_head);
1912 		*m_head = NULL;
1913 		return (EIO);
1914 	}
1915 
1916 	/* Check descriptor overrun. */
1917 	if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
1918 		bus_dmamap_unload(sc->alc_cdata.alc_tx_tag, map);
1919 		return (ENOBUFS);
1920 	}
1921 	bus_dmamap_sync(sc->alc_cdata.alc_tx_tag, map, BUS_DMASYNC_PREWRITE);
1922 
1923 	m = *m_head;
1924 	cflags = TD_ETHERNET;
1925 	vtag = 0;
1926 	desc = NULL;
1927 	idx = 0;
1928 	/* Configure VLAN hardware tag insertion. */
1929 	if ((m->m_flags & M_VLANTAG) != 0) {
1930 		vtag = htons(m->m_pkthdr.ether_vtag);
1931 		vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
1932 		cflags |= TD_INS_VLAN_TAG;
1933 	}
1934 	/* Configure Tx checksum offload. */
1935 	if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
1936 #ifdef ALC_USE_CUSTOM_CSUM
1937 		cflags |= TD_CUSTOM_CSUM;
1938 		/* Set checksum start offset. */
1939 		cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
1940 		    TD_PLOAD_OFFSET_MASK;
1941 		/* Set checksum insertion position of TCP/UDP. */
1942 		cflags |= (((poff + m->m_pkthdr.csum_data) >> 1) <<
1943 		    TD_CUSTOM_CSUM_OFFSET_SHIFT) & TD_CUSTOM_CSUM_OFFSET_MASK;
1944 #else
1945 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1946 			cflags |= TD_IPCSUM;
1947 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1948 			cflags |= TD_TCPCSUM;
1949 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1950 			cflags |= TD_UDPCSUM;
1951 		/* Set TCP/UDP header offset. */
1952 		cflags |= (poff << TD_L4HDR_OFFSET_SHIFT) &
1953 		    TD_L4HDR_OFFSET_MASK;
1954 #endif
1955 	} else if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1956 		/* Request TSO and set MSS. */
1957 		cflags |= TD_TSO | TD_TSO_DESCV1;
1958 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << TD_MSS_SHIFT) &
1959 		    TD_MSS_MASK;
1960 		/* Set TCP header offset. */
1961 		cflags |= (poff << TD_TCPHDR_OFFSET_SHIFT) &
1962 		    TD_TCPHDR_OFFSET_MASK;
1963 		/*
1964 		 * AR8131/AR8132 requires the first buffer should
1965 		 * only hold IP/TCP header data. Payload should
1966 		 * be handled in other descriptors.
1967 		 */
1968 		hdrlen = poff + (tcp->th_off << 2);
1969 		desc = &sc->alc_rdata.alc_tx_ring[prod];
1970 		desc->len = htole32(TX_BYTES(hdrlen | vtag));
1971 		desc->flags = htole32(cflags);
1972 		desc->addr = htole64(txsegs[0].ds_addr);
1973 		sc->alc_cdata.alc_tx_cnt++;
1974 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
1975 		if (m->m_len - hdrlen > 0) {
1976 			/* Handle remaining payload of the first fragment. */
1977 			desc = &sc->alc_rdata.alc_tx_ring[prod];
1978 			desc->len = htole32(TX_BYTES((m->m_len - hdrlen) |
1979 			    vtag));
1980 			desc->flags = htole32(cflags);
1981 			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1982 			sc->alc_cdata.alc_tx_cnt++;
1983 			ALC_DESC_INC(prod, ALC_TX_RING_CNT);
1984 		}
1985 		/* Handle remaining fragments. */
1986 		idx = 1;
1987 	}
1988 	for (; idx < nsegs; idx++) {
1989 		desc = &sc->alc_rdata.alc_tx_ring[prod];
1990 		desc->len = htole32(TX_BYTES(txsegs[idx].ds_len) | vtag);
1991 		desc->flags = htole32(cflags);
1992 		desc->addr = htole64(txsegs[idx].ds_addr);
1993 		sc->alc_cdata.alc_tx_cnt++;
1994 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
1995 	}
1996 	/* Update producer index. */
1997 	sc->alc_cdata.alc_tx_prod = prod;
1998 
1999 	/* Finally set EOP on the last descriptor. */
2000 	prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
2001 	desc = &sc->alc_rdata.alc_tx_ring[prod];
2002 	desc->flags |= htole32(TD_EOP);
2003 
2004 	/* Swap dmamap of the first and the last. */
2005 	txd = &sc->alc_cdata.alc_txdesc[prod];
2006 	map = txd_last->tx_dmamap;
2007 	txd_last->tx_dmamap = txd->tx_dmamap;
2008 	txd->tx_dmamap = map;
2009 	txd->tx_m = m;
2010 
2011 	return (0);
2012 }
2013 
2014 static void
2015 alc_tx_task(void *arg, int pending)
2016 {
2017 	struct ifnet *ifp;
2018 
2019 	ifp = (struct ifnet *)arg;
2020 	alc_start(ifp);
2021 }
2022 
2023 static void
2024 alc_start(struct ifnet *ifp)
2025 {
2026 	struct alc_softc *sc;
2027 	struct mbuf *m_head;
2028 	int enq;
2029 
2030 	sc = ifp->if_softc;
2031 
2032 	ALC_LOCK(sc);
2033 
2034 	/* Reclaim transmitted frames. */
2035 	if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
2036 		alc_txeof(sc);
2037 
2038 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2039 	    IFF_DRV_RUNNING || (sc->alc_flags & ALC_FLAG_LINK) == 0) {
2040 		ALC_UNLOCK(sc);
2041 		return;
2042 	}
2043 
2044 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
2045 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2046 		if (m_head == NULL)
2047 			break;
2048 		/*
2049 		 * Pack the data into the transmit ring. If we
2050 		 * don't have room, set the OACTIVE flag and wait
2051 		 * for the NIC to drain the ring.
2052 		 */
2053 		if (alc_encap(sc, &m_head)) {
2054 			if (m_head == NULL)
2055 				break;
2056 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2057 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2058 			break;
2059 		}
2060 
2061 		enq++;
2062 		/*
2063 		 * If there's a BPF listener, bounce a copy of this frame
2064 		 * to him.
