xref: /freebsd/sys/dev/alc/if_alc.c (revision bb15ca603fa442c72dde3f3cb8b46db6970e3950)
1 /*-
2  * Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/module.h>
42 #include <sys/mutex.h>
43 #include <sys/rman.h>
44 #include <sys/queue.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/taskqueue.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_llc.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 #include <net/if_vlan_var.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/ip.h>
63 #include <netinet/tcp.h>
64 
65 #include <dev/mii/mii.h>
66 #include <dev/mii/miivar.h>
67 
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70 
71 #include <machine/bus.h>
72 #include <machine/in_cksum.h>
73 
74 #include <dev/alc/if_alcreg.h>
75 #include <dev/alc/if_alcvar.h>
76 
77 /* "device miibus" required.  See GENERIC if you get errors here. */
78 #include "miibus_if.h"
79 #undef ALC_USE_CUSTOM_CSUM
80 
81 #ifdef ALC_USE_CUSTOM_CSUM
82 #define	ALC_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
83 #else
84 #define	ALC_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
85 #endif
86 
87 MODULE_DEPEND(alc, pci, 1, 1, 1);
88 MODULE_DEPEND(alc, ether, 1, 1, 1);
89 MODULE_DEPEND(alc, miibus, 1, 1, 1);
90 
91 /* Tunables. */
92 static int msi_disable = 0;
93 static int msix_disable = 0;
94 TUNABLE_INT("hw.alc.msi_disable", &msi_disable);
95 TUNABLE_INT("hw.alc.msix_disable", &msix_disable);
96 
97 /*
98  * Devices supported by this driver.
99  */
100 static struct alc_ident alc_ident_table[] = {
101 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8131, 9 * 1024,
102 		"Atheros AR8131 PCIe Gigabit Ethernet" },
103 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8132, 9 * 1024,
104 		"Atheros AR8132 PCIe Fast Ethernet" },
105 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151, 6 * 1024,
106 		"Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
107 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151_V2, 6 * 1024,
108 		"Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
109 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B, 6 * 1024,
110 		"Atheros AR8152 v1.1 PCIe Fast Ethernet" },
111 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B2, 6 * 1024,
112 		"Atheros AR8152 v2.0 PCIe Fast Ethernet" },
113 	{ 0, 0, 0, NULL}
114 };
115 
116 static void	alc_aspm(struct alc_softc *, int);
117 static int	alc_attach(device_t);
118 static int	alc_check_boundary(struct alc_softc *);
119 static int	alc_detach(device_t);
120 static void	alc_disable_l0s_l1(struct alc_softc *);
121 static int	alc_dma_alloc(struct alc_softc *);
122 static void	alc_dma_free(struct alc_softc *);
123 static void	alc_dmamap_cb(void *, bus_dma_segment_t *, int, int);
124 static int	alc_encap(struct alc_softc *, struct mbuf **);
125 static struct alc_ident *
126 		alc_find_ident(device_t);
127 #ifndef __NO_STRICT_ALIGNMENT
128 static struct mbuf *
129 		alc_fixup_rx(struct ifnet *, struct mbuf *);
130 #endif
131 static void	alc_get_macaddr(struct alc_softc *);
132 static void	alc_init(void *);
133 static void	alc_init_cmb(struct alc_softc *);
134 static void	alc_init_locked(struct alc_softc *);
135 static void	alc_init_rr_ring(struct alc_softc *);
136 static int	alc_init_rx_ring(struct alc_softc *);
137 static void	alc_init_smb(struct alc_softc *);
138 static void	alc_init_tx_ring(struct alc_softc *);
139 static void	alc_int_task(void *, int);
140 static int	alc_intr(void *);
141 static int	alc_ioctl(struct ifnet *, u_long, caddr_t);
142 static void	alc_mac_config(struct alc_softc *);
143 static int	alc_miibus_readreg(device_t, int, int);
144 static void	alc_miibus_statchg(device_t);
145 static int	alc_miibus_writereg(device_t, int, int, int);
146 static int	alc_mediachange(struct ifnet *);
147 static void	alc_mediastatus(struct ifnet *, struct ifmediareq *);
148 static int	alc_newbuf(struct alc_softc *, struct alc_rxdesc *);
149 static void	alc_phy_down(struct alc_softc *);
150 static void	alc_phy_reset(struct alc_softc *);
151 static int	alc_probe(device_t);
152 static void	alc_reset(struct alc_softc *);
153 static int	alc_resume(device_t);
154 static void	alc_rxeof(struct alc_softc *, struct rx_rdesc *);
155 static int	alc_rxintr(struct alc_softc *, int);
156 static void	alc_rxfilter(struct alc_softc *);
157 static void	alc_rxvlan(struct alc_softc *);
158 static void	alc_setlinkspeed(struct alc_softc *);
159 static void	alc_setwol(struct alc_softc *);
160 static int	alc_shutdown(device_t);
161 static void	alc_start(struct ifnet *);
162 static void	alc_start_locked(struct ifnet *);
163 static void	alc_start_queue(struct alc_softc *);
164 static void	alc_stats_clear(struct alc_softc *);
165 static void	alc_stats_update(struct alc_softc *);
166 static void	alc_stop(struct alc_softc *);
167 static void	alc_stop_mac(struct alc_softc *);
168 static void	alc_stop_queue(struct alc_softc *);
169 static int	alc_suspend(device_t);
170 static void	alc_sysctl_node(struct alc_softc *);
171 static void	alc_tick(void *);
172 static void	alc_txeof(struct alc_softc *);
173 static void	alc_watchdog(struct alc_softc *);
174 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
175 static int	sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS);
176 static int	sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS);
177 
178 static device_method_t alc_methods[] = {
179 	/* Device interface. */
180 	DEVMETHOD(device_probe,		alc_probe),
181 	DEVMETHOD(device_attach,	alc_attach),
182 	DEVMETHOD(device_detach,	alc_detach),
183 	DEVMETHOD(device_shutdown,	alc_shutdown),
184 	DEVMETHOD(device_suspend,	alc_suspend),
185 	DEVMETHOD(device_resume,	alc_resume),
186 
187 	/* MII interface. */
188 	DEVMETHOD(miibus_readreg,	alc_miibus_readreg),
189 	DEVMETHOD(miibus_writereg,	alc_miibus_writereg),
190 	DEVMETHOD(miibus_statchg,	alc_miibus_statchg),
191 
192 	{ NULL, NULL }
193 };
194 
195 static driver_t alc_driver = {
196 	"alc",
197 	alc_methods,
198 	sizeof(struct alc_softc)
199 };
200 
201 static devclass_t alc_devclass;
202 
203 DRIVER_MODULE(alc, pci, alc_driver, alc_devclass, 0, 0);
204 DRIVER_MODULE(miibus, alc, miibus_driver, miibus_devclass, 0, 0);
205 
206 static struct resource_spec alc_res_spec_mem[] = {
207 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
208 	{ -1,			0,		0 }
209 };
210 
211 static struct resource_spec alc_irq_spec_legacy[] = {
212 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
213 	{ -1,			0,		0 }
214 };
215 
216 static struct resource_spec alc_irq_spec_msi[] = {
217 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
218 	{ -1,			0,		0 }
219 };
220 
221 static struct resource_spec alc_irq_spec_msix[] = {
222 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
223 	{ -1,			0,		0 }
224 };
225 
226 static uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
227 
228 static int
229 alc_miibus_readreg(device_t dev, int phy, int reg)
230 {
231 	struct alc_softc *sc;
232 	uint32_t v;
233 	int i;
234 
235 	sc = device_get_softc(dev);
236 
237 	/*
238 	 * For AR8132 fast ethernet controller, do not report 1000baseT
239 	 * capability to mii(4). Even though AR8132 uses the same
240 	 * model/revision number of F1 gigabit PHY, the PHY has no
241 	 * ability to establish 1000baseT link.
242 	 */
243 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 &&
244 	    reg == MII_EXTSR)
245 		return (0);
246 
247 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
248 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
249 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
250 		DELAY(5);
251 		v = CSR_READ_4(sc, ALC_MDIO);
252 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
253 			break;
254 	}
255 
256 	if (i == 0) {
257 		device_printf(sc->alc_dev, "phy read timeout : %d\n", reg);
258 		return (0);
259 	}
260 
261 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
262 }
263 
264 static int
265 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
266 {
267 	struct alc_softc *sc;
268 	uint32_t v;
269 	int i;
270 
271 	sc = device_get_softc(dev);
272 
273 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
274 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
275 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
276 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
277 		DELAY(5);
278 		v = CSR_READ_4(sc, ALC_MDIO);
279 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
280 			break;
281 	}
282 
283 	if (i == 0)
284 		device_printf(sc->alc_dev, "phy write timeout : %d\n", reg);
285 
286 	return (0);
287 }
288 
289 static void
290 alc_miibus_statchg(device_t dev)
291 {
292 	struct alc_softc *sc;
293 	struct mii_data *mii;
294 	struct ifnet *ifp;
295 	uint32_t reg;
296 
297 	sc = device_get_softc(dev);
298 
299 	mii = device_get_softc(sc->alc_miibus);
300 	ifp = sc->alc_ifp;
301 	if (mii == NULL || ifp == NULL ||
302 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
303 		return;
304 
305 	sc->alc_flags &= ~ALC_FLAG_LINK;
306 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
307 	    (IFM_ACTIVE | IFM_AVALID)) {
308 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
309 		case IFM_10_T:
310 		case IFM_100_TX:
311 			sc->alc_flags |= ALC_FLAG_LINK;
312 			break;
313 		case IFM_1000_T:
314 			if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
315 				sc->alc_flags |= ALC_FLAG_LINK;
316 			break;
317 		default:
318 			break;
319 		}
320 	}
321 	alc_stop_queue(sc);
322 	/* Stop Rx/Tx MACs. */
323 	alc_stop_mac(sc);
324 
325 	/* Program MACs with resolved speed/duplex/flow-control. */
326 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
327 		alc_start_queue(sc);
328 		alc_mac_config(sc);
329 		/* Re-enable Tx/Rx MACs. */
330 		reg = CSR_READ_4(sc, ALC_MAC_CFG);
331 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
332 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
333 		alc_aspm(sc, IFM_SUBTYPE(mii->mii_media_active));
334 	}
335 }
336 
337 static void
338 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
339 {
340 	struct alc_softc *sc;
341 	struct mii_data *mii;
342 
343 	sc = ifp->if_softc;
344 	ALC_LOCK(sc);
345 	if ((ifp->if_flags & IFF_UP) == 0) {
346 		ALC_UNLOCK(sc);
347 		return;
348 	}
349 	mii = device_get_softc(sc->alc_miibus);
350 
351 	mii_pollstat(mii);
352 	ifmr->ifm_status = mii->mii_media_status;
353 	ifmr->ifm_active = mii->mii_media_active;
354 	ALC_UNLOCK(sc);
355 }
356 
357 static int
358 alc_mediachange(struct ifnet *ifp)
359 {
360 	struct alc_softc *sc;
361 	struct mii_data *mii;
362 	struct mii_softc *miisc;
363 	int error;
364 
365 	sc = ifp->if_softc;
366 	ALC_LOCK(sc);
367 	mii = device_get_softc(sc->alc_miibus);
368 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
369 		PHY_RESET(miisc);
370 	error = mii_mediachg(mii);
371 	ALC_UNLOCK(sc);
372 
373 	return (error);
374 }
375 
376 static struct alc_ident *
377 alc_find_ident(device_t dev)
378 {
379 	struct alc_ident *ident;
380 	uint16_t vendor, devid;
381 
382 	vendor = pci_get_vendor(dev);
383 	devid = pci_get_device(dev);
384 	for (ident = alc_ident_table; ident->name != NULL; ident++) {
385 		if (vendor == ident->vendorid && devid == ident->deviceid)
386 			return (ident);
387 	}
388 
389 	return (NULL);
390 }
391 
392 static int
393 alc_probe(device_t dev)
394 {
395 	struct alc_ident *ident;
396 
397 	ident = alc_find_ident(dev);
398 	if (ident != NULL) {
399 		device_set_desc(dev, ident->name);
400 		return (BUS_PROBE_DEFAULT);
401 	}
402 
403 	return (ENXIO);
404 }
405 
406 static void
407 alc_get_macaddr(struct alc_softc *sc)
408 {
409 	uint32_t ea[2], opt;
410 	uint16_t val;
411 	int eeprom, i;
412 
413 	eeprom = 0;
414 	opt = CSR_READ_4(sc, ALC_OPT_CFG);
415 	if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
416 	    (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
417 		/*
418 		 * EEPROM found, let TWSI reload EEPROM configuration.
419 		 * This will set ethernet address of controller.
420 		 */
421 		eeprom++;
422 		switch (sc->alc_ident->deviceid) {
423 		case DEVICEID_ATHEROS_AR8131:
424 		case DEVICEID_ATHEROS_AR8132:
425 			if ((opt & OPT_CFG_CLK_ENB) == 0) {
426 				opt |= OPT_CFG_CLK_ENB;
427 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
428 				CSR_READ_4(sc, ALC_OPT_CFG);
429 				DELAY(1000);
430 			}
431 			break;
432 		case DEVICEID_ATHEROS_AR8151:
433 		case DEVICEID_ATHEROS_AR8151_V2:
434 		case DEVICEID_ATHEROS_AR8152_B:
435 		case DEVICEID_ATHEROS_AR8152_B2:
436 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
437 			    ALC_MII_DBG_ADDR, 0x00);
438 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
439 			    ALC_MII_DBG_DATA);
440 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
441 			    ALC_MII_DBG_DATA, val & 0xFF7F);
442 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
443 			    ALC_MII_DBG_ADDR, 0x3B);
444 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
445 			    ALC_MII_DBG_DATA);
446 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
447 			    ALC_MII_DBG_DATA, val | 0x0008);
448 			DELAY(20);
449 			break;
450 		}
451 
452 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
453 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
454 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
455 		CSR_READ_4(sc, ALC_WOL_CFG);
456 
457 		CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
458 		    TWSI_CFG_SW_LD_START);
459 		for (i = 100; i > 0; i--) {
460 			DELAY(1000);
461 			if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
462 			    TWSI_CFG_SW_LD_START) == 0)
463 				break;
464 		}
465 		if (i == 0)
466 			device_printf(sc->alc_dev,
467 			    "reloading EEPROM timeout!\n");
468 	} else {
469 		if (bootverbose)
470 			device_printf(sc->alc_dev, "EEPROM not found!\n");
471 	}
472 	if (eeprom != 0) {
473 		switch (sc->alc_ident->deviceid) {
474 		case DEVICEID_ATHEROS_AR8131:
475 		case DEVICEID_ATHEROS_AR8132:
476 			if ((opt & OPT_CFG_CLK_ENB) != 0) {
477 				opt &= ~OPT_CFG_CLK_ENB;
478 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
479 				CSR_READ_4(sc, ALC_OPT_CFG);
480 				DELAY(1000);
481 			}
482 			break;
483 		case DEVICEID_ATHEROS_AR8151:
484 		case DEVICEID_ATHEROS_AR8151_V2:
485 		case DEVICEID_ATHEROS_AR8152_B:
486 		case DEVICEID_ATHEROS_AR8152_B2:
487 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
488 			    ALC_MII_DBG_ADDR, 0x00);
489 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
490 			    ALC_MII_DBG_DATA);
491 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
492 			    ALC_MII_DBG_DATA, val | 0x0080);
493 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
494 			    ALC_MII_DBG_ADDR, 0x3B);
495 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
496 			    ALC_MII_DBG_DATA);
497 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
498 			    ALC_MII_DBG_DATA, val & 0xFFF7);
499 			DELAY(20);
500 			break;
501 		}
502 	}
503 
504 	ea[0] = CSR_READ_4(sc, ALC_PAR0);
505 	ea[1] = CSR_READ_4(sc, ALC_PAR1);
506 	sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
507 	sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
508 	sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
509 	sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
510 	sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
511 	sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
512 }
513 
514 static void
515 alc_disable_l0s_l1(struct alc_softc *sc)
516 {
517 	uint32_t pmcfg;
518 
519 	/* Another magic from vendor. */
520 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
521 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
522 	    PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK |
523 	    PM_CFG_SERDES_PD_EX_L1);
524 	pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
525 	    PM_CFG_SERDES_L1_ENB;
526 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
527 }
528 
529 static void
530 alc_phy_reset(struct alc_softc *sc)
531 {
532 	uint16_t data;
533 
534 	/* Reset magic from Linux. */
535 	CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_SEL_ANA_RESET);
536 	CSR_READ_2(sc, ALC_GPHY_CFG);
537 	DELAY(10 * 1000);
538 
539 	CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET |
540 	    GPHY_CFG_SEL_ANA_RESET);
541 	CSR_READ_2(sc, ALC_GPHY_CFG);
542 	DELAY(10 * 1000);
543 
544 	/* DSP fixup, Vendor magic. */
545 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) {
546 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
547 		    ALC_MII_DBG_ADDR, 0x000A);
548 		data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
549 		    ALC_MII_DBG_DATA);
550 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
551 		    ALC_MII_DBG_DATA, data & 0xDFFF);
552 	}
553 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
554 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
555 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
556 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
557 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
558 		    ALC_MII_DBG_ADDR, 0x003B);
559 		data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
560 		    ALC_MII_DBG_DATA);
561 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
562 		    ALC_MII_DBG_DATA, data & 0xFFF7);
563 		DELAY(20 * 1000);
564 	}
565 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151) {
566 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
567 		    ALC_MII_DBG_ADDR, 0x0029);
568 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
569 		    ALC_MII_DBG_DATA, 0x929D);
570 	}
571 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 ||
572 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132 ||
573 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
574 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
575 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
576 		    ALC_MII_DBG_ADDR, 0x0029);
577 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
578 		    ALC_MII_DBG_DATA, 0xB6DD);
579 	}
580 
581 	/* Load DSP codes, vendor magic. */
582 	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
583 	    ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
584 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
585 	    ALC_MII_DBG_ADDR, MII_ANA_CFG18);
586 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
587 	    ALC_MII_DBG_DATA, data);
588 
589 	data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
590 	    ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
591 	    ANA_SERDES_EN_LCKDT;
592 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
593 	    ALC_MII_DBG_ADDR, MII_ANA_CFG5);
594 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
595 	    ALC_MII_DBG_DATA, data);
596 
597 	data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
598 	    ANA_LONG_CABLE_TH_100_MASK) |
599 	    ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
600 	    ANA_SHORT_CABLE_TH_100_SHIFT) |
601 	    ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
602 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
603 	    ALC_MII_DBG_ADDR, MII_ANA_CFG54);
604 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
605 	    ALC_MII_DBG_DATA, data);
606 
607 	data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
608 	    ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
609 	    ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
610 	    ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
611 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
612 	    ALC_MII_DBG_ADDR, MII_ANA_CFG4);
613 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
614 	    ALC_MII_DBG_DATA, data);
615 
616 	data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
617 	    ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
618 	    ANA_OEN_125M;
619 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
620 	    ALC_MII_DBG_ADDR, MII_ANA_CFG0);
621 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
622 	    ALC_MII_DBG_DATA, data);
623 	DELAY(1000);
624 
625 	/* Disable hibernation. */
626 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
627 	    0x0029);
628 	data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
629 	    ALC_MII_DBG_DATA);
630 	data &= ~0x8000;
631 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
632 	    data);
633 
634 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
635 	    0x000B);
636 	data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
637 	    ALC_MII_DBG_DATA);
638 	data &= ~0x8000;
639 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
640 	    data);
641 }
642 
643 static void
644 alc_phy_down(struct alc_softc *sc)
645 {
646 
647 	switch (sc->alc_ident->deviceid) {
648 	case DEVICEID_ATHEROS_AR8151:
649 	case DEVICEID_ATHEROS_AR8151_V2:
650 		/*
651 		 * GPHY power down caused more problems on AR8151 v2.0.
