xref: /freebsd/sys/dev/alc/if_alc.c (revision b2db760808f74bb53c232900091c9da801ebbfcc)
1 /*-
2  * Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/module.h>
42 #include <sys/mutex.h>
43 #include <sys/rman.h>
44 #include <sys/queue.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/taskqueue.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_llc.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 #include <net/if_vlan_var.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/ip.h>
63 #include <netinet/tcp.h>
64 
65 #include <dev/mii/mii.h>
66 #include <dev/mii/miivar.h>
67 
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70 
71 #include <machine/atomic.h>
72 #include <machine/bus.h>
73 #include <machine/in_cksum.h>
74 
75 #include <dev/alc/if_alcreg.h>
76 #include <dev/alc/if_alcvar.h>
77 
78 /* "device miibus" required.  See GENERIC if you get errors here. */
79 #include "miibus_if.h"
80 #undef ALC_USE_CUSTOM_CSUM
81 
82 #ifdef ALC_USE_CUSTOM_CSUM
83 #define	ALC_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
84 #else
85 #define	ALC_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
86 #endif
87 
88 MODULE_DEPEND(alc, pci, 1, 1, 1);
89 MODULE_DEPEND(alc, ether, 1, 1, 1);
90 MODULE_DEPEND(alc, miibus, 1, 1, 1);
91 
92 /* Tunables. */
93 static int msi_disable = 0;
94 static int msix_disable = 0;
95 TUNABLE_INT("hw.alc.msi_disable", &msi_disable);
96 TUNABLE_INT("hw.alc.msix_disable", &msix_disable);
97 
98 /*
99  * Devices supported by this driver.
100  */
101 static struct alc_ident alc_ident_table[] = {
102 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8131, 9 * 1024,
103 		"Atheros AR8131 PCIe Gigabit Ethernet" },
104 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8132, 9 * 1024,
105 		"Atheros AR8132 PCIe Fast Ethernet" },
106 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151, 6 * 1024,
107 		"Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
108 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151_V2, 6 * 1024,
109 		"Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
110 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B, 6 * 1024,
111 		"Atheros AR8152 v1.1 PCIe Fast Ethernet" },
112 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B2, 6 * 1024,
113 		"Atheros AR8152 v2.0 PCIe Fast Ethernet" },
114 	{ 0, 0, 0, NULL}
115 };
116 
117 static void	alc_aspm(struct alc_softc *, int);
118 static int	alc_attach(device_t);
119 static int	alc_check_boundary(struct alc_softc *);
120 static int	alc_detach(device_t);
121 static void	alc_disable_l0s_l1(struct alc_softc *);
122 static int	alc_dma_alloc(struct alc_softc *);
123 static void	alc_dma_free(struct alc_softc *);
124 static void	alc_dmamap_cb(void *, bus_dma_segment_t *, int, int);
125 static int	alc_encap(struct alc_softc *, struct mbuf **);
126 static struct alc_ident *
127 		alc_find_ident(device_t);
128 #ifndef __NO_STRICT_ALIGNMENT
129 static struct mbuf *
130 		alc_fixup_rx(struct ifnet *, struct mbuf *);
131 #endif
132 static void	alc_get_macaddr(struct alc_softc *);
133 static void	alc_init(void *);
134 static void	alc_init_cmb(struct alc_softc *);
135 static void	alc_init_locked(struct alc_softc *);
136 static void	alc_init_rr_ring(struct alc_softc *);
137 static int	alc_init_rx_ring(struct alc_softc *);
138 static void	alc_init_smb(struct alc_softc *);
139 static void	alc_init_tx_ring(struct alc_softc *);
140 static void	alc_int_task(void *, int);
141 static int	alc_intr(void *);
142 static int	alc_ioctl(struct ifnet *, u_long, caddr_t);
143 static void	alc_mac_config(struct alc_softc *);
144 static int	alc_miibus_readreg(device_t, int, int);
145 static void	alc_miibus_statchg(device_t);
146 static int	alc_miibus_writereg(device_t, int, int, int);
147 static int	alc_mediachange(struct ifnet *);
148 static void	alc_mediastatus(struct ifnet *, struct ifmediareq *);
149 static int	alc_newbuf(struct alc_softc *, struct alc_rxdesc *);
150 static void	alc_phy_down(struct alc_softc *);
151 static void	alc_phy_reset(struct alc_softc *);
152 static int	alc_probe(device_t);
153 static void	alc_reset(struct alc_softc *);
154 static int	alc_resume(device_t);
155 static void	alc_rxeof(struct alc_softc *, struct rx_rdesc *);
156 static int	alc_rxintr(struct alc_softc *, int);
157 static void	alc_rxfilter(struct alc_softc *);
158 static void	alc_rxvlan(struct alc_softc *);
159 static void	alc_setlinkspeed(struct alc_softc *);
160 static void	alc_setwol(struct alc_softc *);
161 static int	alc_shutdown(device_t);
162 static void	alc_start(struct ifnet *);
163 static void	alc_start_queue(struct alc_softc *);
164 static void	alc_stats_clear(struct alc_softc *);
165 static void	alc_stats_update(struct alc_softc *);
166 static void	alc_stop(struct alc_softc *);
167 static void	alc_stop_mac(struct alc_softc *);
168 static void	alc_stop_queue(struct alc_softc *);
169 static int	alc_suspend(device_t);
170 static void	alc_sysctl_node(struct alc_softc *);
171 static void	alc_tick(void *);
172 static void	alc_tx_task(void *, int);
173 static void	alc_txeof(struct alc_softc *);
174 static void	alc_watchdog(struct alc_softc *);
175 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
176 static int	sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS);
177 static int	sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS);
178 
179 static device_method_t alc_methods[] = {
180 	/* Device interface. */
181 	DEVMETHOD(device_probe,		alc_probe),
182 	DEVMETHOD(device_attach,	alc_attach),
183 	DEVMETHOD(device_detach,	alc_detach),
184 	DEVMETHOD(device_shutdown,	alc_shutdown),
185 	DEVMETHOD(device_suspend,	alc_suspend),
186 	DEVMETHOD(device_resume,	alc_resume),
187 
188 	/* MII interface. */
189 	DEVMETHOD(miibus_readreg,	alc_miibus_readreg),
190 	DEVMETHOD(miibus_writereg,	alc_miibus_writereg),
191 	DEVMETHOD(miibus_statchg,	alc_miibus_statchg),
192 
193 	{ NULL, NULL }
194 };
195 
196 static driver_t alc_driver = {
197 	"alc",
198 	alc_methods,
199 	sizeof(struct alc_softc)
200 };
201 
202 static devclass_t alc_devclass;
203 
204 DRIVER_MODULE(alc, pci, alc_driver, alc_devclass, 0, 0);
205 DRIVER_MODULE(miibus, alc, miibus_driver, miibus_devclass, 0, 0);
206 
207 static struct resource_spec alc_res_spec_mem[] = {
208 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
209 	{ -1,			0,		0 }
210 };
211 
212 static struct resource_spec alc_irq_spec_legacy[] = {
213 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
214 	{ -1,			0,		0 }
215 };
216 
217 static struct resource_spec alc_irq_spec_msi[] = {
218 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
219 	{ -1,			0,		0 }
220 };
221 
222 static struct resource_spec alc_irq_spec_msix[] = {
223 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
224 	{ -1,			0,		0 }
225 };
226 
227 static uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
228 
229 static int
230 alc_miibus_readreg(device_t dev, int phy, int reg)
231 {
232 	struct alc_softc *sc;
233 	uint32_t v;
234 	int i;
235 
236 	sc = device_get_softc(dev);
237 
238 	if (phy != sc->alc_phyaddr)
239 		return (0);
240 
241 	/*
242 	 * For AR8132 fast ethernet controller, do not report 1000baseT
243 	 * capability to mii(4). Even though AR8132 uses the same
244 	 * model/revision number of F1 gigabit PHY, the PHY has no
245 	 * ability to establish 1000baseT link.
246 	 */
247 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 &&
248 	    reg == MII_EXTSR)
249 		return (0);
250 
251 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
252 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
253 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
254 		DELAY(5);
255 		v = CSR_READ_4(sc, ALC_MDIO);
256 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
257 			break;
258 	}
259 
260 	if (i == 0) {
261 		device_printf(sc->alc_dev, "phy read timeout : %d\n", reg);
262 		return (0);
263 	}
264 
265 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
266 }
267 
268 static int
269 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
270 {
271 	struct alc_softc *sc;
272 	uint32_t v;
273 	int i;
274 
275 	sc = device_get_softc(dev);
276 
277 	if (phy != sc->alc_phyaddr)
278 		return (0);
279 
280 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
281 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
282 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
283 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
284 		DELAY(5);
285 		v = CSR_READ_4(sc, ALC_MDIO);
286 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
287 			break;
288 	}
289 
290 	if (i == 0)
291 		device_printf(sc->alc_dev, "phy write timeout : %d\n", reg);
292 
293 	return (0);
294 }
295 
296 static void
297 alc_miibus_statchg(device_t dev)
298 {
299 	struct alc_softc *sc;
300 	struct mii_data *mii;
301 	struct ifnet *ifp;
302 	uint32_t reg;
303 
304 	sc = device_get_softc(dev);
305 
306 	mii = device_get_softc(sc->alc_miibus);
307 	ifp = sc->alc_ifp;
308 	if (mii == NULL || ifp == NULL ||
309 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
310 		return;
311 
312 	sc->alc_flags &= ~ALC_FLAG_LINK;
313 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
314 	    (IFM_ACTIVE | IFM_AVALID)) {
315 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
316 		case IFM_10_T:
317 		case IFM_100_TX:
318 			sc->alc_flags |= ALC_FLAG_LINK;
319 			break;
320 		case IFM_1000_T:
321 			if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
322 				sc->alc_flags |= ALC_FLAG_LINK;
323 			break;
324 		default:
325 			break;
326 		}
327 	}
328 	alc_stop_queue(sc);
329 	/* Stop Rx/Tx MACs. */
330 	alc_stop_mac(sc);
331 
332 	/* Program MACs with resolved speed/duplex/flow-control. */
333 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
334 		alc_start_queue(sc);
335 		alc_mac_config(sc);
336 		/* Re-enable Tx/Rx MACs. */
337 		reg = CSR_READ_4(sc, ALC_MAC_CFG);
338 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
339 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
340 	}
341 	alc_aspm(sc, IFM_SUBTYPE(mii->mii_media_active));
342 }
343 
344 static void
345 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
346 {
347 	struct alc_softc *sc;
348 	struct mii_data *mii;
349 
350 	sc = ifp->if_softc;
351 	ALC_LOCK(sc);
352 	if ((ifp->if_flags & IFF_UP) == 0) {
353 		ALC_UNLOCK(sc);
354 		return;
355 	}
356 	mii = device_get_softc(sc->alc_miibus);
357 
358 	mii_pollstat(mii);
359 	ALC_UNLOCK(sc);
360 	ifmr->ifm_status = mii->mii_media_status;
361 	ifmr->ifm_active = mii->mii_media_active;
362 }
363 
364 static int
365 alc_mediachange(struct ifnet *ifp)
366 {
367 	struct alc_softc *sc;
368 	struct mii_data *mii;
369 	struct mii_softc *miisc;
370 	int error;
371 
372 	sc = ifp->if_softc;
373 	ALC_LOCK(sc);
374 	mii = device_get_softc(sc->alc_miibus);
375 	if (mii->mii_instance != 0) {
376 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
377 			mii_phy_reset(miisc);
378 	}
379 	error = mii_mediachg(mii);
380 	ALC_UNLOCK(sc);
381 
382 	return (error);
383 }
384 
385 static struct alc_ident *
386 alc_find_ident(device_t dev)
387 {
388 	struct alc_ident *ident;
389 	uint16_t vendor, devid;
390 
391 	vendor = pci_get_vendor(dev);
392 	devid = pci_get_device(dev);
393 	for (ident = alc_ident_table; ident->name != NULL; ident++) {
394 		if (vendor == ident->vendorid && devid == ident->deviceid)
395 			return (ident);
396 	}
397 
398 	return (NULL);
399 }
400 
401 static int
402 alc_probe(device_t dev)
403 {
404 	struct alc_ident *ident;
405 
406 	ident = alc_find_ident(dev);
407 	if (ident != NULL) {
408 		device_set_desc(dev, ident->name);
409 		return (BUS_PROBE_DEFAULT);
410 	}
411 
412 	return (ENXIO);
413 }
414 
415 static void
416 alc_get_macaddr(struct alc_softc *sc)
417 {
418 	uint32_t ea[2], opt;
419 	uint16_t val;
420 	int eeprom, i;
421 
422 	eeprom = 0;
423 	opt = CSR_READ_4(sc, ALC_OPT_CFG);
424 	if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
425 	    (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
426 		/*
427 		 * EEPROM found, let TWSI reload EEPROM configuration.
428 		 * This will set ethernet address of controller.
429 		 */
430 		eeprom++;
431 		switch (sc->alc_ident->deviceid) {
432 		case DEVICEID_ATHEROS_AR8131:
433 		case DEVICEID_ATHEROS_AR8132:
434 			if ((opt & OPT_CFG_CLK_ENB) == 0) {
435 				opt |= OPT_CFG_CLK_ENB;
436 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
437 				CSR_READ_4(sc, ALC_OPT_CFG);
438 				DELAY(1000);
439 			}
440 			break;
441 		case DEVICEID_ATHEROS_AR8151:
442 		case DEVICEID_ATHEROS_AR8151_V2:
443 		case DEVICEID_ATHEROS_AR8152_B:
444 		case DEVICEID_ATHEROS_AR8152_B2:
445 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
446 			    ALC_MII_DBG_ADDR, 0x00);
447 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
448 			    ALC_MII_DBG_DATA);
449 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
450 			    ALC_MII_DBG_DATA, val & 0xFF7F);
451 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
452 			    ALC_MII_DBG_ADDR, 0x3B);
453 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
454 			    ALC_MII_DBG_DATA);
455 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
456 			    ALC_MII_DBG_DATA, val | 0x0008);
457 			DELAY(20);
458 			break;
459 		}
460 
461 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
462 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
463 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
464 		CSR_READ_4(sc, ALC_WOL_CFG);
465 
466 		CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
467 		    TWSI_CFG_SW_LD_START);
468 		for (i = 100; i > 0; i--) {
469 			DELAY(1000);
470 			if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
471 			    TWSI_CFG_SW_LD_START) == 0)
472 				break;
473 		}
474 		if (i == 0)
475 			device_printf(sc->alc_dev,
476 			    "reloading EEPROM timeout!\n");
477 	} else {
478 		if (bootverbose)
479 			device_printf(sc->alc_dev, "EEPROM not found!\n");
480 	}
481 	if (eeprom != 0) {
482 		switch (sc->alc_ident->deviceid) {
483 		case DEVICEID_ATHEROS_AR8131:
484 		case DEVICEID_ATHEROS_AR8132:
485 			if ((opt & OPT_CFG_CLK_ENB) != 0) {
486 				opt &= ~OPT_CFG_CLK_ENB;
487 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
488 				CSR_READ_4(sc, ALC_OPT_CFG);
489 				DELAY(1000);
490 			}
491 			break;
492 		case DEVICEID_ATHEROS_AR8151:
493 		case DEVICEID_ATHEROS_AR8151_V2:
494 		case DEVICEID_ATHEROS_AR8152_B:
495 		case DEVICEID_ATHEROS_AR8152_B2:
496 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
497 			    ALC_MII_DBG_ADDR, 0x00);
498 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
499 			    ALC_MII_DBG_DATA);
500 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
501 			    ALC_MII_DBG_DATA, val | 0x0080);
502 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
503 			    ALC_MII_DBG_ADDR, 0x3B);
504 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
505 			    ALC_MII_DBG_DATA);
506 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
507 			    ALC_MII_DBG_DATA, val & 0xFFF7);
508 			DELAY(20);
509 			break;
510 		}
511 	}
512 
513 	ea[0] = CSR_READ_4(sc, ALC_PAR0);
514 	ea[1] = CSR_READ_4(sc, ALC_PAR1);
515 	sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
516 	sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
517 	sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
518 	sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
519 	sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
520 	sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
521 }
522 
523 static void
524 alc_disable_l0s_l1(struct alc_softc *sc)
525 {
526 	uint32_t pmcfg;
527 
528 	/* Another magic from vendor. */
529 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
530 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
531 	    PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK |
532 	    PM_CFG_SERDES_PD_EX_L1);
533 	pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
534 	    PM_CFG_SERDES_L1_ENB;
535 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
536 }
537 
538 static void
539 alc_phy_reset(struct alc_softc *sc)
540 {
541 	uint16_t data;
542 
543 	/* Reset magic from Linux. */
544 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
545 	    GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | GPHY_CFG_SEL_ANA_RESET);
546 	CSR_READ_2(sc, ALC_GPHY_CFG);
547 	DELAY(10 * 1000);
548 
549 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
550 	    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
551 	    GPHY_CFG_SEL_ANA_RESET);
552 	CSR_READ_2(sc, ALC_GPHY_CFG);
553 	DELAY(10 * 1000);
554 
555 	/* DSP fixup, Vendor magic. */
556 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) {
557 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
558 		    ALC_MII_DBG_ADDR, 0x000A);
559 		data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
560 		    ALC_MII_DBG_DATA);
561 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
562 		    ALC_MII_DBG_DATA, data & 0xDFFF);
563 	}
564 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
565 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
566 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
567 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
568 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
569 		    ALC_MII_DBG_ADDR, 0x003B);
570 		data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
571 		    ALC_MII_DBG_DATA);
572 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
573 		    ALC_MII_DBG_DATA, data & 0xFFF7);
574 		DELAY(20 * 1000);
575 	}
576 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151) {
577 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
578 		    ALC_MII_DBG_ADDR, 0x0029);
579 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
580 		    ALC_MII_DBG_DATA, 0x929D);
581 	}
582 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 ||
583 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132 ||
584 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
585 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
586 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
587 		    ALC_MII_DBG_ADDR, 0x0029);
588 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
589 		    ALC_MII_DBG_DATA, 0xB6DD);
590 	}
591 
592 	/* Load DSP codes, vendor magic. */
593 	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
594 	    ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
595 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
596 	    ALC_MII_DBG_ADDR, MII_ANA_CFG18);
597 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
598 	    ALC_MII_DBG_DATA, data);
599 
600 	data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
601 	    ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
602 	    ANA_SERDES_EN_LCKDT;
603 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
604 	    ALC_MII_DBG_ADDR, MII_ANA_CFG5);
605 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
606 	    ALC_MII_DBG_DATA, data);
607 
608 	data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
609 	    ANA_LONG_CABLE_TH_100_MASK) |
610 	    ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
611 	    ANA_SHORT_CABLE_TH_100_SHIFT) |
612 	    ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
613 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
614 	    ALC_MII_DBG_ADDR, MII_ANA_CFG54);
615 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
616 	    ALC_MII_DBG_DATA, data);
617 
618 	data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
619 	    ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
620 	    ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
621 	    ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
622 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
623 	    ALC_MII_DBG_ADDR, MII_ANA_CFG4);
624 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
625 	    ALC_MII_DBG_DATA, data);
626 
627 	data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
628 	    ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
629 	    ANA_OEN_125M;
630 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
631 	    ALC_MII_DBG_ADDR, MII_ANA_CFG0);
632 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
633 	    ALC_MII_DBG_DATA, data);
634 	DELAY(1000);
635 }
636 
637 static void
638 alc_phy_down(struct alc_softc *sc)
639 {
640 
641 	switch (sc->alc_ident->deviceid) {
642 	case DEVICEID_ATHEROS_AR8151:
643 	case DEVICEID_ATHEROS_AR8151_V2:
644 		/*
645 		 * GPHY power down caused more problems on AR8151 v2.0.