2065 		 */
2066 		ETHER_BPF_MTAP(ifp, m_head);
2067 	}
2068 
2069 	if (enq > 0) {
2070 		/* Sync descriptors. */
2071 		bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
2072 		    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
2073 		/* Kick. Assume we're using normal Tx priority queue. */
2074 		CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
2075 		    (sc->alc_cdata.alc_tx_prod <<
2076 		    MBOX_TD_PROD_LO_IDX_SHIFT) &
2077 		    MBOX_TD_PROD_LO_IDX_MASK);
2078 		/* Set a timeout in case the chip goes out to lunch. */
2079 		sc->alc_watchdog_timer = ALC_TX_TIMEOUT;
2080 	}
2081 
2082 	ALC_UNLOCK(sc);
2083 }
2084 
2085 static void
2086 alc_watchdog(struct alc_softc *sc)
2087 {
2088 	struct ifnet *ifp;
2089 
2090 	ALC_LOCK_ASSERT(sc);
2091 
2092 	if (sc->alc_watchdog_timer == 0 || --sc->alc_watchdog_timer)
2093 		return;
2094 
2095 	ifp = sc->alc_ifp;
2096 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2097 		if_printf(sc->alc_ifp, "watchdog timeout (lost link)\n");
2098 		ifp->if_oerrors++;
2099 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2100 		alc_init_locked(sc);
2101 		return;
2102 	}
2103 	if_printf(sc->alc_ifp, "watchdog timeout -- resetting\n");
2104 	ifp->if_oerrors++;
2105 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2106 	alc_init_locked(sc);
2107 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2108 		taskqueue_enqueue(sc->alc_tq, &sc->alc_tx_task);
2109 }
2110 
2111 static int
2112 alc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2113 {
2114 	struct alc_softc *sc;
2115 	struct ifreq *ifr;
2116 	struct mii_data *mii;
2117 	int error, mask;
2118 
2119 	sc = ifp->if_softc;
2120 	ifr = (struct ifreq *)data;
2121 	error = 0;
2122 	switch (cmd) {
2123 	case SIOCSIFMTU:
2124 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALC_JUMBO_MTU ||
2125 		    ((sc->alc_flags & ALC_FLAG_JUMBO) == 0 &&
2126 		    ifr->ifr_mtu > ETHERMTU))
2127 			error = EINVAL;
2128 		else if (ifp->if_mtu != ifr->ifr_mtu) {
2129 			ALC_LOCK(sc);
2130 			ifp->if_mtu = ifr->ifr_mtu;
2131 			/* AR8131/AR8132 has 13 bits MSS field. */
2132 			if (ifp->if_mtu > ALC_TSO_MTU &&
2133 			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2134 				ifp->if_capenable &= ~IFCAP_TSO4;
2135 				ifp->if_hwassist &= ~CSUM_TSO;
2136 			}
2137 			ALC_UNLOCK(sc);
2138 		}
2139 		break;
2140 	case SIOCSIFFLAGS:
2141 		ALC_LOCK(sc);
2142 		if ((ifp->if_flags & IFF_UP) != 0) {
2143 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2144 			    ((ifp->if_flags ^ sc->alc_if_flags) &
2145 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2146 				alc_rxfilter(sc);
2147 			else if ((sc->alc_flags & ALC_FLAG_DETACH) == 0)
2148 				alc_init_locked(sc);
2149 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2150 			alc_stop(sc);
2151 		sc->alc_if_flags = ifp->if_flags;
2152 		ALC_UNLOCK(sc);
2153 		break;
2154 	case SIOCADDMULTI:
2155 	case SIOCDELMULTI:
2156 		ALC_LOCK(sc);
2157 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2158 			alc_rxfilter(sc);
2159 		ALC_UNLOCK(sc);
2160 		break;
2161 	case SIOCSIFMEDIA:
2162 	case SIOCGIFMEDIA:
2163 		mii = device_get_softc(sc->alc_miibus);
2164 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2165 		break;
2166 	case SIOCSIFCAP:
2167 		ALC_LOCK(sc);
2168 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2169 		if ((mask & IFCAP_TXCSUM) != 0 &&
2170 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2171 			ifp->if_capenable ^= IFCAP_TXCSUM;
2172 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2173 				ifp->if_hwassist |= ALC_CSUM_FEATURES;
2174 			else
2175 				ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
2176 		}
2177 		if ((mask & IFCAP_TSO4) != 0 &&
2178 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2179 			ifp->if_capenable ^= IFCAP_TSO4;
2180 			if ((ifp->if_capenable & IFCAP_TSO4) != 0) {
2181 				/* AR8131/AR8132 has 13 bits MSS field. */
2182 				if (ifp->if_mtu > ALC_TSO_MTU) {
2183 					ifp->if_capenable &= ~IFCAP_TSO4;
2184 					ifp->if_hwassist &= ~CSUM_TSO;
2185 				} else
2186 					ifp->if_hwassist |= CSUM_TSO;
2187 			} else
2188 				ifp->if_hwassist &= ~CSUM_TSO;
2189 		}
2190 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2191 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2192 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2193 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2194 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2195 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2196 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2197 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2198 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2199 			alc_rxvlan(sc);
2200 		}
2201 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2202 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2203 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2204 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2205 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2206 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2207 		/*
2208 		 * VLAN hardware tagging is required to do checksum
2209 		 * offload or TSO on VLAN interface. Checksum offload
2210 		 * on VLAN interface also requires hardware checksum
2211 		 * offload of parent interface.
2212 		 */
2213 		if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
2214 			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2215 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2216 			ifp->if_capenable &=
2217 			    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
2218 		ALC_UNLOCK(sc);
2219 		VLAN_CAPABILITIES(ifp);
2220 		break;
2221 	default:
2222 		error = ether_ioctl(ifp, cmd, data);
2223 		break;
2224 	}
2225 
2226 	return (error);
2227 }
2228 
2229 static void
2230 alc_mac_config(struct alc_softc *sc)
2231 {
2232 	struct mii_data *mii;
2233 	uint32_t reg;
2234 
2235 	ALC_LOCK_ASSERT(sc);
2236 
2237 	mii = device_get_softc(sc->alc_miibus);
2238 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
2239 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2240 	    MAC_CFG_SPEED_MASK);
2241 	/* Reprogram MAC with resolved speed/duplex. */
2242 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2243 	case IFM_10_T:
2244 	case IFM_100_TX:
2245 		reg |= MAC_CFG_SPEED_10_100;
2246 		break;
2247 	case IFM_1000_T:
2248 		reg |= MAC_CFG_SPEED_1000;
2249 		break;
2250 	}
2251 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2252 		reg |= MAC_CFG_FULL_DUPLEX;
2253 #ifdef notyet
2254 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2255 			reg |= MAC_CFG_TX_FC;
2256 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2257 			reg |= MAC_CFG_RX_FC;
2258 #endif
2259 	}
2260 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2261 }
2262 
2263 static void
2264 alc_stats_clear(struct alc_softc *sc)
2265 {
2266 	struct smb sb, *smb;
2267 	uint32_t *reg;
2268 	int i;
2269 
2270 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2271 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2272 		    sc->alc_cdata.alc_smb_map,
2273 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2274 		smb = sc->alc_rdata.alc_smb;
2275 		/* Update done, clear. */
2276 		smb->updated = 0;
2277 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2278 		    sc->alc_cdata.alc_smb_map,
2279 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2280 	} else {
2281 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2282 		    reg++) {
2283 			CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2284 			i += sizeof(uint32_t);
2285 		}
2286 		/* Read Tx statistics. */
2287 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2288 		    reg++) {
2289 			CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2290 			i += sizeof(uint32_t);
2291 		}
2292 	}
2293 }
2294 
2295 static void
2296 alc_stats_update(struct alc_softc *sc)
2297 {
2298 	struct alc_hw_stats *stat;
2299 	struct smb sb, *smb;
2300 	struct ifnet *ifp;
2301 	uint32_t *reg;
2302 	int i;
2303 
2304 	ALC_LOCK_ASSERT(sc);
2305 
2306 	ifp = sc->alc_ifp;
2307 	stat = &sc->alc_stats;
2308 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2309 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2310 		    sc->alc_cdata.alc_smb_map,