652 		 * When driver is reloaded after GPHY power down,
653 		 * accesses to PHY/MAC registers hung the system. Only
654 		 * cold boot recovered from it.  I'm not sure whether
655 		 * AR8151 v1.0 also requires this one though.  I don't
656 		 * have AR8151 v1.0 controller in hand.
657 		 * The only option left is to isolate the PHY and
658 		 * initiates power down the PHY which in turn saves
659 		 * more power when driver is unloaded.
660 		 */
661 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
662 		    MII_BMCR, BMCR_ISO | BMCR_PDOWN);
663 		break;
664 	default:
665 		/* Force PHY down. */
666 		CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET |
667 		    GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
668 		    GPHY_CFG_PWDOWN_HW);
669 		DELAY(1000);
670 		break;
671 	}
672 }
673 
674 static void
675 alc_aspm(struct alc_softc *sc, int media)
676 {
677 	uint32_t pmcfg;
678 	uint16_t linkcfg;
679 
680 	ALC_LOCK_ASSERT(sc);
681 
682 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
683 	if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
684 	    (ALC_FLAG_APS | ALC_FLAG_PCIE))
685 		linkcfg = CSR_READ_2(sc, sc->alc_expcap +
686 		    PCIR_EXPRESS_LINK_CTL);
687 	else
688 		linkcfg = 0;
689 	pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
690 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
691 	pmcfg |= PM_CFG_MAC_ASPM_CHK;
692 	pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT);
693 	pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
694 
695 	if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
696 		/* Disable extended sync except AR8152 B v1.0 */
697 		linkcfg &= ~0x80;
698 		if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B &&
699 		    sc->alc_rev == ATHEROS_AR8152_B_V10)
700 			linkcfg |= 0x80;
701 		CSR_WRITE_2(sc, sc->alc_expcap + PCIR_EXPRESS_LINK_CTL,
702 		    linkcfg);
703 		pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
704 		    PM_CFG_HOTRST);
705 		pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
706 		    PM_CFG_L1_ENTRY_TIMER_SHIFT);
707 		pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
708 		pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
709 		    PM_CFG_PM_REQ_TIMER_SHIFT);
710 		pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
711 	}
712 
713 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
714 		if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
715 			pmcfg |= PM_CFG_ASPM_L0S_ENB;
716 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
717 			pmcfg |= PM_CFG_ASPM_L1_ENB;
718 		if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
719 			if (sc->alc_ident->deviceid ==
720 			    DEVICEID_ATHEROS_AR8152_B)
721 				pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
722 			pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
723 			    PM_CFG_SERDES_PLL_L1_ENB |
724 			    PM_CFG_SERDES_BUDS_RX_L1_ENB);
725 			pmcfg |= PM_CFG_CLK_SWH_L1;
726 			if (media == IFM_100_TX || media == IFM_1000_T) {
727 				pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
728 				switch (sc->alc_ident->deviceid) {
729 				case DEVICEID_ATHEROS_AR8152_B:
730 					pmcfg |= (7 <<
731 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
732 					break;
733 				case DEVICEID_ATHEROS_AR8152_B2:
734 				case DEVICEID_ATHEROS_AR8151_V2:
735 					pmcfg |= (4 <<
736 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
737 					break;
738 				default:
739 					pmcfg |= (15 <<
740 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
741 					break;
742 				}
743 			}
744 		} else {
745 			pmcfg |= PM_CFG_SERDES_L1_ENB |
746 			    PM_CFG_SERDES_PLL_L1_ENB |
747 			    PM_CFG_SERDES_BUDS_RX_L1_ENB;
748 			pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
749 			    PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
750 		}
751 	} else {
752 		pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
753 		    PM_CFG_SERDES_PLL_L1_ENB);
754 		pmcfg |= PM_CFG_CLK_SWH_L1;
755 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
756 			pmcfg |= PM_CFG_ASPM_L1_ENB;
757 	}
758 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
759 }
760 
761 static int
762 alc_attach(device_t dev)
763 {
764 	struct alc_softc *sc;
765 	struct ifnet *ifp;
766 	char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
767 	uint16_t burst;
768 	int base, error, i, msic, msixc, state;
769 	uint32_t cap, ctl, val;
770 
771 	error = 0;
772 	sc = device_get_softc(dev);
773 	sc->alc_dev = dev;
774 
775 	mtx_init(&sc->alc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
776 	    MTX_DEF);
777 	callout_init_mtx(&sc->alc_tick_ch, &sc->alc_mtx, 0);
778 	TASK_INIT(&sc->alc_int_task, 0, alc_int_task, sc);
779 	sc->alc_ident = alc_find_ident(dev);
780 
781 	/* Map the device. */
782 	pci_enable_busmaster(dev);
783 	sc->alc_res_spec = alc_res_spec_mem;
784 	sc->alc_irq_spec = alc_irq_spec_legacy;
785 	error = bus_alloc_resources(dev, sc->alc_res_spec, sc->alc_res);
786 	if (error != 0) {
787 		device_printf(dev, "cannot allocate memory resources.\n");
788 		goto fail;
789 	}
790 
791 	/* Set PHY address. */
792 	sc->alc_phyaddr = ALC_PHY_ADDR;
793 
794 	/* Initialize DMA parameters. */
795 	sc->alc_dma_rd_burst = 0;
796 	sc->alc_dma_wr_burst = 0;
797 	sc->alc_rcb = DMA_CFG_RCB_64;
798 	if (pci_find_cap(dev, PCIY_EXPRESS, &base) == 0) {
799 		sc->alc_flags |= ALC_FLAG_PCIE;
800 		sc->alc_expcap = base;
801 		burst = CSR_READ_2(sc, base + PCIR_EXPRESS_DEVICE_CTL);
802 		sc->alc_dma_rd_burst =
803 		    (burst & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12;
804 		sc->alc_dma_wr_burst = (burst & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5;
805 		if (bootverbose) {
806 			device_printf(dev, "Read request size : %u bytes.\n",
807 			    alc_dma_burst[sc->alc_dma_rd_burst]);
808 			device_printf(dev, "TLP payload size : %u bytes.\n",
809 			    alc_dma_burst[sc->alc_dma_wr_burst]);
810 		}
811 		if (alc_dma_burst[sc->alc_dma_rd_burst] > 1024)
812 			sc->alc_dma_rd_burst = 3;
813 		if (alc_dma_burst[sc->alc_dma_wr_burst] > 1024)
814 			sc->alc_dma_wr_burst = 3;
815 		/* Clear data link and flow-control protocol error. */
816 		val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
817 		val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
818 		CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
819 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
820 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
821 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
822 		    CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
823 		    PCIE_PHYMISC_FORCE_RCV_DET);
824 		if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B &&
825 		    pci_get_revid(dev) == ATHEROS_AR8152_B_V10) {
826 			val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
827 			val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
828 			    PCIE_PHYMISC2_SERDES_TH_MASK);
829 			val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
830 			val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
831 			CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
832 		}
833 		/* Disable ASPM L0S and L1. */
834 		cap = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CAP);
835 		if ((cap & PCIM_LINK_CAP_ASPM) != 0) {
836 			ctl = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CTL);
837 			if ((ctl & 0x08) != 0)
838 				sc->alc_rcb = DMA_CFG_RCB_128;
839 			if (bootverbose)
840 				device_printf(dev, "RCB %u bytes\n",
841 				    sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
842 			state = ctl & 0x03;
843 			if (state & 0x01)
844 				sc->alc_flags |= ALC_FLAG_L0S;
845 			if (state & 0x02)
846 				sc->alc_flags |= ALC_FLAG_L1S;
847 			if (bootverbose)
848 				device_printf(sc->alc_dev, "ASPM %s %s\n",
849 				    aspm_state[state],
850 				    state == 0 ? "disabled" : "enabled");
851 			alc_disable_l0s_l1(sc);
852 		} else {
853 			if (bootverbose)
854 				device_printf(sc->alc_dev,
855 				    "no ASPM support\n");
856 		}
857 	}
858 
859 	/* Reset PHY. */
860 	alc_phy_reset(sc);
861 
862 	/* Reset the ethernet controller. */
863 	alc_reset(sc);
864 
865 	/*
866 	 * One odd thing is AR8132 uses the same PHY hardware(F1
867 	 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
868 	 * the PHY supports 1000Mbps but that's not true. The PHY
869 	 * used in AR8132 can't establish gigabit link even if it
870 	 * shows the same PHY model/revision number of AR8131.
871 	 */
872 	switch (sc->alc_ident->deviceid) {
873 	case DEVICEID_ATHEROS_AR8152_B:
874 	case DEVICEID_ATHEROS_AR8152_B2:
875 		sc->alc_flags |= ALC_FLAG_APS;
876 		/* FALLTHROUGH */
877 	case DEVICEID_ATHEROS_AR8132:
878 		sc->alc_flags |= ALC_FLAG_FASTETHER;
879 		break;
880 	case DEVICEID_ATHEROS_AR8151:
881 	case DEVICEID_ATHEROS_AR8151_V2:
882 		sc->alc_flags |= ALC_FLAG_APS;
883 		/* FALLTHROUGH */
884 	default:
885 		break;
886 	}
887 	sc->alc_flags |= ALC_FLAG_ASPM_MON | ALC_FLAG_JUMBO;
888 
889 	/*
890 	 * It seems that AR813x/AR815x has silicon bug for SMB. In
891 	 * addition, Atheros said that enabling SMB wouldn't improve
892 	 * performance. However I think it's bad to access lots of
893 	 * registers to extract MAC statistics.
894 	 */
895 	sc->alc_flags |= ALC_FLAG_SMB_BUG;
896 	/*
897 	 * Don't use Tx CMB. It is known to have silicon bug.
898 	 */
899 	sc->alc_flags |= ALC_FLAG_CMB_BUG;
900 	sc->alc_rev = pci_get_revid(dev);
901 	sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
902 	    MASTER_CHIP_REV_SHIFT;
903 	if (bootverbose) {
904 		device_printf(dev, "PCI device revision : 0x%04x\n",
905 		    sc->alc_rev);
906 		device_printf(dev, "Chip id/revision : 0x%04x\n",
907 		    sc->alc_chip_rev);
908 	}
909 	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n",
910 	    CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
911 	    CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
912 
913 	/* Allocate IRQ resources. */
914 	msixc = pci_msix_count(dev);
915 	msic = pci_msi_count(dev);
916 	if (bootverbose) {
917 		device_printf(dev, "MSIX count : %d\n", msixc);
918 		device_printf(dev, "MSI count : %d\n", msic);
919 	}
920 	/* Prefer MSIX over MSI. */
921 	if (msix_disable == 0 || msi_disable == 0) {
922 		if (msix_disable == 0 && msixc == ALC_MSIX_MESSAGES &&
923 		    pci_alloc_msix(dev, &msixc) == 0) {
924 			if (msic == ALC_MSIX_MESSAGES) {
925 				device_printf(dev,
926 				    "Using %d MSIX message(s).\n", msixc);
927 				sc->alc_flags |= ALC_FLAG_MSIX;
928 				sc->alc_irq_spec = alc_irq_spec_msix;
929 			} else
930 				pci_release_msi(dev);
931 		}
932 		if (msi_disable == 0 && (sc->alc_flags & ALC_FLAG_MSIX) == 0 &&
933 		    msic == ALC_MSI_MESSAGES &&
934 		    pci_alloc_msi(dev, &msic) == 0) {
935 			if (msic == ALC_MSI_MESSAGES) {
936 				device_printf(dev,
937 				    "Using %d MSI message(s).\n", msic);
938 				sc->alc_flags |= ALC_FLAG_MSI;
939 				sc->alc_irq_spec = alc_irq_spec_msi;
940 			} else
941 				pci_release_msi(dev);
942 		}
943 	}
944 
945 	error = bus_alloc_resources(dev, sc->alc_irq_spec, sc->alc_irq);
946 	if (error != 0) {
947 		device_printf(dev, "cannot allocate IRQ resources.\n");
948 		goto fail;
949 	}
950 
951 	/* Create device sysctl node. */
952 	alc_sysctl_node(sc);
953 
954 	if ((error = alc_dma_alloc(sc) != 0))
955 		goto fail;
956 
957 	/* Load station address. */
958 	alc_get_macaddr(sc);
959 
960 	ifp = sc->alc_ifp = if_alloc(IFT_ETHER);
961 	if (ifp == NULL) {
962 		device_printf(dev, "cannot allocate ifnet structure.\n");
963 		error = ENXIO;
964 		goto fail;
965 	}
966 
967 	ifp->if_softc = sc;
968 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
969 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
970 	ifp->if_ioctl = alc_ioctl;
971 	ifp->if_start = alc_start;
972 	ifp->if_init = alc_init;
973 	ifp->if_snd.ifq_drv_maxlen = ALC_TX_RING_CNT - 1;
974 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
975 	IFQ_SET_READY(&ifp->if_snd);
976 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
977 	ifp->if_hwassist = ALC_CSUM_FEATURES | CSUM_TSO;
978 	if (pci_find_cap(dev, PCIY_PMG, &base) == 0) {
979 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
980 		sc->alc_flags |= ALC_FLAG_PM;
981 		sc->alc_pmcap = base;
982 	}
983 	ifp->if_capenable = ifp->if_capabilities;
984 
985 	/* Set up MII bus. */
986 	error = mii_attach(dev, &sc->alc_miibus, ifp, alc_mediachange,
987 	    alc_mediastatus, BMSR_DEFCAPMASK, sc->alc_phyaddr, MII_OFFSET_ANY,
988 	    MIIF_DOPAUSE);
989 	if (error != 0) {
990 		device_printf(dev, "attaching PHYs failed\n");
991 		goto fail;
992 	}
993 
994 	ether_ifattach(ifp, sc->alc_eaddr);
995 
996 	/* VLAN capability setup. */
997 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
998 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
999 	ifp->if_capenable = ifp->if_capabilities;
1000 	/*
1001 	 * XXX
1002 	 * It seems enabling Tx checksum offloading makes more trouble.
1003 	 * Sometimes the controller does not receive any frames when
1004 	 * Tx checksum offloading is enabled. I'm not sure whether this
1005 	 * is a bug in Tx checksum offloading logic or I got broken
1006 	 * sample boards. To safety, don't enable Tx checksum offloading
1007 	 * by default but give chance to users to toggle it if they know
1008 	 * their controllers work without problems.
