xref: /freebsd/sys/dev/alc/if_alc.c (revision aa0a1e58f0189b0fde359a8bda032887e72057fa)
1 /*-
2  * Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/module.h>
42 #include <sys/mutex.h>
43 #include <sys/rman.h>
44 #include <sys/queue.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/taskqueue.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_llc.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 #include <net/if_vlan_var.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/ip.h>
63 #include <netinet/tcp.h>
64 
65 #include <dev/mii/mii.h>
66 #include <dev/mii/miivar.h>
67 
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70 
71 #include <machine/bus.h>
72 #include <machine/in_cksum.h>
73 
74 #include <dev/alc/if_alcreg.h>
75 #include <dev/alc/if_alcvar.h>
76 
77 /* "device miibus" required.  See GENERIC if you get errors here. */
78 #include "miibus_if.h"
79 #undef ALC_USE_CUSTOM_CSUM
80 
81 #ifdef ALC_USE_CUSTOM_CSUM
82 #define	ALC_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
83 #else
84 #define	ALC_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
85 #endif
86 
87 MODULE_DEPEND(alc, pci, 1, 1, 1);
88 MODULE_DEPEND(alc, ether, 1, 1, 1);
89 MODULE_DEPEND(alc, miibus, 1, 1, 1);
90 
91 /* Tunables. */
92 static int msi_disable = 0;
93 static int msix_disable = 0;
94 TUNABLE_INT("hw.alc.msi_disable", &msi_disable);
95 TUNABLE_INT("hw.alc.msix_disable", &msix_disable);
96 
97 /*
98  * Devices supported by this driver.
99  */
100 static struct alc_ident alc_ident_table[] = {
101 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8131, 9 * 1024,
102 		"Atheros AR8131 PCIe Gigabit Ethernet" },
103 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8132, 9 * 1024,
104 		"Atheros AR8132 PCIe Fast Ethernet" },
105 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151, 6 * 1024,
106 		"Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
107 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151_V2, 6 * 1024,
108 		"Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
109 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B, 6 * 1024,
110 		"Atheros AR8152 v1.1 PCIe Fast Ethernet" },
111 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B2, 6 * 1024,
112 		"Atheros AR8152 v2.0 PCIe Fast Ethernet" },
113 	{ 0, 0, 0, NULL}
114 };
115 
116 static void	alc_aspm(struct alc_softc *, int);
117 static int	alc_attach(device_t);
118 static int	alc_check_boundary(struct alc_softc *);
119 static int	alc_detach(device_t);
120 static void	alc_disable_l0s_l1(struct alc_softc *);
121 static int	alc_dma_alloc(struct alc_softc *);
122 static void	alc_dma_free(struct alc_softc *);
123 static void	alc_dmamap_cb(void *, bus_dma_segment_t *, int, int);
124 static int	alc_encap(struct alc_softc *, struct mbuf **);
125 static struct alc_ident *
126 		alc_find_ident(device_t);
127 #ifndef __NO_STRICT_ALIGNMENT
128 static struct mbuf *
129 		alc_fixup_rx(struct ifnet *, struct mbuf *);
130 #endif
131 static void	alc_get_macaddr(struct alc_softc *);
132 static void	alc_init(void *);
133 static void	alc_init_cmb(struct alc_softc *);
134 static void	alc_init_locked(struct alc_softc *);
135 static void	alc_init_rr_ring(struct alc_softc *);
136 static int	alc_init_rx_ring(struct alc_softc *);
137 static void	alc_init_smb(struct alc_softc *);
138 static void	alc_init_tx_ring(struct alc_softc *);
139 static void	alc_int_task(void *, int);
140 static int	alc_intr(void *);
141 static int	alc_ioctl(struct ifnet *, u_long, caddr_t);
142 static void	alc_mac_config(struct alc_softc *);
143 static int	alc_miibus_readreg(device_t, int, int);
144 static void	alc_miibus_statchg(device_t);
145 static int	alc_miibus_writereg(device_t, int, int, int);
146 static int	alc_mediachange(struct ifnet *);
147 static void	alc_mediastatus(struct ifnet *, struct ifmediareq *);
148 static int	alc_newbuf(struct alc_softc *, struct alc_rxdesc *);
149 static void	alc_phy_down(struct alc_softc *);
150 static void	alc_phy_reset(struct alc_softc *);
151 static int	alc_probe(device_t);
152 static void	alc_reset(struct alc_softc *);
153 static int	alc_resume(device_t);
154 static void	alc_rxeof(struct alc_softc *, struct rx_rdesc *);
155 static int	alc_rxintr(struct alc_softc *, int);
156 static void	alc_rxfilter(struct alc_softc *);
157 static void	alc_rxvlan(struct alc_softc *);
158 static void	alc_setlinkspeed(struct alc_softc *);
159 static void	alc_setwol(struct alc_softc *);
160 static int	alc_shutdown(device_t);
161 static void	alc_start(struct ifnet *);
162 static void	alc_start_locked(struct ifnet *);
163 static void	alc_start_queue(struct alc_softc *);
164 static void	alc_stats_clear(struct alc_softc *);
165 static void	alc_stats_update(struct alc_softc *);
166 static void	alc_stop(struct alc_softc *);
167 static void	alc_stop_mac(struct alc_softc *);
168 static void	alc_stop_queue(struct alc_softc *);
169 static int	alc_suspend(device_t);
170 static void	alc_sysctl_node(struct alc_softc *);
171 static void	alc_tick(void *);
172 static void	alc_txeof(struct alc_softc *);
173 static void	alc_watchdog(struct alc_softc *);
174 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
175 static int	sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS);
176 static int	sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS);
177 
178 static device_method_t alc_methods[] = {
179 	/* Device interface. */
180 	DEVMETHOD(device_probe,		alc_probe),
181 	DEVMETHOD(device_attach,	alc_attach),
182 	DEVMETHOD(device_detach,	alc_detach),
183 	DEVMETHOD(device_shutdown,	alc_shutdown),
184 	DEVMETHOD(device_suspend,	alc_suspend),
185 	DEVMETHOD(device_resume,	alc_resume),
186 
187 	/* MII interface. */
188 	DEVMETHOD(miibus_readreg,	alc_miibus_readreg),
189 	DEVMETHOD(miibus_writereg,	alc_miibus_writereg),
190 	DEVMETHOD(miibus_statchg,	alc_miibus_statchg),
191 
192 	{ NULL, NULL }
193 };
194 
195 static driver_t alc_driver = {
196 	"alc",
197 	alc_methods,
198 	sizeof(struct alc_softc)
199 };
200 
201 static devclass_t alc_devclass;
202 
203 DRIVER_MODULE(alc, pci, alc_driver, alc_devclass, 0, 0);
204 DRIVER_MODULE(miibus, alc, miibus_driver, miibus_devclass, 0, 0);
205 
206 static struct resource_spec alc_res_spec_mem[] = {
207 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
208 	{ -1,			0,		0 }
209 };
210 
211 static struct resource_spec alc_irq_spec_legacy[] = {
212 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
213 	{ -1,			0,		0 }
214 };
215 
216 static struct resource_spec alc_irq_spec_msi[] = {
217 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
218 	{ -1,			0,		0 }
219 };
220 
221 static struct resource_spec alc_irq_spec_msix[] = {
222 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
223 	{ -1,			0,		0 }
224 };
225 
226 static uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
227 
228 static int
229 alc_miibus_readreg(device_t dev, int phy, int reg)
230 {
231 	struct alc_softc *sc;
232 	uint32_t v;
233 	int i;
234 
235 	sc = device_get_softc(dev);
236 
237 	/*
238 	 * For AR8132 fast ethernet controller, do not report 1000baseT
239 	 * capability to mii(4). Even though AR8132 uses the same
240 	 * model/revision number of F1 gigabit PHY, the PHY has no
241 	 * ability to establish 1000baseT link.
242 	 */
243 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 &&
244 	    reg == MII_EXTSR)
245 		return (0);
246 
247 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
248 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
249 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
250 		DELAY(5);
251 		v = CSR_READ_4(sc, ALC_MDIO);
252 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
253 			break;
254 	}
255 
256 	if (i == 0) {
257 		device_printf(sc->alc_dev, "phy read timeout : %d\n", reg);
258 		return (0);
259 	}
260 
261 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
262 }
263 
264 static int
265 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
266 {
267 	struct alc_softc *sc;
268 	uint32_t v;
269 	int i;
270 
271 	sc = device_get_softc(dev);
272 
273 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
274 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
275 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
276 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
277 		DELAY(5);
278 		v = CSR_READ_4(sc, ALC_MDIO);
279 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
280 			break;
281 	}
282 
283 	if (i == 0)
284 		device_printf(sc->alc_dev, "phy write timeout : %d\n", reg);
285 
286 	return (0);
287 }
288 
289 static void
290 alc_miibus_statchg(device_t dev)
291 {
292 	struct alc_softc *sc;
293 	struct mii_data *mii;
294 	struct ifnet *ifp;
295 	uint32_t reg;
296 
297 	sc = device_get_softc(dev);
298 
299 	mii = device_get_softc(sc->alc_miibus);
300 	ifp = sc->alc_ifp;
301 	if (mii == NULL || ifp == NULL ||
302 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
303 		return;
304 
305 	sc->alc_flags &= ~ALC_FLAG_LINK;
306 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
307 	    (IFM_ACTIVE | IFM_AVALID)) {
308 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
309 		case IFM_10_T:
310 		case IFM_100_TX:
311 			sc->alc_flags |= ALC_FLAG_LINK;
312 			break;
313 		case IFM_1000_T:
314 			if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
315 				sc->alc_flags |= ALC_FLAG_LINK;
316 			break;
317 		default:
318 			break;
319 		}
320 	}
321 	alc_stop_queue(sc);
322 	/* Stop Rx/Tx MACs. */
323 	alc_stop_mac(sc);
324 
325 	/* Program MACs with resolved speed/duplex/flow-control. */
326 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
327 		alc_start_queue(sc);
328 		alc_mac_config(sc);
329 		/* Re-enable Tx/Rx MACs. */
330 		reg = CSR_READ_4(sc, ALC_MAC_CFG);
331 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
332 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
333 		alc_aspm(sc, IFM_SUBTYPE(mii->mii_media_active));
334 	}
335 }
336 
337 static void
338 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
339 {
340 	struct alc_softc *sc;
341 	struct mii_data *mii;
342 
343 	sc = ifp->if_softc;
344 	ALC_LOCK(sc);
345 	if ((ifp->if_flags & IFF_UP) == 0) {
346 		ALC_UNLOCK(sc);
347 		return;
348 	}
349 	mii = device_get_softc(sc->alc_miibus);
350 
351 	mii_pollstat(mii);
352 	ALC_UNLOCK(sc);
353 	ifmr->ifm_status = mii->mii_media_status;
354 	ifmr->ifm_active = mii->mii_media_active;
355 }
356 
357 static int
358 alc_mediachange(struct ifnet *ifp)
359 {
360 	struct alc_softc *sc;
361 	struct mii_data *mii;
362 	struct mii_softc *miisc;
363 	int error;
364 
365 	sc = ifp->if_softc;
366 	ALC_LOCK(sc);
367 	mii = device_get_softc(sc->alc_miibus);
368 	if (mii->mii_instance != 0) {
369 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
370 			mii_phy_reset(miisc);
371 	}
372 	error = mii_mediachg(mii);
373 	ALC_UNLOCK(sc);
374 
375 	return (error);
376 }
377 
378 static struct alc_ident *
379 alc_find_ident(device_t dev)
380 {
381 	struct alc_ident *ident;
382 	uint16_t vendor, devid;
383 
384 	vendor = pci_get_vendor(dev);
385 	devid = pci_get_device(dev);
386 	for (ident = alc_ident_table; ident->name != NULL; ident++) {
387 		if (vendor == ident->vendorid && devid == ident->deviceid)
388 			return (ident);
389 	}
390 
391 	return (NULL);
392 }
393 
394 static int
395 alc_probe(device_t dev)
396 {
397 	struct alc_ident *ident;
398 
399 	ident = alc_find_ident(dev);
400 	if (ident != NULL) {
401 		device_set_desc(dev, ident->name);
402 		return (BUS_PROBE_DEFAULT);
403 	}
404 
405 	return (ENXIO);
406 }
407 
408 static void
409 alc_get_macaddr(struct alc_softc *sc)
410 {
411 	uint32_t ea[2], opt;
412 	uint16_t val;
413 	int eeprom, i;
414 
415 	eeprom = 0;
416 	opt = CSR_READ_4(sc, ALC_OPT_CFG);
417 	if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
418 	    (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
419 		/*
420 		 * EEPROM found, let TWSI reload EEPROM configuration.