2311 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2312 		smb = sc->alc_rdata.alc_smb;
2313 		if (smb->updated == 0)
2314 			return;
2315 	} else {
2316 		smb = &sb;
2317 		/* Read Rx statistics. */
2318 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2319 		    reg++) {
2320 			*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2321 			i += sizeof(uint32_t);
2322 		}
2323 		/* Read Tx statistics. */
2324 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2325 		    reg++) {
2326 			*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2327 			i += sizeof(uint32_t);
2328 		}
2329 	}
2330 
2331 	/* Rx stats. */
2332 	stat->rx_frames += smb->rx_frames;
2333 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2334 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2335 	stat->rx_pause_frames += smb->rx_pause_frames;
2336 	stat->rx_control_frames += smb->rx_control_frames;
2337 	stat->rx_crcerrs += smb->rx_crcerrs;
2338 	stat->rx_lenerrs += smb->rx_lenerrs;
2339 	stat->rx_bytes += smb->rx_bytes;
2340 	stat->rx_runts += smb->rx_runts;
2341 	stat->rx_fragments += smb->rx_fragments;
2342 	stat->rx_pkts_64 += smb->rx_pkts_64;
2343 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2344 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2345 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2346 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2347 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2348 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2349 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2350 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2351 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2352 	stat->rx_alignerrs += smb->rx_alignerrs;
2353 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2354 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2355 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2356 
2357 	/* Tx stats. */
2358 	stat->tx_frames += smb->tx_frames;
2359 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2360 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2361 	stat->tx_pause_frames += smb->tx_pause_frames;
2362 	stat->tx_excess_defer += smb->tx_excess_defer;
2363 	stat->tx_control_frames += smb->tx_control_frames;
2364 	stat->tx_deferred += smb->tx_deferred;
2365 	stat->tx_bytes += smb->tx_bytes;
2366 	stat->tx_pkts_64 += smb->tx_pkts_64;
2367 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2368 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2369 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2370 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2371 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2372 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2373 	stat->tx_single_colls += smb->tx_single_colls;
2374 	stat->tx_multi_colls += smb->tx_multi_colls;
2375 	stat->tx_late_colls += smb->tx_late_colls;
2376 	stat->tx_excess_colls += smb->tx_excess_colls;
2377 	stat->tx_abort += smb->tx_abort;
2378 	stat->tx_underrun += smb->tx_underrun;
2379 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2380 	stat->tx_lenerrs += smb->tx_lenerrs;
2381 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2382 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2383 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2384 
2385 	/* Update counters in ifnet. */
2386 	ifp->if_opackets += smb->tx_frames;
2387 
2388 	ifp->if_collisions += smb->tx_single_colls +
2389 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2390 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
2391 
2392 	/*
2393 	 * XXX
2394 	 * tx_pkts_truncated counter looks suspicious. It constantly
2395 	 * increments with no sign of Tx errors. This may indicate
2396 	 * the counter name is not correct one so I've removed the
2397 	 * counter in output errors.
2398 	 */
2399 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
2400 	    smb->tx_underrun;
2401 
2402 	ifp->if_ipackets += smb->rx_frames;
2403 
2404 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2405 	    smb->rx_runts + smb->rx_pkts_truncated +
2406 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2407 	    smb->rx_alignerrs;
2408 
2409 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2410 		/* Update done, clear. */
2411 		smb->updated = 0;
2412 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2413 		    sc->alc_cdata.alc_smb_map,
2414 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2415 	}
2416 }
2417 
2418 static int
2419 alc_intr(void *arg)
2420 {
2421 	struct alc_softc *sc;
2422 	uint32_t status;
2423 
2424 	sc = (struct alc_softc *)arg;
2425 
2426 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
2427 	if ((status & ALC_INTRS) == 0)
2428 		return (FILTER_STRAY);
2429 	/* Disable interrupts. */
2430 	CSR_WRITE_4(sc, ALC_INTR_STATUS, INTR_DIS_INT);
2431 	taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task);
2432 
2433 	return (FILTER_HANDLED);
2434 }
2435 
2436 static void
2437 alc_int_task(void *arg, int pending)
2438 {
2439 	struct alc_softc *sc;
2440 	struct ifnet *ifp;
2441 	uint32_t status;
2442 	int more;
2443 
2444 	sc = (struct alc_softc *)arg;
2445 	ifp = sc->alc_ifp;
2446 
2447 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
2448 	more = atomic_readandclear_int(&sc->alc_morework);
2449 	if (more != 0)
2450 		status |= INTR_RX_PKT;
2451 	if ((status & ALC_INTRS) == 0)
2452 		goto done;
2453 
2454 	/* Acknowledge interrupts but still disable interrupts. */
2455 	CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
2456 
2457 	more = 0;
2458 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2459 		if ((status & INTR_RX_PKT) != 0) {
2460 			more = alc_rxintr(sc, sc->alc_process_limit);
2461 			if (more == EAGAIN)
2462 				atomic_set_int(&sc->alc_morework, 1);
2463 			else if (more == EIO) {
2464 				ALC_LOCK(sc);
2465 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2466 				alc_init_locked(sc);
2467 				ALC_UNLOCK(sc);
2468 				return;
2469 			}
2470 		}
2471 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
2472 		    INTR_TXQ_TO_RST)) != 0) {
2473 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2474 				device_printf(sc->alc_dev,
2475 				    "DMA read error! -- resetting\n");
2476 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2477 				device_printf(sc->alc_dev,
2478 				    "DMA write error! -- resetting\n");
2479 			if ((status & INTR_TXQ_TO_RST) != 0)
2480 				device_printf(sc->alc_dev,
2481 				    "TxQ reset! -- resetting\n");
2482 			ALC_LOCK(sc);
2483 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2484 			alc_init_locked(sc);
2485 			ALC_UNLOCK(sc);
2486 			return;
2487 		}
2488 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2489 		    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2490 			taskqueue_enqueue(sc->alc_tq, &sc->alc_tx_task);
2491 	}
2492 
2493 	if (more == EAGAIN ||
2494 	    (CSR_READ_4(sc, ALC_INTR_STATUS) & ALC_INTRS) != 0) {
2495 		taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task);
2496 		return;
2497 	}
2498 
2499 done:
2500 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2501 		/* Re-enable interrupts if we're running. */
2502 		CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
2503 	}
2504 }
2505 
2506 static void
2507 alc_txeof(struct alc_softc *sc)
2508 {
2509 	struct ifnet *ifp;
2510 	struct alc_txdesc *txd;
2511 	uint32_t cons, prod;
2512 	int prog;
2513 
2514 	ALC_LOCK_ASSERT(sc);
2515 
2516 	ifp = sc->alc_ifp;
2517 
2518 	if (sc->alc_cdata.alc_tx_cnt == 0)
2519 		return;
2520 	bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
2521 	    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_POSTWRITE);
2522 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2523 		bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
2524 		    sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_POSTREAD);
2525 		prod = sc->alc_rdata.alc_cmb->cons;
2526 	} else
2527 		prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
2528 	/* Assume we're using normal Tx priority queue. */
2529 	prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
2530 	    MBOX_TD_CONS_LO_IDX_SHIFT;
2531 	cons = sc->alc_cdata.alc_tx_cons;
2532 	/*
2533 	 * Go through our Tx list and free mbufs for those
2534 	 * frames which have been transmitted.