1009 	 */
1010 	ifp->if_capenable &= ~IFCAP_TXCSUM;
1011 	ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
1012 
1013 	/* Tell the upper layer(s) we support long frames. */
1014 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1015 
1016 	/* Create local taskq. */
1017 	sc->alc_tq = taskqueue_create_fast("alc_taskq", M_WAITOK,
1018 	    taskqueue_thread_enqueue, &sc->alc_tq);
1019 	if (sc->alc_tq == NULL) {
1020 		device_printf(dev, "could not create taskqueue.\n");
1021 		ether_ifdetach(ifp);
1022 		error = ENXIO;
1023 		goto fail;
1024 	}
1025 	taskqueue_start_threads(&sc->alc_tq, 1, PI_NET, "%s taskq",
1026 	    device_get_nameunit(sc->alc_dev));
1027 
1028 	if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
1029 		msic = ALC_MSIX_MESSAGES;
1030 	else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
1031 		msic = ALC_MSI_MESSAGES;
1032 	else
1033 		msic = 1;
1034 	for (i = 0; i < msic; i++) {
1035 		error = bus_setup_intr(dev, sc->alc_irq[i],
1036 		    INTR_TYPE_NET | INTR_MPSAFE, alc_intr, NULL, sc,
1037 		    &sc->alc_intrhand[i]);
1038 		if (error != 0)
1039 			break;
1040 	}
1041 	if (error != 0) {
1042 		device_printf(dev, "could not set up interrupt handler.\n");
1043 		taskqueue_free(sc->alc_tq);
1044 		sc->alc_tq = NULL;
1045 		ether_ifdetach(ifp);
1046 		goto fail;
1047 	}
1048 
1049 fail:
1050 	if (error != 0)
1051 		alc_detach(dev);
1052 
1053 	return (error);
1054 }
1055 
1056 static int
1057 alc_detach(device_t dev)
1058 {
1059 	struct alc_softc *sc;
1060 	struct ifnet *ifp;
1061 	int i, msic;
1062 
1063 	sc = device_get_softc(dev);
1064 
1065 	ifp = sc->alc_ifp;
1066 	if (device_is_attached(dev)) {
1067 		ether_ifdetach(ifp);
1068 		ALC_LOCK(sc);
1069 		alc_stop(sc);
1070 		ALC_UNLOCK(sc);
1071 		callout_drain(&sc->alc_tick_ch);
1072 		taskqueue_drain(sc->alc_tq, &sc->alc_int_task);
1073 	}
1074 
1075 	if (sc->alc_tq != NULL) {
1076 		taskqueue_drain(sc->alc_tq, &sc->alc_int_task);
1077 		taskqueue_free(sc->alc_tq);
1078 		sc->alc_tq = NULL;
1079 	}
1080 
1081 	if (sc->alc_miibus != NULL) {
1082 		device_delete_child(dev, sc->alc_miibus);
1083 		sc->alc_miibus = NULL;
1084 	}
1085 	bus_generic_detach(dev);
1086 	alc_dma_free(sc);
1087 
1088 	if (ifp != NULL) {
1089 		if_free(ifp);
1090 		sc->alc_ifp = NULL;
1091 	}
1092 
1093 	if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
1094 		msic = ALC_MSIX_MESSAGES;
1095 	else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
1096 		msic = ALC_MSI_MESSAGES;
1097 	else
1098 		msic = 1;
1099 	for (i = 0; i < msic; i++) {
1100 		if (sc->alc_intrhand[i] != NULL) {
1101 			bus_teardown_intr(dev, sc->alc_irq[i],
1102 			    sc->alc_intrhand[i]);
1103 			sc->alc_intrhand[i] = NULL;
1104 		}
1105 	}
1106 	if (sc->alc_res[0] != NULL)
1107 		alc_phy_down(sc);
1108 	bus_release_resources(dev, sc->alc_irq_spec, sc->alc_irq);
1109 	if ((sc->alc_flags & (ALC_FLAG_MSI | ALC_FLAG_MSIX)) != 0)
1110 		pci_release_msi(dev);
1111 	bus_release_resources(dev, sc->alc_res_spec, sc->alc_res);
1112 	mtx_destroy(&sc->alc_mtx);
1113 
1114 	return (0);
1115 }
1116 
1117 #define	ALC_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
1118 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
1119 #define	ALC_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
1120 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
1121 
1122 static void
1123 alc_sysctl_node(struct alc_softc *sc)
1124 {
1125 	struct sysctl_ctx_list *ctx;
1126 	struct sysctl_oid_list *child, *parent;
1127 	struct sysctl_oid *tree;
1128 	struct alc_hw_stats *stats;
1129 	int error;
1130 
1131 	stats = &sc->alc_stats;
1132 	ctx = device_get_sysctl_ctx(sc->alc_dev);
1133 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->alc_dev));
1134 
1135 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
1136 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_rx_mod, 0,
1137 	    sysctl_hw_alc_int_mod, "I", "alc Rx interrupt moderation");
1138 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
1139 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_tx_mod, 0,
1140 	    sysctl_hw_alc_int_mod, "I", "alc Tx interrupt moderation");
1141 	/* Pull in device tunables. */
1142 	sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
1143 	error = resource_int_value(device_get_name(sc->alc_dev),
1144 	    device_get_unit(sc->alc_dev), "int_rx_mod", &sc->alc_int_rx_mod);
1145 	if (error == 0) {
1146 		if (sc->alc_int_rx_mod < ALC_IM_TIMER_MIN ||
1147 		    sc->alc_int_rx_mod > ALC_IM_TIMER_MAX) {
1148 			device_printf(sc->alc_dev, "int_rx_mod value out of "
1149 			    "range; using default: %d\n",
1150 			    ALC_IM_RX_TIMER_DEFAULT);
1151 			sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
1152 		}
1153 	}
1154 	sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
1155 	error = resource_int_value(device_get_name(sc->alc_dev),
1156 	    device_get_unit(sc->alc_dev), "int_tx_mod", &sc->alc_int_tx_mod);
1157 	if (error == 0) {
1158 		if (sc->alc_int_tx_mod < ALC_IM_TIMER_MIN ||
1159 		    sc->alc_int_tx_mod > ALC_IM_TIMER_MAX) {
1160 			device_printf(sc->alc_dev, "int_tx_mod value out of "
1161 			    "range; using default: %d\n",
1162 			    ALC_IM_TX_TIMER_DEFAULT);
1163 			sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
1164 		}
1165 	}
1166 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
1167 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_process_limit, 0,
1168 	    sysctl_hw_alc_proc_limit, "I",
1169 	    "max number of Rx events to process");
1170 	/* Pull in device tunables. */
1171 	sc->alc_process_limit = ALC_PROC_DEFAULT;
1172 	error = resource_int_value(device_get_name(sc->alc_dev),
1173 	    device_get_unit(sc->alc_dev), "process_limit",
1174 	    &sc->alc_process_limit);
1175 	if (error == 0) {
1176 		if (sc->alc_process_limit < ALC_PROC_MIN ||
1177 		    sc->alc_process_limit > ALC_PROC_MAX) {
1178 			device_printf(sc->alc_dev,
1179 			    "process_limit value out of range; "
1180 			    "using default: %d\n", ALC_PROC_DEFAULT);
1181 			sc->alc_process_limit = ALC_PROC_DEFAULT;
1182 		}
1183 	}
1184 
1185 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
1186 	    NULL, "ALC statistics");
1187 	parent = SYSCTL_CHILDREN(tree);
1188 
1189 	/* Rx statistics. */
1190 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
1191 	    NULL, "Rx MAC statistics");
1192 	child = SYSCTL_CHILDREN(tree);
1193 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1194 	    &stats->rx_frames, "Good frames");
1195 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
1196 	    &stats->rx_bcast_frames, "Good broadcast frames");
1197 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
1198 	    &stats->rx_mcast_frames, "Good multicast frames");
1199 	ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
1200 	    &stats->rx_pause_frames, "Pause control frames");
1201 	ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
1202 	    &stats->rx_control_frames, "Control frames");
1203 	ALC_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
1204 	    &stats->rx_crcerrs, "CRC errors");
1205 	ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
1206 	    &stats->rx_lenerrs, "Frames with length mismatched");
1207 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
1208 	    &stats->rx_bytes, "Good octets");
1209 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
1210 	    &stats->rx_bcast_bytes, "Good broadcast octets");
1211 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
1212 	    &stats->rx_mcast_bytes, "Good multicast octets");
1213 	ALC_SYSCTL_STAT_ADD32(ctx, child, "runts",
1214 	    &stats->rx_runts, "Too short frames");
1215 	ALC_SYSCTL_STAT_ADD32(ctx, child, "fragments",
1216 	    &stats->rx_fragments, "Fragmented frames");
1217 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
1218 	    &stats->rx_pkts_64, "64 bytes frames");
1219 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
1220 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
1221 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
1222 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
1223 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
1224 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
1225 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
1226 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
1227 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
1228 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
1229 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
1230 	    &stats->rx_pkts_1519_max, "1519 to max frames");
1231 	ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
1232 	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
1233 	ALC_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1234 	    &stats->rx_fifo_oflows, "FIFO overflows");
1235 	ALC_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
1236 	    &stats->rx_rrs_errs, "Return status write-back errors");
1237 	ALC_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
1238 	    &stats->rx_alignerrs, "Alignment errors");
1239 	ALC_SYSCTL_STAT_ADD32(ctx, child, "filtered",
1240 	    &stats->rx_pkts_filtered,
1241 	    "Frames dropped due to address filtering");
1242 
1243 	/* Tx statistics. */
1244 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
1245 	    NULL, "Tx MAC statistics");
1246 	child = SYSCTL_CHILDREN(tree);
1247 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1248 	    &stats->tx_frames, "Good frames");
1249 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
1250 	    &stats->tx_bcast_frames, "Good broadcast frames");
1251 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
1252 	    &stats->tx_mcast_frames, "Good multicast frames");
1253 	ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
1254 	    &stats->tx_pause_frames, "Pause control frames");
1255 	ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
1256 	    &stats->tx_control_frames, "Control frames");
1257 	ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
1258 	    &stats->tx_excess_defer, "Frames with excessive derferrals");
1259 	ALC_SYSCTL_STAT_ADD32(ctx, child, "defers",
1260 	    &stats->tx_excess_defer, "Frames with derferrals");
1261 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
1262 	    &stats->tx_bytes, "Good octets");
1263 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
1264 	    &stats->tx_bcast_bytes, "Good broadcast octets");
1265 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
1266 	    &stats->tx_mcast_bytes, "Good multicast octets");
1267 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
1268 	    &stats->tx_pkts_64, "64 bytes frames");
1269 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
1270 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
1271 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
1272 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
1273 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
1274 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
1275 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
1276 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
1277 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
1278 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
1279 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
1280 	    &stats->tx_pkts_1519_max, "1519 to max frames");
1281 	ALC_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
1282 	    &stats->tx_single_colls, "Single collisions");
1283 	ALC_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
1284 	    &stats->tx_multi_colls, "Multiple collisions");
1285 	ALC_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
1286 	    &stats->tx_late_colls, "Late collisions");
1287 	ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
1288 	    &stats->tx_excess_colls, "Excessive collisions");
1289 	ALC_SYSCTL_STAT_ADD32(ctx, child, "abort",
1290 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
1291 	ALC_SYSCTL_STAT_ADD32(ctx, child, "underruns",
1292 	    &stats->tx_underrun, "FIFO underruns");
1293 	ALC_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
1294 	    &stats->tx_desc_underrun, "Descriptor write-back errors");
1295 	ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
1296 	    &stats->tx_lenerrs, "Frames with length mismatched");
1297 	ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
1298 	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
1299 }
1300 
1301 #undef ALC_SYSCTL_STAT_ADD32
1302 #undef ALC_SYSCTL_STAT_ADD64
1303 
1304 struct alc_dmamap_arg {
1305 	bus_addr_t	alc_busaddr;
1306 };
1307 
1308 static void
1309 alc_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1310 {
1311 	struct alc_dmamap_arg *ctx;
1312 
1313 	if (error != 0)
1314 		return;
1315 
1316 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1317 
1318 	ctx = (struct alc_dmamap_arg *)arg;
1319 	ctx->alc_busaddr = segs[0].ds_addr;
1320 }
1321 
1322 /*
1323  * Normal and high Tx descriptors shares single Tx high address.
1324  * Four Rx descriptor/return rings and CMB shares the same Rx
1325  * high address.
1326  */
1327 static int
1328 alc_check_boundary(struct alc_softc *sc)
1329 {
1330 	bus_addr_t cmb_end, rx_ring_end, rr_ring_end, tx_ring_end;
1331 
1332 	rx_ring_end = sc->alc_rdata.alc_rx_ring_paddr + ALC_RX_RING_SZ;
1333 	rr_ring_end = sc->alc_rdata.alc_rr_ring_paddr + ALC_RR_RING_SZ;
1334 	cmb_end = sc->alc_rdata.alc_cmb_paddr + ALC_CMB_SZ;
1335 	tx_ring_end = sc->alc_rdata.alc_tx_ring_paddr + ALC_TX_RING_SZ;
1336 
1337 	/* 4GB boundary crossing is not allowed. */
1338 	if ((ALC_ADDR_HI(rx_ring_end) !=
1339 	    ALC_ADDR_HI(sc->alc_rdata.alc_rx_ring_paddr)) ||
1340 	    (ALC_ADDR_HI(rr_ring_end) !=
1341 	    ALC_ADDR_HI(sc->alc_rdata.alc_rr_ring_paddr)) ||
1342 	    (ALC_ADDR_HI(cmb_end) !=
1343 	    ALC_ADDR_HI(sc->alc_rdata.alc_cmb_paddr)) ||
1344 	    (ALC_ADDR_HI(tx_ring_end) !=
1345 	    ALC_ADDR_HI(sc->alc_rdata.alc_tx_ring_paddr)))
1346 		return (EFBIG);
1347 	/*
1348 	 * Make sure Rx return descriptor/Rx descriptor/CMB use
1349 	 * the same high address.