421 		 * This will set ethernet address of controller.
422 		 */
423 		eeprom++;
424 		switch (sc->alc_ident->deviceid) {
425 		case DEVICEID_ATHEROS_AR8131:
426 		case DEVICEID_ATHEROS_AR8132:
427 			if ((opt & OPT_CFG_CLK_ENB) == 0) {
428 				opt |= OPT_CFG_CLK_ENB;
429 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
430 				CSR_READ_4(sc, ALC_OPT_CFG);
431 				DELAY(1000);
432 			}
433 			break;
434 		case DEVICEID_ATHEROS_AR8151:
435 		case DEVICEID_ATHEROS_AR8151_V2:
436 		case DEVICEID_ATHEROS_AR8152_B:
437 		case DEVICEID_ATHEROS_AR8152_B2:
438 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
439 			    ALC_MII_DBG_ADDR, 0x00);
440 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
441 			    ALC_MII_DBG_DATA);
442 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
443 			    ALC_MII_DBG_DATA, val & 0xFF7F);
444 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
445 			    ALC_MII_DBG_ADDR, 0x3B);
446 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
447 			    ALC_MII_DBG_DATA);
448 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
449 			    ALC_MII_DBG_DATA, val | 0x0008);
450 			DELAY(20);
451 			break;
452 		}
453 
454 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
455 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
456 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
457 		CSR_READ_4(sc, ALC_WOL_CFG);
458 
459 		CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
460 		    TWSI_CFG_SW_LD_START);
461 		for (i = 100; i > 0; i--) {
462 			DELAY(1000);
463 			if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
464 			    TWSI_CFG_SW_LD_START) == 0)
465 				break;
466 		}
467 		if (i == 0)
468 			device_printf(sc->alc_dev,
469 			    "reloading EEPROM timeout!\n");
470 	} else {
471 		if (bootverbose)
472 			device_printf(sc->alc_dev, "EEPROM not found!\n");
473 	}
474 	if (eeprom != 0) {
475 		switch (sc->alc_ident->deviceid) {
476 		case DEVICEID_ATHEROS_AR8131:
477 		case DEVICEID_ATHEROS_AR8132:
478 			if ((opt & OPT_CFG_CLK_ENB) != 0) {
479 				opt &= ~OPT_CFG_CLK_ENB;
480 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
481 				CSR_READ_4(sc, ALC_OPT_CFG);
482 				DELAY(1000);
483 			}
484 			break;
485 		case DEVICEID_ATHEROS_AR8151:
486 		case DEVICEID_ATHEROS_AR8151_V2:
487 		case DEVICEID_ATHEROS_AR8152_B:
488 		case DEVICEID_ATHEROS_AR8152_B2:
489 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
490 			    ALC_MII_DBG_ADDR, 0x00);
491 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
492 			    ALC_MII_DBG_DATA);
493 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
494 			    ALC_MII_DBG_DATA, val | 0x0080);
495 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
496 			    ALC_MII_DBG_ADDR, 0x3B);
497 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
498 			    ALC_MII_DBG_DATA);
499 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
500 			    ALC_MII_DBG_DATA, val & 0xFFF7);
501 			DELAY(20);
502 			break;
503 		}
504 	}
505 
506 	ea[0] = CSR_READ_4(sc, ALC_PAR0);
507 	ea[1] = CSR_READ_4(sc, ALC_PAR1);
508 	sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
509 	sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
510 	sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
511 	sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
512 	sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
513 	sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
514 }
515 
516 static void
517 alc_disable_l0s_l1(struct alc_softc *sc)
518 {
519 	uint32_t pmcfg;
520 
521 	/* Another magic from vendor. */
522 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
523 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
524 	    PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK |
525 	    PM_CFG_SERDES_PD_EX_L1);
526 	pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
527 	    PM_CFG_SERDES_L1_ENB;
528 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
529 }
530 
531 static void
532 alc_phy_reset(struct alc_softc *sc)
533 {
534 	uint16_t data;
535 
536 	/* Reset magic from Linux. */
537 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
538 	    GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | GPHY_CFG_SEL_ANA_RESET);
539 	CSR_READ_2(sc, ALC_GPHY_CFG);
540 	DELAY(10 * 1000);
541 
542 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
543 	    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
544 	    GPHY_CFG_SEL_ANA_RESET);
545 	CSR_READ_2(sc, ALC_GPHY_CFG);
546 	DELAY(10 * 1000);
547 
548 	/* DSP fixup, Vendor magic. */
549 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) {
550 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
551 		    ALC_MII_DBG_ADDR, 0x000A);
552 		data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
553 		    ALC_MII_DBG_DATA);
554 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
555 		    ALC_MII_DBG_DATA, data & 0xDFFF);
556 	}
557 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
558 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
559 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
560 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
561 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
562 		    ALC_MII_DBG_ADDR, 0x003B);
563 		data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
564 		    ALC_MII_DBG_DATA);
565 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
566 		    ALC_MII_DBG_DATA, data & 0xFFF7);
567 		DELAY(20 * 1000);
568 	}
569 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151) {
570 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
571 		    ALC_MII_DBG_ADDR, 0x0029);
572 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
573 		    ALC_MII_DBG_DATA, 0x929D);
574 	}
575 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 ||
576 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132 ||
577 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
578 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
579 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
580 		    ALC_MII_DBG_ADDR, 0x0029);
581 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
582 		    ALC_MII_DBG_DATA, 0xB6DD);
583 	}
584 
585 	/* Load DSP codes, vendor magic. */
586 	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
587 	    ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
588 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
589 	    ALC_MII_DBG_ADDR, MII_ANA_CFG18);
590 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
591 	    ALC_MII_DBG_DATA, data);
592 
593 	data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
594 	    ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
595 	    ANA_SERDES_EN_LCKDT;
596 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
597 	    ALC_MII_DBG_ADDR, MII_ANA_CFG5);
598 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
599 	    ALC_MII_DBG_DATA, data);
600 
601 	data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
602 	    ANA_LONG_CABLE_TH_100_MASK) |
603 	    ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
604 	    ANA_SHORT_CABLE_TH_100_SHIFT) |
605 	    ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
606 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
607 	    ALC_MII_DBG_ADDR, MII_ANA_CFG54);
608 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
609 	    ALC_MII_DBG_DATA, data);
610 
611 	data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
612 	    ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
613 	    ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
614 	    ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
615 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
616 	    ALC_MII_DBG_ADDR, MII_ANA_CFG4);
617 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
618 	    ALC_MII_DBG_DATA, data);
619 
620 	data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
621 	    ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
622 	    ANA_OEN_125M;
623 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
624 	    ALC_MII_DBG_ADDR, MII_ANA_CFG0);
625 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
626 	    ALC_MII_DBG_DATA, data);
627 	DELAY(1000);
628 }
629 
630 static void
631 alc_phy_down(struct alc_softc *sc)
632 {
633 
634 	switch (sc->alc_ident->deviceid) {
635 	case DEVICEID_ATHEROS_AR8151:
636 	case DEVICEID_ATHEROS_AR8151_V2:
637 		/*
638 		 * GPHY power down caused more problems on AR8151 v2.0.
639 		 * When driver is reloaded after GPHY power down,
640 		 * accesses to PHY/MAC registers hung the system. Only
641 		 * cold boot recovered from it.  I'm not sure whether
642 		 * AR8151 v1.0 also requires this one though.  I don't
643 		 * have AR8151 v1.0 controller in hand.
644 		 * The only option left is to isolate the PHY and
645 		 * initiates power down the PHY which in turn saves
646 		 * more power when driver is unloaded.