2535 	 */
2536 	for (prog = 0; cons != prod; prog++,
2537 	    ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
2538 		if (sc->alc_cdata.alc_tx_cnt <= 0)
2539 			break;
2540 		prog++;
2541 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2542 		sc->alc_cdata.alc_tx_cnt--;
2543 		txd = &sc->alc_cdata.alc_txdesc[cons];
2544 		if (txd->tx_m != NULL) {
2545 			/* Reclaim transmitted mbufs. */
2546 			bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
2547 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2548 			bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
2549 			    txd->tx_dmamap);
2550 			m_freem(txd->tx_m);
2551 			txd->tx_m = NULL;
2552 		}
2553 	}
2554 
2555 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2556 		bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
2557 		    sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_PREREAD);
2558 	sc->alc_cdata.alc_tx_cons = cons;
2559 	/*
2560 	 * Unarm watchdog timer only when there is no pending
2561 	 * frames in Tx queue.
2562 	 */
2563 	if (sc->alc_cdata.alc_tx_cnt == 0)
2564 		sc->alc_watchdog_timer = 0;
2565 }
2566 
2567 static int
2568 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd)
2569 {
2570 	struct mbuf *m;
2571 	bus_dma_segment_t segs[1];
2572 	bus_dmamap_t map;
2573 	int nsegs;
2574 
2575 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2576 	if (m == NULL)
2577 		return (ENOBUFS);
2578 	m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
2579 #ifndef __NO_STRICT_ALIGNMENT
2580 	m_adj(m, sizeof(uint64_t));
2581 #endif
2582 
2583 	if (bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_rx_tag,
2584 	    sc->alc_cdata.alc_rx_sparemap, m, segs, &nsegs, 0) != 0) {
2585 		m_freem(m);
2586 		return (ENOBUFS);
2587 	}
2588 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2589 
2590 	if (rxd->rx_m != NULL) {
2591 		bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
2592 		    BUS_DMASYNC_POSTREAD);
2593 		bus_dmamap_unload(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap);
2594 	}
2595 	map = rxd->rx_dmamap;
2596 	rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
2597 	sc->alc_cdata.alc_rx_sparemap = map;
2598 	bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
2599 	    BUS_DMASYNC_PREREAD);
2600 	rxd->rx_m = m;
2601 	rxd->rx_desc->addr = htole64(segs[0].ds_addr);
2602 	return (0);
2603 }
2604 
2605 static int
2606 alc_rxintr(struct alc_softc *sc, int count)
2607 {
2608 	struct ifnet *ifp;
2609 	struct rx_rdesc *rrd;
2610 	uint32_t nsegs, status;
2611 	int rr_cons, prog;
2612 
2613 	bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
2614 	    sc->alc_cdata.alc_rr_ring_map,
2615 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2616 	bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
2617 	    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2618 	rr_cons = sc->alc_cdata.alc_rr_cons;
2619 	ifp = sc->alc_ifp;
2620 	for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;) {
2621 		if (count-- <= 0)
2622 			break;
2623 		rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
2624 		status = le32toh(rrd->status);
2625 		if ((status & RRD_VALID) == 0)
2626 			break;
2627 		nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
2628 		if (nsegs == 0) {
2629 			/* This should not happen! */
2630 			device_printf(sc->alc_dev,
2631 			    "unexpected segment count -- resetting\n");
2632 			return (EIO);
2633 		}
2634 		alc_rxeof(sc, rrd);
2635 		/* Clear Rx return status. */
2636 		rrd->status = 0;
2637 		ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
2638 		sc->alc_cdata.alc_rx_cons += nsegs;
2639 		sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
2640 		prog += nsegs;
2641 	}
2642 
2643 	if (prog > 0) {
2644 		/* Update the consumer index. */
2645 		sc->alc_cdata.alc_rr_cons = rr_cons;
2646 		/* Sync Rx return descriptors. */
2647 		bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
2648 		    sc->alc_cdata.alc_rr_ring_map,
2649 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2650 		/*
2651 		 * Sync updated Rx descriptors such that controller see
2652 		 * modified buffer addresses.
2653 		 */
2654 		bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
2655 		    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
2656 		/*
2657 		 * Let controller know availability of new Rx buffers.
2658 		 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
2659 		 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
2660 		 * only when Rx buffer pre-fetching is required. In
2661 		 * addition we already set ALC_RX_RD_FREE_THRESH to
2662 		 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
2663 		 * it still seems that pre-fetching needs more
2664 		 * experimentation.
2665 		 */
2666 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
2667 		    sc->alc_cdata.alc_rx_cons);
2668 	}
2669 
2670 	return (count > 0 ? 0 : EAGAIN);
2671 }
2672 
2673 #ifndef __NO_STRICT_ALIGNMENT
2674 static struct mbuf *
2675 alc_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2676 {
2677 	struct mbuf *n;
2678         int i;
2679         uint16_t *src, *dst;
2680 
2681 	src = mtod(m, uint16_t *);
2682 	dst = src - 3;
2683 
2684 	if (m->m_next == NULL) {
2685 		for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2686 			*dst++ = *src++;
2687 		m->m_data -= 6;
2688 		return (m);
2689 	}
2690 	/*
2691 	 * Append a new mbuf to received mbuf chain and copy ethernet
2692 	 * header from the mbuf chain. This can save lots of CPU
2693 	 * cycles for jumbo frame.
2694 	 */
2695 	MGETHDR(n, M_DONTWAIT, MT_DATA);
2696 	if (n == NULL) {
2697 		ifp->if_iqdrops++;
2698 		m_freem(m);
2699 		return (NULL);
2700 	}
2701 	bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2702 	m->m_data += ETHER_HDR_LEN;
2703 	m->m_len -= ETHER_HDR_LEN;
2704 	n->m_len = ETHER_HDR_LEN;
2705 	M_MOVE_PKTHDR(n, m);
2706 	n->m_next = m;
2707 	return (n);
2708 }
2709 #endif
2710 
2711 /* Receive a frame. */
2712 static void
2713 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
2714 {
2715 	struct alc_rxdesc *rxd;
2716 	struct ifnet *ifp;
2717 	struct mbuf *mp, *m;
2718 	uint32_t rdinfo, status, vtag;
2719 	int count, nsegs, rx_cons;
2720 
2721 	ifp = sc->alc_ifp;
2722 	status = le32toh(rrd->status);
2723 	rdinfo = le32toh(rrd->rdinfo);
2724 	rx_cons = RRD_RD_IDX(rdinfo);
2725 	nsegs = RRD_RD_CNT(rdinfo);
2726 
2727 	sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
2728 	if ((status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) != 0) {
2729 		/*
2730 		 * We want to pass the following frames to upper
2731 		 * layer regardless of error status of Rx return
2732 		 * ring.