1350 	 */
1351 	if ((ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(rr_ring_end)) ||
1352 	    (ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(cmb_end)))
1353 		return (EFBIG);
1354 
1355 	return (0);
1356 }
1357 
1358 static int
1359 alc_dma_alloc(struct alc_softc *sc)
1360 {
1361 	struct alc_txdesc *txd;
1362 	struct alc_rxdesc *rxd;
1363 	bus_addr_t lowaddr;
1364 	struct alc_dmamap_arg ctx;
1365 	int error, i;
1366 
1367 	lowaddr = BUS_SPACE_MAXADDR;
1368 again:
1369 	/* Create parent DMA tag. */
1370 	error = bus_dma_tag_create(
1371 	    bus_get_dma_tag(sc->alc_dev), /* parent */
1372 	    1, 0,			/* alignment, boundary */
1373 	    lowaddr,			/* lowaddr */
1374 	    BUS_SPACE_MAXADDR,		/* highaddr */
1375 	    NULL, NULL,			/* filter, filterarg */
1376 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1377 	    0,				/* nsegments */
1378 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1379 	    0,				/* flags */
1380 	    NULL, NULL,			/* lockfunc, lockarg */
1381 	    &sc->alc_cdata.alc_parent_tag);
1382 	if (error != 0) {
1383 		device_printf(sc->alc_dev,
1384 		    "could not create parent DMA tag.\n");
1385 		goto fail;
1386 	}
1387 
1388 	/* Create DMA tag for Tx descriptor ring. */
1389 	error = bus_dma_tag_create(
1390 	    sc->alc_cdata.alc_parent_tag, /* parent */
1391 	    ALC_TX_RING_ALIGN, 0,	/* alignment, boundary */
1392 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1393 	    BUS_SPACE_MAXADDR,		/* highaddr */
1394 	    NULL, NULL,			/* filter, filterarg */
1395 	    ALC_TX_RING_SZ,		/* maxsize */
1396 	    1,				/* nsegments */
1397 	    ALC_TX_RING_SZ,		/* maxsegsize */
1398 	    0,				/* flags */
1399 	    NULL, NULL,			/* lockfunc, lockarg */
1400 	    &sc->alc_cdata.alc_tx_ring_tag);
1401 	if (error != 0) {
1402 		device_printf(sc->alc_dev,
1403 		    "could not create Tx ring DMA tag.\n");
1404 		goto fail;
1405 	}
1406 
1407 	/* Create DMA tag for Rx free descriptor ring. */
1408 	error = bus_dma_tag_create(
1409 	    sc->alc_cdata.alc_parent_tag, /* parent */
1410 	    ALC_RX_RING_ALIGN, 0,	/* alignment, boundary */
1411 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1412 	    BUS_SPACE_MAXADDR,		/* highaddr */
1413 	    NULL, NULL,			/* filter, filterarg */
1414 	    ALC_RX_RING_SZ,		/* maxsize */
1415 	    1,				/* nsegments */
1416 	    ALC_RX_RING_SZ,		/* maxsegsize */
1417 	    0,				/* flags */
1418 	    NULL, NULL,			/* lockfunc, lockarg */
1419 	    &sc->alc_cdata.alc_rx_ring_tag);
1420 	if (error != 0) {
1421 		device_printf(sc->alc_dev,
1422 		    "could not create Rx ring DMA tag.\n");
1423 		goto fail;
1424 	}
1425 	/* Create DMA tag for Rx return descriptor ring. */
1426 	error = bus_dma_tag_create(
1427 	    sc->alc_cdata.alc_parent_tag, /* parent */
1428 	    ALC_RR_RING_ALIGN, 0,	/* alignment, boundary */
1429 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1430 	    BUS_SPACE_MAXADDR,		/* highaddr */
1431 	    NULL, NULL,			/* filter, filterarg */
1432 	    ALC_RR_RING_SZ,		/* maxsize */
1433 	    1,				/* nsegments */
1434 	    ALC_RR_RING_SZ,		/* maxsegsize */
1435 	    0,				/* flags */
1436 	    NULL, NULL,			/* lockfunc, lockarg */
1437 	    &sc->alc_cdata.alc_rr_ring_tag);
1438 	if (error != 0) {
1439 		device_printf(sc->alc_dev,
1440 		    "could not create Rx return ring DMA tag.\n");
1441 		goto fail;
1442 	}
1443 
1444 	/* Create DMA tag for coalescing message block. */
1445 	error = bus_dma_tag_create(
1446 	    sc->alc_cdata.alc_parent_tag, /* parent */
1447 	    ALC_CMB_ALIGN, 0,		/* alignment, boundary */
1448 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1449 	    BUS_SPACE_MAXADDR,		/* highaddr */
1450 	    NULL, NULL,			/* filter, filterarg */
1451 	    ALC_CMB_SZ,			/* maxsize */
1452 	    1,				/* nsegments */
1453 	    ALC_CMB_SZ,			/* maxsegsize */
1454 	    0,				/* flags */
1455 	    NULL, NULL,			/* lockfunc, lockarg */
1456 	    &sc->alc_cdata.alc_cmb_tag);
1457 	if (error != 0) {
1458 		device_printf(sc->alc_dev,
1459 		    "could not create CMB DMA tag.\n");
1460 		goto fail;
1461 	}
1462 	/* Create DMA tag for status message block. */
1463 	error = bus_dma_tag_create(
1464 	    sc->alc_cdata.alc_parent_tag, /* parent */
1465 	    ALC_SMB_ALIGN, 0,		/* alignment, boundary */
1466 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1467 	    BUS_SPACE_MAXADDR,		/* highaddr */
1468 	    NULL, NULL,			/* filter, filterarg */
1469 	    ALC_SMB_SZ,			/* maxsize */
1470 	    1,				/* nsegments */
1471 	    ALC_SMB_SZ,			/* maxsegsize */
1472 	    0,				/* flags */
1473 	    NULL, NULL,			/* lockfunc, lockarg */
1474 	    &sc->alc_cdata.alc_smb_tag);
1475 	if (error != 0) {
1476 		device_printf(sc->alc_dev,
1477 		    "could not create SMB DMA tag.\n");
1478 		goto fail;
1479 	}
1480 
1481 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1482 	error = bus_dmamem_alloc(sc->alc_cdata.alc_tx_ring_tag,
1483 	    (void **)&sc->alc_rdata.alc_tx_ring,
1484 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1485 	    &sc->alc_cdata.alc_tx_ring_map);
1486 	if (error != 0) {
1487 		device_printf(sc->alc_dev,
1488 		    "could not allocate DMA'able memory for Tx ring.\n");
1489 		goto fail;
1490 	}
1491 	ctx.alc_busaddr = 0;
1492 	error = bus_dmamap_load(sc->alc_cdata.alc_tx_ring_tag,
1493 	    sc->alc_cdata.alc_tx_ring_map, sc->alc_rdata.alc_tx_ring,
1494 	    ALC_TX_RING_SZ, alc_dmamap_cb, &ctx, 0);
1495 	if (error != 0 || ctx.alc_busaddr == 0) {
1496 		device_printf(sc->alc_dev,
1497 		    "could not load DMA'able memory for Tx ring.\n");
1498 		goto fail;
1499 	}
1500 	sc->alc_rdata.alc_tx_ring_paddr = ctx.alc_busaddr;
1501 
1502 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1503 	error = bus_dmamem_alloc(sc->alc_cdata.alc_rx_ring_tag,
1504 	    (void **)&sc->alc_rdata.alc_rx_ring,
1505 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1506 	    &sc->alc_cdata.alc_rx_ring_map);
1507 	if (error != 0) {
1508 		device_printf(sc->alc_dev,
1509 		    "could not allocate DMA'able memory for Rx ring.\n");
1510 		goto fail;
1511 	}
1512 	ctx.alc_busaddr = 0;
1513 	error = bus_dmamap_load(sc->alc_cdata.alc_rx_ring_tag,
1514 	    sc->alc_cdata.alc_rx_ring_map, sc->alc_rdata.alc_rx_ring,
1515 	    ALC_RX_RING_SZ, alc_dmamap_cb, &ctx, 0);
1516 	if (error != 0 || ctx.alc_busaddr == 0) {
1517 		device_printf(sc->alc_dev,
1518 		    "could not load DMA'able memory for Rx ring.\n");
1519 		goto fail;
1520 	}
1521 	sc->alc_rdata.alc_rx_ring_paddr = ctx.alc_busaddr;
1522 
1523 	/* Allocate DMA'able memory and load the DMA map for Rx return ring. */
1524 	error = bus_dmamem_alloc(sc->alc_cdata.alc_rr_ring_tag,
1525 	    (void **)&sc->alc_rdata.alc_rr_ring,
1526 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1527 	    &sc->alc_cdata.alc_rr_ring_map);
1528 	if (error != 0) {
1529 		device_printf(sc->alc_dev,
1530 		    "could not allocate DMA'able memory for Rx return ring.\n");
1531 		goto fail;
1532 	}
1533 	ctx.alc_busaddr = 0;
1534 	error = bus_dmamap_load(sc->alc_cdata.alc_rr_ring_tag,
1535 	    sc->alc_cdata.alc_rr_ring_map, sc->alc_rdata.alc_rr_ring,
1536 	    ALC_RR_RING_SZ, alc_dmamap_cb, &ctx, 0);
1537 	if (error != 0 || ctx.alc_busaddr == 0) {
1538 		device_printf(sc->alc_dev,
1539 		    "could not load DMA'able memory for Tx ring.\n");
1540 		goto fail;
1541 	}
1542 	sc->alc_rdata.alc_rr_ring_paddr = ctx.alc_busaddr;
1543 
1544 	/* Allocate DMA'able memory and load the DMA map for CMB. */
1545 	error = bus_dmamem_alloc(sc->alc_cdata.alc_cmb_tag,
1546 	    (void **)&sc->alc_rdata.alc_cmb,
1547 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1548 	    &sc->alc_cdata.alc_cmb_map);
1549 	if (error != 0) {
1550 		device_printf(sc->alc_dev,
1551 		    "could not allocate DMA'able memory for CMB.\n");
1552 		goto fail;
1553 	}
1554 	ctx.alc_busaddr = 0;
1555 	error = bus_dmamap_load(sc->alc_cdata.alc_cmb_tag,
1556 	    sc->alc_cdata.alc_cmb_map, sc->alc_rdata.alc_cmb,
1557 	    ALC_CMB_SZ, alc_dmamap_cb, &ctx, 0);
1558 	if (error != 0 || ctx.alc_busaddr == 0) {
1559 		device_printf(sc->alc_dev,
1560 		    "could not load DMA'able memory for CMB.\n");
1561 		goto fail;
1562 	}
1563 	sc->alc_rdata.alc_cmb_paddr = ctx.alc_busaddr;
1564 
1565 	/* Allocate DMA'able memory and load the DMA map for SMB. */
1566 	error = bus_dmamem_alloc(sc->alc_cdata.alc_smb_tag,
1567 	    (void **)&sc->alc_rdata.alc_smb,
1568 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1569 	    &sc->alc_cdata.alc_smb_map);
1570 	if (error != 0) {
1571 		device_printf(sc->alc_dev,
1572 		    "could not allocate DMA'able memory for SMB.\n");
1573 		goto fail;
1574 	}
1575 	ctx.alc_busaddr = 0;
1576 	error = bus_dmamap_load(sc->alc_cdata.alc_smb_tag,
1577 	    sc->alc_cdata.alc_smb_map, sc->alc_rdata.alc_smb,
1578 	    ALC_SMB_SZ, alc_dmamap_cb, &ctx, 0);
1579 	if (error != 0 || ctx.alc_busaddr == 0) {
1580 		device_printf(sc->alc_dev,
1581 		    "could not load DMA'able memory for CMB.\n");
1582 		goto fail;
1583 	}
1584 	sc->alc_rdata.alc_smb_paddr = ctx.alc_busaddr;
1585 
1586 	/* Make sure we've not crossed 4GB boundary. */
1587 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1588 	    (error = alc_check_boundary(sc)) != 0) {
1589 		device_printf(sc->alc_dev, "4GB boundary crossed, "
1590 		    "switching to 32bit DMA addressing mode.\n");
1591 		alc_dma_free(sc);
1592 		/*
1593 		 * Limit max allowable DMA address space to 32bit
1594 		 * and try again.
1595 		 */
1596 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1597 		goto again;
1598 	}
1599 
1600 	/*
1601 	 * Create Tx buffer parent tag.
1602 	 * AR813x/AR815x allows 64bit DMA addressing of Tx/Rx buffers
1603 	 * so it needs separate parent DMA tag as parent DMA address
1604 	 * space could be restricted to be within 32bit address space
1605 	 * by 4GB boundary crossing.
1606 	 */
1607 	error = bus_dma_tag_create(
1608 	    bus_get_dma_tag(sc->alc_dev), /* parent */
1609 	    1, 0,			/* alignment, boundary */
1610 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1611 	    BUS_SPACE_MAXADDR,		/* highaddr */
1612 	    NULL, NULL,			/* filter, filterarg */
1613 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1614 	    0,				/* nsegments */
1615 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1616 	    0,				/* flags */
1617 	    NULL, NULL,			/* lockfunc, lockarg */
1618 	    &sc->alc_cdata.alc_buffer_tag);
1619 	if (error != 0) {
1620 		device_printf(sc->alc_dev,
1621 		    "could not create parent buffer DMA tag.\n");
1622 		goto fail;
1623 	}
1624 
1625 	/* Create DMA tag for Tx buffers. */
1626 	error = bus_dma_tag_create(
1627 	    sc->alc_cdata.alc_buffer_tag, /* parent */
1628 	    1, 0,			/* alignment, boundary */
1629 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1630 	    BUS_SPACE_MAXADDR,		/* highaddr */
1631 	    NULL, NULL,			/* filter, filterarg */
1632 	    ALC_TSO_MAXSIZE,		/* maxsize */
1633 	    ALC_MAXTXSEGS,		/* nsegments */
1634 	    ALC_TSO_MAXSEGSIZE,		/* maxsegsize */
1635 	    0,				/* flags */
1636 	    NULL, NULL,			/* lockfunc, lockarg */
1637 	    &sc->alc_cdata.alc_tx_tag);
1638 	if (error != 0) {
1639 		device_printf(sc->alc_dev, "could not create Tx DMA tag.\n");
1640 		goto fail;
1641 	}
1642 
1643 	/* Create DMA tag for Rx buffers. */
1644 	error = bus_dma_tag_create(
1645 	    sc->alc_cdata.alc_buffer_tag, /* parent */
1646 	    ALC_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1647 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1648 	    BUS_SPACE_MAXADDR,		/* highaddr */
1649 	    NULL, NULL,			/* filter, filterarg */
1650 	    MCLBYTES,			/* maxsize */
1651 	    1,				/* nsegments */
1652 	    MCLBYTES,			/* maxsegsize */
1653 	    0,				/* flags */
1654 	    NULL, NULL,			/* lockfunc, lockarg */
1655 	    &sc->alc_cdata.alc_rx_tag);
1656 	if (error != 0) {
1657 		device_printf(sc->alc_dev, "could not create Rx DMA tag.\n");
1658 		goto fail;
1659 	}
1660 	/* Create DMA maps for Tx buffers. */
1661 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1662 		txd = &sc->alc_cdata.alc_txdesc[i];
1663 		txd->tx_m = NULL;
1664 		txd->tx_dmamap = NULL;
1665 		error = bus_dmamap_create(sc->alc_cdata.alc_tx_tag, 0,
1666 		    &txd->tx_dmamap);
1667 		if (error != 0) {
1668 			device_printf(sc->alc_dev,
1669 			    "could not create Tx dmamap.\n");
1670 			goto fail;
1671 		}
1672 	}
1673 	/* Create DMA maps for Rx buffers. */
1674 	if ((error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag, 0,
1675 	    &sc->alc_cdata.alc_rx_sparemap)) != 0) {
1676 		device_printf(sc->alc_dev,
1677 		    "could not create spare Rx dmamap.\n");
1678 		goto fail;
1679 	}
1680 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1681 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1682 		rxd->rx_m = NULL;
1683 		rxd->rx_dmamap = NULL;
1684 		error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag, 0,
1685 		    &rxd->rx_dmamap);
1686 		if (error != 0) {
1687 			device_printf(sc->alc_dev,
1688 			    "could not create Rx dmamap.\n");
1689 			goto fail;
1690 		}
1691 	}
1692 
1693 fail:
1694 	return (error);
1695 }
1696 
1697 static void
1698 alc_dma_free(struct alc_softc *sc)
1699 {
1700 	struct alc_txdesc *txd;
1701 	struct alc_rxdesc *rxd;
1702 	int i;
1703 
1704 	/* Tx buffers. */
1705 	if (sc->alc_cdata.alc_tx_tag != NULL) {
1706 		for (i = 0; i < ALC_TX_RING_CNT; i++) {
1707 			txd = &sc->alc_cdata.alc_txdesc[i];
1708 			if (txd->tx_dmamap != NULL) {
1709 				bus_dmamap_destroy(sc->alc_cdata.alc_tx_tag,
1710 				    txd->tx_dmamap);
1711 				txd->tx_dmamap = NULL;
1712 			}
1713 		}
1714 		bus_dma_tag_destroy(sc->alc_cdata.alc_tx_tag);
1715 		sc->alc_cdata.alc_tx_tag = NULL;
1716 	}
1717 	/* Rx buffers */
1718 	if (sc->alc_cdata.alc_rx_tag != NULL) {
1719 		for (i = 0; i < ALC_RX_RING_CNT; i++) {
1720 			rxd = &sc->alc_cdata.alc_rxdesc[i];
1721 			if (rxd->rx_dmamap != NULL) {
1722 				bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
1723 				    rxd->rx_dmamap);
1724 				rxd->rx_dmamap = NULL;
1725 			}
1726 		}
1727 		if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1728 			bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
1729 			    sc->alc_cdata.alc_rx_sparemap);
1730 			sc->alc_cdata.alc_rx_sparemap = NULL;
1731 		}
1732 		bus_dma_tag_destroy(sc->alc_cdata.alc_rx_tag);
1733 		sc->alc_cdata.alc_rx_tag = NULL;
1734 	}
1735 	/* Tx descriptor ring. */
1736 	if (sc->alc_cdata.alc_tx_ring_tag != NULL) {
1737 		if (sc->alc_cdata.alc_tx_ring_map != NULL)
1738 			bus_dmamap_unload(sc->alc_cdata.alc_tx_ring_tag,
1739 			    sc->alc_cdata.alc_tx_ring_map);
1740 		if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1741 		    sc->alc_rdata.alc_tx_ring != NULL)
1742 			bus_dmamem_free(sc->alc_cdata.alc_tx_ring_tag,
1743 			    sc->alc_rdata.alc_tx_ring,
1744 			    sc->alc_cdata.alc_tx_ring_map);
1745 		sc->alc_rdata.alc_tx_ring = NULL;
1746 		sc->alc_cdata.alc_tx_ring_map = NULL;
1747 		bus_dma_tag_destroy(sc->alc_cdata.alc_tx_ring_tag);
1748 		sc->alc_cdata.alc_tx_ring_tag = NULL;
1749 	}
1750 	/* Rx ring. */
1751 	if (sc->alc_cdata.alc_rx_ring_tag != NULL) {
1752 		if (sc->alc_cdata.alc_rx_ring_map != NULL)
1753 			bus_dmamap_unload(sc->alc_cdata.alc_rx_ring_tag,
1754 			    sc->alc_cdata.alc_rx_ring_map);
1755 		if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1756 		    sc->alc_rdata.alc_rx_ring != NULL)
1757 			bus_dmamem_free(sc->alc_cdata.alc_rx_ring_tag,
1758 			    sc->alc_rdata.alc_rx_ring,
1759 			    sc->alc_cdata.alc_rx_ring_map);
1760 		sc->alc_rdata.alc_rx_ring = NULL;
1761 		sc->alc_cdata.alc_rx_ring_map = NULL;
1762 		bus_dma_tag_destroy(sc->alc_cdata.alc_rx_ring_tag);
1763 		sc->alc_cdata.alc_rx_ring_tag = NULL;
1764 	}
1765 	/* Rx return ring. */
1766 	if (sc->alc_cdata.alc_rr_ring_tag != NULL) {
1767 		if (sc->alc_cdata.alc_rr_ring_map != NULL)
1768 			bus_dmamap_unload(sc->alc_cdata.alc_rr_ring_tag,
1769 			    sc->alc_cdata.alc_rr_ring_map);
1770 		if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1771 		    sc->alc_rdata.alc_rr_ring != NULL)
1772 			bus_dmamem_free(sc->alc_cdata.alc_rr_ring_tag,
1773 			    sc->alc_rdata.alc_rr_ring,
1774 			    sc->alc_cdata.alc_rr_ring_map);
1775 		sc->alc_rdata.alc_rr_ring = NULL;
1776 		sc->alc_cdata.alc_rr_ring_map = NULL;
1777 		bus_dma_tag_destroy(sc->alc_cdata.alc_rr_ring_tag);
1778 		sc->alc_cdata.alc_rr_ring_tag = NULL;
1779 	}
1780 	/* CMB block */
1781 	if (sc->alc_cdata.alc_cmb_tag != NULL) {
1782 		if (sc->alc_cdata.alc_cmb_map != NULL)
1783 			bus_dmamap_unload(sc->alc_cdata.alc_cmb_tag,
1784 			    sc->alc_cdata.alc_cmb_map);
1785 		if (sc->alc_cdata.alc_cmb_map != NULL &&
1786 		    sc->alc_rdata.alc_cmb != NULL)
1787 			bus_dmamem_free(sc->alc_cdata.alc_cmb_tag,
1788 			    sc->alc_rdata.alc_cmb,
1789 			    sc->alc_cdata.alc_cmb_map);
1790 		sc->alc_rdata.alc_cmb = NULL;
1791 		sc->alc_cdata.alc_cmb_map = NULL;
1792 		bus_dma_tag_destroy(sc->alc_cdata.alc_cmb_tag);
1793 		sc->alc_cdata.alc_cmb_tag = NULL;
1794 	}
1795 	/* SMB block */
1796 	if (sc->alc_cdata.alc_smb_tag != NULL) {
1797 		if (sc->alc_cdata.alc_smb_map != NULL)
1798 			bus_dmamap_unload(sc->alc_cdata.alc_smb_tag,
1799 			    sc->alc_cdata.alc_smb_map);
1800 		if (sc->alc_cdata.alc_smb_map != NULL &&
1801 		    sc->alc_rdata.alc_smb != NULL)
1802 			bus_dmamem_free(sc->alc_cdata.alc_smb_tag,
1803 			    sc->alc_rdata.alc_smb,
1804 			    sc->alc_cdata.alc_smb_map);
1805 		sc->alc_rdata.alc_smb = NULL;
1806 		sc->alc_cdata.alc_smb_map = NULL;
1807 		bus_dma_tag_destroy(sc->alc_cdata.alc_smb_tag);
1808 		sc->alc_cdata.alc_smb_tag = NULL;
1809 	}
1810 	if (sc->alc_cdata.alc_buffer_tag != NULL) {
1811 		bus_dma_tag_destroy(sc->alc_cdata.alc_buffer_tag);
1812 		sc->alc_cdata.alc_buffer_tag = NULL;
1813 	}
1814 	if (sc->alc_cdata.alc_parent_tag != NULL) {
1815 		bus_dma_tag_destroy(sc->alc_cdata.alc_parent_tag);
1816 		sc->alc_cdata.alc_parent_tag = NULL;
1817 	}
1818 }
1819 
1820 static int
1821 alc_shutdown(device_t dev)
1822 {
1823 
1824 	return (alc_suspend(dev));
1825 }
1826 
1827 /*
1828  * Note, this driver resets the link speed to 10/100Mbps by
1829  * restarting auto-negotiation in suspend/shutdown phase but we
1830  * don't know whether that auto-negotiation would succeed or not
1831  * as driver has no control after powering off/suspend operation.