647 		 */
648 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
649 		    MII_BMCR, BMCR_ISO | BMCR_PDOWN);
650 		break;
651 	default:
652 		/* Force PHY down. */
653 		CSR_WRITE_2(sc, ALC_GPHY_CFG,
654 		    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
655 		    GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
656 		    GPHY_CFG_PWDOWN_HW);
657 		DELAY(1000);
658 		break;
659 	}
660 }
661 
662 static void
663 alc_aspm(struct alc_softc *sc, int media)
664 {
665 	uint32_t pmcfg;
666 	uint16_t linkcfg;
667 
668 	ALC_LOCK_ASSERT(sc);
669 
670 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
671 	if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
672 	    (ALC_FLAG_APS | ALC_FLAG_PCIE))
673 		linkcfg = CSR_READ_2(sc, sc->alc_expcap +
674 		    PCIR_EXPRESS_LINK_CTL);
675 	else
676 		linkcfg = 0;
677 	pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
678 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
679 	pmcfg |= PM_CFG_MAC_ASPM_CHK;
680 	pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT);
681 	pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
682 
683 	if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
684 		/* Disable extended sync except AR8152 B v1.0 */
685 		linkcfg &= ~0x80;
686 		if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B &&
687 		    sc->alc_rev == ATHEROS_AR8152_B_V10)
688 			linkcfg |= 0x80;
689 		CSR_WRITE_2(sc, sc->alc_expcap + PCIR_EXPRESS_LINK_CTL,
690 		    linkcfg);
691 		pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
692 		    PM_CFG_HOTRST);
693 		pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
694 		    PM_CFG_L1_ENTRY_TIMER_SHIFT);
695 		pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
696 		pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
697 		    PM_CFG_PM_REQ_TIMER_SHIFT);
698 		pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
699 	}
700 
701 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
702 		if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
703 			pmcfg |= PM_CFG_ASPM_L0S_ENB;
704 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
705 			pmcfg |= PM_CFG_ASPM_L1_ENB;
706 		if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
707 			if (sc->alc_ident->deviceid ==
708 			    DEVICEID_ATHEROS_AR8152_B)
709 				pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
710 			pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
711 			    PM_CFG_SERDES_PLL_L1_ENB |
712 			    PM_CFG_SERDES_BUDS_RX_L1_ENB);
713 			pmcfg |= PM_CFG_CLK_SWH_L1;
714 			if (media == IFM_100_TX || media == IFM_1000_T) {
715 				pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
716 				switch (sc->alc_ident->deviceid) {
717 				case DEVICEID_ATHEROS_AR8152_B:
718 					pmcfg |= (7 <<
719 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
720 					break;
721 				case DEVICEID_ATHEROS_AR8152_B2:
722 				case DEVICEID_ATHEROS_AR8151_V2:
723 					pmcfg |= (4 <<
724 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
725 					break;
726 				default:
727 					pmcfg |= (15 <<
728 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
729 					break;
730 				}
731 			}
732 		} else {
733 			pmcfg |= PM_CFG_SERDES_L1_ENB |
734 			    PM_CFG_SERDES_PLL_L1_ENB |
735 			    PM_CFG_SERDES_BUDS_RX_L1_ENB;
736 			pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
737 			    PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
738 		}
739 	} else {
740 		pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
741 		    PM_CFG_SERDES_PLL_L1_ENB);
742 		pmcfg |= PM_CFG_CLK_SWH_L1;
743 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
744 			pmcfg |= PM_CFG_ASPM_L1_ENB;
745 	}
746 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
747 }
748 
749 static int
750 alc_attach(device_t dev)
751 {
752 	struct alc_softc *sc;
753 	struct ifnet *ifp;
754 	char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
755 	uint16_t burst;
756 	int base, error, i, msic, msixc, state;
757 	uint32_t cap, ctl, val;
758 
759 	error = 0;
760 	sc = device_get_softc(dev);
761 	sc->alc_dev = dev;
762 
763 	mtx_init(&sc->alc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
764 	    MTX_DEF);
765 	callout_init_mtx(&sc->alc_tick_ch, &sc->alc_mtx, 0);
766 	TASK_INIT(&sc->alc_int_task, 0, alc_int_task, sc);
767 	sc->alc_ident = alc_find_ident(dev);
768 
769 	/* Map the device. */
770 	pci_enable_busmaster(dev);
771 	sc->alc_res_spec = alc_res_spec_mem;
772 	sc->alc_irq_spec = alc_irq_spec_legacy;
773 	error = bus_alloc_resources(dev, sc->alc_res_spec, sc->alc_res);
774 	if (error != 0) {
775 		device_printf(dev, "cannot allocate memory resources.\n");
776 		goto fail;
777 	}
778 
779 	/* Set PHY address. */
780 	sc->alc_phyaddr = ALC_PHY_ADDR;
781 
782 	/* Initialize DMA parameters. */
783 	sc->alc_dma_rd_burst = 0;
784 	sc->alc_dma_wr_burst = 0;
785 	sc->alc_rcb = DMA_CFG_RCB_64;
786 	if (pci_find_extcap(dev, PCIY_EXPRESS, &base) == 0) {
787 		sc->alc_flags |= ALC_FLAG_PCIE;
788 		sc->alc_expcap = base;
789 		burst = CSR_READ_2(sc, base + PCIR_EXPRESS_DEVICE_CTL);
790 		sc->alc_dma_rd_burst =
791 		    (burst & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12;
792 		sc->alc_dma_wr_burst = (burst & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5;
793 		if (bootverbose) {
794 			device_printf(dev, "Read request size : %u bytes.\n",
795 			    alc_dma_burst[sc->alc_dma_rd_burst]);
796 			device_printf(dev, "TLP payload size : %u bytes.\n",
797 			    alc_dma_burst[sc->alc_dma_wr_burst]);
798 		}
799 		if (alc_dma_burst[sc->alc_dma_rd_burst] > 1024)
800 			sc->alc_dma_rd_burst = 3;
801 		if (alc_dma_burst[sc->alc_dma_wr_burst] > 1024)
802 			sc->alc_dma_wr_burst = 3;
803 		/* Clear data link and flow-control protocol error. */
804 		val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
805 		val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
806 		CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
807 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
808 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
809 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
810 		    CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
811 		    PCIE_PHYMISC_FORCE_RCV_DET);
812 		if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B &&
813 		    pci_get_revid(dev) == ATHEROS_AR8152_B_V10) {
814 			val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
815 			val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
816 			    PCIE_PHYMISC2_SERDES_TH_MASK);
817 			val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
818 			val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
819 			CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
820 		}
821 		/* Disable ASPM L0S and L1. */
822 		cap = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CAP);
823 		if ((cap & PCIM_LINK_CAP_ASPM) != 0) {
824 			ctl = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CTL);
825 			if ((ctl & 0x08) != 0)
826 				sc->alc_rcb = DMA_CFG_RCB_128;
827 			if (bootverbose)
828 				device_printf(dev, "RCB %u bytes\n",
829 				    sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
830 			state = ctl & 0x03;
831 			if (state & 0x01)
832 				sc->alc_flags |= ALC_FLAG_L0S;
833 			if (state & 0x02)
834 				sc->alc_flags |= ALC_FLAG_L1S;
835 			if (bootverbose)
836 				device_printf(sc->alc_dev, "ASPM %s %s\n",
837 				    aspm_state[state],
838 				    state == 0 ? "disabled" : "enabled");
839 			alc_disable_l0s_l1(sc);
840 		} else {
841 			if (bootverbose)
842 				device_printf(sc->alc_dev,
843 				    "no ASPM support\n");
844 		}
845 	}
846 
847 	/* Reset PHY. */
848 	alc_phy_reset(sc);
849 
850 	/* Reset the ethernet controller. */
851 	alc_reset(sc);
852 
853 	/*
854 	 * One odd thing is AR8132 uses the same PHY hardware(F1
855 	 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
856 	 * the PHY supports 1000Mbps but that's not true. The PHY
857 	 * used in AR8132 can't establish gigabit link even if it
858 	 * shows the same PHY model/revision number of AR8131.
859 	 */
860 	switch (sc->alc_ident->deviceid) {
861 	case DEVICEID_ATHEROS_AR8152_B:
862 	case DEVICEID_ATHEROS_AR8152_B2:
863 		sc->alc_flags |= ALC_FLAG_APS;
864 		/* FALLTHROUGH */
865 	case DEVICEID_ATHEROS_AR8132:
866 		sc->alc_flags |= ALC_FLAG_FASTETHER;
867 		break;
868 	case DEVICEID_ATHEROS_AR8151:
869 	case DEVICEID_ATHEROS_AR8151_V2:
870 		sc->alc_flags |= ALC_FLAG_APS;
871 		/* FALLTHROUGH */
872 	default:
873 		break;
874 	}
875 	sc->alc_flags |= ALC_FLAG_ASPM_MON | ALC_FLAG_JUMBO;
876 
877 	/*
878 	 * It seems that AR813x/AR815x has silicon bug for SMB. In
879 	 * addition, Atheros said that enabling SMB wouldn't improve
880 	 * performance. However I think it's bad to access lots of
881 	 * registers to extract MAC statistics.
882 	 */
883 	sc->alc_flags |= ALC_FLAG_SMB_BUG;
884 	/*
885 	 * Don't use Tx CMB. It is known to have silicon bug.
886 	 */
887 	sc->alc_flags |= ALC_FLAG_CMB_BUG;
888 	sc->alc_rev = pci_get_revid(dev);
889 	sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
890 	    MASTER_CHIP_REV_SHIFT;
891 	if (bootverbose) {
892 		device_printf(dev, "PCI device revision : 0x%04x\n",
893 		    sc->alc_rev);
894 		device_printf(dev, "Chip id/revision : 0x%04x\n",
895 		    sc->alc_chip_rev);
896 	}
897 	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n",
898 	    CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
899 	    CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
900 
901 	/* Allocate IRQ resources. */
902 	msixc = pci_msix_count(dev);
903 	msic = pci_msi_count(dev);
904 	if (bootverbose) {
905 		device_printf(dev, "MSIX count : %d\n", msixc);
906 		device_printf(dev, "MSI count : %d\n", msic);
907 	}
908 	/* Prefer MSIX over MSI. */
909 	if (msix_disable == 0 || msi_disable == 0) {
910 		if (msix_disable == 0 && msixc == ALC_MSIX_MESSAGES &&
911 		    pci_alloc_msix(dev, &msixc) == 0) {
912 			if (msic == ALC_MSIX_MESSAGES) {
913 				device_printf(dev,
914 				    "Using %d MSIX message(s).\n", msixc);
915 				sc->alc_flags |= ALC_FLAG_MSIX;
916 				sc->alc_irq_spec = alc_irq_spec_msix;
917 			} else
918 				pci_release_msi(dev);
919 		}
920 		if (msi_disable == 0 && (sc->alc_flags & ALC_FLAG_MSIX) == 0 &&
921 		    msic == ALC_MSI_MESSAGES &&
922 		    pci_alloc_msi(dev, &msic) == 0) {
923 			if (msic == ALC_MSI_MESSAGES) {
924 				device_printf(dev,
925 				    "Using %d MSI message(s).\n", msic);
926 				sc->alc_flags |= ALC_FLAG_MSI;
927 				sc->alc_irq_spec = alc_irq_spec_msi;
928 			} else
929 				pci_release_msi(dev);
930 		}
931 	}
932 
933 	error = bus_alloc_resources(dev, sc->alc_irq_spec, sc->alc_irq);
934 	if (error != 0) {
935 		device_printf(dev, "cannot allocate IRQ resources.\n");
936 		goto fail;
937 	}
938 
939 	/* Create device sysctl node. */
940 	alc_sysctl_node(sc);
941 
942 	if ((error = alc_dma_alloc(sc) != 0))
943 		goto fail;
944 
945 	/* Load station address. */
946 	alc_get_macaddr(sc);
947 
948 	ifp = sc->alc_ifp = if_alloc(IFT_ETHER);
949 	if (ifp == NULL) {
950 		device_printf(dev, "cannot allocate ifnet structure.\n");
951 		error = ENXIO;
952 		goto fail;
953 	}
954 
955 	ifp->if_softc = sc;
956 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
957 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
958 	ifp->if_ioctl = alc_ioctl;
959 	ifp->if_start = alc_start;
960 	ifp->if_init = alc_init;
961 	ifp->if_snd.ifq_drv_maxlen = ALC_TX_RING_CNT - 1;
962 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
963 	IFQ_SET_READY(&ifp->if_snd);
964 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
965 	ifp->if_hwassist = ALC_CSUM_FEATURES | CSUM_TSO;
966 	if (pci_find_extcap(dev, PCIY_PMG, &base) == 0) {
967 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
968 		sc->alc_flags |= ALC_FLAG_PM;
969 		sc->alc_pmcap = base;
970 	}
971 	ifp->if_capenable = ifp->if_capabilities;
972 
973 	/* Set up MII bus. */
974 	error = mii_attach(dev, &sc->alc_miibus, ifp, alc_mediachange,
975 	    alc_mediastatus, BMSR_DEFCAPMASK, sc->alc_phyaddr, MII_OFFSET_ANY,
976 	    MIIF_DOPAUSE);
977 	if (error != 0) {
978 		device_printf(dev, "attaching PHYs failed\n");
979 		goto fail;
980 	}
981 
982 	ether_ifattach(ifp, sc->alc_eaddr);
983 
984 	/* VLAN capability setup. */
985 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
986 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
987 	ifp->if_capenable = ifp->if_capabilities;
988 	/*
989 	 * XXX
990 	 * It seems enabling Tx checksum offloading makes more trouble.