646 		 * When driver is reloaded after GPHY power down,
647 		 * accesses to PHY/MAC registers hung the system. Only
648 		 * cold boot recovered from it.  I'm not sure whether
649 		 * AR8151 v1.0 also requires this one though.  I don't
650 		 * have AR8151 v1.0 controller in hand.
651 		 * The only option left is to isolate the PHY and
652 		 * initiates power down the PHY which in turn saves
653 		 * more power when driver is unloaded.
654 		 */
655 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
656 		    MII_BMCR, BMCR_ISO | BMCR_PDOWN);
657 		break;
658 	default:
659 		/* Force PHY down. */
660 		CSR_WRITE_2(sc, ALC_GPHY_CFG,
661 		    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
662 		    GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
663 		    GPHY_CFG_PWDOWN_HW);
664 		DELAY(1000);
665 		break;
666 	}
667 }
668 
669 static void
670 alc_aspm(struct alc_softc *sc, int media)
671 {
672 	uint32_t pmcfg;
673 	uint16_t linkcfg;
674 
675 	ALC_LOCK_ASSERT(sc);
676 
677 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
678 	if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
679 	    (ALC_FLAG_APS | ALC_FLAG_PCIE))
680 		linkcfg = CSR_READ_2(sc, sc->alc_expcap +
681 		    PCIR_EXPRESS_LINK_CTL);
682 	else
683 		linkcfg = 0;
684 	pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
685 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
686 	pmcfg |= PM_CFG_MAC_ASPM_CHK;
687 	pmcfg |= PM_CFG_SERDES_ENB | PM_CFG_RBER_ENB;
688 	pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
689 
690 	if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
691 		/* Disable extended sync except AR8152 B v1.0 */
692 		linkcfg &= ~0x80;
693 		if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B &&
694 		    sc->alc_rev == ATHEROS_AR8152_B_V10)
695 			linkcfg |= 0x80;
696 		CSR_WRITE_2(sc, sc->alc_expcap + PCIR_EXPRESS_LINK_CTL,
697 		    linkcfg);
698 		pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
699 		    PM_CFG_HOTRST);
700 		pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
701 		    PM_CFG_L1_ENTRY_TIMER_SHIFT);
702 		pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
703 		pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
704 		    PM_CFG_PM_REQ_TIMER_SHIFT);
705 		pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
706 	}
707 
708 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
709 		if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
710 			pmcfg |= PM_CFG_ASPM_L0S_ENB;
711 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
712 			pmcfg |= PM_CFG_ASPM_L1_ENB;
713 		if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
714 			if (sc->alc_ident->deviceid ==
715 			    DEVICEID_ATHEROS_AR8152_B)
716 				pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
717 			pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
718 			    PM_CFG_SERDES_PLL_L1_ENB |
719 			    PM_CFG_SERDES_BUDS_RX_L1_ENB);
720 			pmcfg |= PM_CFG_CLK_SWH_L1;
721 			if (media == IFM_100_TX || media == IFM_1000_T) {
722 				pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
723 				switch (sc->alc_ident->deviceid) {
724 				case DEVICEID_ATHEROS_AR8152_B:
725 					pmcfg |= (7 <<
726 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
727 					break;
728 				case DEVICEID_ATHEROS_AR8152_B2:
729 				case DEVICEID_ATHEROS_AR8151_V2:
730 					pmcfg |= (4 <<
731 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
732 					break;
733 				default:
734 					pmcfg |= (15 <<
735 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
736 					break;
737 				}
738 			}
739 		} else {
740 			pmcfg |= PM_CFG_SERDES_L1_ENB |
741 			    PM_CFG_SERDES_PLL_L1_ENB |
742 			    PM_CFG_SERDES_BUDS_RX_L1_ENB;
743 			pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
744 			    PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
745 		}
746 	} else {
747 		pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
748 		    PM_CFG_SERDES_PLL_L1_ENB);
749 		pmcfg |= PM_CFG_CLK_SWH_L1;
750 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
751 			pmcfg |= PM_CFG_ASPM_L1_ENB;
752 	}
753 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
754 }
755 
756 static int
757 alc_attach(device_t dev)
758 {
759 	struct alc_softc *sc;
760 	struct ifnet *ifp;
761 	char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
762 	uint16_t burst;
763 	int base, error, i, msic, msixc, state;
764 	uint32_t cap, ctl, val;
765 
766 	error = 0;
767 	sc = device_get_softc(dev);
768 	sc->alc_dev = dev;
769 
770 	mtx_init(&sc->alc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
771 	    MTX_DEF);
772 	callout_init_mtx(&sc->alc_tick_ch, &sc->alc_mtx, 0);
773 	TASK_INIT(&sc->alc_int_task, 0, alc_int_task, sc);
774 	sc->alc_ident = alc_find_ident(dev);
775 
776 	/* Map the device. */
777 	pci_enable_busmaster(dev);
778 	sc->alc_res_spec = alc_res_spec_mem;
779 	sc->alc_irq_spec = alc_irq_spec_legacy;
780 	error = bus_alloc_resources(dev, sc->alc_res_spec, sc->alc_res);
781 	if (error != 0) {
782 		device_printf(dev, "cannot allocate memory resources.\n");
783 		goto fail;
784 	}
785 
786 	/* Set PHY address. */
787 	sc->alc_phyaddr = ALC_PHY_ADDR;
788 
789 	/* Initialize DMA parameters. */
790 	sc->alc_dma_rd_burst = 0;
791 	sc->alc_dma_wr_burst = 0;
792 	sc->alc_rcb = DMA_CFG_RCB_64;
793 	if (pci_find_extcap(dev, PCIY_EXPRESS, &base) == 0) {
794 		sc->alc_flags |= ALC_FLAG_PCIE;
795 		sc->alc_expcap = base;
796 		burst = CSR_READ_2(sc, base + PCIR_EXPRESS_DEVICE_CTL);
797 		sc->alc_dma_rd_burst =
798 		    (burst & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12;
799 		sc->alc_dma_wr_burst = (burst & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5;
800 		if (bootverbose) {
801 			device_printf(dev, "Read request size : %u bytes.\n",
802 			    alc_dma_burst[sc->alc_dma_rd_burst]);
803 			device_printf(dev, "TLP payload size : %u bytes.\n",
804 			    alc_dma_burst[sc->alc_dma_wr_burst]);
805 		}
806 		if (alc_dma_burst[sc->alc_dma_rd_burst] > 1024)
807 			sc->alc_dma_rd_burst = 3;
808 		if (alc_dma_burst[sc->alc_dma_wr_burst] > 1024)
809 			sc->alc_dma_wr_burst = 3;
810 		/* Clear data link and flow-control protocol error. */
811 		val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
812 		val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
813 		CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
814 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
815 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
816 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
817 		    CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
818 		    PCIE_PHYMISC_FORCE_RCV_DET);
819 		if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B &&
820 		    sc->alc_rev == ATHEROS_AR8152_B_V10) {
821 			val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
822 			val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
823 			    PCIE_PHYMISC2_SERDES_TH_MASK);
824 			val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
825 			val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
826 			CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
827 		}
828 		/* Disable ASPM L0S and L1. */
829 		cap = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CAP);
830 		if ((cap & PCIM_LINK_CAP_ASPM) != 0) {
831 			ctl = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CTL);
832 			if ((ctl & 0x08) != 0)
833 				sc->alc_rcb = DMA_CFG_RCB_128;
834 			if (bootverbose)
835 				device_printf(dev, "RCB %u bytes\n",
836 				    sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
837 			state = ctl & 0x03;
838 			if (state & 0x01)
839 				sc->alc_flags |= ALC_FLAG_L0S;
840 			if (state & 0x02)
841 				sc->alc_flags |= ALC_FLAG_L1S;
842 			if (bootverbose)
843 				device_printf(sc->alc_dev, "ASPM %s %s\n",
844 				    aspm_state[state],
845 				    state == 0 ? "disabled" : "enabled");
846 			alc_disable_l0s_l1(sc);
847 		} else {
848 			if (bootverbose)
849 				device_printf(sc->alc_dev,
850 				    "no ASPM support\n");
851 		}
852 	}
853 
854 	/* Reset PHY. */
855 	alc_phy_reset(sc);
856 
857 	/* Reset the ethernet controller. */
858 	alc_reset(sc);
859 
860 	/*
861 	 * One odd thing is AR8132 uses the same PHY hardware(F1
862 	 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
863 	 * the PHY supports 1000Mbps but that's not true. The PHY
864 	 * used in AR8132 can't establish gigabit link even if it
865 	 * shows the same PHY model/revision number of AR8131.
866 	 */
867 	switch (sc->alc_ident->deviceid) {
868 	case DEVICEID_ATHEROS_AR8152_B:
869 	case DEVICEID_ATHEROS_AR8152_B2:
870 		sc->alc_flags |= ALC_FLAG_APS;
871 		/* FALLTHROUGH */
872 	case DEVICEID_ATHEROS_AR8132:
873 		sc->alc_flags |= ALC_FLAG_FASTETHER;
874 		break;
875 	case DEVICEID_ATHEROS_AR8151:
876 	case DEVICEID_ATHEROS_AR8151_V2:
877 		sc->alc_flags |= ALC_FLAG_APS;
878 		/* FALLTHROUGH */
879 	default:
880 		break;
881 	}
882 	sc->alc_flags |= ALC_FLAG_ASPM_MON | ALC_FLAG_JUMBO;
883 
884 	/*
885 	 * It seems that AR813x/AR815x has silicon bug for SMB. In
886 	 * addition, Atheros said that enabling SMB wouldn't improve
887 	 * performance. However I think it's bad to access lots of
888 	 * registers to extract MAC statistics.
889 	 */
890 	sc->alc_flags |= ALC_FLAG_SMB_BUG;
891 	/*
892 	 * Don't use Tx CMB. It is known to have silicon bug.
893 	 */
894 	sc->alc_flags |= ALC_FLAG_CMB_BUG;
895 	sc->alc_rev = pci_get_revid(dev);
896 	sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
897 	    MASTER_CHIP_REV_SHIFT;
898 	if (bootverbose) {
899 		device_printf(dev, "PCI device revision : 0x%04x\n",
900 		    sc->alc_rev);
901 		device_printf(dev, "Chip id/revision : 0x%04x\n",
902 		    sc->alc_chip_rev);
903 	}
904 	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n",
905 	    CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
906 	    CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
907 
908 	/* Allocate IRQ resources. */
909 	msixc = pci_msix_count(dev);
910 	msic = pci_msi_count(dev);
911 	if (bootverbose) {
912 		device_printf(dev, "MSIX count : %d\n", msixc);
913 		device_printf(dev, "MSI count : %d\n", msic);
914 	}
915 	/* Prefer MSIX over MSI. */
916 	if (msix_disable == 0 || msi_disable == 0) {
917 		if (msix_disable == 0 && msixc == ALC_MSIX_MESSAGES &&
918 		    pci_alloc_msix(dev, &msixc) == 0) {
919 			if (msic == ALC_MSIX_MESSAGES) {
920 				device_printf(dev,
921 				    "Using %d MSIX message(s).\n", msixc);
922 				sc->alc_flags |= ALC_FLAG_MSIX;
923 				sc->alc_irq_spec = alc_irq_spec_msix;
924 			} else
925 				pci_release_msi(dev);
926 		}
927 		if (msi_disable == 0 && (sc->alc_flags & ALC_FLAG_MSIX) == 0 &&
928 		    msic == ALC_MSI_MESSAGES &&
929 		    pci_alloc_msi(dev, &msic) == 0) {
930 			if (msic == ALC_MSI_MESSAGES) {
931 				device_printf(dev,
932 				    "Using %d MSI message(s).\n", msic);
933 				sc->alc_flags |= ALC_FLAG_MSI;
934 				sc->alc_irq_spec = alc_irq_spec_msi;
935 			} else
936 				pci_release_msi(dev);
937 		}
938 	}
939 
940 	error = bus_alloc_resources(dev, sc->alc_irq_spec, sc->alc_irq);
941 	if (error != 0) {
942 		device_printf(dev, "cannot allocate IRQ resources.\n");
943 		goto fail;
944 	}
945 
946 	/* Create device sysctl node. */
947 	alc_sysctl_node(sc);
948 
949 	if ((error = alc_dma_alloc(sc) != 0))
950 		goto fail;
951 
952 	/* Load station address. */
953 	alc_get_macaddr(sc);
954 
955 	ifp = sc->alc_ifp = if_alloc(IFT_ETHER);
956 	if (ifp == NULL) {
957 		device_printf(dev, "cannot allocate ifnet structure.\n");
958 		error = ENXIO;
959 		goto fail;
960 	}
961 
962 	ifp->if_softc = sc;
963 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
964 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
965 	ifp->if_ioctl = alc_ioctl;
966 	ifp->if_start = alc_start;
967 	ifp->if_init = alc_init;
968 	ifp->if_snd.ifq_drv_maxlen = ALC_TX_RING_CNT - 1;
969 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
970 	IFQ_SET_READY(&ifp->if_snd);
971 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
972 	ifp->if_hwassist = ALC_CSUM_FEATURES | CSUM_TSO;
973 	if (pci_find_extcap(dev, PCIY_PMG, &base) == 0) {
974 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
975 		sc->alc_flags |= ALC_FLAG_PM;
976 		sc->alc_pmcap = base;
977 	}
978 	ifp->if_capenable = ifp->if_capabilities;
979 
980 	/* Set up MII bus. */
981 	if ((error = mii_phy_probe(dev, &sc->alc_miibus, alc_mediachange,
982 	    alc_mediastatus)) != 0) {
983 		device_printf(dev, "no PHY found!\n");
984 		goto fail;
985 	}
986 
987 	ether_ifattach(ifp, sc->alc_eaddr);
988 
989 	/* VLAN capability setup. */
990 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
991 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
992 	ifp->if_capenable = ifp->if_capabilities;
993 	/*
994 	 * XXX
995 	 * It seems enabling Tx checksum offloading makes more trouble.
996 	 * Sometimes the controller does not receive any frames when
997 	 * Tx checksum offloading is enabled. I'm not sure whether this
998 	 * is a bug in Tx checksum offloading logic or I got broken
999 	 * sample boards. To safety, don't enable Tx checksum offloading
1000 	 * by default but give chance to users to toggle it if they know
1001 	 * their controllers work without problems.