1832  * If the renegotiation fail WOL may not work. Running at 1Gbps
1833  * will draw more power than 375mA at 3.3V which is specified in
1834  * PCI specification and that would result in complete
1835  * shutdowning power to ethernet controller.
1836  *
1837  * TODO
1838  * Save current negotiated media speed/duplex/flow-control to
1839  * softc and restore the same link again after resuming. PHY
1840  * handling such as power down/resetting to 100Mbps may be better
1841  * handled in suspend method in phy driver.
1842  */
1843 static void
1844 alc_setlinkspeed(struct alc_softc *sc)
1845 {
1846 	struct mii_data *mii;
1847 	int aneg, i;
1848 
1849 	mii = device_get_softc(sc->alc_miibus);
1850 	mii_pollstat(mii);
1851 	aneg = 0;
1852 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1853 	    (IFM_ACTIVE | IFM_AVALID)) {
1854 		switch IFM_SUBTYPE(mii->mii_media_active) {
1855 		case IFM_10_T:
1856 		case IFM_100_TX:
1857 			return;
1858 		case IFM_1000_T:
1859 			aneg++;
1860 			break;
1861 		default:
1862 			break;
1863 		}
1864 	}
1865 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, MII_100T2CR, 0);
1866 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
1867 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1868 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
1869 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1870 	DELAY(1000);
1871 	if (aneg != 0) {
1872 		/*
1873 		 * Poll link state until alc(4) get a 10/100Mbps link.
1874 		 */
1875 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1876 			mii_pollstat(mii);
1877 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1878 			    == (IFM_ACTIVE | IFM_AVALID)) {
1879 				switch (IFM_SUBTYPE(
1880 				    mii->mii_media_active)) {
1881 				case IFM_10_T:
1882 				case IFM_100_TX:
1883 					alc_mac_config(sc);
1884 					return;
1885 				default:
1886 					break;
1887 				}
1888 			}
1889 			ALC_UNLOCK(sc);
1890 			pause("alclnk", hz);
1891 			ALC_LOCK(sc);
1892 		}
1893 		if (i == MII_ANEGTICKS_GIGE)
1894 			device_printf(sc->alc_dev,
1895 			    "establishing a link failed, WOL may not work!");
1896 	}
1897 	/*
1898 	 * No link, force MAC to have 100Mbps, full-duplex link.
1899 	 * This is the last resort and may/may not work.
1900 	 */
1901 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1902 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1903 	alc_mac_config(sc);
1904 }
1905 
1906 static void
1907 alc_setwol(struct alc_softc *sc)
1908 {
1909 	struct ifnet *ifp;
1910 	uint32_t reg, pmcs;
1911 	uint16_t pmstat;
1912 
1913 	ALC_LOCK_ASSERT(sc);
1914 
1915 	alc_disable_l0s_l1(sc);
1916 	ifp = sc->alc_ifp;
1917 	if ((sc->alc_flags & ALC_FLAG_PM) == 0) {
1918 		/* Disable WOL. */
1919 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
1920 		reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
1921 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1922 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
1923 		/* Force PHY power down. */
1924 		alc_phy_down(sc);
1925 		CSR_WRITE_4(sc, ALC_MASTER_CFG,
1926 		    CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS);
1927 		return;
1928 	}
1929 
1930 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1931 		if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
1932 			alc_setlinkspeed(sc);
1933 		CSR_WRITE_4(sc, ALC_MASTER_CFG,
1934 		    CSR_READ_4(sc, ALC_MASTER_CFG) & ~MASTER_CLK_SEL_DIS);
1935 	}
1936 
1937 	pmcs = 0;
1938 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1939 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1940 	CSR_WRITE_4(sc, ALC_WOL_CFG, pmcs);
1941 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
1942 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1943 	    MAC_CFG_BCAST);
1944 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1945 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1946 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1947 		reg |= MAC_CFG_RX_ENB;
1948 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
1949 
1950 	reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
1951 	reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1952 	CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
1953 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1954 		/* WOL disabled, PHY power down. */
1955 		alc_phy_down(sc);
1956 		CSR_WRITE_4(sc, ALC_MASTER_CFG,
1957 		    CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS);
1958 	}
1959 	/* Request PME. */
1960 	pmstat = pci_read_config(sc->alc_dev,
1961 	    sc->alc_pmcap + PCIR_POWER_STATUS, 2);
1962 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1963 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1964 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1965 	pci_write_config(sc->alc_dev,
1966 	    sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2);
1967 }
1968 
1969 static int
1970 alc_suspend(device_t dev)
1971 {
1972 	struct alc_softc *sc;
1973 
1974 	sc = device_get_softc(dev);
1975 
1976 	ALC_LOCK(sc);
1977 	alc_stop(sc);
1978 	alc_setwol(sc);
1979 	ALC_UNLOCK(sc);
1980 
1981 	return (0);
1982 }
1983 
1984 static int
1985 alc_resume(device_t dev)
1986 {
1987 	struct alc_softc *sc;
1988 	struct ifnet *ifp;
1989 	uint16_t pmstat;
1990 
1991 	sc = device_get_softc(dev);
1992 
1993 	ALC_LOCK(sc);
1994 	if ((sc->alc_flags & ALC_FLAG_PM) != 0) {
1995 		/* Disable PME and clear PME status. */
1996 		pmstat = pci_read_config(sc->alc_dev,
1997 		    sc->alc_pmcap + PCIR_POWER_STATUS, 2);
1998 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1999 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2000 			pci_write_config(sc->alc_dev,
2001 			    sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2002 		}
2003 	}
2004 	/* Reset PHY. */
2005 	alc_phy_reset(sc);
2006 	ifp = sc->alc_ifp;
2007 	if ((ifp->if_flags & IFF_UP) != 0) {
2008 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2009 		alc_init_locked(sc);
2010 	}
2011 	ALC_UNLOCK(sc);
2012 
2013 	return (0);
2014 }
2015 
2016 static int
2017 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
2018 {
2019 	struct alc_txdesc *txd, *txd_last;
2020 	struct tx_desc *desc;
2021 	struct mbuf *m;
2022 	struct ip *ip;
2023 	struct tcphdr *tcp;
2024 	bus_dma_segment_t txsegs[ALC_MAXTXSEGS];
2025 	bus_dmamap_t map;
2026 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
2027 	int error, idx, nsegs, prod;
2028 
2029 	ALC_LOCK_ASSERT(sc);
2030 
2031 	M_ASSERTPKTHDR((*m_head));
2032 
2033 	m = *m_head;
2034 	ip = NULL;
2035 	tcp = NULL;
2036 	ip_off = poff = 0;
2037 	if ((m->m_pkthdr.csum_flags & (ALC_CSUM_FEATURES | CSUM_TSO)) != 0) {
2038 		/*
2039 		 * AR813x/AR815x requires offset of TCP/UDP header in its
2040 		 * Tx descriptor to perform Tx checksum offloading. TSO
2041 		 * also requires TCP header offset and modification of
2042 		 * IP/TCP header. This kind of operation takes many CPU
2043 		 * cycles on FreeBSD so fast host CPU is required to get
2044 		 * smooth TSO performance.
2045 		 */
2046 		struct ether_header *eh;
2047 
2048 		if (M_WRITABLE(m) == 0) {
2049 			/* Get a writable copy. */
2050 			m = m_dup(*m_head, M_DONTWAIT);
2051 			/* Release original mbufs. */
2052 			m_freem(*m_head);
2053 			if (m == NULL) {
2054 				*m_head = NULL;
2055 				return (ENOBUFS);
2056 			}
2057 			*m_head = m;
2058 		}
2059 
2060 		ip_off = sizeof(struct ether_header);
2061 		m = m_pullup(m, ip_off);
2062 		if (m == NULL) {
2063 			*m_head = NULL;
2064 			return (ENOBUFS);
2065 		}
2066 		eh = mtod(m, struct ether_header *);
2067 		/*
2068 		 * Check if hardware VLAN insertion is off.
2069 		 * Additional check for LLC/SNAP frame?
2070 		 */
2071 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2072 			ip_off = sizeof(struct ether_vlan_header);
2073 			m = m_pullup(m, ip_off);
2074 			if (m == NULL) {
2075 				*m_head = NULL;
2076 				return (ENOBUFS);
2077 			}
2078 		}
2079 		m = m_pullup(m, ip_off + sizeof(struct ip));
2080 		if (m == NULL) {
2081 			*m_head = NULL;
2082 			return (ENOBUFS);
2083 		}
2084 		ip = (struct ip *)(mtod(m, char *) + ip_off);
2085 		poff = ip_off + (ip->ip_hl << 2);
2086 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2087 			m = m_pullup(m, poff + sizeof(struct tcphdr));
2088 			if (m == NULL) {
2089 				*m_head = NULL;
2090 				return (ENOBUFS);
2091 			}
2092 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
2093 			m = m_pullup(m, poff + (tcp->th_off << 2));
2094 			if (m == NULL) {
2095 				*m_head = NULL;
2096 				return (ENOBUFS);
2097 			}
2098 			/*
2099 			 * Due to strict adherence of Microsoft NDIS
2100 			 * Large Send specification, hardware expects
2101 			 * a pseudo TCP checksum inserted by upper
2102 			 * stack. Unfortunately the pseudo TCP
2103 			 * checksum that NDIS refers to does not include
2104 			 * TCP payload length so driver should recompute
2105 			 * the pseudo checksum here. Hopefully this
2106 			 * wouldn't be much burden on modern CPUs.
2107 			 *
2108 			 * Reset IP checksum and recompute TCP pseudo
2109 			 * checksum as NDIS specification said.
2110 			 */
2111 			ip = (struct ip *)(mtod(m, char *) + ip_off);
2112 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
2113 			ip->ip_sum = 0;
2114 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
2115 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
2116 		}
2117 		*m_head = m;
2118 	}
2119 
2120 	prod = sc->alc_cdata.alc_tx_prod;
2121 	txd = &sc->alc_cdata.alc_txdesc[prod];
2122 	txd_last = txd;
2123 	map = txd->tx_dmamap;
2124 
2125 	error = bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_tx_tag, map,
2126 	    *m_head, txsegs, &nsegs, 0);
2127 	if (error == EFBIG) {
2128 		m = m_collapse(*m_head, M_DONTWAIT, ALC_MAXTXSEGS);
2129 		if (m == NULL) {
2130 			m_freem(*m_head);
2131 			*m_head = NULL;
2132 			return (ENOMEM);
2133 		}
2134 		*m_head = m;
2135 		error = bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_tx_tag, map,
2136 		    *m_head, txsegs, &nsegs, 0);
2137 		if (error != 0) {
2138 			m_freem(*m_head);
2139 			*m_head = NULL;
2140 			return (error);
2141 		}
2142 	} else if (error != 0)
2143 		return (error);
2144 	if (nsegs == 0) {
2145 		m_freem(*m_head);
2146 		*m_head = NULL;
2147 		return (EIO);
2148 	}
2149 
2150 	/* Check descriptor overrun. */
2151 	if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
2152 		bus_dmamap_unload(sc->alc_cdata.alc_tx_tag, map);
2153 		return (ENOBUFS);
2154 	}
2155 	bus_dmamap_sync(sc->alc_cdata.alc_tx_tag, map, BUS_DMASYNC_PREWRITE);
2156 
2157 	m = *m_head;
2158 	cflags = TD_ETHERNET;
2159 	vtag = 0;
2160 	desc = NULL;
2161 	idx = 0;
2162 	/* Configure VLAN hardware tag insertion. */
2163 	if ((m->m_flags & M_VLANTAG) != 0) {
2164 		vtag = htons(m->m_pkthdr.ether_vtag);
2165 		vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
2166 		cflags |= TD_INS_VLAN_TAG;
2167 	}
2168 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2169 		/* Request TSO and set MSS. */
2170 		cflags |= TD_TSO | TD_TSO_DESCV1;
2171 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << TD_MSS_SHIFT) &
2172 		    TD_MSS_MASK;
2173 		/* Set TCP header offset. */
2174 		cflags |= (poff << TD_TCPHDR_OFFSET_SHIFT) &
2175 		    TD_TCPHDR_OFFSET_MASK;
2176 		/*
2177 		 * AR813x/AR815x requires the first buffer should
2178 		 * only hold IP/TCP header data. Payload should
2179 		 * be handled in other descriptors.