991 	 * Sometimes the controller does not receive any frames when
992 	 * Tx checksum offloading is enabled. I'm not sure whether this
993 	 * is a bug in Tx checksum offloading logic or I got broken
994 	 * sample boards. To safety, don't enable Tx checksum offloading
995 	 * by default but give chance to users to toggle it if they know
996 	 * their controllers work without problems.
997 	 */
998 	ifp->if_capenable &= ~IFCAP_TXCSUM;
999 	ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
1000 
1001 	/* Tell the upper layer(s) we support long frames. */
1002 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1003 
1004 	/* Create local taskq. */
1005 	sc->alc_tq = taskqueue_create_fast("alc_taskq", M_WAITOK,
1006 	    taskqueue_thread_enqueue, &sc->alc_tq);
1007 	if (sc->alc_tq == NULL) {
1008 		device_printf(dev, "could not create taskqueue.\n");
1009 		ether_ifdetach(ifp);
1010 		error = ENXIO;
1011 		goto fail;
1012 	}
1013 	taskqueue_start_threads(&sc->alc_tq, 1, PI_NET, "%s taskq",
1014 	    device_get_nameunit(sc->alc_dev));
1015 
1016 	if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
1017 		msic = ALC_MSIX_MESSAGES;
1018 	else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
1019 		msic = ALC_MSI_MESSAGES;
1020 	else
1021 		msic = 1;
1022 	for (i = 0; i < msic; i++) {
1023 		error = bus_setup_intr(dev, sc->alc_irq[i],
1024 		    INTR_TYPE_NET | INTR_MPSAFE, alc_intr, NULL, sc,
1025 		    &sc->alc_intrhand[i]);
1026 		if (error != 0)
1027 			break;
1028 	}
1029 	if (error != 0) {
1030 		device_printf(dev, "could not set up interrupt handler.\n");
1031 		taskqueue_free(sc->alc_tq);
1032 		sc->alc_tq = NULL;
1033 		ether_ifdetach(ifp);
1034 		goto fail;
1035 	}
1036 
1037 fail:
1038 	if (error != 0)
1039 		alc_detach(dev);
1040 
1041 	return (error);
1042 }
1043 
1044 static int
1045 alc_detach(device_t dev)
1046 {
1047 	struct alc_softc *sc;
1048 	struct ifnet *ifp;
1049 	int i, msic;
1050 
1051 	sc = device_get_softc(dev);
1052 
1053 	ifp = sc->alc_ifp;
1054 	if (device_is_attached(dev)) {
1055 		ether_ifdetach(ifp);
1056 		ALC_LOCK(sc);
1057 		alc_stop(sc);
1058 		ALC_UNLOCK(sc);
1059 		callout_drain(&sc->alc_tick_ch);
1060 		taskqueue_drain(sc->alc_tq, &sc->alc_int_task);
1061 	}
1062 
1063 	if (sc->alc_tq != NULL) {
1064 		taskqueue_drain(sc->alc_tq, &sc->alc_int_task);
1065 		taskqueue_free(sc->alc_tq);
1066 		sc->alc_tq = NULL;
1067 	}
1068 
1069 	if (sc->alc_miibus != NULL) {
1070 		device_delete_child(dev, sc->alc_miibus);
1071 		sc->alc_miibus = NULL;
1072 	}
1073 	bus_generic_detach(dev);
1074 	alc_dma_free(sc);
1075 
1076 	if (ifp != NULL) {
1077 		if_free(ifp);
1078 		sc->alc_ifp = NULL;
1079 	}
1080 
1081 	if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
1082 		msic = ALC_MSIX_MESSAGES;
1083 	else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
1084 		msic = ALC_MSI_MESSAGES;
1085 	else
1086 		msic = 1;
1087 	for (i = 0; i < msic; i++) {
1088 		if (sc->alc_intrhand[i] != NULL) {
1089 			bus_teardown_intr(dev, sc->alc_irq[i],
1090 			    sc->alc_intrhand[i]);
1091 			sc->alc_intrhand[i] = NULL;
1092 		}
1093 	}
1094 	if (sc->alc_res[0] != NULL)
1095 		alc_phy_down(sc);
1096 	bus_release_resources(dev, sc->alc_irq_spec, sc->alc_irq);
1097 	if ((sc->alc_flags & (ALC_FLAG_MSI | ALC_FLAG_MSIX)) != 0)
1098 		pci_release_msi(dev);
1099 	bus_release_resources(dev, sc->alc_res_spec, sc->alc_res);
1100 	mtx_destroy(&sc->alc_mtx);
1101 
1102 	return (0);
1103 }
1104 
1105 #define	ALC_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
1106 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
1107 #define	ALC_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
1108 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
1109 
1110 static void
1111 alc_sysctl_node(struct alc_softc *sc)
1112 {
1113 	struct sysctl_ctx_list *ctx;
1114 	struct sysctl_oid_list *child, *parent;
1115 	struct sysctl_oid *tree;
1116 	struct alc_hw_stats *stats;
1117 	int error;
1118 
1119 	stats = &sc->alc_stats;
1120 	ctx = device_get_sysctl_ctx(sc->alc_dev);
1121 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->alc_dev));
1122 
1123 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
1124 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_rx_mod, 0,
1125 	    sysctl_hw_alc_int_mod, "I", "alc Rx interrupt moderation");
1126 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
1127 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_tx_mod, 0,
1128 	    sysctl_hw_alc_int_mod, "I", "alc Tx interrupt moderation");
1129 	/* Pull in device tunables. */
1130 	sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
1131 	error = resource_int_value(device_get_name(sc->alc_dev),
1132 	    device_get_unit(sc->alc_dev), "int_rx_mod", &sc->alc_int_rx_mod);
1133 	if (error == 0) {
1134 		if (sc->alc_int_rx_mod < ALC_IM_TIMER_MIN ||
1135 		    sc->alc_int_rx_mod > ALC_IM_TIMER_MAX) {
1136 			device_printf(sc->alc_dev, "int_rx_mod value out of "
1137 			    "range; using default: %d\n",
1138 			    ALC_IM_RX_TIMER_DEFAULT);
1139 			sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
1140 		}
1141 	}
1142 	sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
1143 	error = resource_int_value(device_get_name(sc->alc_dev),
1144 	    device_get_unit(sc->alc_dev), "int_tx_mod", &sc->alc_int_tx_mod);
1145 	if (error == 0) {
1146 		if (sc->alc_int_tx_mod < ALC_IM_TIMER_MIN ||
1147 		    sc->alc_int_tx_mod > ALC_IM_TIMER_MAX) {
1148 			device_printf(sc->alc_dev, "int_tx_mod value out of "
1149 			    "range; using default: %d\n",
1150 			    ALC_IM_TX_TIMER_DEFAULT);
1151 			sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
1152 		}
1153 	}
1154 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
1155 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_process_limit, 0,
1156 	    sysctl_hw_alc_proc_limit, "I",
1157 	    "max number of Rx events to process");
1158 	/* Pull in device tunables. */
1159 	sc->alc_process_limit = ALC_PROC_DEFAULT;
1160 	error = resource_int_value(device_get_name(sc->alc_dev),
1161 	    device_get_unit(sc->alc_dev), "process_limit",
1162 	    &sc->alc_process_limit);
1163 	if (error == 0) {
1164 		if (sc->alc_process_limit < ALC_PROC_MIN ||
1165 		    sc->alc_process_limit > ALC_PROC_MAX) {
1166 			device_printf(sc->alc_dev,
1167 			    "process_limit value out of range; "
1168 			    "using default: %d\n", ALC_PROC_DEFAULT);
1169 			sc->alc_process_limit = ALC_PROC_DEFAULT;
1170 		}
1171 	}
1172 
1173 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
1174 	    NULL, "ALC statistics");
1175 	parent = SYSCTL_CHILDREN(tree);
1176 
1177 	/* Rx statistics. */
1178 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
1179 	    NULL, "Rx MAC statistics");
1180 	child = SYSCTL_CHILDREN(tree);
1181 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1182 	    &stats->rx_frames, "Good frames");
1183 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
1184 	    &stats->rx_bcast_frames, "Good broadcast frames");
1185 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
1186 	    &stats->rx_mcast_frames, "Good multicast frames");
1187 	ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
1188 	    &stats->rx_pause_frames, "Pause control frames");
1189 	ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
1190 	    &stats->rx_control_frames, "Control frames");
1191 	ALC_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
1192 	    &stats->rx_crcerrs, "CRC errors");
1193 	ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
1194 	    &stats->rx_lenerrs, "Frames with length mismatched");
1195 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
1196 	    &stats->rx_bytes, "Good octets");
1197 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
1198 	    &stats->rx_bcast_bytes, "Good broadcast octets");
1199 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
1200 	    &stats->rx_mcast_bytes, "Good multicast octets");
1201 	ALC_SYSCTL_STAT_ADD32(ctx, child, "runts",
1202 	    &stats->rx_runts, "Too short frames");
1203 	ALC_SYSCTL_STAT_ADD32(ctx, child, "fragments",