1002 	 */
1003 	ifp->if_capenable &= ~IFCAP_TXCSUM;
1004 	ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
1005 
1006 	/* Tell the upper layer(s) we support long frames. */
1007 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1008 
1009 	/* Create local taskq. */
1010 	TASK_INIT(&sc->alc_tx_task, 1, alc_tx_task, ifp);
1011 	sc->alc_tq = taskqueue_create_fast("alc_taskq", M_WAITOK,
1012 	    taskqueue_thread_enqueue, &sc->alc_tq);
1013 	if (sc->alc_tq == NULL) {
1014 		device_printf(dev, "could not create taskqueue.\n");
1015 		ether_ifdetach(ifp);
1016 		error = ENXIO;
1017 		goto fail;
1018 	}
1019 	taskqueue_start_threads(&sc->alc_tq, 1, PI_NET, "%s taskq",
1020 	    device_get_nameunit(sc->alc_dev));
1021 
1022 	if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
1023 		msic = ALC_MSIX_MESSAGES;
1024 	else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
1025 		msic = ALC_MSI_MESSAGES;
1026 	else
1027 		msic = 1;
1028 	for (i = 0; i < msic; i++) {
1029 		error = bus_setup_intr(dev, sc->alc_irq[i],
1030 		    INTR_TYPE_NET | INTR_MPSAFE, alc_intr, NULL, sc,
1031 		    &sc->alc_intrhand[i]);
1032 		if (error != 0)
1033 			break;
1034 	}
1035 	if (error != 0) {
1036 		device_printf(dev, "could not set up interrupt handler.\n");
1037 		taskqueue_free(sc->alc_tq);
1038 		sc->alc_tq = NULL;
1039 		ether_ifdetach(ifp);
1040 		goto fail;
1041 	}
1042 
1043 fail:
1044 	if (error != 0)
1045 		alc_detach(dev);
1046 
1047 	return (error);
1048 }
1049 
1050 static int
1051 alc_detach(device_t dev)
1052 {
1053 	struct alc_softc *sc;
1054 	struct ifnet *ifp;
1055 	int i, msic;
1056 
1057 	sc = device_get_softc(dev);
1058 
1059 	ifp = sc->alc_ifp;
1060 	if (device_is_attached(dev)) {
1061 		ALC_LOCK(sc);
1062 		sc->alc_flags |= ALC_FLAG_DETACH;
1063 		alc_stop(sc);
1064 		ALC_UNLOCK(sc);
1065 		callout_drain(&sc->alc_tick_ch);
1066 		taskqueue_drain(sc->alc_tq, &sc->alc_int_task);
1067 		taskqueue_drain(sc->alc_tq, &sc->alc_tx_task);
1068 		ether_ifdetach(ifp);
1069 	}
1070 
1071 	if (sc->alc_tq != NULL) {
1072 		taskqueue_drain(sc->alc_tq, &sc->alc_int_task);
1073 		taskqueue_free(sc->alc_tq);
1074 		sc->alc_tq = NULL;
1075 	}
1076 
1077 	if (sc->alc_miibus != NULL) {
1078 		device_delete_child(dev, sc->alc_miibus);
1079 		sc->alc_miibus = NULL;
1080 	}
1081 	bus_generic_detach(dev);
1082 	alc_dma_free(sc);
1083 
1084 	if (ifp != NULL) {
1085 		if_free(ifp);
1086 		sc->alc_ifp = NULL;
1087 	}
1088 
1089 	if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
1090 		msic = ALC_MSIX_MESSAGES;
1091 	else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
1092 		msic = ALC_MSI_MESSAGES;
1093 	else
1094 		msic = 1;
1095 	for (i = 0; i < msic; i++) {
1096 		if (sc->alc_intrhand[i] != NULL) {
1097 			bus_teardown_intr(dev, sc->alc_irq[i],
1098 			    sc->alc_intrhand[i]);
1099 			sc->alc_intrhand[i] = NULL;
1100 		}
1101 	}
1102 	if (sc->alc_res[0] != NULL)
1103 		alc_phy_down(sc);
1104 	bus_release_resources(dev, sc->alc_irq_spec, sc->alc_irq);
1105 	if ((sc->alc_flags & (ALC_FLAG_MSI | ALC_FLAG_MSIX)) != 0)
1106 		pci_release_msi(dev);
1107 	bus_release_resources(dev, sc->alc_res_spec, sc->alc_res);
1108 	mtx_destroy(&sc->alc_mtx);
1109 
1110 	return (0);
1111 }
1112 
1113 #define	ALC_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
1114 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
1115 #define	ALC_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
1116 	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
1117 
1118 static void
1119 alc_sysctl_node(struct alc_softc *sc)
1120 {
1121 	struct sysctl_ctx_list *ctx;
1122 	struct sysctl_oid_list *child, *parent;
1123 	struct sysctl_oid *tree;
1124 	struct alc_hw_stats *stats;
1125 	int error;
1126 
1127 	stats = &sc->alc_stats;
1128 	ctx = device_get_sysctl_ctx(sc->alc_dev);
1129 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->alc_dev));
1130 
1131 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
1132 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_rx_mod, 0,
1133 	    sysctl_hw_alc_int_mod, "I", "alc Rx interrupt moderation");
1134 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
1135 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_tx_mod, 0,
1136 	    sysctl_hw_alc_int_mod, "I", "alc Tx interrupt moderation");
1137 	/* Pull in device tunables. */
1138 	sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
1139 	error = resource_int_value(device_get_name(sc->alc_dev),
1140 	    device_get_unit(sc->alc_dev), "int_rx_mod", &sc->alc_int_rx_mod);
1141 	if (error == 0) {
1142 		if (sc->alc_int_rx_mod < ALC_IM_TIMER_MIN ||
1143 		    sc->alc_int_rx_mod > ALC_IM_TIMER_MAX) {
1144 			device_printf(sc->alc_dev, "int_rx_mod value out of "
1145 			    "range; using default: %d\n",
1146 			    ALC_IM_RX_TIMER_DEFAULT);
1147 			sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
1148 		}
1149 	}
1150 	sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
1151 	error = resource_int_value(device_get_name(sc->alc_dev),
1152 	    device_get_unit(sc->alc_dev), "int_tx_mod", &sc->alc_int_tx_mod);
1153 	if (error == 0) {
1154 		if (sc->alc_int_tx_mod < ALC_IM_TIMER_MIN ||
1155 		    sc->alc_int_tx_mod > ALC_IM_TIMER_MAX) {
1156 			device_printf(sc->alc_dev, "int_tx_mod value out of "
1157 			    "range; using default: %d\n",
1158 			    ALC_IM_TX_TIMER_DEFAULT);
1159 			sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
1160 		}
1161 	}
1162 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
1163 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_process_limit, 0,
1164 	    sysctl_hw_alc_proc_limit, "I",
1165 	    "max number of Rx events to process");
1166 	/* Pull in device tunables. */
1167 	sc->alc_process_limit = ALC_PROC_DEFAULT;
1168 	error = resource_int_value(device_get_name(sc->alc_dev),
1169 	    device_get_unit(sc->alc_dev), "process_limit",
1170 	    &sc->alc_process_limit);
1171 	if (error == 0) {
1172 		if (sc->alc_process_limit < ALC_PROC_MIN ||
1173 		    sc->alc_process_limit > ALC_PROC_MAX) {
1174 			device_printf(sc->alc_dev,
1175 			    "process_limit value out of range; "
1176 			    "using default: %d\n", ALC_PROC_DEFAULT);
1177 			sc->alc_process_limit = ALC_PROC_DEFAULT;
1178 		}
1179 	}
1180 
1181 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
1182 	    NULL, "ALC statistics");
1183 	parent = SYSCTL_CHILDREN(tree);
1184 
1185 	/* Rx statistics. */
1186 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
1187 	    NULL, "Rx MAC statistics");
1188 	child = SYSCTL_CHILDREN(tree);
1189 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1190 	    &stats->rx_frames, "Good frames");
1191 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
1192 	    &stats->rx_bcast_frames, "Good broadcast frames");
1193 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
1194 	    &stats->rx_mcast_frames, "Good multicast frames");
1195 	ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
1196 	    &stats->rx_pause_frames, "Pause control frames");
1197 	ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
1198 	    &stats->rx_control_frames, "Control frames");
1199 	ALC_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
1200 	    &stats->rx_crcerrs, "CRC errors");
1201 	ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
1202 	    &stats->rx_lenerrs, "Frames with length mismatched");
1203 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
1204 	    &stats->rx_bytes, "Good octets");
1205 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
1206 	    &stats->rx_bcast_bytes, "Good broadcast octets");
1207 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
1208 	    &stats->rx_mcast_bytes, "Good multicast octets");
1209 	ALC_SYSCTL_STAT_ADD32(ctx, child, "runts",
1210 	    &stats->rx_runts, "Too short frames");
1211 	ALC_SYSCTL_STAT_ADD32(ctx, child, "fragments",
1212 	    &stats->rx_fragments, "Fragmented frames");
1213 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
1214 	    &stats->rx_pkts_64, "64 bytes frames");
1215 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
1216 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
1217 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
1218 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
1219 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
1220 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
1221 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
1222 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
1223 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
1224 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
1225 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
1226 	    &stats->rx_pkts_1519_max, "1519 to max frames");
1227 	ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
1228 	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
1229 	ALC_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1230 	    &stats->rx_fifo_oflows, "FIFO overflows");
1231 	ALC_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
1232 	    &stats->rx_rrs_errs, "Return status write-back errors");
1233 	ALC_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
1234 	    &stats->rx_alignerrs, "Alignment errors");
1235 	ALC_SYSCTL_STAT_ADD32(ctx, child, "filtered",
1236 	    &stats->rx_pkts_filtered,
1237 	    "Frames dropped due to address filtering");
1238 
1239 	/* Tx statistics. */
1240 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
1241 	    NULL, "Tx MAC statistics");
1242 	child = SYSCTL_CHILDREN(tree);
1243 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1244 	    &stats->tx_frames, "Good frames");
1245 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
1246 	    &stats->tx_bcast_frames, "Good broadcast frames");
1247 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
1248 	    &stats->tx_mcast_frames, "Good multicast frames");
1249 	ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
1250 	    &stats->tx_pause_frames, "Pause control frames");
1251 	ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
1252 	    &stats->tx_control_frames, "Control frames");
1253 	ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
1254 	    &stats->tx_excess_defer, "Frames with excessive derferrals");
1255 	ALC_SYSCTL_STAT_ADD32(ctx, child, "defers",
1256 	    &stats->tx_excess_defer, "Frames with derferrals");
1257 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
1258 	    &stats->tx_bytes, "Good octets");
1259 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
1260 	    &stats->tx_bcast_bytes, "Good broadcast octets");
1261 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
1262 	    &stats->tx_mcast_bytes, "Good multicast octets");
1263 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
1264 	    &stats->tx_pkts_64, "64 bytes frames");
1265 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
1266 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
1267 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
1268 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
1269 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
1270 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
1271 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
1272 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
1273 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
1274 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
1275 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
1276 	    &stats->tx_pkts_1519_max, "1519 to max frames");
1277 	ALC_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
1278 	    &stats->tx_single_colls, "Single collisions");
1279 	ALC_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
1280 	    &stats->tx_multi_colls, "Multiple collisions");
1281 	ALC_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
1282 	    &stats->tx_late_colls, "Late collisions");
1283 	ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
1284 	    &stats->tx_excess_colls, "Excessive collisions");
1285 	ALC_SYSCTL_STAT_ADD32(ctx, child, "abort",
1286 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
1287 	ALC_SYSCTL_STAT_ADD32(ctx, child, "underruns",
1288 	    &stats->tx_underrun, "FIFO underruns");
1289 	ALC_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
1290 	    &stats->tx_desc_underrun, "Descriptor write-back errors");
1291 	ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
1292 	    &stats->tx_lenerrs, "Frames with length mismatched");
1293 	ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
1294 	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
1295 }
1296 
1297 #undef ALC_SYSCTL_STAT_ADD32
1298 #undef ALC_SYSCTL_STAT_ADD64
1299 
1300 struct alc_dmamap_arg {
1301 	bus_addr_t	alc_busaddr;
1302 };
1303 
1304 static void
1305 alc_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1306 {
1307 	struct alc_dmamap_arg *ctx;
1308 
1309 	if (error != 0)
1310 		return;
1311 
1312 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1313 
1314 	ctx = (struct alc_dmamap_arg *)arg;
1315 	ctx->alc_busaddr = segs[0].ds_addr;
1316 }
1317 
1318 /*
1319  * Normal and high Tx descriptors shares single Tx high address.
1320  * Four Rx descriptor/return rings and CMB shares the same Rx
1321  * high address.
1322  */
1323 static int
1324 alc_check_boundary(struct alc_softc *sc)
1325 {
1326 	bus_addr_t cmb_end, rx_ring_end, rr_ring_end, tx_ring_end;
1327 
1328 	rx_ring_end = sc->alc_rdata.alc_rx_ring_paddr + ALC_RX_RING_SZ;
1329 	rr_ring_end = sc->alc_rdata.alc_rr_ring_paddr + ALC_RR_RING_SZ;
1330 	cmb_end = sc->alc_rdata.alc_cmb_paddr + ALC_CMB_SZ;
1331 	tx_ring_end = sc->alc_rdata.alc_tx_ring_paddr + ALC_TX_RING_SZ;
1332 
1333 	/* 4GB boundary crossing is not allowed. */
1334 	if ((ALC_ADDR_HI(rx_ring_end) !=
1335 	    ALC_ADDR_HI(sc->alc_rdata.alc_rx_ring_paddr)) ||
1336 	    (ALC_ADDR_HI(rr_ring_end) !=
1337 	    ALC_ADDR_HI(sc->alc_rdata.alc_rr_ring_paddr)) ||
1338 	    (ALC_ADDR_HI(cmb_end) !=
1339 	    ALC_ADDR_HI(sc->alc_rdata.alc_cmb_paddr)) ||
1340 	    (ALC_ADDR_HI(tx_ring_end) !=
1341 	    ALC_ADDR_HI(sc->alc_rdata.alc_tx_ring_paddr)))
1342 		return (EFBIG);
1343 	/*
1344 	 * Make sure Rx return descriptor/Rx descriptor/CMB use
1345 	 * the same high address.