2180 		 */
2181 		hdrlen = poff + (tcp->th_off << 2);
2182 		desc = &sc->alc_rdata.alc_tx_ring[prod];
2183 		desc->len = htole32(TX_BYTES(hdrlen | vtag));
2184 		desc->flags = htole32(cflags);
2185 		desc->addr = htole64(txsegs[0].ds_addr);
2186 		sc->alc_cdata.alc_tx_cnt++;
2187 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2188 		if (m->m_len - hdrlen > 0) {
2189 			/* Handle remaining payload of the first fragment. */
2190 			desc = &sc->alc_rdata.alc_tx_ring[prod];
2191 			desc->len = htole32(TX_BYTES((m->m_len - hdrlen) |
2192 			    vtag));
2193 			desc->flags = htole32(cflags);
2194 			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
2195 			sc->alc_cdata.alc_tx_cnt++;
2196 			ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2197 		}
2198 		/* Handle remaining fragments. */
2199 		idx = 1;
2200 	} else if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
2201 		/* Configure Tx checksum offload. */
2202 #ifdef ALC_USE_CUSTOM_CSUM
2203 		cflags |= TD_CUSTOM_CSUM;
2204 		/* Set checksum start offset. */
2205 		cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
2206 		    TD_PLOAD_OFFSET_MASK;
2207 		/* Set checksum insertion position of TCP/UDP. */
2208 		cflags |= (((poff + m->m_pkthdr.csum_data) >> 1) <<
2209 		    TD_CUSTOM_CSUM_OFFSET_SHIFT) & TD_CUSTOM_CSUM_OFFSET_MASK;
2210 #else
2211 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
2212 			cflags |= TD_IPCSUM;
2213 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2214 			cflags |= TD_TCPCSUM;
2215 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2216 			cflags |= TD_UDPCSUM;
2217 		/* Set TCP/UDP header offset. */
2218 		cflags |= (poff << TD_L4HDR_OFFSET_SHIFT) &
2219 		    TD_L4HDR_OFFSET_MASK;
2220 #endif
2221 	}
2222 	for (; idx < nsegs; idx++) {
2223 		desc = &sc->alc_rdata.alc_tx_ring[prod];
2224 		desc->len = htole32(TX_BYTES(txsegs[idx].ds_len) | vtag);
2225 		desc->flags = htole32(cflags);
2226 		desc->addr = htole64(txsegs[idx].ds_addr);
2227 		sc->alc_cdata.alc_tx_cnt++;
2228 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2229 	}
2230 	/* Update producer index. */
2231 	sc->alc_cdata.alc_tx_prod = prod;
2232 
2233 	/* Finally set EOP on the last descriptor. */
2234 	prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
2235 	desc = &sc->alc_rdata.alc_tx_ring[prod];
2236 	desc->flags |= htole32(TD_EOP);
2237 
2238 	/* Swap dmamap of the first and the last. */
2239 	txd = &sc->alc_cdata.alc_txdesc[prod];
2240 	map = txd_last->tx_dmamap;
2241 	txd_last->tx_dmamap = txd->tx_dmamap;
2242 	txd->tx_dmamap = map;
2243 	txd->tx_m = m;
2244 
2245 	return (0);
2246 }
2247 
2248 static void
2249 alc_start(struct ifnet *ifp)
2250 {
2251 	struct alc_softc *sc;
2252 
2253 	sc = ifp->if_softc;
2254 	ALC_LOCK(sc);
2255 	alc_start_locked(ifp);
2256 	ALC_UNLOCK(sc);
2257 }
2258 
2259 static void
2260 alc_start_locked(struct ifnet *ifp)
2261 {
2262 	struct alc_softc *sc;
2263 	struct mbuf *m_head;
2264 	int enq;
2265 
2266 	sc = ifp->if_softc;
2267 
2268 	ALC_LOCK_ASSERT(sc);
2269 
2270 	/* Reclaim transmitted frames. */
2271 	if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
2272 		alc_txeof(sc);
2273 
2274 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2275 	    IFF_DRV_RUNNING || (sc->alc_flags & ALC_FLAG_LINK) == 0)
2276 		return;
2277 
2278 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
2279 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2280 		if (m_head == NULL)
2281 			break;
2282 		/*
2283 		 * Pack the data into the transmit ring. If we
2284 		 * don't have room, set the OACTIVE flag and wait
2285 		 * for the NIC to drain the ring.
2286 		 */
2287 		if (alc_encap(sc, &m_head)) {
2288 			if (m_head == NULL)
2289 				break;
2290 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2291 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2292 			break;
2293 		}
2294 
2295 		enq++;
2296 		/*
2297 		 * If there's a BPF listener, bounce a copy of this frame
2298 		 * to him.
2299 		 */
2300 		ETHER_BPF_MTAP(ifp, m_head);
2301 	}
2302 
2303 	if (enq > 0) {
2304 		/* Sync descriptors. */
2305 		bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
2306 		    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
2307 		/* Kick. Assume we're using normal Tx priority queue. */
2308 		CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
2309 		    (sc->alc_cdata.alc_tx_prod <<
2310 		    MBOX_TD_PROD_LO_IDX_SHIFT) &
2311 		    MBOX_TD_PROD_LO_IDX_MASK);
2312 		/* Set a timeout in case the chip goes out to lunch. */
2313 		sc->alc_watchdog_timer = ALC_TX_TIMEOUT;
2314 	}
2315 }
2316 
2317 static void
2318 alc_watchdog(struct alc_softc *sc)
2319 {
2320 	struct ifnet *ifp;
2321 
2322 	ALC_LOCK_ASSERT(sc);
2323 
2324 	if (sc->alc_watchdog_timer == 0 || --sc->alc_watchdog_timer)
2325 		return;
2326 
2327 	ifp = sc->alc_ifp;
2328 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2329 		if_printf(sc->alc_ifp, "watchdog timeout (lost link)\n");
2330 		ifp->if_oerrors++;
2331 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2332 		alc_init_locked(sc);
2333 		return;
2334 	}
2335 	if_printf(sc->alc_ifp, "watchdog timeout -- resetting\n");
2336 	ifp->if_oerrors++;
2337 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2338 	alc_init_locked(sc);
2339 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2340 		alc_start_locked(ifp);
2341 }
2342 
2343 static int
2344 alc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2345 {
2346 	struct alc_softc *sc;
2347 	struct ifreq *ifr;
2348 	struct mii_data *mii;
2349 	int error, mask;
2350 
2351 	sc = ifp->if_softc;
2352 	ifr = (struct ifreq *)data;
2353 	error = 0;
2354 	switch (cmd) {
2355 	case SIOCSIFMTU:
2356 		if (ifr->ifr_mtu < ETHERMIN ||
2357 		    ifr->ifr_mtu > (sc->alc_ident->max_framelen -
2358 		    sizeof(struct ether_vlan_header) - ETHER_CRC_LEN) ||
2359 		    ((sc->alc_flags & ALC_FLAG_JUMBO) == 0 &&
2360 		    ifr->ifr_mtu > ETHERMTU))
2361 			error = EINVAL;
2362 		else if (ifp->if_mtu != ifr->ifr_mtu) {
2363 			ALC_LOCK(sc);
2364 			ifp->if_mtu = ifr->ifr_mtu;
2365 			/* AR813x/AR815x has 13 bits MSS field. */
2366 			if (ifp->if_mtu > ALC_TSO_MTU &&
2367 			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2368 				ifp->if_capenable &= ~IFCAP_TSO4;
2369 				ifp->if_hwassist &= ~CSUM_TSO;
2370 				VLAN_CAPABILITIES(ifp);
2371 			}
2372 			ALC_UNLOCK(sc);
2373 		}
2374 		break;
2375 	case SIOCSIFFLAGS:
2376 		ALC_LOCK(sc);
2377 		if ((ifp->if_flags & IFF_UP) != 0) {
2378 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2379 			    ((ifp->if_flags ^ sc->alc_if_flags) &
2380 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2381 				alc_rxfilter(sc);
2382 			else
2383 				alc_init_locked(sc);
2384 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2385 			alc_stop(sc);
2386 		sc->alc_if_flags = ifp->if_flags;
2387 		ALC_UNLOCK(sc);
2388 		break;
2389 	case SIOCADDMULTI:
2390 	case SIOCDELMULTI:
2391 		ALC_LOCK(sc);
2392 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2393 			alc_rxfilter(sc);
2394 		ALC_UNLOCK(sc);
2395 		break;
2396 	case SIOCSIFMEDIA:
2397 	case SIOCGIFMEDIA:
2398 		mii = device_get_softc(sc->alc_miibus);
2399 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2400 		break;
2401 	case SIOCSIFCAP:
2402 		ALC_LOCK(sc);
2403 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2404 		if ((mask & IFCAP_TXCSUM) != 0 &&
2405 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2406 			ifp->if_capenable ^= IFCAP_TXCSUM;
2407 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2408 				ifp->if_hwassist |= ALC_CSUM_FEATURES;
2409 			else
2410 				ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
2411 		}
2412 		if ((mask & IFCAP_TSO4) != 0 &&
2413 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2414 			ifp->if_capenable ^= IFCAP_TSO4;
2415 			if ((ifp->if_capenable & IFCAP_TSO4) != 0) {
2416 				/* AR813x/AR815x has 13 bits MSS field. */
2417 				if (ifp->if_mtu > ALC_TSO_MTU) {
2418 					ifp->if_capenable &= ~IFCAP_TSO4;
2419 					ifp->if_hwassist &= ~CSUM_TSO;
2420 				} else
2421 					ifp->if_hwassist |= CSUM_TSO;
2422 			} else
2423 				ifp->if_hwassist &= ~CSUM_TSO;
2424 		}
2425 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2426 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2427 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2428 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2429 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2430 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2431 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2432 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2433 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2434 			alc_rxvlan(sc);
2435 		}
2436 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2437 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2438 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2439 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2440 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2441 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2442 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2443 			ifp->if_capenable &=
2444 			    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
2445 		ALC_UNLOCK(sc);
2446 		VLAN_CAPABILITIES(ifp);
2447 		break;
2448 	default:
2449 		error = ether_ioctl(ifp, cmd, data);
2450 		break;
2451 	}
2452 
2453 	return (error);
2454 }
2455 
2456 static void
2457 alc_mac_config(struct alc_softc *sc)
2458 {
2459 	struct mii_data *mii;
2460 	uint32_t reg;
2461 
2462 	ALC_LOCK_ASSERT(sc);
2463 
2464 	mii = device_get_softc(sc->alc_miibus);
2465 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
2466 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2467 	    MAC_CFG_SPEED_MASK);
2468 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
2469 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
2470 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2)
2471 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
2472 	/* Reprogram MAC with resolved speed/duplex. */
2473 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2474 	case IFM_10_T:
2475 	case IFM_100_TX:
2476 		reg |= MAC_CFG_SPEED_10_100;
2477 		break;
2478 	case IFM_1000_T:
2479 		reg |= MAC_CFG_SPEED_1000;
2480 		break;
2481 	}
2482 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2483 		reg |= MAC_CFG_FULL_DUPLEX;
2484 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2485 			reg |= MAC_CFG_TX_FC;
2486 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2487 			reg |= MAC_CFG_RX_FC;
2488 	}
2489 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2490 }
2491 
2492 static void
2493 alc_stats_clear(struct alc_softc *sc)
2494 {
2495 	struct smb sb, *smb;
2496 	uint32_t *reg;
2497 	int i;
2498 
2499 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2500 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2501 		    sc->alc_cdata.alc_smb_map,
2502 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2503 		smb = sc->alc_rdata.alc_smb;
2504 		/* Update done, clear. */
2505 		smb->updated = 0;
2506 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2507 		    sc->alc_cdata.alc_smb_map,
2508 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2509 	} else {
2510 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2511 		    reg++) {
2512 			CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2513 			i += sizeof(uint32_t);
2514 		}
2515 		/* Read Tx statistics. */
2516 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2517 		    reg++) {
2518 			CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2519 			i += sizeof(uint32_t);
2520 		}
2521 	}
2522 }
2523 
2524 static void
2525 alc_stats_update(struct alc_softc *sc)
2526 {
2527 	struct alc_hw_stats *stat;
2528 	struct smb sb, *smb;
2529 	struct ifnet *ifp;
2530 	uint32_t *reg;
2531 	int i;
2532 
2533 	ALC_LOCK_ASSERT(sc);
2534 
2535 	ifp = sc->alc_ifp;
2536 	stat = &sc->alc_stats;
2537 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2538 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2539 		    sc->alc_cdata.alc_smb_map,
2540 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2541 		smb = sc->alc_rdata.alc_smb;
2542 		if (smb->updated == 0)
2543 			return;
2544 	} else {
2545 		smb = &sb;
2546 		/* Read Rx statistics. */
2547 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2548 		    reg++) {
2549 			*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2550 			i += sizeof(uint32_t);
2551 		}
2552 		/* Read Tx statistics. */
2553 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2554 		    reg++) {
2555 			*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2556 			i += sizeof(uint32_t);
2557 		}
2558 	}
2559 
2560 	/* Rx stats. */
2561 	stat->rx_frames += smb->rx_frames;
2562 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2563 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2564 	stat->rx_pause_frames += smb->rx_pause_frames;
2565 	stat->rx_control_frames += smb->rx_control_frames;
2566 	stat->rx_crcerrs += smb->rx_crcerrs;
2567 	stat->rx_lenerrs += smb->rx_lenerrs;
2568 	stat->rx_bytes += smb->rx_bytes;
2569 	stat->rx_runts += smb->rx_runts;
2570 	stat->rx_fragments += smb->rx_fragments;
2571 	stat->rx_pkts_64 += smb->rx_pkts_64;
2572 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2573 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2574 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2575 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2576 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2577 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2578 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2579 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2580 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2581 	stat->rx_alignerrs += smb->rx_alignerrs;
2582 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2583 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2584 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2585 
2586 	/* Tx stats. */
2587 	stat->tx_frames += smb->tx_frames;
2588 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2589 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2590 	stat->tx_pause_frames += smb->tx_pause_frames;
2591 	stat->tx_excess_defer += smb->tx_excess_defer;
2592 	stat->tx_control_frames += smb->tx_control_frames;
2593 	stat->tx_deferred += smb->tx_deferred;
2594 	stat->tx_bytes += smb->tx_bytes;
2595 	stat->tx_pkts_64 += smb->tx_pkts_64;
2596 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2597 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2598 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2599 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2600 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2601 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2602 	stat->tx_single_colls += smb->tx_single_colls;
2603 	stat->tx_multi_colls += smb->tx_multi_colls;
2604 	stat->tx_late_colls += smb->tx_late_colls;
2605 	stat->tx_excess_colls += smb->tx_excess_colls;
2606 	stat->tx_abort += smb->tx_abort;
2607 	stat->tx_underrun += smb->tx_underrun;
2608 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2609 	stat->tx_lenerrs += smb->tx_lenerrs;
2610 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2611 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2612 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2613 
2614 	/* Update counters in ifnet. */
2615 	ifp->if_opackets += smb->tx_frames;
2616 
2617 	ifp->if_collisions += smb->tx_single_colls +
2618 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2619 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
2620 
2621 	/*
2622 	 * XXX
2623 	 * tx_pkts_truncated counter looks suspicious. It constantly
2624 	 * increments with no sign of Tx errors. This may indicate
2625 	 * the counter name is not correct one so I've removed the
2626 	 * counter in output errors.
2627 	 */
2628 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
2629 	    smb->tx_underrun;
2630 
2631 	ifp->if_ipackets += smb->rx_frames;
2632 
2633 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2634 	    smb->rx_runts + smb->rx_pkts_truncated +
2635 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2636 	    smb->rx_alignerrs;
2637 
2638 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2639 		/* Update done, clear. */
2640 		smb->updated = 0;
2641 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2642 		    sc->alc_cdata.alc_smb_map,
2643 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2644 	}
2645 }
2646 
2647 static int
2648 alc_intr(void *arg)
2649 {
2650 	struct alc_softc *sc;
2651 	uint32_t status;
2652 
2653 	sc = (struct alc_softc *)arg;
2654 
2655 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
2656 	if ((status & ALC_INTRS) == 0)
2657 		return (FILTER_STRAY);
2658 	/* Disable interrupts. */
2659 	CSR_WRITE_4(sc, ALC_INTR_STATUS, INTR_DIS_INT);
2660 	taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task);
2661 
2662 	return (FILTER_HANDLED);
2663 }
2664 
2665 static void
2666 alc_int_task(void *arg, int pending)
2667 {
2668 	struct alc_softc *sc;
2669 	struct ifnet *ifp;
2670 	uint32_t status;
2671 	int more;
2672 
2673 	sc = (struct alc_softc *)arg;
2674 	ifp = sc->alc_ifp;
2675 
2676 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
2677 	ALC_LOCK(sc);
2678 	if (sc->alc_morework != 0) {
2679 		sc->alc_morework = 0;
2680 		status |= INTR_RX_PKT;
2681 	}
2682 	if ((status & ALC_INTRS) == 0)
2683 		goto done;
2684 
2685 	/* Acknowledge interrupts but still disable interrupts. */
2686 	CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
2687 
2688 	more = 0;
2689 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2690 		if ((status & INTR_RX_PKT) != 0) {
2691 			more = alc_rxintr(sc, sc->alc_process_limit);
2692 			if (more == EAGAIN)
2693 				sc->alc_morework = 1;
2694 			else if (more == EIO) {
2695 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2696 				alc_init_locked(sc);
2697 				ALC_UNLOCK(sc);
2698 				return;
2699 			}
2700 		}
2701 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
2702 		    INTR_TXQ_TO_RST)) != 0) {
2703 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2704 				device_printf(sc->alc_dev,
2705 				    "DMA read error! -- resetting\n");
2706 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2707 				device_printf(sc->alc_dev,
2708 				    "DMA write error! -- resetting\n");
2709 			if ((status & INTR_TXQ_TO_RST) != 0)
2710 				device_printf(sc->alc_dev,
2711 				    "TxQ reset! -- resetting\n");
2712 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2713 			alc_init_locked(sc);
2714 			ALC_UNLOCK(sc);
2715 			return;
2716 		}
2717 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2718 		    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2719 			alc_start_locked(ifp);
2720 	}
2721 
2722 	if (more == EAGAIN ||
2723 	    (CSR_READ_4(sc, ALC_INTR_STATUS) & ALC_INTRS) != 0) {
2724 		ALC_UNLOCK(sc);
2725 		taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task);
2726 		return;
2727 	}
2728 
2729 done:
2730 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2731 		/* Re-enable interrupts if we're running. */
2732 		CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
2733 	}
2734 	ALC_UNLOCK(sc);
2735 }
2736 
2737 static void
2738 alc_txeof(struct alc_softc *sc)
2739 {
2740 	struct ifnet *ifp;
2741 	struct alc_txdesc *txd;
2742 	uint32_t cons, prod;
2743 	int prog;
2744 
2745 	ALC_LOCK_ASSERT(sc);
2746 
2747 	ifp = sc->alc_ifp;
2748 
2749 	if (sc->alc_cdata.alc_tx_cnt == 0)
2750 		return;
2751 	bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
2752 	    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_POSTWRITE);
2753 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2754 		bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
2755 		    sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_POSTREAD);
2756 		prod = sc->alc_rdata.alc_cmb->cons;
2757 	} else
2758 		prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
2759 	/* Assume we're using normal Tx priority queue. */
2760 	prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
2761 	    MBOX_TD_CONS_LO_IDX_SHIFT;
2762 	cons = sc->alc_cdata.alc_tx_cons;
2763 	/*
2764 	 * Go through our Tx list and free mbufs for those
2765 	 * frames which have been transmitted.