1204 	    &stats->rx_fragments, "Fragmented frames");
1205 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
1206 	    &stats->rx_pkts_64, "64 bytes frames");
1207 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
1208 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
1209 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
1210 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
1211 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
1212 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
1213 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
1214 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
1215 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
1216 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
1217 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
1218 	    &stats->rx_pkts_1519_max, "1519 to max frames");
1219 	ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
1220 	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
1221 	ALC_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1222 	    &stats->rx_fifo_oflows, "FIFO overflows");
1223 	ALC_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
1224 	    &stats->rx_rrs_errs, "Return status write-back errors");
1225 	ALC_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
1226 	    &stats->rx_alignerrs, "Alignment errors");
1227 	ALC_SYSCTL_STAT_ADD32(ctx, child, "filtered",
1228 	    &stats->rx_pkts_filtered,
1229 	    "Frames dropped due to address filtering");
1230 
1231 	/* Tx statistics. */
1232 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
1233 	    NULL, "Tx MAC statistics");
1234 	child = SYSCTL_CHILDREN(tree);
1235 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1236 	    &stats->tx_frames, "Good frames");
1237 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
1238 	    &stats->tx_bcast_frames, "Good broadcast frames");
1239 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
1240 	    &stats->tx_mcast_frames, "Good multicast frames");
1241 	ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
1242 	    &stats->tx_pause_frames, "Pause control frames");
1243 	ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
1244 	    &stats->tx_control_frames, "Control frames");
1245 	ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
1246 	    &stats->tx_excess_defer, "Frames with excessive derferrals");
1247 	ALC_SYSCTL_STAT_ADD32(ctx, child, "defers",
1248 	    &stats->tx_excess_defer, "Frames with derferrals");
1249 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
1250 	    &stats->tx_bytes, "Good octets");
1251 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
1252 	    &stats->tx_bcast_bytes, "Good broadcast octets");
1253 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
1254 	    &stats->tx_mcast_bytes, "Good multicast octets");
1255 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
1256 	    &stats->tx_pkts_64, "64 bytes frames");
1257 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
1258 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
1259 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
1260 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
1261 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
1262 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
1263 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
1264 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
1265 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
1266 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
1267 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
1268 	    &stats->tx_pkts_1519_max, "1519 to max frames");
1269 	ALC_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
1270 	    &stats->tx_single_colls, "Single collisions");
1271 	ALC_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
1272 	    &stats->tx_multi_colls, "Multiple collisions");
1273 	ALC_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
1274 	    &stats->tx_late_colls, "Late collisions");
1275 	ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
1276 	    &stats->tx_excess_colls, "Excessive collisions");
1277 	ALC_SYSCTL_STAT_ADD32(ctx, child, "abort",
1278 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
1279 	ALC_SYSCTL_STAT_ADD32(ctx, child, "underruns",
1280 	    &stats->tx_underrun, "FIFO underruns");
1281 	ALC_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
1282 	    &stats->tx_desc_underrun, "Descriptor write-back errors");
1283 	ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
1284 	    &stats->tx_lenerrs, "Frames with length mismatched");
1285 	ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
1286 	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
1287 }
1288 
1289 #undef ALC_SYSCTL_STAT_ADD32
1290 #undef ALC_SYSCTL_STAT_ADD64
1291 
1292 struct alc_dmamap_arg {
1293 	bus_addr_t	alc_busaddr;
1294 };
1295 
1296 static void
1297 alc_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1298 {
1299 	struct alc_dmamap_arg *ctx;
1300 
1301 	if (error != 0)
1302 		return;
1303 
1304 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1305 
1306 	ctx = (struct alc_dmamap_arg *)arg;
1307 	ctx->alc_busaddr = segs[0].ds_addr;
1308 }
1309 
1310 /*
1311  * Normal and high Tx descriptors shares single Tx high address.
1312  * Four Rx descriptor/return rings and CMB shares the same Rx
1313  * high address.
1314  */
1315 static int
1316 alc_check_boundary(struct alc_softc *sc)
1317 {
1318 	bus_addr_t cmb_end, rx_ring_end, rr_ring_end, tx_ring_end;
1319 
1320 	rx_ring_end = sc->alc_rdata.alc_rx_ring_paddr + ALC_RX_RING_SZ;
1321 	rr_ring_end = sc->alc_rdata.alc_rr_ring_paddr + ALC_RR_RING_SZ;
1322 	cmb_end = sc->alc_rdata.alc_cmb_paddr + ALC_CMB_SZ;
1323 	tx_ring_end = sc->alc_rdata.alc_tx_ring_paddr + ALC_TX_RING_SZ;
1324 
1325 	/* 4GB boundary crossing is not allowed. */
1326 	if ((ALC_ADDR_HI(rx_ring_end) !=
1327 	    ALC_ADDR_HI(sc->alc_rdata.alc_rx_ring_paddr)) ||
1328 	    (ALC_ADDR_HI(rr_ring_end) !=
1329 	    ALC_ADDR_HI(sc->alc_rdata.alc_rr_ring_paddr)) ||
1330 	    (ALC_ADDR_HI(cmb_end) !=
1331 	    ALC_ADDR_HI(sc->alc_rdata.alc_cmb_paddr)) ||
1332 	    (ALC_ADDR_HI(tx_ring_end) !=
1333 	    ALC_ADDR_HI(sc->alc_rdata.alc_tx_ring_paddr)))
1334 		return (EFBIG);
1335 	/*
1336 	 * Make sure Rx return descriptor/Rx descriptor/CMB use
1337 	 * the same high address.
1338 	 */
1339 	if ((ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(rr_ring_end)) ||
1340 	    (ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(cmb_end)))
1341 		return (EFBIG);
1342 
1343 	return (0);
1344 }
1345 
1346 static int
1347 alc_dma_alloc(struct alc_softc *sc)
1348 {
1349 	struct alc_txdesc *txd;
1350 	struct alc_rxdesc *rxd;
1351 	bus_addr_t lowaddr;
1352 	struct alc_dmamap_arg ctx;
1353 	int error, i;
1354 
1355 	lowaddr = BUS_SPACE_MAXADDR;
1356 again:
1357 	/* Create parent DMA tag. */
1358 	error = bus_dma_tag_create(
1359 	    bus_get_dma_tag(sc->alc_dev), /* parent */
1360 	    1, 0,			/* alignment, boundary */
1361 	    lowaddr,			/* lowaddr */
1362 	    BUS_SPACE_MAXADDR,		/* highaddr */
1363 	    NULL, NULL,			/* filter, filterarg */
1364 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1365 	    0,				/* nsegments */
1366 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1367 	    0,				/* flags */
1368 	    NULL, NULL,			/* lockfunc, lockarg */
1369 	    &sc->alc_cdata.alc_parent_tag);
1370 	if (error != 0) {
1371 		device_printf(sc->alc_dev,
1372 		    "could not create parent DMA tag.\n");
1373 		goto fail;
1374 	}
1375 
1376 	/* Create DMA tag for Tx descriptor ring. */
1377 	error = bus_dma_tag_create(
1378 	    sc->alc_cdata.alc_parent_tag, /* parent */
1379 	    ALC_TX_RING_ALIGN, 0,	/* alignment, boundary */
1380 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1381 	    BUS_SPACE_MAXADDR,		/* highaddr */
1382 	    NULL, NULL,			/* filter, filterarg */
1383 	    ALC_TX_RING_SZ,		/* maxsize */
1384 	    1,				/* nsegments */
1385 	    ALC_TX_RING_SZ,		/* maxsegsize */
1386 	    0,				/* flags */
1387 	    NULL, NULL,			/* lockfunc, lockarg */