2733 		 *
2734 		 *  o IP/TCP/UDP checksum is bad.
2735 		 *  o frame length and protocol specific length
2736 		 *     does not match.
2737 		 *
2738 		 *  Force network stack compute checksum for
2739 		 *  errored frames.
2740 		 */
2741 		status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
2742 		if ((RRD_ERR_CRC | RRD_ERR_ALIGN | RRD_ERR_TRUNC |
2743 		    RRD_ERR_RUNT) != 0)
2744 			return;
2745 	}
2746 
2747 	for (count = 0; count < nsegs; count++,
2748 	    ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
2749 		rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
2750 		mp = rxd->rx_m;
2751 		/* Add a new receive buffer to the ring. */
2752 		if (alc_newbuf(sc, rxd) != 0) {
2753 			ifp->if_iqdrops++;
2754 			/* Reuse Rx buffers. */
2755 			if (sc->alc_cdata.alc_rxhead != NULL)
2756 				m_freem(sc->alc_cdata.alc_rxhead);
2757 			break;
2758 		}
2759 
2760 		/*
2761 		 * Assume we've received a full sized frame.
2762 		 * Actual size is fixed when we encounter the end of
2763 		 * multi-segmented frame.
2764 		 */
2765 		mp->m_len = sc->alc_buf_size;
2766 
2767 		/* Chain received mbufs. */
2768 		if (sc->alc_cdata.alc_rxhead == NULL) {
2769 			sc->alc_cdata.alc_rxhead = mp;
2770 			sc->alc_cdata.alc_rxtail = mp;
2771 		} else {
2772 			mp->m_flags &= ~M_PKTHDR;
2773 			sc->alc_cdata.alc_rxprev_tail =
2774 			    sc->alc_cdata.alc_rxtail;
2775 			sc->alc_cdata.alc_rxtail->m_next = mp;
2776 			sc->alc_cdata.alc_rxtail = mp;
2777 		}
2778 
2779 		if (count == nsegs - 1) {
2780 			/* Last desc. for this frame. */
2781 			m = sc->alc_cdata.alc_rxhead;
2782 			m->m_flags |= M_PKTHDR;
2783 			/*
2784 			 * It seems that L1C/L2C controller has no way
2785 			 * to tell hardware to strip CRC bytes.
2786 			 */
2787 			m->m_pkthdr.len =
2788 			    sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
2789 			if (nsegs > 1) {
2790 				/* Set last mbuf size. */
2791 				mp->m_len = sc->alc_cdata.alc_rxlen -
2792 				    (nsegs - 1) * sc->alc_buf_size;
2793 				/* Remove the CRC bytes in chained mbufs. */
2794 				if (mp->m_len <= ETHER_CRC_LEN) {
2795 					sc->alc_cdata.alc_rxtail =
2796 					    sc->alc_cdata.alc_rxprev_tail;
2797 					sc->alc_cdata.alc_rxtail->m_len -=
2798 					    (ETHER_CRC_LEN - mp->m_len);
2799 					sc->alc_cdata.alc_rxtail->m_next = NULL;
2800 					m_freem(mp);
2801 				} else {
2802 					mp->m_len -= ETHER_CRC_LEN;
2803 				}
2804 			} else
2805 				m->m_len = m->m_pkthdr.len;
2806 			m->m_pkthdr.rcvif = ifp;
2807 			/*
2808 			 * Due to hardware bugs, Rx checksum offloading
2809 			 * was intentionally disabled.
2810 			 */
2811 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2812 			    (status & RRD_VLAN_TAG) != 0) {
2813 				vtag = RRD_VLAN(le32toh(rrd->vtag));
2814 				m->m_pkthdr.ether_vtag = ntohs(vtag);
2815 				m->m_flags |= M_VLANTAG;
2816 			}
2817 #ifndef __NO_STRICT_ALIGNMENT
2818 			m = alc_fixup_rx(ifp, m);
2819 			if (m != NULL)
2820 #endif
2821 			{
2822 			/* Pass it on. */
2823 			(*ifp->if_input)(ifp, m);
2824 			}
2825 		}
2826 	}
2827 	/* Reset mbuf chains. */
2828 	ALC_RXCHAIN_RESET(sc);
2829 }
2830 
2831 static void
2832 alc_tick(void *arg)
2833 {
2834 	struct alc_softc *sc;
2835 	struct mii_data *mii;
2836 
2837 	sc = (struct alc_softc *)arg;
2838 
2839 	ALC_LOCK_ASSERT(sc);
2840 
2841 	mii = device_get_softc(sc->alc_miibus);
2842 	mii_tick(mii);
2843 	alc_stats_update(sc);
2844 	/*
2845 	 * alc(4) does not rely on Tx completion interrupts to reclaim
2846 	 * transferred buffers. Instead Tx completion interrupts are
2847 	 * used to hint for scheduling Tx task. So it's necessary to
2848 	 * release transmitted buffers by kicking Tx completion
2849 	 * handler. This limits the maximum reclamation delay to a hz.
2850 	 */
2851 	alc_txeof(sc);
2852 	alc_watchdog(sc);
2853 	callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
2854 }
2855 
2856 static void
2857 alc_reset(struct alc_softc *sc)
2858 {
2859 	uint32_t reg;
2860 	int i;
2861 
2862 	CSR_WRITE_4(sc, ALC_MASTER_CFG, MASTER_RESET);
2863 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2864 		DELAY(10);
2865 		if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
2866 			break;
2867 	}
2868 	if (i == 0)
2869 		device_printf(sc->alc_dev, "master reset timeout!\n");
2870 
2871 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2872 		if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0)
2873 			break;
2874 		DELAY(10);
2875 	}
2876 
2877 	if (i == 0)
2878 		device_printf(sc->alc_dev, "reset timeout(0x%08x)!\n", reg);
2879 }
2880 
2881 static void
2882 alc_init(void *xsc)
2883 {
2884 	struct alc_softc *sc;
2885 
2886 	sc = (struct alc_softc *)xsc;
2887 	ALC_LOCK(sc);
2888 	alc_init_locked(sc);
2889 	ALC_UNLOCK(sc);
2890 }
2891 
2892 static void
2893 alc_init_locked(struct alc_softc *sc)
2894 {
2895 	struct ifnet *ifp;
2896 	struct mii_data *mii;
2897 	uint8_t eaddr[ETHER_ADDR_LEN];
2898 	bus_addr_t paddr;
2899 	uint32_t reg, rxf_hi, rxf_lo;
2900 
2901 	ALC_LOCK_ASSERT(sc);
2902 
2903 	ifp = sc->alc_ifp;
2904 	mii = device_get_softc(sc->alc_miibus);
2905 
2906 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2907 		return;
2908 	/*
2909 	 * Cancel any pending I/O.
2910 	 */
2911 	alc_stop(sc);
2912 	/*
2913 	 * Reset the chip to a known state.