1346 	 */
1347 	if ((ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(rr_ring_end)) ||
1348 	    (ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(cmb_end)))
1349 		return (EFBIG);
1350 
1351 	return (0);
1352 }
1353 
1354 static int
1355 alc_dma_alloc(struct alc_softc *sc)
1356 {
1357 	struct alc_txdesc *txd;
1358 	struct alc_rxdesc *rxd;
1359 	bus_addr_t lowaddr;
1360 	struct alc_dmamap_arg ctx;
1361 	int error, i;
1362 
1363 	lowaddr = BUS_SPACE_MAXADDR;
1364 again:
1365 	/* Create parent DMA tag. */
1366 	error = bus_dma_tag_create(
1367 	    bus_get_dma_tag(sc->alc_dev), /* parent */
1368 	    1, 0,			/* alignment, boundary */
1369 	    lowaddr,			/* lowaddr */
1370 	    BUS_SPACE_MAXADDR,		/* highaddr */
1371 	    NULL, NULL,			/* filter, filterarg */
1372 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1373 	    0,				/* nsegments */
1374 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1375 	    0,				/* flags */
1376 	    NULL, NULL,			/* lockfunc, lockarg */
1377 	    &sc->alc_cdata.alc_parent_tag);
1378 	if (error != 0) {
1379 		device_printf(sc->alc_dev,
1380 		    "could not create parent DMA tag.\n");
1381 		goto fail;
1382 	}
1383 
1384 	/* Create DMA tag for Tx descriptor ring. */
1385 	error = bus_dma_tag_create(
1386 	    sc->alc_cdata.alc_parent_tag, /* parent */
1387 	    ALC_TX_RING_ALIGN, 0,	/* alignment, boundary */
1388 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1389 	    BUS_SPACE_MAXADDR,		/* highaddr */
1390 	    NULL, NULL,			/* filter, filterarg */
1391 	    ALC_TX_RING_SZ,		/* maxsize */
1392 	    1,				/* nsegments */
1393 	    ALC_TX_RING_SZ,		/* maxsegsize */
1394 	    0,				/* flags */
1395 	    NULL, NULL,			/* lockfunc, lockarg */
1396 	    &sc->alc_cdata.alc_tx_ring_tag);
1397 	if (error != 0) {
1398 		device_printf(sc->alc_dev,
1399 		    "could not create Tx ring DMA tag.\n");
1400 		goto fail;
1401 	}
1402 
1403 	/* Create DMA tag for Rx free descriptor ring. */
1404 	error = bus_dma_tag_create(
1405 	    sc->alc_cdata.alc_parent_tag, /* parent */
1406 	    ALC_RX_RING_ALIGN, 0,	/* alignment, boundary */
1407 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1408 	    BUS_SPACE_MAXADDR,		/* highaddr */
1409 	    NULL, NULL,			/* filter, filterarg */
1410 	    ALC_RX_RING_SZ,		/* maxsize */
1411 	    1,				/* nsegments */
1412 	    ALC_RX_RING_SZ,		/* maxsegsize */
1413 	    0,				/* flags */
1414 	    NULL, NULL,			/* lockfunc, lockarg */
1415 	    &sc->alc_cdata.alc_rx_ring_tag);
1416 	if (error != 0) {
1417 		device_printf(sc->alc_dev,
1418 		    "could not create Rx ring DMA tag.\n");
1419 		goto fail;
1420 	}
1421 	/* Create DMA tag for Rx return descriptor ring. */
1422 	error = bus_dma_tag_create(
1423 	    sc->alc_cdata.alc_parent_tag, /* parent */
1424 	    ALC_RR_RING_ALIGN, 0,	/* alignment, boundary */
1425 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1426 	    BUS_SPACE_MAXADDR,		/* highaddr */
1427 	    NULL, NULL,			/* filter, filterarg */
1428 	    ALC_RR_RING_SZ,		/* maxsize */
1429 	    1,				/* nsegments */
1430 	    ALC_RR_RING_SZ,		/* maxsegsize */
1431 	    0,				/* flags */
1432 	    NULL, NULL,			/* lockfunc, lockarg */
1433 	    &sc->alc_cdata.alc_rr_ring_tag);
1434 	if (error != 0) {
1435 		device_printf(sc->alc_dev,
1436 		    "could not create Rx return ring DMA tag.\n");
1437 		goto fail;
1438 	}
1439 
1440 	/* Create DMA tag for coalescing message block. */
1441 	error = bus_dma_tag_create(
1442 	    sc->alc_cdata.alc_parent_tag, /* parent */
1443 	    ALC_CMB_ALIGN, 0,		/* alignment, boundary */
1444 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1445 	    BUS_SPACE_MAXADDR,		/* highaddr */
1446 	    NULL, NULL,			/* filter, filterarg */
1447 	    ALC_CMB_SZ,			/* maxsize */
1448 	    1,				/* nsegments */
1449 	    ALC_CMB_SZ,			/* maxsegsize */
1450 	    0,				/* flags */
1451 	    NULL, NULL,			/* lockfunc, lockarg */
1452 	    &sc->alc_cdata.alc_cmb_tag);
1453 	if (error != 0) {
1454 		device_printf(sc->alc_dev,
1455 		    "could not create CMB DMA tag.\n");
1456 		goto fail;
1457 	}
1458 	/* Create DMA tag for status message block. */
1459 	error = bus_dma_tag_create(
1460 	    sc->alc_cdata.alc_parent_tag, /* parent */
1461 	    ALC_SMB_ALIGN, 0,		/* alignment, boundary */
1462 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1463 	    BUS_SPACE_MAXADDR,		/* highaddr */
1464 	    NULL, NULL,			/* filter, filterarg */
1465 	    ALC_SMB_SZ,			/* maxsize */
1466 	    1,				/* nsegments */
1467 	    ALC_SMB_SZ,			/* maxsegsize */
1468 	    0,				/* flags */
1469 	    NULL, NULL,			/* lockfunc, lockarg */
1470 	    &sc->alc_cdata.alc_smb_tag);
1471 	if (error != 0) {
1472 		device_printf(sc->alc_dev,
1473 		    "could not create SMB DMA tag.\n");
1474 		goto fail;
1475 	}
1476 
1477 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1478 	error = bus_dmamem_alloc(sc->alc_cdata.alc_tx_ring_tag,
1479 	    (void **)&sc->alc_rdata.alc_tx_ring,
1480 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1481 	    &sc->alc_cdata.alc_tx_ring_map);
1482 	if (error != 0) {
1483 		device_printf(sc->alc_dev,
1484 		    "could not allocate DMA'able memory for Tx ring.\n");
1485 		goto fail;
1486 	}
1487 	ctx.alc_busaddr = 0;
1488 	error = bus_dmamap_load(sc->alc_cdata.alc_tx_ring_tag,
1489 	    sc->alc_cdata.alc_tx_ring_map, sc->alc_rdata.alc_tx_ring,
1490 	    ALC_TX_RING_SZ, alc_dmamap_cb, &ctx, 0);
1491 	if (error != 0 || ctx.alc_busaddr == 0) {
1492 		device_printf(sc->alc_dev,
1493 		    "could not load DMA'able memory for Tx ring.\n");
1494 		goto fail;
1495 	}
1496 	sc->alc_rdata.alc_tx_ring_paddr = ctx.alc_busaddr;
1497 
1498 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1499 	error = bus_dmamem_alloc(sc->alc_cdata.alc_rx_ring_tag,
1500 	    (void **)&sc->alc_rdata.alc_rx_ring,
1501 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1502 	    &sc->alc_cdata.alc_rx_ring_map);
1503 	if (error != 0) {
1504 		device_printf(sc->alc_dev,
1505 		    "could not allocate DMA'able memory for Rx ring.\n");
1506 		goto fail;
1507 	}
1508 	ctx.alc_busaddr = 0;
1509 	error = bus_dmamap_load(sc->alc_cdata.alc_rx_ring_tag,
1510 	    sc->alc_cdata.alc_rx_ring_map, sc->alc_rdata.alc_rx_ring,
1511 	    ALC_RX_RING_SZ, alc_dmamap_cb, &ctx, 0);
1512 	if (error != 0 || ctx.alc_busaddr == 0) {
1513 		device_printf(sc->alc_dev,
1514 		    "could not load DMA'able memory for Rx ring.\n");
1515 		goto fail;
1516 	}
1517 	sc->alc_rdata.alc_rx_ring_paddr = ctx.alc_busaddr;
1518 
1519 	/* Allocate DMA'able memory and load the DMA map for Rx return ring. */
1520 	error = bus_dmamem_alloc(sc->alc_cdata.alc_rr_ring_tag,
1521 	    (void **)&sc->alc_rdata.alc_rr_ring,
1522 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1523 	    &sc->alc_cdata.alc_rr_ring_map);
1524 	if (error != 0) {
1525 		device_printf(sc->alc_dev,
1526 		    "could not allocate DMA'able memory for Rx return ring.\n");
1527 		goto fail;
1528 	}
1529 	ctx.alc_busaddr = 0;
1530 	error = bus_dmamap_load(sc->alc_cdata.alc_rr_ring_tag,
1531 	    sc->alc_cdata.alc_rr_ring_map, sc->alc_rdata.alc_rr_ring,
1532 	    ALC_RR_RING_SZ, alc_dmamap_cb, &ctx, 0);
1533 	if (error != 0 || ctx.alc_busaddr == 0) {
1534 		device_printf(sc->alc_dev,
1535 		    "could not load DMA'able memory for Tx ring.\n");
1536 		goto fail;
1537 	}
1538 	sc->alc_rdata.alc_rr_ring_paddr = ctx.alc_busaddr;
1539 
1540 	/* Allocate DMA'able memory and load the DMA map for CMB. */
1541 	error = bus_dmamem_alloc(sc->alc_cdata.alc_cmb_tag,
1542 	    (void **)&sc->alc_rdata.alc_cmb,
1543 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1544 	    &sc->alc_cdata.alc_cmb_map);
1545 	if (error != 0) {
1546 		device_printf(sc->alc_dev,
1547 		    "could not allocate DMA'able memory for CMB.\n");
1548 		goto fail;
1549 	}
1550 	ctx.alc_busaddr = 0;
1551 	error = bus_dmamap_load(sc->alc_cdata.alc_cmb_tag,
1552 	    sc->alc_cdata.alc_cmb_map, sc->alc_rdata.alc_cmb,
1553 	    ALC_CMB_SZ, alc_dmamap_cb, &ctx, 0);
1554 	if (error != 0 || ctx.alc_busaddr == 0) {
1555 		device_printf(sc->alc_dev,
1556 		    "could not load DMA'able memory for CMB.\n");
1557 		goto fail;
1558 	}
1559 	sc->alc_rdata.alc_cmb_paddr = ctx.alc_busaddr;
1560 
1561 	/* Allocate DMA'able memory and load the DMA map for SMB. */
1562 	error = bus_dmamem_alloc(sc->alc_cdata.alc_smb_tag,
1563 	    (void **)&sc->alc_rdata.alc_smb,
1564 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1565 	    &sc->alc_cdata.alc_smb_map);
1566 	if (error != 0) {
1567 		device_printf(sc->alc_dev,
1568 		    "could not allocate DMA'able memory for SMB.\n");
1569 		goto fail;
1570 	}
1571 	ctx.alc_busaddr = 0;
1572 	error = bus_dmamap_load(sc->alc_cdata.alc_smb_tag,
1573 	    sc->alc_cdata.alc_smb_map, sc->alc_rdata.alc_smb,
1574 	    ALC_SMB_SZ, alc_dmamap_cb, &ctx, 0);
1575 	if (error != 0 || ctx.alc_busaddr == 0) {
1576 		device_printf(sc->alc_dev,
1577 		    "could not load DMA'able memory for CMB.\n");
1578 		goto fail;
1579 	}
1580 	sc->alc_rdata.alc_smb_paddr = ctx.alc_busaddr;
1581 
1582 	/* Make sure we've not crossed 4GB boundary. */
1583 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1584 	    (error = alc_check_boundary(sc)) != 0) {
1585 		device_printf(sc->alc_dev, "4GB boundary crossed, "
1586 		    "switching to 32bit DMA addressing mode.\n");
1587 		alc_dma_free(sc);
1588 		/*
1589 		 * Limit max allowable DMA address space to 32bit
1590 		 * and try again.
1591 		 */
1592 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1593 		goto again;
1594 	}
1595 
1596 	/*
1597 	 * Create Tx buffer parent tag.
1598 	 * AR813x/AR815x allows 64bit DMA addressing of Tx/Rx buffers
1599 	 * so it needs separate parent DMA tag as parent DMA address
1600 	 * space could be restricted to be within 32bit address space
1601 	 * by 4GB boundary crossing.
1602 	 */
1603 	error = bus_dma_tag_create(
1604 	    bus_get_dma_tag(sc->alc_dev), /* parent */
1605 	    1, 0,			/* alignment, boundary */
1606 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1607 	    BUS_SPACE_MAXADDR,		/* highaddr */
1608 	    NULL, NULL,			/* filter, filterarg */
1609 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1610 	    0,				/* nsegments */
1611 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1612 	    0,				/* flags */
1613 	    NULL, NULL,			/* lockfunc, lockarg */
1614 	    &sc->alc_cdata.alc_buffer_tag);
1615 	if (error != 0) {
1616 		device_printf(sc->alc_dev,
1617 		    "could not create parent buffer DMA tag.\n");
1618 		goto fail;
1619 	}
1620 
1621 	/* Create DMA tag for Tx buffers. */
1622 	error = bus_dma_tag_create(
1623 	    sc->alc_cdata.alc_buffer_tag, /* parent */
1624 	    1, 0,			/* alignment, boundary */
1625 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1626 	    BUS_SPACE_MAXADDR,		/* highaddr */
1627 	    NULL, NULL,			/* filter, filterarg */
1628 	    ALC_TSO_MAXSIZE,		/* maxsize */
1629 	    ALC_MAXTXSEGS,		/* nsegments */
1630 	    ALC_TSO_MAXSEGSIZE,		/* maxsegsize */
1631 	    0,				/* flags */
1632 	    NULL, NULL,			/* lockfunc, lockarg */
1633 	    &sc->alc_cdata.alc_tx_tag);
1634 	if (error != 0) {
1635 		device_printf(sc->alc_dev, "could not create Tx DMA tag.\n");
1636 		goto fail;
1637 	}
1638 
1639 	/* Create DMA tag for Rx buffers. */
1640 	error = bus_dma_tag_create(
1641 	    sc->alc_cdata.alc_buffer_tag, /* parent */
1642 	    ALC_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1643 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1644 	    BUS_SPACE_MAXADDR,		/* highaddr */
1645 	    NULL, NULL,			/* filter, filterarg */
1646 	    MCLBYTES,			/* maxsize */
1647 	    1,				/* nsegments */
1648 	    MCLBYTES,			/* maxsegsize */
1649 	    0,				/* flags */
1650 	    NULL, NULL,			/* lockfunc, lockarg */
1651 	    &sc->alc_cdata.alc_rx_tag);
1652 	if (error != 0) {
1653 		device_printf(sc->alc_dev, "could not create Rx DMA tag.\n");
1654 		goto fail;
1655 	}
1656 	/* Create DMA maps for Tx buffers. */
1657 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1658 		txd = &sc->alc_cdata.alc_txdesc[i];
1659 		txd->tx_m = NULL;
1660 		txd->tx_dmamap = NULL;
1661 		error = bus_dmamap_create(sc->alc_cdata.alc_tx_tag, 0,
1662 		    &txd->tx_dmamap);
1663 		if (error != 0) {
1664 			device_printf(sc->alc_dev,
1665 			    "could not create Tx dmamap.\n");
1666 			goto fail;
1667 		}
1668 	}
1669 	/* Create DMA maps for Rx buffers. */
1670 	if ((error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag, 0,
1671 	    &sc->alc_cdata.alc_rx_sparemap)) != 0) {
1672 		device_printf(sc->alc_dev,
1673 		    "could not create spare Rx dmamap.\n");
1674 		goto fail;
1675 	}
1676 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1677 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1678 		rxd->rx_m = NULL;
1679 		rxd->rx_dmamap = NULL;
1680 		error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag, 0,
1681 		    &rxd->rx_dmamap);
1682 		if (error != 0) {
1683 			device_printf(sc->alc_dev,
1684 			    "could not create Rx dmamap.\n");
1685 			goto fail;
1686 		}
1687 	}
1688 
1689 fail:
1690 	return (error);
1691 }
1692 
1693 static void
1694 alc_dma_free(struct alc_softc *sc)
1695 {
1696 	struct alc_txdesc *txd;
1697 	struct alc_rxdesc *rxd;
1698 	int i;
1699 
1700 	/* Tx buffers. */
1701 	if (sc->alc_cdata.alc_tx_tag != NULL) {
1702 		for (i = 0; i < ALC_TX_RING_CNT; i++) {
1703 			txd = &sc->alc_cdata.alc_txdesc[i];
1704 			if (txd->tx_dmamap != NULL) {
1705 				bus_dmamap_destroy(sc->alc_cdata.alc_tx_tag,
1706 				    txd->tx_dmamap);
1707 				txd->tx_dmamap = NULL;
1708 			}
1709 		}
1710 		bus_dma_tag_destroy(sc->alc_cdata.alc_tx_tag);
1711 		sc->alc_cdata.alc_tx_tag = NULL;
1712 	}
1713 	/* Rx buffers */
1714 	if (sc->alc_cdata.alc_rx_tag != NULL) {
1715 		for (i = 0; i < ALC_RX_RING_CNT; i++) {
1716 			rxd = &sc->alc_cdata.alc_rxdesc[i];
1717 			if (rxd->rx_dmamap != NULL) {
1718 				bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
1719 				    rxd->rx_dmamap);
1720 				rxd->rx_dmamap = NULL;
1721 			}
1722 		}
1723 		if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1724 			bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
1725 			    sc->alc_cdata.alc_rx_sparemap);
1726 			sc->alc_cdata.alc_rx_sparemap = NULL;
1727 		}
1728 		bus_dma_tag_destroy(sc->alc_cdata.alc_rx_tag);
1729 		sc->alc_cdata.alc_rx_tag = NULL;
1730 	}
1731 	/* Tx descriptor ring. */
1732 	if (sc->alc_cdata.alc_tx_ring_tag != NULL) {
1733 		if (sc->alc_cdata.alc_tx_ring_map != NULL)
1734 			bus_dmamap_unload(sc->alc_cdata.alc_tx_ring_tag,
1735 			    sc->alc_cdata.alc_tx_ring_map);
1736 		if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1737 		    sc->alc_rdata.alc_tx_ring != NULL)
1738 			bus_dmamem_free(sc->alc_cdata.alc_tx_ring_tag,
1739 			    sc->alc_rdata.alc_tx_ring,
1740 			    sc->alc_cdata.alc_tx_ring_map);
1741 		sc->alc_rdata.alc_tx_ring = NULL;
1742 		sc->alc_cdata.alc_tx_ring_map = NULL;
1743 		bus_dma_tag_destroy(sc->alc_cdata.alc_tx_ring_tag);
1744 		sc->alc_cdata.alc_tx_ring_tag = NULL;
1745 	}
1746 	/* Rx ring. */
1747 	if (sc->alc_cdata.alc_rx_ring_tag != NULL) {
1748 		if (sc->alc_cdata.alc_rx_ring_map != NULL)
1749 			bus_dmamap_unload(sc->alc_cdata.alc_rx_ring_tag,
1750 			    sc->alc_cdata.alc_rx_ring_map);
1751 		if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1752 		    sc->alc_rdata.alc_rx_ring != NULL)
1753 			bus_dmamem_free(sc->alc_cdata.alc_rx_ring_tag,
1754 			    sc->alc_rdata.alc_rx_ring,
1755 			    sc->alc_cdata.alc_rx_ring_map);
1756 		sc->alc_rdata.alc_rx_ring = NULL;
1757 		sc->alc_cdata.alc_rx_ring_map = NULL;
1758 		bus_dma_tag_destroy(sc->alc_cdata.alc_rx_ring_tag);
1759 		sc->alc_cdata.alc_rx_ring_tag = NULL;
1760 	}
1761 	/* Rx return ring. */
1762 	if (sc->alc_cdata.alc_rr_ring_tag != NULL) {
1763 		if (sc->alc_cdata.alc_rr_ring_map != NULL)
1764 			bus_dmamap_unload(sc->alc_cdata.alc_rr_ring_tag,
1765 			    sc->alc_cdata.alc_rr_ring_map);
1766 		if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1767 		    sc->alc_rdata.alc_rr_ring != NULL)
1768 			bus_dmamem_free(sc->alc_cdata.alc_rr_ring_tag,
1769 			    sc->alc_rdata.alc_rr_ring,
1770 			    sc->alc_cdata.alc_rr_ring_map);
1771 		sc->alc_rdata.alc_rr_ring = NULL;
1772 		sc->alc_cdata.alc_rr_ring_map = NULL;
1773 		bus_dma_tag_destroy(sc->alc_cdata.alc_rr_ring_tag);
1774 		sc->alc_cdata.alc_rr_ring_tag = NULL;
1775 	}
1776 	/* CMB block */
1777 	if (sc->alc_cdata.alc_cmb_tag != NULL) {
1778 		if (sc->alc_cdata.alc_cmb_map != NULL)
1779 			bus_dmamap_unload(sc->alc_cdata.alc_cmb_tag,
1780 			    sc->alc_cdata.alc_cmb_map);
1781 		if (sc->alc_cdata.alc_cmb_map != NULL &&
1782 		    sc->alc_rdata.alc_cmb != NULL)
1783 			bus_dmamem_free(sc->alc_cdata.alc_cmb_tag,
1784 			    sc->alc_rdata.alc_cmb,
1785 			    sc->alc_cdata.alc_cmb_map);
1786 		sc->alc_rdata.alc_cmb = NULL;
1787 		sc->alc_cdata.alc_cmb_map = NULL;
1788 		bus_dma_tag_destroy(sc->alc_cdata.alc_cmb_tag);
1789 		sc->alc_cdata.alc_cmb_tag = NULL;
1790 	}
1791 	/* SMB block */
1792 	if (sc->alc_cdata.alc_smb_tag != NULL) {
1793 		if (sc->alc_cdata.alc_smb_map != NULL)
1794 			bus_dmamap_unload(sc->alc_cdata.alc_smb_tag,
1795 			    sc->alc_cdata.alc_smb_map);
1796 		if (sc->alc_cdata.alc_smb_map != NULL &&
1797 		    sc->alc_rdata.alc_smb != NULL)
1798 			bus_dmamem_free(sc->alc_cdata.alc_smb_tag,
1799 			    sc->alc_rdata.alc_smb,
1800 			    sc->alc_cdata.alc_smb_map);
1801 		sc->alc_rdata.alc_smb = NULL;
1802 		sc->alc_cdata.alc_smb_map = NULL;
1803 		bus_dma_tag_destroy(sc->alc_cdata.alc_smb_tag);
1804 		sc->alc_cdata.alc_smb_tag = NULL;
1805 	}
1806 	if (sc->alc_cdata.alc_buffer_tag != NULL) {
1807 		bus_dma_tag_destroy(sc->alc_cdata.alc_buffer_tag);
1808 		sc->alc_cdata.alc_buffer_tag = NULL;
1809 	}
1810 	if (sc->alc_cdata.alc_parent_tag != NULL) {
1811 		bus_dma_tag_destroy(sc->alc_cdata.alc_parent_tag);
1812 		sc->alc_cdata.alc_parent_tag = NULL;
1813 	}
1814 }
1815 
1816 static int
1817 alc_shutdown(device_t dev)
1818 {
1819 
1820 	return (alc_suspend(dev));
1821 }
1822 
1823 /*
1824  * Note, this driver resets the link speed to 10/100Mbps by
1825  * restarting auto-negotiation in suspend/shutdown phase but we
1826  * don't know whether that auto-negotiation would succeed or not
1827  * as driver has no control after powering off/suspend operation.