1388 	    &sc->alc_cdata.alc_tx_ring_tag);
1389 	if (error != 0) {
1390 		device_printf(sc->alc_dev,
1391 		    "could not create Tx ring DMA tag.\n");
1392 		goto fail;
1393 	}
1394 
1395 	/* Create DMA tag for Rx free descriptor ring. */
1396 	error = bus_dma_tag_create(
1397 	    sc->alc_cdata.alc_parent_tag, /* parent */
1398 	    ALC_RX_RING_ALIGN, 0,	/* alignment, boundary */
1399 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1400 	    BUS_SPACE_MAXADDR,		/* highaddr */
1401 	    NULL, NULL,			/* filter, filterarg */
1402 	    ALC_RX_RING_SZ,		/* maxsize */
1403 	    1,				/* nsegments */
1404 	    ALC_RX_RING_SZ,		/* maxsegsize */
1405 	    0,				/* flags */
1406 	    NULL, NULL,			/* lockfunc, lockarg */
1407 	    &sc->alc_cdata.alc_rx_ring_tag);
1408 	if (error != 0) {
1409 		device_printf(sc->alc_dev,
1410 		    "could not create Rx ring DMA tag.\n");
1411 		goto fail;
1412 	}
1413 	/* Create DMA tag for Rx return descriptor ring. */
1414 	error = bus_dma_tag_create(
1415 	    sc->alc_cdata.alc_parent_tag, /* parent */
1416 	    ALC_RR_RING_ALIGN, 0,	/* alignment, boundary */
1417 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1418 	    BUS_SPACE_MAXADDR,		/* highaddr */
1419 	    NULL, NULL,			/* filter, filterarg */
1420 	    ALC_RR_RING_SZ,		/* maxsize */
1421 	    1,				/* nsegments */
1422 	    ALC_RR_RING_SZ,		/* maxsegsize */
1423 	    0,				/* flags */
1424 	    NULL, NULL,			/* lockfunc, lockarg */
1425 	    &sc->alc_cdata.alc_rr_ring_tag);
1426 	if (error != 0) {
1427 		device_printf(sc->alc_dev,
1428 		    "could not create Rx return ring DMA tag.\n");
1429 		goto fail;
1430 	}
1431 
1432 	/* Create DMA tag for coalescing message block. */
1433 	error = bus_dma_tag_create(
1434 	    sc->alc_cdata.alc_parent_tag, /* parent */
1435 	    ALC_CMB_ALIGN, 0,		/* alignment, boundary */
1436 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1437 	    BUS_SPACE_MAXADDR,		/* highaddr */
1438 	    NULL, NULL,			/* filter, filterarg */
1439 	    ALC_CMB_SZ,			/* maxsize */
1440 	    1,				/* nsegments */
1441 	    ALC_CMB_SZ,			/* maxsegsize */
1442 	    0,				/* flags */
1443 	    NULL, NULL,			/* lockfunc, lockarg */
1444 	    &sc->alc_cdata.alc_cmb_tag);
1445 	if (error != 0) {
1446 		device_printf(sc->alc_dev,
1447 		    "could not create CMB DMA tag.\n");
1448 		goto fail;
1449 	}
1450 	/* Create DMA tag for status message block. */
1451 	error = bus_dma_tag_create(
1452 	    sc->alc_cdata.alc_parent_tag, /* parent */
1453 	    ALC_SMB_ALIGN, 0,		/* alignment, boundary */
1454 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1455 	    BUS_SPACE_MAXADDR,		/* highaddr */
1456 	    NULL, NULL,			/* filter, filterarg */
1457 	    ALC_SMB_SZ,			/* maxsize */
1458 	    1,				/* nsegments */
1459 	    ALC_SMB_SZ,			/* maxsegsize */
1460 	    0,				/* flags */
1461 	    NULL, NULL,			/* lockfunc, lockarg */
1462 	    &sc->alc_cdata.alc_smb_tag);
1463 	if (error != 0) {
1464 		device_printf(sc->alc_dev,
1465 		    "could not create SMB DMA tag.\n");
1466 		goto fail;
1467 	}
1468 
1469 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1470 	error = bus_dmamem_alloc(sc->alc_cdata.alc_tx_ring_tag,
1471 	    (void **)&sc->alc_rdata.alc_tx_ring,
1472 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1473 	    &sc->alc_cdata.alc_tx_ring_map);
1474 	if (error != 0) {
1475 		device_printf(sc->alc_dev,
1476 		    "could not allocate DMA'able memory for Tx ring.\n");
1477 		goto fail;
1478 	}
1479 	ctx.alc_busaddr = 0;
1480 	error = bus_dmamap_load(sc->alc_cdata.alc_tx_ring_tag,
1481 	    sc->alc_cdata.alc_tx_ring_map, sc->alc_rdata.alc_tx_ring,
1482 	    ALC_TX_RING_SZ, alc_dmamap_cb, &ctx, 0);
1483 	if (error != 0 || ctx.alc_busaddr == 0) {
1484 		device_printf(sc->alc_dev,
1485 		    "could not load DMA'able memory for Tx ring.\n");
1486 		goto fail;
1487 	}
1488 	sc->alc_rdata.alc_tx_ring_paddr = ctx.alc_busaddr;
1489 
1490 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1491 	error = bus_dmamem_alloc(sc->alc_cdata.alc_rx_ring_tag,
1492 	    (void **)&sc->alc_rdata.alc_rx_ring,
1493 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1494 	    &sc->alc_cdata.alc_rx_ring_map);
1495 	if (error != 0) {
1496 		device_printf(sc->alc_dev,
1497 		    "could not allocate DMA'able memory for Rx ring.\n");
1498 		goto fail;
1499 	}
1500 	ctx.alc_busaddr = 0;
1501 	error = bus_dmamap_load(sc->alc_cdata.alc_rx_ring_tag,
1502 	    sc->alc_cdata.alc_rx_ring_map, sc->alc_rdata.alc_rx_ring,
1503 	    ALC_RX_RING_SZ, alc_dmamap_cb, &ctx, 0);
1504 	if (error != 0 || ctx.alc_busaddr == 0) {
1505 		device_printf(sc->alc_dev,
1506 		    "could not load DMA'able memory for Rx ring.\n");
1507 		goto fail;
1508 	}
1509 	sc->alc_rdata.alc_rx_ring_paddr = ctx.alc_busaddr;
1510 
1511 	/* Allocate DMA'able memory and load the DMA map for Rx return ring. */
1512 	error = bus_dmamem_alloc(sc->alc_cdata.alc_rr_ring_tag,
1513 	    (void **)&sc->alc_rdata.alc_rr_ring,
1514 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1515 	    &sc->alc_cdata.alc_rr_ring_map);
1516 	if (error != 0) {
1517 		device_printf(sc->alc_dev,
1518 		    "could not allocate DMA'able memory for Rx return ring.\n");
1519 		goto fail;
1520 	}
1521 	ctx.alc_busaddr = 0;
1522 	error = bus_dmamap_load(sc->alc_cdata.alc_rr_ring_tag,
1523 	    sc->alc_cdata.alc_rr_ring_map, sc->alc_rdata.alc_rr_ring,
1524 	    ALC_RR_RING_SZ, alc_dmamap_cb, &ctx, 0);
1525 	if (error != 0 || ctx.alc_busaddr == 0) {
1526 		device_printf(sc->alc_dev,
1527 		    "could not load DMA'able memory for Tx ring.\n");
1528 		goto fail;
1529 	}
1530 	sc->alc_rdata.alc_rr_ring_paddr = ctx.alc_busaddr;
1531 
1532 	/* Allocate DMA'able memory and load the DMA map for CMB. */
1533 	error = bus_dmamem_alloc(sc->alc_cdata.alc_cmb_tag,
1534 	    (void **)&sc->alc_rdata.alc_cmb,
1535 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1536 	    &sc->alc_cdata.alc_cmb_map);
1537 	if (error != 0) {
1538 		device_printf(sc->alc_dev,
1539 		    "could not allocate DMA'able memory for CMB.\n");
1540 		goto fail;
1541 	}
1542 	ctx.alc_busaddr = 0;
1543 	error = bus_dmamap_load(sc->alc_cdata.alc_cmb_tag,
1544 	    sc->alc_cdata.alc_cmb_map, sc->alc_rdata.alc_cmb,
1545 	    ALC_CMB_SZ, alc_dmamap_cb, &ctx, 0);
1546 	if (error != 0 || ctx.alc_busaddr == 0) {
1547 		device_printf(sc->alc_dev,
1548 		    "could not load DMA'able memory for CMB.\n");
1549 		goto fail;
1550 	}
1551 	sc->alc_rdata.alc_cmb_paddr = ctx.alc_busaddr;
1552 
1553 	/* Allocate DMA'able memory and load the DMA map for SMB. */
1554 	error = bus_dmamem_alloc(sc->alc_cdata.alc_smb_tag,
1555 	    (void **)&sc->alc_rdata.alc_smb,
1556 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1557 	    &sc->alc_cdata.alc_smb_map);
1558 	if (error != 0) {
1559 		device_printf(sc->alc_dev,
1560 		    "could not allocate DMA'able memory for SMB.\n");
1561 		goto fail;
1562 	}
1563 	ctx.alc_busaddr = 0;
1564 	error = bus_dmamap_load(sc->alc_cdata.alc_smb_tag,
1565 	    sc->alc_cdata.alc_smb_map, sc->alc_rdata.alc_smb,
1566 	    ALC_SMB_SZ, alc_dmamap_cb, &ctx, 0);
1567 	if (error != 0 || ctx.alc_busaddr == 0) {
1568 		device_printf(sc->alc_dev,
1569 		    "could not load DMA'able memory for CMB.\n");
1570 		goto fail;
1571 	}
1572 	sc->alc_rdata.alc_smb_paddr = ctx.alc_busaddr;
1573 
1574 	/* Make sure we've not crossed 4GB boundary. */
1575 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1576 	    (error = alc_check_boundary(sc)) != 0) {
1577 		device_printf(sc->alc_dev, "4GB boundary crossed, "
1578 		    "switching to 32bit DMA addressing mode.\n");
1579 		alc_dma_free(sc);
1580 		/*
1581 		 * Limit max allowable DMA address space to 32bit
1582 		 * and try again.
1583 		 */
1584 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1585 		goto again;
1586 	}
1587 
1588 	/*
1589 	 * Create Tx buffer parent tag.
1590 	 * AR813x/AR815x allows 64bit DMA addressing of Tx/Rx buffers
1591 	 * so it needs separate parent DMA tag as parent DMA address
1592 	 * space could be restricted to be within 32bit address space
1593 	 * by 4GB boundary crossing.