2766 	 */
2767 	for (prog = 0; cons != prod; prog++,
2768 	    ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
2769 		if (sc->alc_cdata.alc_tx_cnt <= 0)
2770 			break;
2771 		prog++;
2772 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2773 		sc->alc_cdata.alc_tx_cnt--;
2774 		txd = &sc->alc_cdata.alc_txdesc[cons];
2775 		if (txd->tx_m != NULL) {
2776 			/* Reclaim transmitted mbufs. */
2777 			bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
2778 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2779 			bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
2780 			    txd->tx_dmamap);
2781 			m_freem(txd->tx_m);
2782 			txd->tx_m = NULL;
2783 		}
2784 	}
2785 
2786 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2787 		bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
2788 		    sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_PREREAD);
2789 	sc->alc_cdata.alc_tx_cons = cons;
2790 	/*
2791 	 * Unarm watchdog timer only when there is no pending
2792 	 * frames in Tx queue.
2793 	 */
2794 	if (sc->alc_cdata.alc_tx_cnt == 0)
2795 		sc->alc_watchdog_timer = 0;
2796 }
2797 
2798 static int
2799 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd)
2800 {
2801 	struct mbuf *m;
2802 	bus_dma_segment_t segs[1];
2803 	bus_dmamap_t map;
2804 	int nsegs;
2805 
2806 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2807 	if (m == NULL)
2808 		return (ENOBUFS);
2809 	m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
2810 #ifndef __NO_STRICT_ALIGNMENT
2811 	m_adj(m, sizeof(uint64_t));
2812 #endif
2813 
2814 	if (bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_rx_tag,
2815 	    sc->alc_cdata.alc_rx_sparemap, m, segs, &nsegs, 0) != 0) {
2816 		m_freem(m);
2817 		return (ENOBUFS);
2818 	}
2819 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2820 
2821 	if (rxd->rx_m != NULL) {
2822 		bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
2823 		    BUS_DMASYNC_POSTREAD);
2824 		bus_dmamap_unload(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap);
2825 	}
2826 	map = rxd->rx_dmamap;
2827 	rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
2828 	sc->alc_cdata.alc_rx_sparemap = map;
2829 	bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
2830 	    BUS_DMASYNC_PREREAD);
2831 	rxd->rx_m = m;
2832 	rxd->rx_desc->addr = htole64(segs[0].ds_addr);
2833 	return (0);
2834 }
2835 
2836 static int
2837 alc_rxintr(struct alc_softc *sc, int count)
2838 {
2839 	struct ifnet *ifp;
2840 	struct rx_rdesc *rrd;
2841 	uint32_t nsegs, status;
2842 	int rr_cons, prog;
2843 
2844 	bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
2845 	    sc->alc_cdata.alc_rr_ring_map,
2846 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2847 	bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
2848 	    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2849 	rr_cons = sc->alc_cdata.alc_rr_cons;
2850 	ifp = sc->alc_ifp;
2851 	for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;) {
2852 		if (count-- <= 0)
2853 			break;
2854 		rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
2855 		status = le32toh(rrd->status);
2856 		if ((status & RRD_VALID) == 0)
2857 			break;
2858 		nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
2859 		if (nsegs == 0) {
2860 			/* This should not happen! */
2861 			device_printf(sc->alc_dev,
2862 			    "unexpected segment count -- resetting\n");
2863 			return (EIO);
2864 		}
2865 		alc_rxeof(sc, rrd);
2866 		/* Clear Rx return status. */
2867 		rrd->status = 0;
2868 		ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
2869 		sc->alc_cdata.alc_rx_cons += nsegs;
2870 		sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
2871 		prog += nsegs;
2872 	}
2873 
2874 	if (prog > 0) {
2875 		/* Update the consumer index. */
2876 		sc->alc_cdata.alc_rr_cons = rr_cons;
2877 		/* Sync Rx return descriptors. */
2878 		bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
2879 		    sc->alc_cdata.alc_rr_ring_map,
2880 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2881 		/*
2882 		 * Sync updated Rx descriptors such that controller see
2883 		 * modified buffer addresses.
2884 		 */
2885 		bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
2886 		    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
2887 		/*
2888 		 * Let controller know availability of new Rx buffers.
2889 		 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
2890 		 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
2891 		 * only when Rx buffer pre-fetching is required. In
2892 		 * addition we already set ALC_RX_RD_FREE_THRESH to
2893 		 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
2894 		 * it still seems that pre-fetching needs more
2895 		 * experimentation.
2896 		 */
2897 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
2898 		    sc->alc_cdata.alc_rx_cons);
2899 	}
2900 
2901 	return (count > 0 ? 0 : EAGAIN);
2902 }
2903 
2904 #ifndef __NO_STRICT_ALIGNMENT
2905 static struct mbuf *
2906 alc_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2907 {
2908 	struct mbuf *n;
2909         int i;
2910         uint16_t *src, *dst;
2911 
2912 	src = mtod(m, uint16_t *);
2913 	dst = src - 3;
2914 
2915 	if (m->m_next == NULL) {
2916 		for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2917 			*dst++ = *src++;
2918 		m->m_data -= 6;
2919 		return (m);
2920 	}
2921 	/*
2922 	 * Append a new mbuf to received mbuf chain and copy ethernet
2923 	 * header from the mbuf chain. This can save lots of CPU
2924 	 * cycles for jumbo frame.
2925 	 */
2926 	MGETHDR(n, M_DONTWAIT, MT_DATA);
2927 	if (n == NULL) {
2928 		ifp->if_iqdrops++;
2929 		m_freem(m);
2930 		return (NULL);
2931 	}
2932 	bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2933 	m->m_data += ETHER_HDR_LEN;
2934 	m->m_len -= ETHER_HDR_LEN;
2935 	n->m_len = ETHER_HDR_LEN;
2936 	M_MOVE_PKTHDR(n, m);
2937 	n->m_next = m;
2938 	return (n);
2939 }
2940 #endif
2941 
2942 /* Receive a frame. */
2943 static void
2944 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
2945 {
2946 	struct alc_rxdesc *rxd;
2947 	struct ifnet *ifp;
2948 	struct mbuf *mp, *m;
2949 	uint32_t rdinfo, status, vtag;
2950 	int count, nsegs, rx_cons;
2951 
2952 	ifp = sc->alc_ifp;
2953 	status = le32toh(rrd->status);
2954 	rdinfo = le32toh(rrd->rdinfo);
2955 	rx_cons = RRD_RD_IDX(rdinfo);
2956 	nsegs = RRD_RD_CNT(rdinfo);
2957 
2958 	sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
2959 	if ((status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) != 0) {
2960 		/*
2961 		 * We want to pass the following frames to upper
2962 		 * layer regardless of error status of Rx return
2963 		 * ring.
2964 		 *
2965 		 *  o IP/TCP/UDP checksum is bad.
2966 		 *  o frame length and protocol specific length
2967 		 *     does not match.
2968 		 *
2969 		 *  Force network stack compute checksum for
2970 		 *  errored frames.
2971 		 */
2972 		status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
2973 		if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN |
2974 		    RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0)
2975 			return;
2976 	}
2977 
2978 	for (count = 0; count < nsegs; count++,
2979 	    ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
2980 		rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
2981 		mp = rxd->rx_m;
2982 		/* Add a new receive buffer to the ring. */
2983 		if (alc_newbuf(sc, rxd) != 0) {
2984 			ifp->if_iqdrops++;
2985 			/* Reuse Rx buffers. */
2986 			if (sc->alc_cdata.alc_rxhead != NULL)
2987 				m_freem(sc->alc_cdata.alc_rxhead);
2988 			break;
2989 		}
2990 
2991 		/*
2992 		 * Assume we've received a full sized frame.
2993 		 * Actual size is fixed when we encounter the end of
2994 		 * multi-segmented frame.
2995 		 */
2996 		mp->m_len = sc->alc_buf_size;
2997 
2998 		/* Chain received mbufs. */
2999 		if (sc->alc_cdata.alc_rxhead == NULL) {
3000 			sc->alc_cdata.alc_rxhead = mp;
3001 			sc->alc_cdata.alc_rxtail = mp;
3002 		} else {
3003 			mp->m_flags &= ~M_PKTHDR;
3004 			sc->alc_cdata.alc_rxprev_tail =
3005 			    sc->alc_cdata.alc_rxtail;
3006 			sc->alc_cdata.alc_rxtail->m_next = mp;
3007 			sc->alc_cdata.alc_rxtail = mp;
3008 		}
3009 
3010 		if (count == nsegs - 1) {
3011 			/* Last desc. for this frame. */
3012 			m = sc->alc_cdata.alc_rxhead;
3013 			m->m_flags |= M_PKTHDR;
3014 			/*
3015 			 * It seems that L1C/L2C controller has no way
3016 			 * to tell hardware to strip CRC bytes.
3017 			 */
3018 			m->m_pkthdr.len =
3019 			    sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
3020 			if (nsegs > 1) {
3021 				/* Set last mbuf size. */
3022 				mp->m_len = sc->alc_cdata.alc_rxlen -
3023 				    (nsegs - 1) * sc->alc_buf_size;
3024 				/* Remove the CRC bytes in chained mbufs. */
3025 				if (mp->m_len <= ETHER_CRC_LEN) {
3026 					sc->alc_cdata.alc_rxtail =
3027 					    sc->alc_cdata.alc_rxprev_tail;
3028 					sc->alc_cdata.alc_rxtail->m_len -=
3029 					    (ETHER_CRC_LEN - mp->m_len);
3030 					sc->alc_cdata.alc_rxtail->m_next = NULL;
3031 					m_freem(mp);
3032 				} else {
3033 					mp->m_len -= ETHER_CRC_LEN;
3034 				}
3035 			} else
3036 				m->m_len = m->m_pkthdr.len;
3037 			m->m_pkthdr.rcvif = ifp;
3038 			/*
3039 			 * Due to hardware bugs, Rx checksum offloading
3040 			 * was intentionally disabled.
3041 			 */
3042 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
3043 			    (status & RRD_VLAN_TAG) != 0) {
3044 				vtag = RRD_VLAN(le32toh(rrd->vtag));
3045 				m->m_pkthdr.ether_vtag = ntohs(vtag);
3046 				m->m_flags |= M_VLANTAG;
3047 			}
3048 #ifndef __NO_STRICT_ALIGNMENT
3049 			m = alc_fixup_rx(ifp, m);
3050 			if (m != NULL)
3051 #endif
3052 			{
3053 			/* Pass it on. */
3054 			ALC_UNLOCK(sc);
3055 			(*ifp->if_input)(ifp, m);
3056 			ALC_LOCK(sc);
3057 			}
3058 		}
3059 	}
3060 	/* Reset mbuf chains. */
3061 	ALC_RXCHAIN_RESET(sc);
3062 }
3063 
3064 static void
3065 alc_tick(void *arg)
3066 {
3067 	struct alc_softc *sc;
3068 	struct mii_data *mii;
3069 
3070 	sc = (struct alc_softc *)arg;
3071 
3072 	ALC_LOCK_ASSERT(sc);
3073 
3074 	mii = device_get_softc(sc->alc_miibus);
3075 	mii_tick(mii);
3076 	alc_stats_update(sc);
3077 	/*
3078 	 * alc(4) does not rely on Tx completion interrupts to reclaim
3079 	 * transferred buffers. Instead Tx completion interrupts are
3080 	 * used to hint for scheduling Tx task. So it's necessary to
3081 	 * release transmitted buffers by kicking Tx completion
3082 	 * handler. This limits the maximum reclamation delay to a hz.
3083 	 */
3084 	alc_txeof(sc);
3085 	alc_watchdog(sc);
3086 	callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
3087 }
3088 
3089 static void
3090 alc_reset(struct alc_softc *sc)
3091 {
3092 	uint32_t reg;
3093 	int i;
3094 
3095 	reg = CSR_READ_4(sc, ALC_MASTER_CFG) & 0xFFFF;
3096 	reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
3097 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
3098 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
3099 		DELAY(10);
3100 		if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
3101 			break;
3102 	}
3103 	if (i == 0)
3104 		device_printf(sc->alc_dev, "master reset timeout!\n");
3105 
3106 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
3107 		if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0)
3108 			break;
3109 		DELAY(10);
3110 	}
3111 
3112 	if (i == 0)
3113 		device_printf(sc->alc_dev, "reset timeout(0x%08x)!\n", reg);
3114 }
3115 
3116 static void
3117 alc_init(void *xsc)
3118 {
3119 	struct alc_softc *sc;
3120 
3121 	sc = (struct alc_softc *)xsc;
3122 	ALC_LOCK(sc);
3123 	alc_init_locked(sc);
3124 	ALC_UNLOCK(sc);
3125 }
3126 
3127 static void
3128 alc_init_locked(struct alc_softc *sc)
3129 {
3130 	struct ifnet *ifp;
3131 	struct mii_data *mii;
3132 	uint8_t eaddr[ETHER_ADDR_LEN];
3133 	bus_addr_t paddr;
3134 	uint32_t reg, rxf_hi, rxf_lo;
3135 
3136 	ALC_LOCK_ASSERT(sc);
3137 
3138 	ifp = sc->alc_ifp;
3139 	mii = device_get_softc(sc->alc_miibus);
3140 
3141 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3142 		return;
3143 	/*
3144 	 * Cancel any pending I/O.
3145 	 */
3146 	alc_stop(sc);
3147 	/*
3148 	 * Reset the chip to a known state.
3149 	 */
3150 	alc_reset(sc);
3151 
3152 	/* Initialize Rx descriptors. */
3153 	if (alc_init_rx_ring(sc) != 0) {
3154 		device_printf(sc->alc_dev, "no memory for Rx buffers.\n");
3155 		alc_stop(sc);
3156 		return;
3157 	}
3158 	alc_init_rr_ring(sc);
3159 	alc_init_tx_ring(sc);
3160 	alc_init_cmb(sc);
3161 	alc_init_smb(sc);
3162 
3163 	/* Enable all clocks. */
3164 	CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0);
3165 
3166 	/* Reprogram the station address. */
3167 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3168 	CSR_WRITE_4(sc, ALC_PAR0,
3169 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
3170 	CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
3171 	/*
3172 	 * Clear WOL status and disable all WOL feature as WOL
3173 	 * would interfere Rx operation under normal environments.
3174 	 */
3175 	CSR_READ_4(sc, ALC_WOL_CFG);
3176 	CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
3177 	/* Set Tx descriptor base addresses. */
3178 	paddr = sc->alc_rdata.alc_tx_ring_paddr;
3179 	CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
3180 	CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
3181 	/* We don't use high priority ring. */
3182 	CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
3183 	/* Set Tx descriptor counter. */
3184 	CSR_WRITE_4(sc, ALC_TD_RING_CNT,
3185 	    (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
3186 	/* Set Rx descriptor base addresses. */
3187 	paddr = sc->alc_rdata.alc_rx_ring_paddr;
3188 	CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
3189 	CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
3190 	/* We use one Rx ring. */
3191 	CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
3192 	CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
3193 	CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
3194 	/* Set Rx descriptor counter. */
3195 	CSR_WRITE_4(sc, ALC_RD_RING_CNT,
3196 	    (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
3197 
3198 	/*
3199 	 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
3200 	 * if it do not fit the buffer size. Rx return descriptor holds
3201 	 * a counter that indicates how many fragments were made by the
3202 	 * hardware. The buffer size should be multiple of 8 bytes.
3203 	 * Since hardware has limit on the size of buffer size, always
3204 	 * use the maximum value.
3205 	 * For strict-alignment architectures make sure to reduce buffer
3206 	 * size by 8 bytes to make room for alignment fixup.
3207 	 */
3208 #ifndef __NO_STRICT_ALIGNMENT
3209 	sc->alc_buf_size = RX_BUF_SIZE_MAX - sizeof(uint64_t);
3210 #else
3211 	sc->alc_buf_size = RX_BUF_SIZE_MAX;
3212 #endif
3213 	CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
3214 
3215 	paddr = sc->alc_rdata.alc_rr_ring_paddr;
3216 	/* Set Rx return descriptor base addresses. */
3217 	CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
3218 	/* We use one Rx return ring. */
3219 	CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
3220 	CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
3221 	CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
3222 	/* Set Rx return descriptor counter. */
3223 	CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
3224 	    (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
3225 	paddr = sc->alc_rdata.alc_cmb_paddr;
3226 	CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
3227 	paddr = sc->alc_rdata.alc_smb_paddr;
3228 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
3229 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
3230 
3231 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) {
3232 		/* Reconfigure SRAM - Vendor magic. */
3233 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
3234 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
3235 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
3236 		CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
3237 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
3238 		CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
3239 		CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
3240 		CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
3241 	}
3242 
3243 	/* Tell hardware that we're ready to load DMA blocks. */
3244 	CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
3245 
3246 	/* Configure interrupt moderation timer. */
3247 	reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
3248 	reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
3249 	CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
3250 	/*
3251 	 * We don't want to automatic interrupt clear as task queue
3252 	 * for the interrupt should know interrupt status.