1828  * If the renegotiation fail WOL may not work. Running at 1Gbps
1829  * will draw more power than 375mA at 3.3V which is specified in
1830  * PCI specification and that would result in complete
1831  * shutdowning power to ethernet controller.
1832  *
1833  * TODO
1834  * Save current negotiated media speed/duplex/flow-control to
1835  * softc and restore the same link again after resuming. PHY
1836  * handling such as power down/resetting to 100Mbps may be better
1837  * handled in suspend method in phy driver.
1838  */
1839 static void
1840 alc_setlinkspeed(struct alc_softc *sc)
1841 {
1842 	struct mii_data *mii;
1843 	int aneg, i;
1844 
1845 	mii = device_get_softc(sc->alc_miibus);
1846 	mii_pollstat(mii);
1847 	aneg = 0;
1848 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1849 	    (IFM_ACTIVE | IFM_AVALID)) {
1850 		switch IFM_SUBTYPE(mii->mii_media_active) {
1851 		case IFM_10_T:
1852 		case IFM_100_TX:
1853 			return;
1854 		case IFM_1000_T:
1855 			aneg++;
1856 			break;
1857 		default:
1858 			break;
1859 		}
1860 	}
1861 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, MII_100T2CR, 0);
1862 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
1863 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1864 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
1865 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1866 	DELAY(1000);
1867 	if (aneg != 0) {
1868 		/*
1869 		 * Poll link state until alc(4) get a 10/100Mbps link.
1870 		 */
1871 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1872 			mii_pollstat(mii);
1873 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1874 			    == (IFM_ACTIVE | IFM_AVALID)) {
1875 				switch (IFM_SUBTYPE(
1876 				    mii->mii_media_active)) {
1877 				case IFM_10_T:
1878 				case IFM_100_TX:
1879 					alc_mac_config(sc);
1880 					return;
1881 				default:
1882 					break;
1883 				}
1884 			}
1885 			ALC_UNLOCK(sc);
1886 			pause("alclnk", hz);
1887 			ALC_LOCK(sc);
1888 		}
1889 		if (i == MII_ANEGTICKS_GIGE)
1890 			device_printf(sc->alc_dev,
1891 			    "establishing a link failed, WOL may not work!");
1892 	}
1893 	/*
1894 	 * No link, force MAC to have 100Mbps, full-duplex link.
1895 	 * This is the last resort and may/may not work.
1896 	 */
1897 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1898 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1899 	alc_mac_config(sc);
1900 }
1901 
1902 static void
1903 alc_setwol(struct alc_softc *sc)
1904 {
1905 	struct ifnet *ifp;
1906 	uint32_t reg, pmcs;
1907 	uint16_t pmstat;
1908 
1909 	ALC_LOCK_ASSERT(sc);
1910 
1911 	alc_disable_l0s_l1(sc);
1912 	ifp = sc->alc_ifp;
1913 	if ((sc->alc_flags & ALC_FLAG_PM) == 0) {
1914 		/* Disable WOL. */
1915 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
1916 		reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
1917 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1918 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
1919 		/* Force PHY power down. */
1920 		alc_phy_down(sc);
1921 		CSR_WRITE_4(sc, ALC_MASTER_CFG,
1922 		    CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS);
1923 		return;
1924 	}
1925 
1926 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1927 		if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
1928 			alc_setlinkspeed(sc);
1929 		CSR_WRITE_4(sc, ALC_MASTER_CFG,
1930 		    CSR_READ_4(sc, ALC_MASTER_CFG) & ~MASTER_CLK_SEL_DIS);
1931 	}
1932 
1933 	pmcs = 0;
1934 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1935 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1936 	CSR_WRITE_4(sc, ALC_WOL_CFG, pmcs);
1937 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
1938 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1939 	    MAC_CFG_BCAST);
1940 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1941 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1942 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1943 		reg |= MAC_CFG_RX_ENB;
1944 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
1945 
1946 	reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
1947 	reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1948 	CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
1949 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1950 		/* WOL disabled, PHY power down. */
1951 		alc_phy_down(sc);
1952 		CSR_WRITE_4(sc, ALC_MASTER_CFG,
1953 		    CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS);
1954 	}
1955 	/* Request PME. */
1956 	pmstat = pci_read_config(sc->alc_dev,
1957 	    sc->alc_pmcap + PCIR_POWER_STATUS, 2);
1958 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1959 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1960 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1961 	pci_write_config(sc->alc_dev,
1962 	    sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2);
1963 }
1964 
1965 static int
1966 alc_suspend(device_t dev)
1967 {
1968 	struct alc_softc *sc;
1969 
1970 	sc = device_get_softc(dev);
1971 
1972 	ALC_LOCK(sc);
1973 	alc_stop(sc);
1974 	alc_setwol(sc);
1975 	ALC_UNLOCK(sc);
1976 
1977 	return (0);
1978 }
1979 
1980 static int
1981 alc_resume(device_t dev)
1982 {
1983 	struct alc_softc *sc;
1984 	struct ifnet *ifp;
1985 	uint16_t pmstat;
1986 
1987 	sc = device_get_softc(dev);
1988 
1989 	ALC_LOCK(sc);
1990 	if ((sc->alc_flags & ALC_FLAG_PM) != 0) {
1991 		/* Disable PME and clear PME status. */
1992 		pmstat = pci_read_config(sc->alc_dev,
1993 		    sc->alc_pmcap + PCIR_POWER_STATUS, 2);
1994 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1995 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1996 			pci_write_config(sc->alc_dev,
1997 			    sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2);
1998 		}
1999 	}
2000 	/* Reset PHY. */
2001 	alc_phy_reset(sc);
2002 	ifp = sc->alc_ifp;
2003 	if ((ifp->if_flags & IFF_UP) != 0) {
2004 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2005 		alc_init_locked(sc);
2006 	}
2007 	ALC_UNLOCK(sc);
2008 
2009 	return (0);
2010 }
2011 
2012 static int
2013 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
2014 {
2015 	struct alc_txdesc *txd, *txd_last;
2016 	struct tx_desc *desc;
2017 	struct mbuf *m;
2018 	struct ip *ip;
2019 	struct tcphdr *tcp;
2020 	bus_dma_segment_t txsegs[ALC_MAXTXSEGS];
2021 	bus_dmamap_t map;
2022 	uint32_t cflags, hdrlen, poff, vtag;
2023 	int error, idx, nsegs, prod;
2024 
2025 	ALC_LOCK_ASSERT(sc);
2026 
2027 	M_ASSERTPKTHDR((*m_head));
2028 
2029 	m = *m_head;
2030 	ip = NULL;
2031 	tcp = NULL;
2032 	poff = 0;
2033 	if ((m->m_pkthdr.csum_flags & (ALC_CSUM_FEATURES | CSUM_TSO)) != 0) {
2034 		/*
2035 		 * AR813x/AR815x requires offset of TCP/UDP header in its
2036 		 * Tx descriptor to perform Tx checksum offloading. TSO
2037 		 * also requires TCP header offset and modification of
2038 		 * IP/TCP header. This kind of operation takes many CPU
2039 		 * cycles on FreeBSD so fast host CPU is required to get
2040 		 * smooth TSO performance.
2041 		 */
2042 
2043 		if (M_WRITABLE(m) == 0) {
2044 			/* Get a writable copy. */
2045 			m = m_dup(*m_head, M_DONTWAIT);
2046 			/* Release original mbufs. */
2047 			m_freem(*m_head);
2048 			if (m == NULL) {
2049 				*m_head = NULL;
2050 				return (ENOBUFS);
2051 			}
2052 			*m_head = m;
2053 		}
2054 
2055 		m = m_pullup(m, sizeof(struct ether_header) +
2056 		    sizeof(struct ip));
2057 		if (m == NULL) {
2058 			*m_head = NULL;
2059 			return (ENOBUFS);
2060 		}
2061 		ip = (struct ip *)(mtod(m, char *) +
2062 		    sizeof(struct ether_header));
2063 		poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
2064 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2065 			m = m_pullup(m, poff + sizeof(struct tcphdr));
2066 			if (m == NULL) {
2067 				*m_head = NULL;
2068 				return (ENOBUFS);
2069 			}
2070 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
2071 			m = m_pullup(m, poff + (tcp->th_off << 2));
2072 			if (m == NULL) {
2073 				*m_head = NULL;
2074 				return (ENOBUFS);
2075 			}
2076 			/*
2077 			 * Due to strict adherence of Microsoft NDIS
2078 			 * Large Send specification, hardware expects
2079 			 * a pseudo TCP checksum inserted by upper
2080 			 * stack. Unfortunately the pseudo TCP
2081 			 * checksum that NDIS refers to does not include
2082 			 * TCP payload length so driver should recompute
2083 			 * the pseudo checksum here. Hopefully this
2084 			 * wouldn't be much burden on modern CPUs.
2085 			 *
2086 			 * Reset IP checksum and recompute TCP pseudo
2087 			 * checksum as NDIS specification said.
2088 			 */
2089 			ip->ip_sum = 0;
2090 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
2091 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
2092 		}
2093 		*m_head = m;
2094 	}
2095 
2096 	prod = sc->alc_cdata.alc_tx_prod;
2097 	txd = &sc->alc_cdata.alc_txdesc[prod];
2098 	txd_last = txd;
2099 	map = txd->tx_dmamap;
2100 
2101 	error = bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_tx_tag, map,
2102 	    *m_head, txsegs, &nsegs, 0);
2103 	if (error == EFBIG) {
2104 		m = m_collapse(*m_head, M_DONTWAIT, ALC_MAXTXSEGS);
2105 		if (m == NULL) {
2106 			m_freem(*m_head);
2107 			*m_head = NULL;
2108 			return (ENOMEM);
2109 		}
2110 		*m_head = m;
2111 		error = bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_tx_tag, map,
2112 		    *m_head, txsegs, &nsegs, 0);
2113 		if (error != 0) {
2114 			m_freem(*m_head);
2115 			*m_head = NULL;
2116 			return (error);
2117 		}
2118 	} else if (error != 0)
2119 		return (error);
2120 	if (nsegs == 0) {
2121 		m_freem(*m_head);
2122 		*m_head = NULL;
2123 		return (EIO);
2124 	}
2125 
2126 	/* Check descriptor overrun. */
2127 	if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
2128 		bus_dmamap_unload(sc->alc_cdata.alc_tx_tag, map);
2129 		return (ENOBUFS);
2130 	}
2131 	bus_dmamap_sync(sc->alc_cdata.alc_tx_tag, map, BUS_DMASYNC_PREWRITE);
2132 
2133 	m = *m_head;
2134 	cflags = TD_ETHERNET;
2135 	vtag = 0;
2136 	desc = NULL;
2137 	idx = 0;
2138 	/* Configure VLAN hardware tag insertion. */
2139 	if ((m->m_flags & M_VLANTAG) != 0) {
2140 		vtag = htons(m->m_pkthdr.ether_vtag);
2141 		vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
2142 		cflags |= TD_INS_VLAN_TAG;
2143 	}
2144 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2145 		/* Request TSO and set MSS. */
2146 		cflags |= TD_TSO | TD_TSO_DESCV1;
2147 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << TD_MSS_SHIFT) &
2148 		    TD_MSS_MASK;
2149 		/* Set TCP header offset. */
2150 		cflags |= (poff << TD_TCPHDR_OFFSET_SHIFT) &
2151 		    TD_TCPHDR_OFFSET_MASK;
2152 		/*
2153 		 * AR813x/AR815x requires the first buffer should
2154 		 * only hold IP/TCP header data. Payload should
2155 		 * be handled in other descriptors.
2156 		 */
2157 		hdrlen = poff + (tcp->th_off << 2);
2158 		desc = &sc->alc_rdata.alc_tx_ring[prod];
2159 		desc->len = htole32(TX_BYTES(hdrlen | vtag));
2160 		desc->flags = htole32(cflags);
2161 		desc->addr = htole64(txsegs[0].ds_addr);
2162 		sc->alc_cdata.alc_tx_cnt++;
2163 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2164 		if (m->m_len - hdrlen > 0) {
2165 			/* Handle remaining payload of the first fragment. */
2166 			desc = &sc->alc_rdata.alc_tx_ring[prod];
2167 			desc->len = htole32(TX_BYTES((m->m_len - hdrlen) |
2168 			    vtag));
2169 			desc->flags = htole32(cflags);
2170 			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
2171 			sc->alc_cdata.alc_tx_cnt++;
2172 			ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2173 		}
2174 		/* Handle remaining fragments. */
2175 		idx = 1;
2176 	} else if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
2177 		/* Configure Tx checksum offload. */
2178 #ifdef ALC_USE_CUSTOM_CSUM
2179 		cflags |= TD_CUSTOM_CSUM;
2180 		/* Set checksum start offset. */
2181 		cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
2182 		    TD_PLOAD_OFFSET_MASK;
2183 		/* Set checksum insertion position of TCP/UDP. */
2184 		cflags |= (((poff + m->m_pkthdr.csum_data) >> 1) <<
2185 		    TD_CUSTOM_CSUM_OFFSET_SHIFT) & TD_CUSTOM_CSUM_OFFSET_MASK;
2186 #else
2187 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
2188 			cflags |= TD_IPCSUM;
2189 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2190 			cflags |= TD_TCPCSUM;
2191 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2192 			cflags |= TD_UDPCSUM;
2193 		/* Set TCP/UDP header offset. */
2194 		cflags |= (poff << TD_L4HDR_OFFSET_SHIFT) &
2195 		    TD_L4HDR_OFFSET_MASK;
2196 #endif
2197 	}
2198 	for (; idx < nsegs; idx++) {
2199 		desc = &sc->alc_rdata.alc_tx_ring[prod];
2200 		desc->len = htole32(TX_BYTES(txsegs[idx].ds_len) | vtag);
2201 		desc->flags = htole32(cflags);
2202 		desc->addr = htole64(txsegs[idx].ds_addr);
2203 		sc->alc_cdata.alc_tx_cnt++;
2204 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2205 	}
2206 	/* Update producer index. */
2207 	sc->alc_cdata.alc_tx_prod = prod;
2208 
2209 	/* Finally set EOP on the last descriptor. */
2210 	prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
2211 	desc = &sc->alc_rdata.alc_tx_ring[prod];
2212 	desc->flags |= htole32(TD_EOP);
2213 
2214 	/* Swap dmamap of the first and the last. */
2215 	txd = &sc->alc_cdata.alc_txdesc[prod];
2216 	map = txd_last->tx_dmamap;
2217 	txd_last->tx_dmamap = txd->tx_dmamap;
2218 	txd->tx_dmamap = map;
2219 	txd->tx_m = m;
2220 
2221 	return (0);
2222 }
2223 
2224 static void
2225 alc_tx_task(void *arg, int pending)
2226 {
2227 	struct ifnet *ifp;
2228 
2229 	ifp = (struct ifnet *)arg;
2230 	alc_start(ifp);
2231 }
2232 
2233 static void
2234 alc_start(struct ifnet *ifp)
2235 {
2236 	struct alc_softc *sc;
2237 	struct mbuf *m_head;
2238 	int enq;
2239 
2240 	sc = ifp->if_softc;
2241 
2242 	ALC_LOCK(sc);
2243 
2244 	/* Reclaim transmitted frames. */
2245 	if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
2246 		alc_txeof(sc);
2247 
2248 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2249 	    IFF_DRV_RUNNING || (sc->alc_flags & ALC_FLAG_LINK) == 0) {
2250 		ALC_UNLOCK(sc);
2251 		return;
2252 	}
2253 
2254 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
2255 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2256 		if (m_head == NULL)
2257 			break;
2258 		/*
2259 		 * Pack the data into the transmit ring. If we
2260 		 * don't have room, set the OACTIVE flag and wait
2261 		 * for the NIC to drain the ring.