1594 	 */
1595 	error = bus_dma_tag_create(
1596 	    bus_get_dma_tag(sc->alc_dev), /* parent */
1597 	    1, 0,			/* alignment, boundary */
1598 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1599 	    BUS_SPACE_MAXADDR,		/* highaddr */
1600 	    NULL, NULL,			/* filter, filterarg */
1601 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1602 	    0,				/* nsegments */
1603 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1604 	    0,				/* flags */
1605 	    NULL, NULL,			/* lockfunc, lockarg */
1606 	    &sc->alc_cdata.alc_buffer_tag);
1607 	if (error != 0) {
1608 		device_printf(sc->alc_dev,
1609 		    "could not create parent buffer DMA tag.\n");
1610 		goto fail;
1611 	}
1612 
1613 	/* Create DMA tag for Tx buffers. */
1614 	error = bus_dma_tag_create(
1615 	    sc->alc_cdata.alc_buffer_tag, /* parent */
1616 	    1, 0,			/* alignment, boundary */
1617 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1618 	    BUS_SPACE_MAXADDR,		/* highaddr */
1619 	    NULL, NULL,			/* filter, filterarg */
1620 	    ALC_TSO_MAXSIZE,		/* maxsize */
1621 	    ALC_MAXTXSEGS,		/* nsegments */
1622 	    ALC_TSO_MAXSEGSIZE,		/* maxsegsize */
1623 	    0,				/* flags */
1624 	    NULL, NULL,			/* lockfunc, lockarg */
1625 	    &sc->alc_cdata.alc_tx_tag);
1626 	if (error != 0) {
1627 		device_printf(sc->alc_dev, "could not create Tx DMA tag.\n");
1628 		goto fail;
1629 	}
1630 
1631 	/* Create DMA tag for Rx buffers. */
1632 	error = bus_dma_tag_create(
1633 	    sc->alc_cdata.alc_buffer_tag, /* parent */
1634 	    ALC_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1635 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1636 	    BUS_SPACE_MAXADDR,		/* highaddr */
1637 	    NULL, NULL,			/* filter, filterarg */
1638 	    MCLBYTES,			/* maxsize */
1639 	    1,				/* nsegments */
1640 	    MCLBYTES,			/* maxsegsize */
1641 	    0,				/* flags */
1642 	    NULL, NULL,			/* lockfunc, lockarg */
1643 	    &sc->alc_cdata.alc_rx_tag);
1644 	if (error != 0) {
1645 		device_printf(sc->alc_dev, "could not create Rx DMA tag.\n");
1646 		goto fail;
1647 	}
1648 	/* Create DMA maps for Tx buffers. */
1649 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1650 		txd = &sc->alc_cdata.alc_txdesc[i];
1651 		txd->tx_m = NULL;
1652 		txd->tx_dmamap = NULL;
1653 		error = bus_dmamap_create(sc->alc_cdata.alc_tx_tag, 0,
1654 		    &txd->tx_dmamap);
1655 		if (error != 0) {
1656 			device_printf(sc->alc_dev,
1657 			    "could not create Tx dmamap.\n");
1658 			goto fail;
1659 		}
1660 	}
1661 	/* Create DMA maps for Rx buffers. */
1662 	if ((error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag, 0,
1663 	    &sc->alc_cdata.alc_rx_sparemap)) != 0) {
1664 		device_printf(sc->alc_dev,
1665 		    "could not create spare Rx dmamap.\n");
1666 		goto fail;
1667 	}
1668 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1669 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1670 		rxd->rx_m = NULL;
1671 		rxd->rx_dmamap = NULL;
1672 		error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag, 0,
1673 		    &rxd->rx_dmamap);
1674 		if (error != 0) {
1675 			device_printf(sc->alc_dev,
1676 			    "could not create Rx dmamap.\n");
1677 			goto fail;
1678 		}
1679 	}
1680 
1681 fail:
1682 	return (error);
1683 }
1684 
1685 static void
1686 alc_dma_free(struct alc_softc *sc)
1687 {
1688 	struct alc_txdesc *txd;
1689 	struct alc_rxdesc *rxd;
1690 	int i;
1691 
1692 	/* Tx buffers. */
1693 	if (sc->alc_cdata.alc_tx_tag != NULL) {
1694 		for (i = 0; i < ALC_TX_RING_CNT; i++) {
1695 			txd = &sc->alc_cdata.alc_txdesc[i];
1696 			if (txd->tx_dmamap != NULL) {
1697 				bus_dmamap_destroy(sc->alc_cdata.alc_tx_tag,
1698 				    txd->tx_dmamap);
1699 				txd->tx_dmamap = NULL;
1700 			}
1701 		}
1702 		bus_dma_tag_destroy(sc->alc_cdata.alc_tx_tag);
1703 		sc->alc_cdata.alc_tx_tag = NULL;
1704 	}
1705 	/* Rx buffers */
1706 	if (sc->alc_cdata.alc_rx_tag != NULL) {
1707 		for (i = 0; i < ALC_RX_RING_CNT; i++) {
1708 			rxd = &sc->alc_cdata.alc_rxdesc[i];
1709 			if (rxd->rx_dmamap != NULL) {
1710 				bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
1711 				    rxd->rx_dmamap);
1712 				rxd->rx_dmamap = NULL;
1713 			}
1714 		}
1715 		if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1716 			bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
1717 			    sc->alc_cdata.alc_rx_sparemap);
1718 			sc->alc_cdata.alc_rx_sparemap = NULL;
1719 		}
1720 		bus_dma_tag_destroy(sc->alc_cdata.alc_rx_tag);
1721 		sc->alc_cdata.alc_rx_tag = NULL;
1722 	}
1723 	/* Tx descriptor ring. */
1724 	if (sc->alc_cdata.alc_tx_ring_tag != NULL) {
1725 		if (sc->alc_cdata.alc_tx_ring_map != NULL)
1726 			bus_dmamap_unload(sc->alc_cdata.alc_tx_ring_tag,
1727 			    sc->alc_cdata.alc_tx_ring_map);
1728 		if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1729 		    sc->alc_rdata.alc_tx_ring != NULL)
1730 			bus_dmamem_free(sc->alc_cdata.alc_tx_ring_tag,
1731 			    sc->alc_rdata.alc_tx_ring,
1732 			    sc->alc_cdata.alc_tx_ring_map);
1733 		sc->alc_rdata.alc_tx_ring = NULL;
1734 		sc->alc_cdata.alc_tx_ring_map = NULL;
1735 		bus_dma_tag_destroy(sc->alc_cdata.alc_tx_ring_tag);
1736 		sc->alc_cdata.alc_tx_ring_tag = NULL;
1737 	}
1738 	/* Rx ring. */
1739 	if (sc->alc_cdata.alc_rx_ring_tag != NULL) {
1740 		if (sc->alc_cdata.alc_rx_ring_map != NULL)
1741 			bus_dmamap_unload(sc->alc_cdata.alc_rx_ring_tag,
1742 			    sc->alc_cdata.alc_rx_ring_map);
1743 		if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1744 		    sc->alc_rdata.alc_rx_ring != NULL)
1745 			bus_dmamem_free(sc->alc_cdata.alc_rx_ring_tag,
1746 			    sc->alc_rdata.alc_rx_ring,
1747 			    sc->alc_cdata.alc_rx_ring_map);
1748 		sc->alc_rdata.alc_rx_ring = NULL;
1749 		sc->alc_cdata.alc_rx_ring_map = NULL;
1750 		bus_dma_tag_destroy(sc->alc_cdata.alc_rx_ring_tag);
1751 		sc->alc_cdata.alc_rx_ring_tag = NULL;
1752 	}
1753 	/* Rx return ring. */
1754 	if (sc->alc_cdata.alc_rr_ring_tag != NULL) {
1755 		if (sc->alc_cdata.alc_rr_ring_map != NULL)
1756 			bus_dmamap_unload(sc->alc_cdata.alc_rr_ring_tag,
1757 			    sc->alc_cdata.alc_rr_ring_map);
1758 		if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1759 		    sc->alc_rdata.alc_rr_ring != NULL)
1760 			bus_dmamem_free(sc->alc_cdata.alc_rr_ring_tag,
1761 			    sc->alc_rdata.alc_rr_ring,
1762 			    sc->alc_cdata.alc_rr_ring_map);
1763 		sc->alc_rdata.alc_rr_ring = NULL;
1764 		sc->alc_cdata.alc_rr_ring_map = NULL;
1765 		bus_dma_tag_destroy(sc->alc_cdata.alc_rr_ring_tag);
1766 		sc->alc_cdata.alc_rr_ring_tag = NULL;
1767 	}
1768 	/* CMB block */
1769 	if (sc->alc_cdata.alc_cmb_tag != NULL) {
1770 		if (sc->alc_cdata.alc_cmb_map != NULL)
1771 			bus_dmamap_unload(sc->alc_cdata.alc_cmb_tag,
1772 			    sc->alc_cdata.alc_cmb_map);
1773 		if (sc->alc_cdata.alc_cmb_map != NULL &&
1774 		    sc->alc_rdata.alc_cmb != NULL)
1775 			bus_dmamem_free(sc->alc_cdata.alc_cmb_tag,
1776 			    sc->alc_rdata.alc_cmb,
1777 			    sc->alc_cdata.alc_cmb_map);
1778 		sc->alc_rdata.alc_cmb = NULL;
1779 		sc->alc_cdata.alc_cmb_map = NULL;
1780 		bus_dma_tag_destroy(sc->alc_cdata.alc_cmb_tag);
1781 		sc->alc_cdata.alc_cmb_tag = NULL;
1782 	}
1783 	/* SMB block */
1784 	if (sc->alc_cdata.alc_smb_tag != NULL) {
1785 		if (sc->alc_cdata.alc_smb_map != NULL)
1786 			bus_dmamap_unload(sc->alc_cdata.alc_smb_tag,
1787 			    sc->alc_cdata.alc_smb_map);
1788 		if (sc->alc_cdata.alc_smb_map != NULL &&
1789 		    sc->alc_rdata.alc_smb != NULL)
1790 			bus_dmamem_free(sc->alc_cdata.alc_smb_tag,
1791 			    sc->alc_rdata.alc_smb,
1792 			    sc->alc_cdata.alc_smb_map);
1793 		sc->alc_rdata.alc_smb = NULL;
1794 		sc->alc_cdata.alc_smb_map = NULL;
1795 		bus_dma_tag_destroy(sc->alc_cdata.alc_smb_tag);
1796 		sc->alc_cdata.alc_smb_tag = NULL;
1797 	}
1798 	if (sc->alc_cdata.alc_buffer_tag != NULL) {
1799 		bus_dma_tag_destroy(sc->alc_cdata.alc_buffer_tag);
1800 		sc->alc_cdata.alc_buffer_tag = NULL;
1801 	}
1802 	if (sc->alc_cdata.alc_parent_tag != NULL) {
1803 		bus_dma_tag_destroy(sc->alc_cdata.alc_parent_tag);
1804 		sc->alc_cdata.alc_parent_tag = NULL;
1805 	}
1806 }
1807 
1808 static int
1809 alc_shutdown(device_t dev)
1810 {
1811 
1812 	return (alc_suspend(dev));
1813 }
1814 
1815 /*
1816  * Note, this driver resets the link speed to 10/100Mbps by
1817  * restarting auto-negotiation in suspend/shutdown phase but we
1818  * don't know whether that auto-negotiation would succeed or not
1819  * as driver has no control after powering off/suspend operation.
1820  * If the renegotiation fail WOL may not work. Running at 1Gbps
1821  * will draw more power than 375mA at 3.3V which is specified in
1822  * PCI specification and that would result in complete
1823  * shutdowning power to ethernet controller.
1824  *
1825  * TODO
1826  * Save current negotiated media speed/duplex/flow-control to
1827  * softc and restore the same link again after resuming. PHY
1828  * handling such as power down/resetting to 100Mbps may be better
1829  * handled in suspend method in phy driver.
1830  */
1831 static void
1832 alc_setlinkspeed(struct alc_softc *sc)
1833 {
1834 	struct mii_data *mii;
1835 	int aneg, i;
1836 
1837 	mii = device_get_softc(sc->alc_miibus);
1838 	mii_pollstat(mii);
1839 	aneg = 0;
1840 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1841 	    (IFM_ACTIVE | IFM_AVALID)) {
1842 		switch IFM_SUBTYPE(mii->mii_media_active) {
1843 		case IFM_10_T:
1844 		case IFM_100_TX:
1845 			return;
1846 		case IFM_1000_T:
1847 			aneg++;
1848 			break;
1849 		default:
1850 			break;
1851 		}
1852 	}
1853 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, MII_100T2CR, 0);
1854 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
1855 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1856 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
1857 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1858 	DELAY(1000);
1859 	if (aneg != 0) {
1860 		/*
1861 		 * Poll link state until alc(4) get a 10/100Mbps link.
1862 		 */
1863 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1864 			mii_pollstat(mii);
1865 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1866 			    == (IFM_ACTIVE | IFM_AVALID)) {
1867 				switch (IFM_SUBTYPE(
1868 				    mii->mii_media_active)) {
1869 				case IFM_10_T:
1870 				case IFM_100_TX:
1871 					alc_mac_config(sc);
1872 					return;
1873 				default:
1874 					break;
1875 				}
1876 			}
1877 			ALC_UNLOCK(sc);
1878 			pause("alclnk", hz);
1879 			ALC_LOCK(sc);
1880 		}
1881 		if (i == MII_ANEGTICKS_GIGE)
1882 			device_printf(sc->alc_dev,
1883 			    "establishing a link failed, WOL may not work!");
1884 	}
1885 	/*
1886 	 * No link, force MAC to have 100Mbps, full-duplex link.
1887 	 * This is the last resort and may/may not work.