2914 	 */
2915 	alc_reset(sc);
2916 
2917 	/* Initialize Rx descriptors. */
2918 	if (alc_init_rx_ring(sc) != 0) {
2919 		device_printf(sc->alc_dev, "no memory for Rx buffers.\n");
2920 		alc_stop(sc);
2921 		return;
2922 	}
2923 	alc_init_rr_ring(sc);
2924 	alc_init_tx_ring(sc);
2925 	alc_init_cmb(sc);
2926 	alc_init_smb(sc);
2927 
2928 	/* Reprogram the station address. */
2929 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2930 	CSR_WRITE_4(sc, ALC_PAR0,
2931 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2932 	CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
2933 	/*
2934 	 * Clear WOL status and disable all WOL feature as WOL
2935 	 * would interfere Rx operation under normal environments.
2936 	 */
2937 	CSR_READ_4(sc, ALC_WOL_CFG);
2938 	CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
2939 	/* Set Tx descriptor base addresses. */
2940 	paddr = sc->alc_rdata.alc_tx_ring_paddr;
2941 	CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2942 	CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2943 	/* We don't use high priority ring. */
2944 	CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
2945 	/* Set Tx descriptor counter. */
2946 	CSR_WRITE_4(sc, ALC_TD_RING_CNT,
2947 	    (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
2948 	/* Set Rx descriptor base addresses. */
2949 	paddr = sc->alc_rdata.alc_rx_ring_paddr;
2950 	CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2951 	CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2952 	/* We use one Rx ring. */
2953 	CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
2954 	CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
2955 	CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
2956 	/* Set Rx descriptor counter. */
2957 	CSR_WRITE_4(sc, ALC_RD_RING_CNT,
2958 	    (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
2959 
2960 	/*
2961 	 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
2962 	 * if it do not fit the buffer size. Rx return descriptor holds
2963 	 * a counter that indicates how many fragments were made by the
2964 	 * hardware. The buffer size should be multiple of 8 bytes.
2965 	 * Since hardware has limit on the size of buffer size, always
2966 	 * use the maximum value.
2967 	 * For strict-alignment architectures make sure to reduce buffer
2968 	 * size by 8 bytes to make room for alignment fixup.
2969 	 */
2970 #ifndef __NO_STRICT_ALIGNMENT
2971 	sc->alc_buf_size = RX_BUF_SIZE_MAX - sizeof(uint64_t);
2972 #else
2973 	sc->alc_buf_size = RX_BUF_SIZE_MAX;
2974 #endif
2975 	CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
2976 
2977 	paddr = sc->alc_rdata.alc_rr_ring_paddr;
2978 	/* Set Rx return descriptor base addresses. */
2979 	CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2980 	/* We use one Rx return ring. */
2981 	CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
2982 	CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
2983 	CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
2984 	/* Set Rx return descriptor counter. */
2985 	CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
2986 	    (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
2987 	paddr = sc->alc_rdata.alc_cmb_paddr;
2988 	CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2989 	paddr = sc->alc_rdata.alc_smb_paddr;
2990 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2991 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2992 
2993 	/* Tell hardware that we're ready to load DMA blocks. */
2994 	CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
2995 
2996 	/* Configure interrupt moderation timer. */
2997 	reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
2998 	reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
2999 	CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
3000 	reg = CSR_READ_4(sc, ALC_MASTER_CFG);
3001 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
3002 	/*
3003 	 * We don't want to automatic interrupt clear as task queue
3004 	 * for the interrupt should know interrupt status.
3005 	 */
3006 	reg &= ~MASTER_INTR_RD_CLR;
3007 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
3008 	if (ALC_USECS(sc->alc_int_rx_mod) != 0)
3009 		reg |= MASTER_IM_RX_TIMER_ENB;
3010 	if (ALC_USECS(sc->alc_int_tx_mod) != 0)
3011 		reg |= MASTER_IM_TX_TIMER_ENB;
3012 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
3013 	/*
3014 	 * Disable interrupt re-trigger timer. We don't want automatic
3015 	 * re-triggering of un-ACKed interrupts.
3016 	 */
3017 	CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
3018 	/* Configure CMB. */
3019 	CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
3020 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
3021 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
3022 	else
3023 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
3024 	/*
3025 	 * Hardware can be configured to issue SMB interrupt based
3026 	 * on programmed interval. Since there is a callout that is
3027 	 * invoked for every hz in driver we use that instead of
3028 	 * relying on periodic SMB interrupt.
3029 	 */
3030 	CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
3031 	/* Clear MAC statistics. */
3032 	alc_stats_clear(sc);
3033 
3034 	/*
3035 	 * Always use maximum frame size that controller can support.
3036 	 * Otherwise received frames that has larger frame length
3037 	 * than alc(4) MTU would be silently dropped in hardware. This
3038 	 * would make path-MTU discovery hard as sender wouldn't get
3039 	 * any responses from receiver. alc(4) supports
3040 	 * multi-fragmented frames on Rx path so it has no issue on
3041 	 * assembling fragmented frames. Using maximum frame size also
3042 	 * removes the need to reinitialize hardware when interface
3043 	 * MTU configuration was changed.
3044 	 *
3045 	 * Be conservative in what you do, be liberal in what you
3046 	 * accept from others - RFC 793.
3047 	 */
3048 	CSR_WRITE_4(sc, ALC_FRAME_SIZE, ALC_JUMBO_FRAMELEN);
3049 
3050 	/* Disable header split(?) */
3051 	CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
3052 
3053 	/* Configure IPG/IFG parameters. */
3054 	CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
3055 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
3056 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
3057 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
3058 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
3059 	/* Set parameters for half-duplex media. */
3060 	CSR_WRITE_4(sc, ALC_HDPX_CFG,
3061 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
3062 	    HDPX_CFG_LCOL_MASK) |
3063 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
3064 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
3065 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
3066 	    HDPX_CFG_ABEBT_MASK) |
3067 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
3068 	    HDPX_CFG_JAMIPG_MASK));
3069 	/*
3070 	 * Set TSO/checksum offload threshold. For frames that is
3071 	 * larger than this threshold, hardware wouldn't do
3072 	 * TSO/checksum offloading.
3073 	 */
3074 	CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH,
3075 	    (ALC_JUMBO_FRAMELEN >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
3076 	    TSO_OFFLOAD_THRESH_MASK);
3077 	/* Configure TxQ. */
3078 	reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
3079 	    TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
3080 	reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
3081 	    TXQ_CFG_TD_BURST_MASK;
3082 	CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
3083 
3084 	/* Configure Rx free descriptor pre-fetching. */
3085 	CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
3086 	    ((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) &
3087 	    RX_RD_FREE_THRESH_HI_MASK) |
3088 	    ((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) &
3089 	    RX_RD_FREE_THRESH_LO_MASK));
3090 
3091 	/*
3092 	 * Configure flow control parameters.