2262 		 */
2263 		if (alc_encap(sc, &m_head)) {
2264 			if (m_head == NULL)
2265 				break;
2266 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2267 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2268 			break;
2269 		}
2270 
2271 		enq++;
2272 		/*
2273 		 * If there's a BPF listener, bounce a copy of this frame
2274 		 * to him.
2275 		 */
2276 		ETHER_BPF_MTAP(ifp, m_head);
2277 	}
2278 
2279 	if (enq > 0) {
2280 		/* Sync descriptors. */
2281 		bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
2282 		    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
2283 		/* Kick. Assume we're using normal Tx priority queue. */
2284 		CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
2285 		    (sc->alc_cdata.alc_tx_prod <<
2286 		    MBOX_TD_PROD_LO_IDX_SHIFT) &
2287 		    MBOX_TD_PROD_LO_IDX_MASK);
2288 		/* Set a timeout in case the chip goes out to lunch. */
2289 		sc->alc_watchdog_timer = ALC_TX_TIMEOUT;
2290 	}
2291 
2292 	ALC_UNLOCK(sc);
2293 }
2294 
2295 static void
2296 alc_watchdog(struct alc_softc *sc)
2297 {
2298 	struct ifnet *ifp;
2299 
2300 	ALC_LOCK_ASSERT(sc);
2301 
2302 	if (sc->alc_watchdog_timer == 0 || --sc->alc_watchdog_timer)
2303 		return;
2304 
2305 	ifp = sc->alc_ifp;
2306 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2307 		if_printf(sc->alc_ifp, "watchdog timeout (lost link)\n");
2308 		ifp->if_oerrors++;
2309 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2310 		alc_init_locked(sc);
2311 		return;
2312 	}
2313 	if_printf(sc->alc_ifp, "watchdog timeout -- resetting\n");
2314 	ifp->if_oerrors++;
2315 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2316 	alc_init_locked(sc);
2317 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2318 		taskqueue_enqueue(sc->alc_tq, &sc->alc_tx_task);
2319 }
2320 
2321 static int
2322 alc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2323 {
2324 	struct alc_softc *sc;
2325 	struct ifreq *ifr;
2326 	struct mii_data *mii;
2327 	int error, mask;
2328 
2329 	sc = ifp->if_softc;
2330 	ifr = (struct ifreq *)data;
2331 	error = 0;
2332 	switch (cmd) {
2333 	case SIOCSIFMTU:
2334 		if (ifr->ifr_mtu < ETHERMIN ||
2335 		    ifr->ifr_mtu > (sc->alc_ident->max_framelen -
2336 		    sizeof(struct ether_vlan_header) - ETHER_CRC_LEN) ||
2337 		    ((sc->alc_flags & ALC_FLAG_JUMBO) == 0 &&
2338 		    ifr->ifr_mtu > ETHERMTU))
2339 			error = EINVAL;
2340 		else if (ifp->if_mtu != ifr->ifr_mtu) {
2341 			ALC_LOCK(sc);
2342 			ifp->if_mtu = ifr->ifr_mtu;
2343 			/* AR813x/AR815x has 13 bits MSS field. */
2344 			if (ifp->if_mtu > ALC_TSO_MTU &&
2345 			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2346 				ifp->if_capenable &= ~IFCAP_TSO4;
2347 				ifp->if_hwassist &= ~CSUM_TSO;
2348 				VLAN_CAPABILITIES(ifp);
2349 			}
2350 			ALC_UNLOCK(sc);
2351 		}
2352 		break;
2353 	case SIOCSIFFLAGS:
2354 		ALC_LOCK(sc);
2355 		if ((ifp->if_flags & IFF_UP) != 0) {
2356 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2357 			    ((ifp->if_flags ^ sc->alc_if_flags) &
2358 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2359 				alc_rxfilter(sc);
2360 			else if ((sc->alc_flags & ALC_FLAG_DETACH) == 0)
2361 				alc_init_locked(sc);
2362 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2363 			alc_stop(sc);
2364 		sc->alc_if_flags = ifp->if_flags;
2365 		ALC_UNLOCK(sc);
2366 		break;
2367 	case SIOCADDMULTI:
2368 	case SIOCDELMULTI:
2369 		ALC_LOCK(sc);
2370 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2371 			alc_rxfilter(sc);
2372 		ALC_UNLOCK(sc);
2373 		break;
2374 	case SIOCSIFMEDIA:
2375 	case SIOCGIFMEDIA:
2376 		mii = device_get_softc(sc->alc_miibus);
2377 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2378 		break;
2379 	case SIOCSIFCAP:
2380 		ALC_LOCK(sc);
2381 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2382 		if ((mask & IFCAP_TXCSUM) != 0 &&
2383 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2384 			ifp->if_capenable ^= IFCAP_TXCSUM;
2385 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2386 				ifp->if_hwassist |= ALC_CSUM_FEATURES;
2387 			else
2388 				ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
2389 		}
2390 		if ((mask & IFCAP_TSO4) != 0 &&
2391 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2392 			ifp->if_capenable ^= IFCAP_TSO4;
2393 			if ((ifp->if_capenable & IFCAP_TSO4) != 0) {
2394 				/* AR813x/AR815x has 13 bits MSS field. */
2395 				if (ifp->if_mtu > ALC_TSO_MTU) {
2396 					ifp->if_capenable &= ~IFCAP_TSO4;
2397 					ifp->if_hwassist &= ~CSUM_TSO;
2398 				} else
2399 					ifp->if_hwassist |= CSUM_TSO;
2400 			} else
2401 				ifp->if_hwassist &= ~CSUM_TSO;
2402 		}
2403 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2404 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2405 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2406 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2407 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2408 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2409 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2410 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2411 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2412 			alc_rxvlan(sc);
2413 		}
2414 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2415 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2416 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2417 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2418 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2419 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2420 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2421 			ifp->if_capenable &=
2422 			    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
2423 		ALC_UNLOCK(sc);
2424 		VLAN_CAPABILITIES(ifp);
2425 		break;
2426 	default:
2427 		error = ether_ioctl(ifp, cmd, data);
2428 		break;
2429 	}
2430 
2431 	return (error);
2432 }
2433 
2434 static void
2435 alc_mac_config(struct alc_softc *sc)
2436 {
2437 	struct mii_data *mii;
2438 	uint32_t reg;
2439 
2440 	ALC_LOCK_ASSERT(sc);
2441 
2442 	mii = device_get_softc(sc->alc_miibus);
2443 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
2444 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2445 	    MAC_CFG_SPEED_MASK);
2446 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
2447 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
2448 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2)
2449 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
2450 	/* Reprogram MAC with resolved speed/duplex. */
2451 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2452 	case IFM_10_T:
2453 	case IFM_100_TX:
2454 		reg |= MAC_CFG_SPEED_10_100;
2455 		break;
2456 	case IFM_1000_T:
2457 		reg |= MAC_CFG_SPEED_1000;
2458 		break;
2459 	}
2460 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2461 		reg |= MAC_CFG_FULL_DUPLEX;
2462 #ifdef notyet
2463 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2464 			reg |= MAC_CFG_TX_FC;
2465 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2466 			reg |= MAC_CFG_RX_FC;
2467 #endif
2468 	}
2469 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2470 }
2471 
2472 static void
2473 alc_stats_clear(struct alc_softc *sc)
2474 {
2475 	struct smb sb, *smb;
2476 	uint32_t *reg;
2477 	int i;
2478 
2479 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2480 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2481 		    sc->alc_cdata.alc_smb_map,
2482 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2483 		smb = sc->alc_rdata.alc_smb;
2484 		/* Update done, clear. */
2485 		smb->updated = 0;
2486 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2487 		    sc->alc_cdata.alc_smb_map,
2488 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2489 	} else {
2490 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2491 		    reg++) {
2492 			CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2493 			i += sizeof(uint32_t);
2494 		}
2495 		/* Read Tx statistics. */
2496 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2497 		    reg++) {
2498 			CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2499 			i += sizeof(uint32_t);
2500 		}
2501 	}
2502 }
2503 
2504 static void
2505 alc_stats_update(struct alc_softc *sc)
2506 {
2507 	struct alc_hw_stats *stat;
2508 	struct smb sb, *smb;
2509 	struct ifnet *ifp;
2510 	uint32_t *reg;
2511 	int i;
2512 
2513 	ALC_LOCK_ASSERT(sc);
2514 
2515 	ifp = sc->alc_ifp;
2516 	stat = &sc->alc_stats;
2517 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2518 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2519 		    sc->alc_cdata.alc_smb_map,
2520 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2521 		smb = sc->alc_rdata.alc_smb;
2522 		if (smb->updated == 0)
2523 			return;
2524 	} else {
2525 		smb = &sb;
2526 		/* Read Rx statistics. */
2527 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2528 		    reg++) {
2529 			*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2530 			i += sizeof(uint32_t);
2531 		}
2532 		/* Read Tx statistics. */
2533 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2534 		    reg++) {
2535 			*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2536 			i += sizeof(uint32_t);
2537 		}
2538 	}
2539 
2540 	/* Rx stats. */
2541 	stat->rx_frames += smb->rx_frames;
2542 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2543 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2544 	stat->rx_pause_frames += smb->rx_pause_frames;
2545 	stat->rx_control_frames += smb->rx_control_frames;
2546 	stat->rx_crcerrs += smb->rx_crcerrs;
2547 	stat->rx_lenerrs += smb->rx_lenerrs;
2548 	stat->rx_bytes += smb->rx_bytes;
2549 	stat->rx_runts += smb->rx_runts;
2550 	stat->rx_fragments += smb->rx_fragments;
2551 	stat->rx_pkts_64 += smb->rx_pkts_64;
2552 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2553 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2554 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2555 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2556 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2557 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2558 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2559 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2560 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2561 	stat->rx_alignerrs += smb->rx_alignerrs;
2562 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2563 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2564 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2565 
2566 	/* Tx stats. */
2567 	stat->tx_frames += smb->tx_frames;
2568 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2569 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2570 	stat->tx_pause_frames += smb->tx_pause_frames;
2571 	stat->tx_excess_defer += smb->tx_excess_defer;
2572 	stat->tx_control_frames += smb->tx_control_frames;
2573 	stat->tx_deferred += smb->tx_deferred;
2574 	stat->tx_bytes += smb->tx_bytes;
2575 	stat->tx_pkts_64 += smb->tx_pkts_64;
2576 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2577 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2578 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2579 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2580 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2581 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2582 	stat->tx_single_colls += smb->tx_single_colls;
2583 	stat->tx_multi_colls += smb->tx_multi_colls;
2584 	stat->tx_late_colls += smb->tx_late_colls;
2585 	stat->tx_excess_colls += smb->tx_excess_colls;
2586 	stat->tx_abort += smb->tx_abort;
2587 	stat->tx_underrun += smb->tx_underrun;
2588 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2589 	stat->tx_lenerrs += smb->tx_lenerrs;
2590 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2591 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2592 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2593 
2594 	/* Update counters in ifnet. */
2595 	ifp->if_opackets += smb->tx_frames;
2596 
2597 	ifp->if_collisions += smb->tx_single_colls +
2598 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2599 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
2600 
2601 	/*
2602 	 * XXX
2603 	 * tx_pkts_truncated counter looks suspicious. It constantly
2604 	 * increments with no sign of Tx errors. This may indicate
2605 	 * the counter name is not correct one so I've removed the
2606 	 * counter in output errors.
2607 	 */
2608 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
2609 	    smb->tx_underrun;
2610 
2611 	ifp->if_ipackets += smb->rx_frames;
2612 
2613 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2614 	    smb->rx_runts + smb->rx_pkts_truncated +
2615 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2616 	    smb->rx_alignerrs;
2617 
2618 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2619 		/* Update done, clear. */
2620 		smb->updated = 0;
2621 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2622 		    sc->alc_cdata.alc_smb_map,
2623 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2624 	}
2625 }
2626 
2627 static int
2628 alc_intr(void *arg)
2629 {
2630 	struct alc_softc *sc;
2631 	uint32_t status;
2632 
2633 	sc = (struct alc_softc *)arg;
2634 
2635 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
2636 	if ((status & ALC_INTRS) == 0)
2637 		return (FILTER_STRAY);
2638 	/* Disable interrupts. */
2639 	CSR_WRITE_4(sc, ALC_INTR_STATUS, INTR_DIS_INT);
2640 	taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task);
2641 
2642 	return (FILTER_HANDLED);
2643 }
2644 
2645 static void
2646 alc_int_task(void *arg, int pending)
2647 {
2648 	struct alc_softc *sc;
2649 	struct ifnet *ifp;
2650 	uint32_t status;
2651 	int more;
2652 
2653 	sc = (struct alc_softc *)arg;
2654 	ifp = sc->alc_ifp;
2655 
2656 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
2657 	more = atomic_readandclear_int(&sc->alc_morework);
2658 	if (more != 0)
2659 		status |= INTR_RX_PKT;
2660 	if ((status & ALC_INTRS) == 0)
2661 		goto done;
2662 
2663 	/* Acknowledge interrupts but still disable interrupts. */
2664 	CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
2665 
2666 	more = 0;
2667 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2668 		if ((status & INTR_RX_PKT) != 0) {
2669 			more = alc_rxintr(sc, sc->alc_process_limit);
2670 			if (more == EAGAIN)
2671 				atomic_set_int(&sc->alc_morework, 1);
2672 			else if (more == EIO) {
2673 				ALC_LOCK(sc);
2674 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2675 				alc_init_locked(sc);
2676 				ALC_UNLOCK(sc);
2677 				return;
2678 			}
2679 		}
2680 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
2681 		    INTR_TXQ_TO_RST)) != 0) {
2682 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2683 				device_printf(sc->alc_dev,
2684 				    "DMA read error! -- resetting\n");
2685 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2686 				device_printf(sc->alc_dev,
2687 				    "DMA write error! -- resetting\n");
2688 			if ((status & INTR_TXQ_TO_RST) != 0)
2689 				device_printf(sc->alc_dev,
2690 				    "TxQ reset! -- resetting\n");
2691 			ALC_LOCK(sc);
2692 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2693 			alc_init_locked(sc);
2694 			ALC_UNLOCK(sc);
2695 			return;
2696 		}
2697 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2698 		    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2699 			taskqueue_enqueue(sc->alc_tq, &sc->alc_tx_task);
2700 	}
2701 
2702 	if (more == EAGAIN ||
2703 	    (CSR_READ_4(sc, ALC_INTR_STATUS) & ALC_INTRS) != 0) {
2704 		taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task);
2705 		return;
2706 	}
2707 
2708 done:
2709 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2710 		/* Re-enable interrupts if we're running. */
2711 		CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
2712 	}
2713 }
2714 
2715 static void
2716 alc_txeof(struct alc_softc *sc)
2717 {
2718 	struct ifnet *ifp;
2719 	struct alc_txdesc *txd;
2720 	uint32_t cons, prod;
2721 	int prog;
2722 
2723 	ALC_LOCK_ASSERT(sc);
2724 
2725 	ifp = sc->alc_ifp;
2726 
2727 	if (sc->alc_cdata.alc_tx_cnt == 0)
2728 		return;
2729 	bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
2730 	    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_POSTWRITE);
2731 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2732 		bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
2733 		    sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_POSTREAD);
2734 		prod = sc->alc_rdata.alc_cmb->cons;
2735 	} else
2736 		prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
2737 	/* Assume we're using normal Tx priority queue. */
2738 	prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
2739 	    MBOX_TD_CONS_LO_IDX_SHIFT;
2740 	cons = sc->alc_cdata.alc_tx_cons;
2741 	/*
2742 	 * Go through our Tx list and free mbufs for those
2743 	 * frames which have been transmitted.