3253 	 */
3254 	reg = MASTER_SA_TIMER_ENB;
3255 	if (ALC_USECS(sc->alc_int_rx_mod) != 0)
3256 		reg |= MASTER_IM_RX_TIMER_ENB;
3257 	if (ALC_USECS(sc->alc_int_tx_mod) != 0)
3258 		reg |= MASTER_IM_TX_TIMER_ENB;
3259 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
3260 	/*
3261 	 * Disable interrupt re-trigger timer. We don't want automatic
3262 	 * re-triggering of un-ACKed interrupts.
3263 	 */
3264 	CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
3265 	/* Configure CMB. */
3266 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
3267 		CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
3268 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
3269 	} else
3270 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
3271 	/*
3272 	 * Hardware can be configured to issue SMB interrupt based
3273 	 * on programmed interval. Since there is a callout that is
3274 	 * invoked for every hz in driver we use that instead of
3275 	 * relying on periodic SMB interrupt.
3276 	 */
3277 	CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
3278 	/* Clear MAC statistics. */
3279 	alc_stats_clear(sc);
3280 
3281 	/*
3282 	 * Always use maximum frame size that controller can support.
3283 	 * Otherwise received frames that has larger frame length
3284 	 * than alc(4) MTU would be silently dropped in hardware. This
3285 	 * would make path-MTU discovery hard as sender wouldn't get
3286 	 * any responses from receiver. alc(4) supports
3287 	 * multi-fragmented frames on Rx path so it has no issue on
3288 	 * assembling fragmented frames. Using maximum frame size also
3289 	 * removes the need to reinitialize hardware when interface
3290 	 * MTU configuration was changed.
3291 	 *
3292 	 * Be conservative in what you do, be liberal in what you
3293 	 * accept from others - RFC 793.
3294 	 */
3295 	CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
3296 
3297 	/* Disable header split(?) */
3298 	CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
3299 
3300 	/* Configure IPG/IFG parameters. */
3301 	CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
3302 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
3303 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
3304 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
3305 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
3306 	/* Set parameters for half-duplex media. */
3307 	CSR_WRITE_4(sc, ALC_HDPX_CFG,
3308 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
3309 	    HDPX_CFG_LCOL_MASK) |
3310 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
3311 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
3312 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
3313 	    HDPX_CFG_ABEBT_MASK) |
3314 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
3315 	    HDPX_CFG_JAMIPG_MASK));
3316 	/*
3317 	 * Set TSO/checksum offload threshold. For frames that is
3318 	 * larger than this threshold, hardware wouldn't do
3319 	 * TSO/checksum offloading.
3320 	 */
3321 	CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH,
3322 	    (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
3323 	    TSO_OFFLOAD_THRESH_MASK);
3324 	/* Configure TxQ. */
3325 	reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
3326 	    TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
3327 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
3328 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2)
3329 		reg >>= 1;
3330 	reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
3331 	    TXQ_CFG_TD_BURST_MASK;
3332 	CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
3333 
3334 	/* Configure Rx free descriptor pre-fetching. */
3335 	CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
3336 	    ((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) &
3337 	    RX_RD_FREE_THRESH_HI_MASK) |
3338 	    ((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) &
3339 	    RX_RD_FREE_THRESH_LO_MASK));
3340 
3341 	/*
3342 	 * Configure flow control parameters.
3343 	 * XON  : 80% of Rx FIFO
3344 	 * XOFF : 30% of Rx FIFO
3345 	 */
3346 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 ||
3347 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132) {
3348 		reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
3349 		rxf_hi = (reg * 8) / 10;
3350 		rxf_lo = (reg * 3) / 10;
3351 		CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3352 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3353 		     RX_FIFO_PAUSE_THRESH_LO_MASK) |
3354 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3355 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
3356 	}
3357 
3358 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
3359 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2)
3360 		CSR_WRITE_4(sc, ALC_SERDES_LOCK,
3361 		    CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
3362 		    SERDES_PHY_CLK_SLOWDOWN);
3363 
3364 	/* Disable RSS until I understand L1C/L2C's RSS logic. */
3365 	CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
3366 	CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
3367 
3368 	/* Configure RxQ. */
3369 	reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
3370 	    RXQ_CFG_RD_BURST_MASK;
3371 	reg |= RXQ_CFG_RSS_MODE_DIS;
3372 	if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0)
3373 		reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
3374 	CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3375 
3376 	/* Configure DMA parameters. */
3377 	reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
3378 	reg |= sc->alc_rcb;
3379 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
3380 		reg |= DMA_CFG_CMB_ENB;
3381 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
3382 		reg |= DMA_CFG_SMB_ENB;
3383 	else
3384 		reg |= DMA_CFG_SMB_DIS;
3385 	reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
3386 	    DMA_CFG_RD_BURST_SHIFT;
3387 	reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
3388 	    DMA_CFG_WR_BURST_SHIFT;
3389 	reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
3390 	    DMA_CFG_RD_DELAY_CNT_MASK;
3391 	reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
3392 	    DMA_CFG_WR_DELAY_CNT_MASK;
3393 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3394 
3395 	/*
3396 	 * Configure Tx/Rx MACs.
3397 	 *  - Auto-padding for short frames.
3398 	 *  - Enable CRC generation.
3399 	 *  Actual reconfiguration of MAC for resolved speed/duplex
3400 	 *  is followed after detection of link establishment.
3401 	 *  AR813x/AR815x always does checksum computation regardless
3402 	 *  of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
3403 	 *  have bug in protocol field in Rx return structure so
3404 	 *  these controllers can't handle fragmented frames. Disable
3405 	 *  Rx checksum offloading until there is a newer controller
3406 	 *  that has sane implementation.
3407 	 */
3408 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
3409 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
3410 	    MAC_CFG_PREAMBLE_MASK);
3411 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
3412 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
3413 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2)
3414 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
3415 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
3416 		reg |= MAC_CFG_SPEED_10_100;
3417 	else
3418 		reg |= MAC_CFG_SPEED_1000;
3419 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3420 
3421 	/* Set up the receive filter. */
3422 	alc_rxfilter(sc);
3423 	alc_rxvlan(sc);
3424 
3425 	/* Acknowledge all pending interrupts and clear it. */
3426 	CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
3427 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3428 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
3429 
3430 	sc->alc_flags &= ~ALC_FLAG_LINK;
3431 	/* Switch to the current media. */
3432 	mii_mediachg(mii);
3433 
3434 	callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
3435 
3436 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3437 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3438 }
3439 
3440 static void
3441 alc_stop(struct alc_softc *sc)
3442 {
3443 	struct ifnet *ifp;
3444 	struct alc_txdesc *txd;
3445 	struct alc_rxdesc *rxd;
3446 	uint32_t reg;
3447 	int i;
3448 
3449 	ALC_LOCK_ASSERT(sc);
3450 	/*
3451 	 * Mark the interface down and cancel the watchdog timer.
3452 	 */
3453 	ifp = sc->alc_ifp;
3454 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3455 	sc->alc_flags &= ~ALC_FLAG_LINK;
3456 	callout_stop(&sc->alc_tick_ch);
3457 	sc->alc_watchdog_timer = 0;
3458 	alc_stats_update(sc);
3459 	/* Disable interrupts. */
3460 	CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
3461 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3462 	alc_stop_queue(sc);
3463 	/* Disable DMA. */
3464 	reg = CSR_READ_4(sc, ALC_DMA_CFG);
3465 	reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
3466 	reg |= DMA_CFG_SMB_DIS;
3467 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3468 	DELAY(1000);
3469 	/* Stop Rx/Tx MACs. */
3470 	alc_stop_mac(sc);
3471 	/* Disable interrupts which might be touched in taskq handler. */
3472 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3473 
3474 	/* Reclaim Rx buffers that have been processed. */
3475 	if (sc->alc_cdata.alc_rxhead != NULL)
3476 		m_freem(sc->alc_cdata.alc_rxhead);
3477 	ALC_RXCHAIN_RESET(sc);
3478 	/*
3479 	 * Free Tx/Rx mbufs still in the queues.
3480 	 */
3481 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3482 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3483 		if (rxd->rx_m != NULL) {
3484 			bus_dmamap_sync(sc->alc_cdata.alc_rx_tag,
3485 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3486 			bus_dmamap_unload(sc->alc_cdata.alc_rx_tag,
3487 			    rxd->rx_dmamap);
3488 			m_freem(rxd->rx_m);
3489 			rxd->rx_m = NULL;
3490 		}
3491 	}
3492 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3493 		txd = &sc->alc_cdata.alc_txdesc[i];
3494 		if (txd->tx_m != NULL) {
3495 			bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
3496 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3497 			bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
3498 			    txd->tx_dmamap);
3499 			m_freem(txd->tx_m);
3500 			txd->tx_m = NULL;
3501 		}
3502 	}
3503 }
3504 
3505 static void
3506 alc_stop_mac(struct alc_softc *sc)
3507 {
3508 	uint32_t reg;
3509 	int i;
3510 
3511 	ALC_LOCK_ASSERT(sc);
3512 
3513 	/* Disable Rx/Tx MAC. */
3514 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3515 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
3516 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
3517 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3518 	}
3519 	for (i = ALC_TIMEOUT; i > 0; i--) {
3520 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3521 		if (reg == 0)
3522 			break;
3523 		DELAY(10);
3524 	}
3525 	if (i == 0)
3526 		device_printf(sc->alc_dev,
3527 		    "could not disable Rx/Tx MAC(0x%08x)!\n", reg);
3528 }
3529 
3530 static void
3531 alc_start_queue(struct alc_softc *sc)
3532 {
3533 	uint32_t qcfg[] = {
3534 		0,
3535 		RXQ_CFG_QUEUE0_ENB,
3536 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
3537 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
3538 		RXQ_CFG_ENB
3539 	};
3540 	uint32_t cfg;
3541 
3542 	ALC_LOCK_ASSERT(sc);
3543 
3544 	/* Enable RxQ. */
3545 	cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
3546 	cfg &= ~RXQ_CFG_ENB;
3547 	cfg |= qcfg[1];
3548 	CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
3549 	/* Enable TxQ. */
3550 	cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
3551 	cfg |= TXQ_CFG_ENB;
3552 	CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
3553 }
3554 
3555 static void
3556 alc_stop_queue(struct alc_softc *sc)
3557 {
3558 	uint32_t reg;
3559 	int i;
3560 
3561 	ALC_LOCK_ASSERT(sc);
3562 
3563 	/* Disable RxQ. */
3564 	reg = CSR_READ_4(sc, ALC_RXQ_CFG);
3565 	if ((reg & RXQ_CFG_ENB) != 0) {
3566 		reg &= ~RXQ_CFG_ENB;
3567 		CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3568 	}
3569 	/* Disable TxQ. */
3570 	reg = CSR_READ_4(sc, ALC_TXQ_CFG);
3571 	if ((reg & TXQ_CFG_ENB) != 0) {
3572 		reg &= ~TXQ_CFG_ENB;
3573 		CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
3574 	}
3575 	for (i = ALC_TIMEOUT; i > 0; i--) {
3576 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3577 		if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
3578 			break;
3579 		DELAY(10);
3580 	}
3581 	if (i == 0)
3582 		device_printf(sc->alc_dev,
3583 		    "could not disable RxQ/TxQ (0x%08x)!\n", reg);
3584 }
3585 
3586 static void
3587 alc_init_tx_ring(struct alc_softc *sc)
3588 {
3589 	struct alc_ring_data *rd;
3590 	struct alc_txdesc *txd;
3591 	int i;
3592 
3593 	ALC_LOCK_ASSERT(sc);
3594 
3595 	sc->alc_cdata.alc_tx_prod = 0;
3596 	sc->alc_cdata.alc_tx_cons = 0;
3597 	sc->alc_cdata.alc_tx_cnt = 0;
3598 
3599 	rd = &sc->alc_rdata;
3600 	bzero(rd->alc_tx_ring, ALC_TX_RING_SZ);
3601 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3602 		txd = &sc->alc_cdata.alc_txdesc[i];
3603 		txd->tx_m = NULL;
3604 	}
3605 
3606 	bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
3607 	    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
3608 }
3609 
3610 static int
3611 alc_init_rx_ring(struct alc_softc *sc)
3612 {
3613 	struct alc_ring_data *rd;
3614 	struct alc_rxdesc *rxd;
3615 	int i;
3616 
3617 	ALC_LOCK_ASSERT(sc);
3618 
3619 	sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
3620 	sc->alc_morework = 0;
3621 	rd = &sc->alc_rdata;
3622 	bzero(rd->alc_rx_ring, ALC_RX_RING_SZ);
3623 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3624 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3625 		rxd->rx_m = NULL;
3626 		rxd->rx_desc = &rd->alc_rx_ring[i];
3627 		if (alc_newbuf(sc, rxd) != 0)
3628 			return (ENOBUFS);
3629 	}
3630 
3631 	/*
3632 	 * Since controller does not update Rx descriptors, driver
3633 	 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
3634 	 * is enough to ensure coherence.
3635 	 */
3636 	bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
3637 	    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
3638 	/* Let controller know availability of new Rx buffers. */
3639 	CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
3640 
3641 	return (0);
3642 }
3643 
3644 static void
3645 alc_init_rr_ring(struct alc_softc *sc)
3646 {
3647 	struct alc_ring_data *rd;
3648 
3649 	ALC_LOCK_ASSERT(sc);
3650 
3651 	sc->alc_cdata.alc_rr_cons = 0;
3652 	ALC_RXCHAIN_RESET(sc);
3653 
3654 	rd = &sc->alc_rdata;
3655 	bzero(rd->alc_rr_ring, ALC_RR_RING_SZ);
3656 	bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
3657 	    sc->alc_cdata.alc_rr_ring_map,
3658 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3659 }
3660 
3661 static void
3662 alc_init_cmb(struct alc_softc *sc)
3663 {
3664 	struct alc_ring_data *rd;
3665 
3666 	ALC_LOCK_ASSERT(sc);
3667 
3668 	rd = &sc->alc_rdata;
3669 	bzero(rd->alc_cmb, ALC_CMB_SZ);
3670 	bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag, sc->alc_cdata.alc_cmb_map,
3671 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3672 }
3673 
3674 static void
3675 alc_init_smb(struct alc_softc *sc)
3676 {
3677 	struct alc_ring_data *rd;
3678 
3679 	ALC_LOCK_ASSERT(sc);
3680 
3681 	rd = &sc->alc_rdata;
3682 	bzero(rd->alc_smb, ALC_SMB_SZ);
3683 	bus_dmamap_sync(sc->alc_cdata.alc_smb_tag, sc->alc_cdata.alc_smb_map,
3684 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3685 }
3686 
3687 static void
3688 alc_rxvlan(struct alc_softc *sc)
3689 {
3690 	struct ifnet *ifp;
3691 	uint32_t reg;
3692 
3693 	ALC_LOCK_ASSERT(sc);
3694 
3695 	ifp = sc->alc_ifp;
3696 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3697 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3698 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3699 	else
3700 		reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3701 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3702 }
3703 
3704 static void
3705 alc_rxfilter(struct alc_softc *sc)
3706 {
3707 	struct ifnet *ifp;
3708 	struct ifmultiaddr *ifma;
3709 	uint32_t crc;
3710 	uint32_t mchash[2];
3711 	uint32_t rxcfg;
3712 
3713 	ALC_LOCK_ASSERT(sc);
3714 
3715 	ifp = sc->alc_ifp;
3716 
3717 	bzero(mchash, sizeof(mchash));
3718 	rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
3719 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3720 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3721 		rxcfg |= MAC_CFG_BCAST;
3722 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3723 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3724 			rxcfg |= MAC_CFG_PROMISC;
3725 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3726 			rxcfg |= MAC_CFG_ALLMULTI;
3727 		mchash[0] = 0xFFFFFFFF;
3728 		mchash[1] = 0xFFFFFFFF;
3729 		goto chipit;
3730 	}
3731 
3732 	if_maddr_rlock(ifp);
3733 	TAILQ_FOREACH(ifma, &sc->alc_ifp->if_multiaddrs, ifma_link) {
3734 		if (ifma->ifma_addr->sa_family != AF_LINK)
3735 			continue;
3736 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3737 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3738 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3739 	}
3740 	if_maddr_runlock(ifp);
3741 
3742 chipit:
3743 	CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
3744 	CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
3745 	CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
3746 }
3747 
3748 static int
3749 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3750 {
3751 	int error, value;
3752 
3753 	if (arg1 == NULL)
3754 		return (EINVAL);
3755 	value = *(int *)arg1;
3756 	error = sysctl_handle_int(oidp, &value, 0, req);
3757 	if (error || req->newptr == NULL)
3758 		return (error);
3759 	if (value < low || value > high)
3760 		return (EINVAL);
3761 	*(int *)arg1 = value;
3762 
3763 	return (0);
3764 }
3765 
3766 static int
3767 sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS)
3768 {
3769 	return (sysctl_int_range(oidp, arg1, arg2, req,
3770 	    ALC_PROC_MIN, ALC_PROC_MAX));
3771 }
3772 
3773 static int
3774 sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS)
3775 {
3776 
3777 	return (sysctl_int_range(oidp, arg1, arg2, req,
3778 	    ALC_IM_TIMER_MIN, ALC_IM_TIMER_MAX));
3779 }
3780