3093 	 * XON  : 80% of Rx FIFO
3094 	 * XOFF : 30% of Rx FIFO
3095 	 */
3096 	reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
3097 	rxf_hi = (reg * 8) / 10;
3098 	rxf_lo = (reg * 3)/ 10;
3099 	CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3100 	    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3101 	    RX_FIFO_PAUSE_THRESH_LO_MASK) |
3102 	    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3103 	     RX_FIFO_PAUSE_THRESH_HI_MASK));
3104 
3105 	/* Disable RSS until I understand L1C/L2C's RSS logic. */
3106 	CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
3107 	CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
3108 
3109 	/* Configure RxQ. */
3110 	reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
3111 	    RXQ_CFG_RD_BURST_MASK;
3112 	reg |= RXQ_CFG_RSS_MODE_DIS;
3113 	if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0)
3114 		reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_100M;
3115 	CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3116 
3117 	/* Configure Rx DMAW request thresold. */
3118 	CSR_WRITE_4(sc, ALC_RD_DMA_CFG,
3119 	    ((RD_DMA_CFG_THRESH_DEFAULT << RD_DMA_CFG_THRESH_SHIFT) &
3120 	    RD_DMA_CFG_THRESH_MASK) |
3121 	    ((ALC_RD_DMA_CFG_USECS(0) << RD_DMA_CFG_TIMER_SHIFT) &
3122 	    RD_DMA_CFG_TIMER_MASK));
3123 	/* Configure DMA parameters. */
3124 	reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
3125 	reg |= sc->alc_rcb;
3126 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
3127 		reg |= DMA_CFG_CMB_ENB;
3128 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
3129 		reg |= DMA_CFG_SMB_ENB;
3130 	else
3131 		reg |= DMA_CFG_SMB_DIS;
3132 	reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
3133 	    DMA_CFG_RD_BURST_SHIFT;
3134 	reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
3135 	    DMA_CFG_WR_BURST_SHIFT;
3136 	reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
3137 	    DMA_CFG_RD_DELAY_CNT_MASK;
3138 	reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
3139 	    DMA_CFG_WR_DELAY_CNT_MASK;
3140 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3141 
3142 	/*
3143 	 * Configure Tx/Rx MACs.
3144 	 *  - Auto-padding for short frames.
3145 	 *  - Enable CRC generation.
3146 	 *  Actual reconfiguration of MAC for resolved speed/duplex
3147 	 *  is followed after detection of link establishment.
3148 	 *  AR8131/AR8132 always does checksum computation regardless
3149 	 *  of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
3150 	 *  have bug in protocol field in Rx return structure so
3151 	 *  these controllers can't handle fragmented frames. Disable
3152 	 *  Rx checksum offloading until there is a newer controller
3153 	 *  that has sane implementation.
3154 	 */
3155 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
3156 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
3157 	    MAC_CFG_PREAMBLE_MASK);
3158 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
3159 		reg |= MAC_CFG_SPEED_10_100;
3160 	else
3161 		reg |= MAC_CFG_SPEED_1000;
3162 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3163 
3164 	/* Set up the receive filter. */
3165 	alc_rxfilter(sc);
3166 	alc_rxvlan(sc);
3167 
3168 	/* Acknowledge all pending interrupts and clear it. */
3169 	CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
3170 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3171 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
3172 
3173 	sc->alc_flags &= ~ALC_FLAG_LINK;
3174 	/* Switch to the current media. */
3175 	mii_mediachg(mii);
3176 
3177 	callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
3178 
3179 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3180 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3181 }
3182 
3183 static void
3184 alc_stop(struct alc_softc *sc)
3185 {
3186 	struct ifnet *ifp;
3187 	struct alc_txdesc *txd;
3188 	struct alc_rxdesc *rxd;
3189 	uint32_t reg;
3190 	int i;
3191 
3192 	ALC_LOCK_ASSERT(sc);
3193 	/*
3194 	 * Mark the interface down and cancel the watchdog timer.
3195 	 */
3196 	ifp = sc->alc_ifp;
3197 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3198 	sc->alc_flags &= ~ALC_FLAG_LINK;
3199 	callout_stop(&sc->alc_tick_ch);
3200 	sc->alc_watchdog_timer = 0;
3201 	alc_stats_update(sc);
3202 	/* Disable interrupts. */
3203 	CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
3204 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3205 	alc_stop_queue(sc);
3206 	/* Disable DMA. */
3207 	reg = CSR_READ_4(sc, ALC_DMA_CFG);
3208 	reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
3209 	reg |= DMA_CFG_SMB_DIS;
3210 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3211 	DELAY(1000);
3212 	/* Stop Rx/Tx MACs. */
3213 	alc_stop_mac(sc);
3214 	/* Disable interrupts which might be touched in taskq handler. */
3215 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3216 
3217 	/* Reclaim Rx buffers that have been processed. */
3218 	if (sc->alc_cdata.alc_rxhead != NULL)
3219 		m_freem(sc->alc_cdata.alc_rxhead);
3220 	ALC_RXCHAIN_RESET(sc);
3221 	/*
3222 	 * Free Tx/Rx mbufs still in the queues.
3223 	 */
3224 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3225 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3226 		if (rxd->rx_m != NULL) {
3227 			bus_dmamap_sync(sc->alc_cdata.alc_rx_tag,
3228 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3229 			bus_dmamap_unload(sc->alc_cdata.alc_rx_tag,
3230 			    rxd->rx_dmamap);
3231 			m_freem(rxd->rx_m);
3232 			rxd->rx_m = NULL;
3233 		}
3234 	}
3235 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3236 		txd = &sc->alc_cdata.alc_txdesc[i];
3237 		if (txd->tx_m != NULL) {
3238 			bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
3239 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3240 			bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
3241 			    txd->tx_dmamap);
3242 			m_freem(txd->tx_m);
3243 			txd->tx_m = NULL;
3244 		}
3245 	}
3246 }
3247 
3248 static void
3249 alc_stop_mac(struct alc_softc *sc)
3250 {
3251 	uint32_t reg;
3252 	int i;
3253 
3254 	ALC_LOCK_ASSERT(sc);
3255 
3256 	/* Disable Rx/Tx MAC. */
3257 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3258 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
3259 		reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
3260 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3261 	}
3262 	for (i = ALC_TIMEOUT; i > 0; i--) {
3263 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3264 		if (reg == 0)
3265 			break;
3266 		DELAY(10);
3267 	}
3268 	if (i == 0)
3269 		device_printf(sc->alc_dev,
3270 		    "could not disable Rx/Tx MAC(0x%08x)!\n", reg);
3271 }
3272 
3273 static void
3274 alc_start_queue(struct alc_softc *sc)
3275 {
3276 	uint32_t qcfg[] = {
3277 		0,
3278 		RXQ_CFG_QUEUE0_ENB,
3279 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
3280 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
3281 		RXQ_CFG_ENB
3282 	};
3283 	uint32_t cfg;