2744 	 */
2745 	for (prog = 0; cons != prod; prog++,
2746 	    ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
2747 		if (sc->alc_cdata.alc_tx_cnt <= 0)
2748 			break;
2749 		prog++;
2750 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2751 		sc->alc_cdata.alc_tx_cnt--;
2752 		txd = &sc->alc_cdata.alc_txdesc[cons];
2753 		if (txd->tx_m != NULL) {
2754 			/* Reclaim transmitted mbufs. */
2755 			bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
2756 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2757 			bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
2758 			    txd->tx_dmamap);
2759 			m_freem(txd->tx_m);
2760 			txd->tx_m = NULL;
2761 		}
2762 	}
2763 
2764 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2765 		bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
2766 		    sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_PREREAD);
2767 	sc->alc_cdata.alc_tx_cons = cons;
2768 	/*
2769 	 * Unarm watchdog timer only when there is no pending
2770 	 * frames in Tx queue.
2771 	 */
2772 	if (sc->alc_cdata.alc_tx_cnt == 0)
2773 		sc->alc_watchdog_timer = 0;
2774 }
2775 
2776 static int
2777 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd)
2778 {
2779 	struct mbuf *m;
2780 	bus_dma_segment_t segs[1];
2781 	bus_dmamap_t map;
2782 	int nsegs;
2783 
2784 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2785 	if (m == NULL)
2786 		return (ENOBUFS);
2787 	m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
2788 #ifndef __NO_STRICT_ALIGNMENT
2789 	m_adj(m, sizeof(uint64_t));
2790 #endif
2791 
2792 	if (bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_rx_tag,
2793 	    sc->alc_cdata.alc_rx_sparemap, m, segs, &nsegs, 0) != 0) {
2794 		m_freem(m);
2795 		return (ENOBUFS);
2796 	}
2797 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2798 
2799 	if (rxd->rx_m != NULL) {
2800 		bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
2801 		    BUS_DMASYNC_POSTREAD);
2802 		bus_dmamap_unload(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap);
2803 	}
2804 	map = rxd->rx_dmamap;
2805 	rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
2806 	sc->alc_cdata.alc_rx_sparemap = map;
2807 	bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
2808 	    BUS_DMASYNC_PREREAD);
2809 	rxd->rx_m = m;
2810 	rxd->rx_desc->addr = htole64(segs[0].ds_addr);
2811 	return (0);
2812 }
2813 
2814 static int
2815 alc_rxintr(struct alc_softc *sc, int count)
2816 {
2817 	struct ifnet *ifp;
2818 	struct rx_rdesc *rrd;
2819 	uint32_t nsegs, status;
2820 	int rr_cons, prog;
2821 
2822 	bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
2823 	    sc->alc_cdata.alc_rr_ring_map,
2824 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2825 	bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
2826 	    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2827 	rr_cons = sc->alc_cdata.alc_rr_cons;
2828 	ifp = sc->alc_ifp;
2829 	for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;) {
2830 		if (count-- <= 0)
2831 			break;
2832 		rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
2833 		status = le32toh(rrd->status);
2834 		if ((status & RRD_VALID) == 0)
2835 			break;
2836 		nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
2837 		if (nsegs == 0) {
2838 			/* This should not happen! */
2839 			device_printf(sc->alc_dev,
2840 			    "unexpected segment count -- resetting\n");
2841 			return (EIO);
2842 		}
2843 		alc_rxeof(sc, rrd);
2844 		/* Clear Rx return status. */
2845 		rrd->status = 0;
2846 		ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
2847 		sc->alc_cdata.alc_rx_cons += nsegs;
2848 		sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
2849 		prog += nsegs;
2850 	}
2851 
2852 	if (prog > 0) {
2853 		/* Update the consumer index. */
2854 		sc->alc_cdata.alc_rr_cons = rr_cons;
2855 		/* Sync Rx return descriptors. */
2856 		bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
2857 		    sc->alc_cdata.alc_rr_ring_map,
2858 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2859 		/*
2860 		 * Sync updated Rx descriptors such that controller see
2861 		 * modified buffer addresses.
2862 		 */
2863 		bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
2864 		    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
2865 		/*
2866 		 * Let controller know availability of new Rx buffers.
2867 		 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
2868 		 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
2869 		 * only when Rx buffer pre-fetching is required. In
2870 		 * addition we already set ALC_RX_RD_FREE_THRESH to
2871 		 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
2872 		 * it still seems that pre-fetching needs more
2873 		 * experimentation.
2874 		 */
2875 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
2876 		    sc->alc_cdata.alc_rx_cons);
2877 	}
2878 
2879 	return (count > 0 ? 0 : EAGAIN);
2880 }
2881 
2882 #ifndef __NO_STRICT_ALIGNMENT
2883 static struct mbuf *
2884 alc_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2885 {
2886 	struct mbuf *n;
2887         int i;
2888         uint16_t *src, *dst;
2889 
2890 	src = mtod(m, uint16_t *);
2891 	dst = src - 3;
2892 
2893 	if (m->m_next == NULL) {
2894 		for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2895 			*dst++ = *src++;
2896 		m->m_data -= 6;
2897 		return (m);
2898 	}
2899 	/*
2900 	 * Append a new mbuf to received mbuf chain and copy ethernet
2901 	 * header from the mbuf chain. This can save lots of CPU
2902 	 * cycles for jumbo frame.
2903 	 */
2904 	MGETHDR(n, M_DONTWAIT, MT_DATA);
2905 	if (n == NULL) {
2906 		ifp->if_iqdrops++;
2907 		m_freem(m);
2908 		return (NULL);
2909 	}
2910 	bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2911 	m->m_data += ETHER_HDR_LEN;
2912 	m->m_len -= ETHER_HDR_LEN;
2913 	n->m_len = ETHER_HDR_LEN;
2914 	M_MOVE_PKTHDR(n, m);
2915 	n->m_next = m;
2916 	return (n);
2917 }
2918 #endif
2919 
2920 /* Receive a frame. */
2921 static void
2922 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
2923 {
2924 	struct alc_rxdesc *rxd;
2925 	struct ifnet *ifp;
2926 	struct mbuf *mp, *m;
2927 	uint32_t rdinfo, status, vtag;
2928 	int count, nsegs, rx_cons;
2929 
2930 	ifp = sc->alc_ifp;
2931 	status = le32toh(rrd->status);
2932 	rdinfo = le32toh(rrd->rdinfo);
2933 	rx_cons = RRD_RD_IDX(rdinfo);
2934 	nsegs = RRD_RD_CNT(rdinfo);
2935 
2936 	sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
2937 	if ((status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) != 0) {
2938 		/*
2939 		 * We want to pass the following frames to upper
2940 		 * layer regardless of error status of Rx return
2941 		 * ring.
2942 		 *
2943 		 *  o IP/TCP/UDP checksum is bad.
2944 		 *  o frame length and protocol specific length
2945 		 *     does not match.
2946 		 *
2947 		 *  Force network stack compute checksum for
2948 		 *  errored frames.
2949 		 */
2950 		status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
2951 		if ((RRD_ERR_CRC | RRD_ERR_ALIGN | RRD_ERR_TRUNC |
2952 		    RRD_ERR_RUNT) != 0)
2953 			return;
2954 	}
2955 
2956 	for (count = 0; count < nsegs; count++,
2957 	    ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
2958 		rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
2959 		mp = rxd->rx_m;
2960 		/* Add a new receive buffer to the ring. */
2961 		if (alc_newbuf(sc, rxd) != 0) {
2962 			ifp->if_iqdrops++;
2963 			/* Reuse Rx buffers. */
2964 			if (sc->alc_cdata.alc_rxhead != NULL)
2965 				m_freem(sc->alc_cdata.alc_rxhead);
2966 			break;
2967 		}
2968 
2969 		/*
2970 		 * Assume we've received a full sized frame.
2971 		 * Actual size is fixed when we encounter the end of
2972 		 * multi-segmented frame.
2973 		 */
2974 		mp->m_len = sc->alc_buf_size;
2975 
2976 		/* Chain received mbufs. */
2977 		if (sc->alc_cdata.alc_rxhead == NULL) {
2978 			sc->alc_cdata.alc_rxhead = mp;
2979 			sc->alc_cdata.alc_rxtail = mp;
2980 		} else {
2981 			mp->m_flags &= ~M_PKTHDR;
2982 			sc->alc_cdata.alc_rxprev_tail =
2983 			    sc->alc_cdata.alc_rxtail;
2984 			sc->alc_cdata.alc_rxtail->m_next = mp;
2985 			sc->alc_cdata.alc_rxtail = mp;
2986 		}
2987 
2988 		if (count == nsegs - 1) {
2989 			/* Last desc. for this frame. */
2990 			m = sc->alc_cdata.alc_rxhead;
2991 			m->m_flags |= M_PKTHDR;
2992 			/*
2993 			 * It seems that L1C/L2C controller has no way
2994 			 * to tell hardware to strip CRC bytes.
2995 			 */
2996 			m->m_pkthdr.len =
2997 			    sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
2998 			if (nsegs > 1) {
2999 				/* Set last mbuf size. */
3000 				mp->m_len = sc->alc_cdata.alc_rxlen -
3001 				    (nsegs - 1) * sc->alc_buf_size;
3002 				/* Remove the CRC bytes in chained mbufs. */
3003 				if (mp->m_len <= ETHER_CRC_LEN) {
3004 					sc->alc_cdata.alc_rxtail =
3005 					    sc->alc_cdata.alc_rxprev_tail;
3006 					sc->alc_cdata.alc_rxtail->m_len -=
3007 					    (ETHER_CRC_LEN - mp->m_len);
3008 					sc->alc_cdata.alc_rxtail->m_next = NULL;
3009 					m_freem(mp);
3010 				} else {
3011 					mp->m_len -= ETHER_CRC_LEN;
3012 				}
3013 			} else
3014 				m->m_len = m->m_pkthdr.len;
3015 			m->m_pkthdr.rcvif = ifp;
3016 			/*
3017 			 * Due to hardware bugs, Rx checksum offloading
3018 			 * was intentionally disabled.
3019 			 */
3020 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
3021 			    (status & RRD_VLAN_TAG) != 0) {
3022 				vtag = RRD_VLAN(le32toh(rrd->vtag));
3023 				m->m_pkthdr.ether_vtag = ntohs(vtag);
3024 				m->m_flags |= M_VLANTAG;
3025 			}
3026 #ifndef __NO_STRICT_ALIGNMENT
3027 			m = alc_fixup_rx(ifp, m);
3028 			if (m != NULL)
3029 #endif
3030 			{
3031 			/* Pass it on. */
3032 			(*ifp->if_input)(ifp, m);
3033 			}
3034 		}
3035 	}
3036 	/* Reset mbuf chains. */
3037 	ALC_RXCHAIN_RESET(sc);
3038 }
3039 
3040 static void
3041 alc_tick(void *arg)
3042 {
3043 	struct alc_softc *sc;
3044 	struct mii_data *mii;
3045 
3046 	sc = (struct alc_softc *)arg;
3047 
3048 	ALC_LOCK_ASSERT(sc);
3049 
3050 	mii = device_get_softc(sc->alc_miibus);
3051 	mii_tick(mii);
3052 	alc_stats_update(sc);
3053 	/*
3054 	 * alc(4) does not rely on Tx completion interrupts to reclaim
3055 	 * transferred buffers. Instead Tx completion interrupts are
3056 	 * used to hint for scheduling Tx task. So it's necessary to
3057 	 * release transmitted buffers by kicking Tx completion
3058 	 * handler. This limits the maximum reclamation delay to a hz.
3059 	 */
3060 	alc_txeof(sc);
3061 	alc_watchdog(sc);
3062 	callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
3063 }
3064 
3065 static void
3066 alc_reset(struct alc_softc *sc)
3067 {
3068 	uint32_t reg;
3069 	int i;
3070 
3071 	reg = CSR_READ_4(sc, ALC_MASTER_CFG) & 0xFFFF;
3072 	reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
3073 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
3074 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
3075 		DELAY(10);
3076 		if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
3077 			break;
3078 	}
3079 	if (i == 0)
3080 		device_printf(sc->alc_dev, "master reset timeout!\n");
3081 
3082 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
3083 		if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0)
3084 			break;
3085 		DELAY(10);
3086 	}
3087 
3088 	if (i == 0)
3089 		device_printf(sc->alc_dev, "reset timeout(0x%08x)!\n", reg);
3090 }
3091 
3092 static void
3093 alc_init(void *xsc)
3094 {
3095 	struct alc_softc *sc;
3096 
3097 	sc = (struct alc_softc *)xsc;
3098 	ALC_LOCK(sc);
3099 	alc_init_locked(sc);
3100 	ALC_UNLOCK(sc);
3101 }
3102 
3103 static void
3104 alc_init_locked(struct alc_softc *sc)
3105 {
3106 	struct ifnet *ifp;
3107 	struct mii_data *mii;
3108 	uint8_t eaddr[ETHER_ADDR_LEN];
3109 	bus_addr_t paddr;
3110 	uint32_t reg, rxf_hi, rxf_lo;
3111 
3112 	ALC_LOCK_ASSERT(sc);
3113 
3114 	ifp = sc->alc_ifp;
3115 	mii = device_get_softc(sc->alc_miibus);
3116 
3117 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3118 		return;
3119 	/*
3120 	 * Cancel any pending I/O.
3121 	 */
3122 	alc_stop(sc);
3123 	/*
3124 	 * Reset the chip to a known state.
3125 	 */
3126 	alc_reset(sc);
3127 
3128 	/* Initialize Rx descriptors. */
3129 	if (alc_init_rx_ring(sc) != 0) {
3130 		device_printf(sc->alc_dev, "no memory for Rx buffers.\n");
3131 		alc_stop(sc);
3132 		return;
3133 	}
3134 	alc_init_rr_ring(sc);
3135 	alc_init_tx_ring(sc);
3136 	alc_init_cmb(sc);
3137 	alc_init_smb(sc);
3138 
3139 	/* Reprogram the station address. */
3140 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3141 	CSR_WRITE_4(sc, ALC_PAR0,
3142 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
3143 	CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
3144 	/*
3145 	 * Clear WOL status and disable all WOL feature as WOL
3146 	 * would interfere Rx operation under normal environments.
3147 	 */
3148 	CSR_READ_4(sc, ALC_WOL_CFG);
3149 	CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
3150 	/* Set Tx descriptor base addresses. */
3151 	paddr = sc->alc_rdata.alc_tx_ring_paddr;
3152 	CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
3153 	CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
3154 	/* We don't use high priority ring. */
3155 	CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
3156 	/* Set Tx descriptor counter. */
3157 	CSR_WRITE_4(sc, ALC_TD_RING_CNT,
3158 	    (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
3159 	/* Set Rx descriptor base addresses. */
3160 	paddr = sc->alc_rdata.alc_rx_ring_paddr;
3161 	CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
3162 	CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
3163 	/* We use one Rx ring. */
3164 	CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
3165 	CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
3166 	CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
3167 	/* Set Rx descriptor counter. */
3168 	CSR_WRITE_4(sc, ALC_RD_RING_CNT,
3169 	    (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
3170 
3171 	/*
3172 	 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
3173 	 * if it do not fit the buffer size. Rx return descriptor holds
3174 	 * a counter that indicates how many fragments were made by the
3175 	 * hardware. The buffer size should be multiple of 8 bytes.
3176 	 * Since hardware has limit on the size of buffer size, always
3177 	 * use the maximum value.
3178 	 * For strict-alignment architectures make sure to reduce buffer
3179 	 * size by 8 bytes to make room for alignment fixup.
3180 	 */
3181 #ifndef __NO_STRICT_ALIGNMENT
3182 	sc->alc_buf_size = RX_BUF_SIZE_MAX - sizeof(uint64_t);
3183 #else
3184 	sc->alc_buf_size = RX_BUF_SIZE_MAX;
3185 #endif
3186 	CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
3187 
3188 	paddr = sc->alc_rdata.alc_rr_ring_paddr;
3189 	/* Set Rx return descriptor base addresses. */
3190 	CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
3191 	/* We use one Rx return ring. */
3192 	CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
3193 	CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
3194 	CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
3195 	/* Set Rx return descriptor counter. */
3196 	CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
3197 	    (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
3198 	paddr = sc->alc_rdata.alc_cmb_paddr;
3199 	CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
3200 	paddr = sc->alc_rdata.alc_smb_paddr;
3201 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
3202 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
3203 
3204 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) {
3205 		/* Reconfigure SRAM - Vendor magic. */
3206 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
3207 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
3208 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
3209 		CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
3210 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
3211 		CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
3212 		CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
3213 		CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
3214 	}
3215 
3216 	/* Tell hardware that we're ready to load DMA blocks. */
3217 	CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
3218 
3219 	/* Configure interrupt moderation timer. */
3220 	reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
3221 	reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
3222 	CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
3223 	/*
3224 	 * We don't want to automatic interrupt clear as task queue
3225 	 * for the interrupt should know interrupt status.
3226 	 */
3227 	reg = MASTER_SA_TIMER_ENB;
3228 	if (ALC_USECS(sc->alc_int_rx_mod) != 0)
3229 		reg |= MASTER_IM_RX_TIMER_ENB;
3230 	if (ALC_USECS(sc->alc_int_tx_mod) != 0)
3231 		reg |= MASTER_IM_TX_TIMER_ENB;
3232 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
3233 	/*
3234 	 * Disable interrupt re-trigger timer. We don't want automatic
3235 	 * re-triggering of un-ACKed interrupts.
3236 	 */
3237 	CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
3238 	/* Configure CMB. */
3239 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
3240 		CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
3241 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
3242 	} else
3243 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
3244 	/*
3245 	 * Hardware can be configured to issue SMB interrupt based
3246 	 * on programmed interval. Since there is a callout that is
3247 	 * invoked for every hz in driver we use that instead of
3248 	 * relying on periodic SMB interrupt.
3249 	 */
3250 	CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
3251 	/* Clear MAC statistics. */
3252 	alc_stats_clear(sc);
3253 
3254 	/*
3255 	 * Always use maximum frame size that controller can support.
3256 	 * Otherwise received frames that has larger frame length
3257 	 * than alc(4) MTU would be silently dropped in hardware. This
3258 	 * would make path-MTU discovery hard as sender wouldn't get
3259 	 * any responses from receiver. alc(4) supports
3260 	 * multi-fragmented frames on Rx path so it has no issue on
3261 	 * assembling fragmented frames. Using maximum frame size also
3262 	 * removes the need to reinitialize hardware when interface
3263 	 * MTU configuration was changed.
3264 	 *
3265 	 * Be conservative in what you do, be liberal in what you
3266 	 * accept from others - RFC 793.
3267 	 */
3268 	CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
3269 
3270 	/* Disable header split(?) */
3271 	CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
3272 
3273 	/* Configure IPG/IFG parameters. */
3274 	CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
3275 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
3276 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
3277 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
3278 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
3279 	/* Set parameters for half-duplex media. */
3280 	CSR_WRITE_4(sc, ALC_HDPX_CFG,
3281 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
3282 	    HDPX_CFG_LCOL_MASK) |
3283 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
3284 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
3285 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
3286 	    HDPX_CFG_ABEBT_MASK) |
3287 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
3288 	    HDPX_CFG_JAMIPG_MASK));
3289 	/*
3290 	 * Set TSO/checksum offload threshold. For frames that is
3291 	 * larger than this threshold, hardware wouldn't do
3292 	 * TSO/checksum offloading.
3293 	 */
3294 	CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH,
3295 	    (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
3296 	    TSO_OFFLOAD_THRESH_MASK);
3297 	/* Configure TxQ. */
3298 	reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
3299 	    TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
3300 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
3301 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2)
3302 		reg >>= 1;
3303 	reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
3304 	    TXQ_CFG_TD_BURST_MASK;
3305 	CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
3306 
3307 	/* Configure Rx free descriptor pre-fetching. */
3308 	CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
3309 	    ((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) &
3310 	    RX_RD_FREE_THRESH_HI_MASK) |
3311 	    ((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) &
3312 	    RX_RD_FREE_THRESH_LO_MASK));
3313 
3314 	/*
3315 	 * Configure flow control parameters.
3316 	 * XON  : 80% of Rx FIFO
3317 	 * XOFF : 30% of Rx FIFO
3318 	 */
3319 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 ||
3320 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132) {
3321 		reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
3322 		rxf_hi = (reg * 8) / 10;
3323 		rxf_lo = (reg * 3) / 10;
3324 		CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3325 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3326 		     RX_FIFO_PAUSE_THRESH_LO_MASK) |
3327 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3328 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
3329 	}
3330 
3331 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
3332 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2)
3333 		CSR_WRITE_4(sc, ALC_SERDES_LOCK,
3334 		    CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
3335 		    SERDES_PHY_CLK_SLOWDOWN);
3336 
3337 	/* Disable RSS until I understand L1C/L2C's RSS logic. */
3338 	CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
3339 	CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
3340 
3341 	/* Configure RxQ. */
3342 	reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
3343 	    RXQ_CFG_RD_BURST_MASK;
3344 	reg |= RXQ_CFG_RSS_MODE_DIS;
3345 	if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0)
3346 		reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
3347 	CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3348 
3349 	/* Configure DMA parameters. */
3350 	reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
3351 	reg |= sc->alc_rcb;
3352 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
3353 		reg |= DMA_CFG_CMB_ENB;
3354 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
3355 		reg |= DMA_CFG_SMB_ENB;
3356 	else
3357 		reg |= DMA_CFG_SMB_DIS;
3358 	reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
3359 	    DMA_CFG_RD_BURST_SHIFT;
3360 	reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
3361 	    DMA_CFG_WR_BURST_SHIFT;
3362 	reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
3363 	    DMA_CFG_RD_DELAY_CNT_MASK;
3364 	reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
3365 	    DMA_CFG_WR_DELAY_CNT_MASK;
3366 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3367 
3368 	/*
3369 	 * Configure Tx/Rx MACs.
3370 	 *  - Auto-padding for short frames.
3371 	 *  - Enable CRC generation.
3372 	 *  Actual reconfiguration of MAC for resolved speed/duplex
3373 	 *  is followed after detection of link establishment.
3374 	 *  AR813x/AR815x always does checksum computation regardless
3375 	 *  of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
3376 	 *  have bug in protocol field in Rx return structure so
3377 	 *  these controllers can't handle fragmented frames. Disable
3378 	 *  Rx checksum offloading until there is a newer controller
3379 	 *  that has sane implementation.
3380 	 */
3381 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
3382 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
3383 	    MAC_CFG_PREAMBLE_MASK);
3384 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
3385 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
3386 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2)
3387 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
3388 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
3389 		reg |= MAC_CFG_SPEED_10_100;
3390 	else
3391 		reg |= MAC_CFG_SPEED_1000;
3392 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3393 
3394 	/* Set up the receive filter. */
3395 	alc_rxfilter(sc);
3396 	alc_rxvlan(sc);
3397 
3398 	/* Acknowledge all pending interrupts and clear it. */
3399 	CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
3400 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3401 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
3402 
3403 	sc->alc_flags &= ~ALC_FLAG_LINK;
3404 	/* Switch to the current media. */
3405 	mii_mediachg(mii);
3406 
3407 	callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
3408 
3409 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3410 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3411 }
3412 
3413 static void
3414 alc_stop(struct alc_softc *sc)
3415 {
3416 	struct ifnet *ifp;
3417 	struct alc_txdesc *txd;
3418 	struct alc_rxdesc *rxd;
3419 	uint32_t reg;
3420 	int i;
3421 
3422 	ALC_LOCK_ASSERT(sc);
3423 	/*
3424 	 * Mark the interface down and cancel the watchdog timer.
3425 	 */
3426 	ifp = sc->alc_ifp;
3427 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3428 	sc->alc_flags &= ~ALC_FLAG_LINK;
3429 	callout_stop(&sc->alc_tick_ch);
3430 	sc->alc_watchdog_timer = 0;
3431 	alc_stats_update(sc);
3432 	/* Disable interrupts. */
3433 	CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
3434 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3435 	alc_stop_queue(sc);
3436 	/* Disable DMA. */
3437 	reg = CSR_READ_4(sc, ALC_DMA_CFG);
3438 	reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
3439 	reg |= DMA_CFG_SMB_DIS;
3440 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3441 	DELAY(1000);
3442 	/* Stop Rx/Tx MACs. */
3443 	alc_stop_mac(sc);
3444 	/* Disable interrupts which might be touched in taskq handler. */
3445 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3446 
3447 	/* Reclaim Rx buffers that have been processed. */
3448 	if (sc->alc_cdata.alc_rxhead != NULL)
3449 		m_freem(sc->alc_cdata.alc_rxhead);
3450 	ALC_RXCHAIN_RESET(sc);
3451 	/*
3452 	 * Free Tx/Rx mbufs still in the queues.
3453 	 */
3454 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3455 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3456 		if (rxd->rx_m != NULL) {
3457 			bus_dmamap_sync(sc->alc_cdata.alc_rx_tag,
3458 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3459 			bus_dmamap_unload(sc->alc_cdata.alc_rx_tag,
3460 			    rxd->rx_dmamap);
3461 			m_freem(rxd->rx_m);
3462 			rxd->rx_m = NULL;
3463 		}
3464 	}
3465 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3466 		txd = &sc->alc_cdata.alc_txdesc[i];
3467 		if (txd->tx_m != NULL) {
3468 			bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
3469 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3470 			bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
3471 			    txd->tx_dmamap);
3472 			m_freem(txd->tx_m);
3473 			txd->tx_m = NULL;
3474 		}
3475 	}
3476 }
3477 
3478 static void
3479 alc_stop_mac(struct alc_softc *sc)
3480 {
3481 	uint32_t reg;
3482 	int i;
3483 
3484 	ALC_LOCK_ASSERT(sc);
3485 
3486 	/* Disable Rx/Tx MAC. */
3487 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3488 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
3489 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
3490 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3491 	}
3492 	for (i = ALC_TIMEOUT; i > 0; i--) {
3493 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3494 		if (reg == 0)
3495 			break;
3496 		DELAY(10);
3497 	}
3498 	if (i == 0)
3499 		device_printf(sc->alc_dev,
3500 		    "could not disable Rx/Tx MAC(0x%08x)!\n", reg);
3501 }
3502 
3503 static void
3504 alc_start_queue(struct alc_softc *sc)
3505 {
3506 	uint32_t qcfg[] = {
3507 		0,
3508 		RXQ_CFG_QUEUE0_ENB,
3509 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
3510 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
3511 		RXQ_CFG_ENB
3512 	};
3513 	uint32_t cfg;
3514 
3515 	ALC_LOCK_ASSERT(sc);
3516 
3517 	/* Enable RxQ. */
3518 	cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
3519 	cfg &= ~RXQ_CFG_ENB;
3520 	cfg |= qcfg[1];
3521 	CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
3522 	/* Enable TxQ. */
3523 	cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
3524 	cfg |= TXQ_CFG_ENB;
3525 	CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
3526 }
3527 
3528 static void
3529 alc_stop_queue(struct alc_softc *sc)
3530 {
3531 	uint32_t reg;
3532 	int i;
3533 
3534 	ALC_LOCK_ASSERT(sc);
3535 
3536 	/* Disable RxQ. */
3537 	reg = CSR_READ_4(sc, ALC_RXQ_CFG);
3538 	if ((reg & RXQ_CFG_ENB) != 0) {
3539 		reg &= ~RXQ_CFG_ENB;
3540 		CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3541 	}
3542 	/* Disable TxQ. */
3543 	reg = CSR_READ_4(sc, ALC_TXQ_CFG);
3544 	if ((reg & TXQ_CFG_ENB) == 0) {
3545 		reg &= ~TXQ_CFG_ENB;
3546 		CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
3547 	}
3548 	for (i = ALC_TIMEOUT; i > 0; i--) {
3549 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3550 		if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
3551 			break;
3552 		DELAY(10);
3553 	}
3554 	if (i == 0)
3555 		device_printf(sc->alc_dev,
3556 		    "could not disable RxQ/TxQ (0x%08x)!\n", reg);
3557 }
3558 
3559 static void
3560 alc_init_tx_ring(struct alc_softc *sc)
3561 {
3562 	struct alc_ring_data *rd;
3563 	struct alc_txdesc *txd;
3564 	int i;
3565 
3566 	ALC_LOCK_ASSERT(sc);
3567 
3568 	sc->alc_cdata.alc_tx_prod = 0;
3569 	sc->alc_cdata.alc_tx_cons = 0;
3570 	sc->alc_cdata.alc_tx_cnt = 0;
3571 
3572 	rd = &sc->alc_rdata;
3573 	bzero(rd->alc_tx_ring, ALC_TX_RING_SZ);
3574 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3575 		txd = &sc->alc_cdata.alc_txdesc[i];
3576 		txd->tx_m = NULL;
3577 	}
3578 
3579 	bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
3580 	    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
3581 }
3582 
3583 static int
3584 alc_init_rx_ring(struct alc_softc *sc)
3585 {
3586 	struct alc_ring_data *rd;
3587 	struct alc_rxdesc *rxd;
3588 	int i;
3589 
3590 	ALC_LOCK_ASSERT(sc);
3591 
3592 	sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
3593 	sc->alc_morework = 0;
3594 	rd = &sc->alc_rdata;
3595 	bzero(rd->alc_rx_ring, ALC_RX_RING_SZ);
3596 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3597 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3598 		rxd->rx_m = NULL;
3599 		rxd->rx_desc = &rd->alc_rx_ring[i];
3600 		if (alc_newbuf(sc, rxd) != 0)
3601 			return (ENOBUFS);
3602 	}
3603 
3604 	/*
3605 	 * Since controller does not update Rx descriptors, driver
3606 	 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
3607 	 * is enough to ensure coherence.
3608 	 */
3609 	bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
3610 	    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
3611 	/* Let controller know availability of new Rx buffers. */
3612 	CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
3613 
3614 	return (0);
3615 }
3616 
3617 static void
3618 alc_init_rr_ring(struct alc_softc *sc)
3619 {
3620 	struct alc_ring_data *rd;
3621 
3622 	ALC_LOCK_ASSERT(sc);
3623 
3624 	sc->alc_cdata.alc_rr_cons = 0;
3625 	ALC_RXCHAIN_RESET(sc);
3626 
3627 	rd = &sc->alc_rdata;
3628 	bzero(rd->alc_rr_ring, ALC_RR_RING_SZ);
3629 	bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
3630 	    sc->alc_cdata.alc_rr_ring_map,
3631 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3632 }
3633 
3634 static void
3635 alc_init_cmb(struct alc_softc *sc)
3636 {
3637 	struct alc_ring_data *rd;
3638 
3639 	ALC_LOCK_ASSERT(sc);
3640 
3641 	rd = &sc->alc_rdata;
3642 	bzero(rd->alc_cmb, ALC_CMB_SZ);
3643 	bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag, sc->alc_cdata.alc_cmb_map,
3644 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3645 }
3646 
3647 static void
3648 alc_init_smb(struct alc_softc *sc)
3649 {
3650 	struct alc_ring_data *rd;
3651 
3652 	ALC_LOCK_ASSERT(sc);
3653 
3654 	rd = &sc->alc_rdata;
3655 	bzero(rd->alc_smb, ALC_SMB_SZ);
3656 	bus_dmamap_sync(sc->alc_cdata.alc_smb_tag, sc->alc_cdata.alc_smb_map,
3657 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3658 }
3659 
3660 static void
3661 alc_rxvlan(struct alc_softc *sc)
3662 {
3663 	struct ifnet *ifp;
3664 	uint32_t reg;
3665 
3666 	ALC_LOCK_ASSERT(sc);
3667 
3668 	ifp = sc->alc_ifp;
3669 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3670 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3671 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3672 	else
3673 		reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3674 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3675 }
3676 
3677 static void
3678 alc_rxfilter(struct alc_softc *sc)
3679 {
3680 	struct ifnet *ifp;
3681 	struct ifmultiaddr *ifma;
3682 	uint32_t crc;
3683 	uint32_t mchash[2];
3684 	uint32_t rxcfg;
3685 
3686 	ALC_LOCK_ASSERT(sc);
3687 
3688 	ifp = sc->alc_ifp;
3689 
3690 	bzero(mchash, sizeof(mchash));
3691 	rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
3692 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3693 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3694 		rxcfg |= MAC_CFG_BCAST;
3695 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3696 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3697 			rxcfg |= MAC_CFG_PROMISC;
3698 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3699 			rxcfg |= MAC_CFG_ALLMULTI;
3700 		mchash[0] = 0xFFFFFFFF;
3701 		mchash[1] = 0xFFFFFFFF;
3702 		goto chipit;
3703 	}
3704 
3705 	if_maddr_rlock(ifp);
3706 	TAILQ_FOREACH(ifma, &sc->alc_ifp->if_multiaddrs, ifma_link) {
3707 		if (ifma->ifma_addr->sa_family != AF_LINK)
3708 			continue;
3709 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3710 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3711 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3712 	}
3713 	if_maddr_runlock(ifp);
3714 
3715 chipit:
3716 	CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
3717 	CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
3718 	CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
3719 }
3720 
3721 static int
3722 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3723 {
3724 	int error, value;
3725 
3726 	if (arg1 == NULL)
3727 		return (EINVAL);
3728 	value = *(int *)arg1;
3729 	error = sysctl_handle_int(oidp, &value, 0, req);
3730 	if (error || req->newptr == NULL)
3731 		return (error);
3732 	if (value < low || value > high)
3733 		return (EINVAL);
3734 	*(int *)arg1 = value;
3735 
3736 	return (0);
3737 }
3738 
3739 static int
3740 sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS)
3741 {
3742 	return (sysctl_int_range(oidp, arg1, arg2, req,
3743 	    ALC_PROC_MIN, ALC_PROC_MAX));
3744 }
3745 
3746 static int
3747 sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS)
3748 {
3749 
3750 	return (sysctl_int_range(oidp, arg1, arg2, req,
3751 	    ALC_IM_TIMER_MIN, ALC_IM_TIMER_MAX));
3752 }
3753