3284 
3285 	ALC_LOCK_ASSERT(sc);
3286 
3287 	/* Enable RxQ. */
3288 	cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
3289 	cfg &= ~RXQ_CFG_ENB;
3290 	cfg |= qcfg[1];
3291 	CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
3292 	/* Enable TxQ. */
3293 	cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
3294 	cfg |= TXQ_CFG_ENB;
3295 	CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
3296 }
3297 
3298 static void
3299 alc_stop_queue(struct alc_softc *sc)
3300 {
3301 	uint32_t reg;
3302 	int i;
3303 
3304 	ALC_LOCK_ASSERT(sc);
3305 
3306 	/* Disable RxQ. */
3307 	reg = CSR_READ_4(sc, ALC_RXQ_CFG);
3308 	if ((reg & RXQ_CFG_ENB) != 0) {
3309 		reg &= ~RXQ_CFG_ENB;
3310 		CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3311 	}
3312 	/* Disable TxQ. */
3313 	reg = CSR_READ_4(sc, ALC_TXQ_CFG);
3314 	if ((reg & TXQ_CFG_ENB) == 0) {
3315 		reg &= ~TXQ_CFG_ENB;
3316 		CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
3317 	}
3318 	for (i = ALC_TIMEOUT; i > 0; i--) {
3319 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3320 		if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
3321 			break;
3322 		DELAY(10);
3323 	}
3324 	if (i == 0)
3325 		device_printf(sc->alc_dev,
3326 		    "could not disable RxQ/TxQ (0x%08x)!\n", reg);
3327 }
3328 
3329 static void
3330 alc_init_tx_ring(struct alc_softc *sc)
3331 {
3332 	struct alc_ring_data *rd;
3333 	struct alc_txdesc *txd;
3334 	int i;
3335 
3336 	ALC_LOCK_ASSERT(sc);
3337 
3338 	sc->alc_cdata.alc_tx_prod = 0;
3339 	sc->alc_cdata.alc_tx_cons = 0;
3340 	sc->alc_cdata.alc_tx_cnt = 0;
3341 
3342 	rd = &sc->alc_rdata;
3343 	bzero(rd->alc_tx_ring, ALC_TX_RING_SZ);
3344 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3345 		txd = &sc->alc_cdata.alc_txdesc[i];
3346 		txd->tx_m = NULL;
3347 	}
3348 
3349 	bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
3350 	    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
3351 }
3352 
3353 static int
3354 alc_init_rx_ring(struct alc_softc *sc)
3355 {
3356 	struct alc_ring_data *rd;
3357 	struct alc_rxdesc *rxd;
3358 	int i;
3359 
3360 	ALC_LOCK_ASSERT(sc);
3361 
3362 	sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
3363 	sc->alc_morework = 0;
3364 	rd = &sc->alc_rdata;
3365 	bzero(rd->alc_rx_ring, ALC_RX_RING_SZ);
3366 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3367 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3368 		rxd->rx_m = NULL;
3369 		rxd->rx_desc = &rd->alc_rx_ring[i];
3370 		if (alc_newbuf(sc, rxd) != 0)
3371 			return (ENOBUFS);
3372 	}
3373 
3374 	/*
3375 	 * Since controller does not update Rx descriptors, driver
3376 	 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
3377 	 * is enough to ensure coherence.
3378 	 */
3379 	bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
3380 	    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
3381 	/* Let controller know availability of new Rx buffers. */
3382 	CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
3383 
3384 	return (0);
3385 }
3386 
3387 static void
3388 alc_init_rr_ring(struct alc_softc *sc)
3389 {
3390 	struct alc_ring_data *rd;
3391 
3392 	ALC_LOCK_ASSERT(sc);
3393 
3394 	sc->alc_cdata.alc_rr_cons = 0;
3395 	ALC_RXCHAIN_RESET(sc);
3396 
3397 	rd = &sc->alc_rdata;
3398 	bzero(rd->alc_rr_ring, ALC_RR_RING_SZ);
3399 	bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
3400 	    sc->alc_cdata.alc_rr_ring_map,
3401 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3402 }
3403 
3404 static void
3405 alc_init_cmb(struct alc_softc *sc)
3406 {
3407 	struct alc_ring_data *rd;
3408 
3409 	ALC_LOCK_ASSERT(sc);
3410 
3411 	rd = &sc->alc_rdata;
3412 	bzero(rd->alc_cmb, ALC_CMB_SZ);
3413 	bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag, sc->alc_cdata.alc_cmb_map,
3414 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3415 }
3416 
3417 static void
3418 alc_init_smb(struct alc_softc *sc)
3419 {
3420 	struct alc_ring_data *rd;
3421 
3422 	ALC_LOCK_ASSERT(sc);
3423 
3424 	rd = &sc->alc_rdata;
3425 	bzero(rd->alc_smb, ALC_SMB_SZ);
3426 	bus_dmamap_sync(sc->alc_cdata.alc_smb_tag, sc->alc_cdata.alc_smb_map,
3427 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3428 }
3429 
3430 static void
3431 alc_rxvlan(struct alc_softc *sc)
3432 {
3433 	struct ifnet *ifp;
3434 	uint32_t reg;
3435 
3436 	ALC_LOCK_ASSERT(sc);
3437 
3438 	ifp = sc->alc_ifp;
3439 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3440 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3441 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3442 	else
3443 		reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3444 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3445 }
3446 
3447 static void
3448 alc_rxfilter(struct alc_softc *sc)
3449 {
3450 	struct ifnet *ifp;
3451 	struct ifmultiaddr *ifma;
3452 	uint32_t crc;
3453 	uint32_t mchash[2];
3454 	uint32_t rxcfg;
3455 
3456 	ALC_LOCK_ASSERT(sc);
3457 
3458 	ifp = sc->alc_ifp;
3459 
3460 	bzero(mchash, sizeof(mchash));
3461 	rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
3462 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3463 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3464 		rxcfg |= MAC_CFG_BCAST;
3465 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3466 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3467 			rxcfg |= MAC_CFG_PROMISC;
3468 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3469 			rxcfg |= MAC_CFG_ALLMULTI;
3470 		mchash[0] = 0xFFFFFFFF;
3471 		mchash[1] = 0xFFFFFFFF;
3472 		goto chipit;
3473 	}
3474 
3475 	if_maddr_rlock(ifp);
3476 	TAILQ_FOREACH(ifma, &sc->alc_ifp->if_multiaddrs, ifma_link) {
3477 		if (ifma->ifma_addr->sa_family != AF_LINK)
3478 			continue;
3479 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3480 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3481 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3482 	}
3483 	if_maddr_runlock(ifp);
3484 
3485 chipit:
3486 	CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
3487 	CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
3488 	CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
3489 }
3490 
3491 static int
3492 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3493 {
3494 	int error, value;
3495 
3496 	if (arg1 == NULL)
3497 		return (EINVAL);
3498 	value = *(int *)arg1;
3499 	error = sysctl_handle_int(oidp, &value, 0, req);
3500 	if (error || req->newptr == NULL)
3501 		return (error);
3502 	if (value < low || value > high)
3503 		return (EINVAL);
3504 	*(int *)arg1 = value;
3505 
3506 	return (0);
3507 }
3508 
3509 static int
3510 sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS)
3511 {
3512 	return (sysctl_int_range(oidp, arg1, arg2, req,
3513 	    ALC_PROC_MIN, ALC_PROC_MAX));
3514 }
3515 
3516 static int
3517 sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS)
3518 {
3519 
3520 	return (sysctl_int_range(oidp, arg1, arg2, req,
3521 	    ALC_IM_TIMER_MIN, ALC_IM_TIMER_MAX));
3522 }
3523