1888 	 */
1889 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1890 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1891 	alc_mac_config(sc);
1892 }
1893 
1894 static void
1895 alc_setwol(struct alc_softc *sc)
1896 {
1897 	struct ifnet *ifp;
1898 	uint32_t reg, pmcs;
1899 	uint16_t pmstat;
1900 
1901 	ALC_LOCK_ASSERT(sc);
1902 
1903 	alc_disable_l0s_l1(sc);
1904 	ifp = sc->alc_ifp;
1905 	if ((sc->alc_flags & ALC_FLAG_PM) == 0) {
1906 		/* Disable WOL. */
1907 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
1908 		reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
1909 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1910 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
1911 		/* Force PHY power down. */
1912 		alc_phy_down(sc);
1913 		CSR_WRITE_4(sc, ALC_MASTER_CFG,
1914 		    CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS);
1915 		return;
1916 	}
1917 
1918 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1919 		if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
1920 			alc_setlinkspeed(sc);
1921 		CSR_WRITE_4(sc, ALC_MASTER_CFG,
1922 		    CSR_READ_4(sc, ALC_MASTER_CFG) & ~MASTER_CLK_SEL_DIS);
1923 	}
1924 
1925 	pmcs = 0;
1926 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1927 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1928 	CSR_WRITE_4(sc, ALC_WOL_CFG, pmcs);
1929 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
1930 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1931 	    MAC_CFG_BCAST);
1932 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1933 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1934 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1935 		reg |= MAC_CFG_RX_ENB;
1936 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
1937 
1938 	reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
1939 	reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1940 	CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
1941 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1942 		/* WOL disabled, PHY power down. */
1943 		alc_phy_down(sc);
1944 		CSR_WRITE_4(sc, ALC_MASTER_CFG,
1945 		    CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS);
1946 	}
1947 	/* Request PME. */
1948 	pmstat = pci_read_config(sc->alc_dev,
1949 	    sc->alc_pmcap + PCIR_POWER_STATUS, 2);
1950 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1951 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1952 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1953 	pci_write_config(sc->alc_dev,
1954 	    sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2);
1955 }
1956 
1957 static int
1958 alc_suspend(device_t dev)
1959 {
1960 	struct alc_softc *sc;
1961 
1962 	sc = device_get_softc(dev);
1963 
1964 	ALC_LOCK(sc);
1965 	alc_stop(sc);
1966 	alc_setwol(sc);
1967 	ALC_UNLOCK(sc);
1968 
1969 	return (0);
1970 }
1971 
1972 static int
1973 alc_resume(device_t dev)
1974 {
1975 	struct alc_softc *sc;
1976 	struct ifnet *ifp;
1977 	uint16_t pmstat;
1978 
1979 	sc = device_get_softc(dev);
1980 
1981 	ALC_LOCK(sc);
1982 	if ((sc->alc_flags & ALC_FLAG_PM) != 0) {
1983 		/* Disable PME and clear PME status. */
1984 		pmstat = pci_read_config(sc->alc_dev,
1985 		    sc->alc_pmcap + PCIR_POWER_STATUS, 2);
1986 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1987 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1988 			pci_write_config(sc->alc_dev,
1989 			    sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2);
1990 		}
1991 	}
1992 	/* Reset PHY. */
1993 	alc_phy_reset(sc);
1994 	ifp = sc->alc_ifp;
1995 	if ((ifp->if_flags & IFF_UP) != 0) {
1996 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1997 		alc_init_locked(sc);
1998 	}
1999 	ALC_UNLOCK(sc);
2000 
2001 	return (0);
2002 }
2003 
2004 static int
2005 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
2006 {
2007 	struct alc_txdesc *txd, *txd_last;
2008 	struct tx_desc *desc;
2009 	struct mbuf *m;
2010 	struct ip *ip;
2011 	struct tcphdr *tcp;
2012 	bus_dma_segment_t txsegs[ALC_MAXTXSEGS];
2013 	bus_dmamap_t map;
2014 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
2015 	int error, idx, nsegs, prod;
2016 
2017 	ALC_LOCK_ASSERT(sc);
2018 
2019 	M_ASSERTPKTHDR((*m_head));
2020 
2021 	m = *m_head;
2022 	ip = NULL;
2023 	tcp = NULL;
2024 	ip_off = poff = 0;
2025 	if ((m->m_pkthdr.csum_flags & (ALC_CSUM_FEATURES | CSUM_TSO)) != 0) {
2026 		/*
2027 		 * AR813x/AR815x requires offset of TCP/UDP header in its
2028 		 * Tx descriptor to perform Tx checksum offloading. TSO
2029 		 * also requires TCP header offset and modification of
2030 		 * IP/TCP header. This kind of operation takes many CPU
2031 		 * cycles on FreeBSD so fast host CPU is required to get
2032 		 * smooth TSO performance.
2033 		 */
2034 		struct ether_header *eh;
2035 
2036 		if (M_WRITABLE(m) == 0) {
2037 			/* Get a writable copy. */
2038 			m = m_dup(*m_head, M_DONTWAIT);
2039 			/* Release original mbufs. */
2040 			m_freem(*m_head);
2041 			if (m == NULL) {
2042 				*m_head = NULL;
2043 				return (ENOBUFS);
2044 			}
2045 			*m_head = m;
2046 		}
2047 
2048 		ip_off = sizeof(struct ether_header);
2049 		m = m_pullup(m, ip_off);
2050 		if (m == NULL) {
2051 			*m_head = NULL;
2052 			return (ENOBUFS);
2053 		}
2054 		eh = mtod(m, struct ether_header *);
2055 		/*
2056 		 * Check if hardware VLAN insertion is off.
2057 		 * Additional check for LLC/SNAP frame?
2058 		 */
2059 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2060 			ip_off = sizeof(struct ether_vlan_header);
2061 			m = m_pullup(m, ip_off);
2062 			if (m == NULL) {
2063 				*m_head = NULL;
2064 				return (ENOBUFS);
2065 			}
2066 		}
2067 		m = m_pullup(m, ip_off + sizeof(struct ip));
2068 		if (m == NULL) {
2069 			*m_head = NULL;
2070 			return (ENOBUFS);
2071 		}
2072 		ip = (struct ip *)(mtod(m, char *) + ip_off);
2073 		poff = ip_off + (ip->ip_hl << 2);
2074 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2075 			m = m_pullup(m, poff + sizeof(struct tcphdr));
2076 			if (m == NULL) {
2077 				*m_head = NULL;
2078 				return (ENOBUFS);
2079 			}
2080 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
2081 			m = m_pullup(m, poff + (tcp->th_off << 2));
2082 			if (m == NULL) {
2083 				*m_head = NULL;
2084 				return (ENOBUFS);
2085 			}
2086 			/*
2087 			 * Due to strict adherence of Microsoft NDIS
2088 			 * Large Send specification, hardware expects
2089 			 * a pseudo TCP checksum inserted by upper
2090 			 * stack. Unfortunately the pseudo TCP
2091 			 * checksum that NDIS refers to does not include
2092 			 * TCP payload length so driver should recompute
2093 			 * the pseudo checksum here. Hopefully this
2094 			 * wouldn't be much burden on modern CPUs.
2095 			 *
2096 			 * Reset IP checksum and recompute TCP pseudo
2097 			 * checksum as NDIS specification said.
2098 			 */
2099 			ip = (struct ip *)(mtod(m, char *) + ip_off);
2100 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
2101 			ip->ip_sum = 0;
2102 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
2103 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
2104 		}
2105 		*m_head = m;
2106 	}
2107 
2108 	prod = sc->alc_cdata.alc_tx_prod;
2109 	txd = &sc->alc_cdata.alc_txdesc[prod];
2110 	txd_last = txd;
2111 	map = txd->tx_dmamap;
2112 
2113 	error = bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_tx_tag, map,
2114 	    *m_head, txsegs, &nsegs, 0);
2115 	if (error == EFBIG) {
2116 		m = m_collapse(*m_head, M_DONTWAIT, ALC_MAXTXSEGS);
2117 		if (m == NULL) {
2118 			m_freem(*m_head);
2119 			*m_head = NULL;
2120 			return (ENOMEM);
2121 		}
2122 		*m_head = m;
2123 		error = bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_tx_tag, map,
2124 		    *m_head, txsegs, &nsegs, 0);
2125 		if (error != 0) {
2126 			m_freem(*m_head);
2127 			*m_head = NULL;
2128 			return (error);
2129 		}
2130 	} else if (error != 0)
2131 		return (error);
2132 	if (nsegs == 0) {
2133 		m_freem(*m_head);
2134 		*m_head = NULL;
2135 		return (EIO);
2136 	}
2137 
2138 	/* Check descriptor overrun. */
2139 	if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
2140 		bus_dmamap_unload(sc->alc_cdata.alc_tx_tag, map);
2141 		return (ENOBUFS);
2142 	}
2143 	bus_dmamap_sync(sc->alc_cdata.alc_tx_tag, map, BUS_DMASYNC_PREWRITE);
2144 
2145 	m = *m_head;
2146 	cflags = TD_ETHERNET;
2147 	vtag = 0;
2148 	desc = NULL;
2149 	idx = 0;
2150 	/* Configure VLAN hardware tag insertion. */
2151 	if ((m->m_flags & M_VLANTAG) != 0) {
2152 		vtag = htons(m->m_pkthdr.ether_vtag);
2153 		vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
2154 		cflags |= TD_INS_VLAN_TAG;
2155 	}
2156 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2157 		/* Request TSO and set MSS. */
2158 		cflags |= TD_TSO | TD_TSO_DESCV1;
2159 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << TD_MSS_SHIFT) &
2160 		    TD_MSS_MASK;
2161 		/* Set TCP header offset. */
2162 		cflags |= (poff << TD_TCPHDR_OFFSET_SHIFT) &
2163 		    TD_TCPHDR_OFFSET_MASK;
2164 		/*
2165 		 * AR813x/AR815x requires the first buffer should
2166 		 * only hold IP/TCP header data. Payload should
2167 		 * be handled in other descriptors.
2168 		 */
2169 		hdrlen = poff + (tcp->th_off << 2);
2170 		desc = &sc->alc_rdata.alc_tx_ring[prod];
2171 		desc->len = htole32(TX_BYTES(hdrlen | vtag));
2172 		desc->flags = htole32(cflags);
2173 		desc->addr = htole64(txsegs[0].ds_addr);
2174 		sc->alc_cdata.alc_tx_cnt++;
2175 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2176 		if (m->m_len - hdrlen > 0) {
2177 			/* Handle remaining payload of the first fragment. */
2178 			desc = &sc->alc_rdata.alc_tx_ring[prod];
2179 			desc->len = htole32(TX_BYTES((m->m_len - hdrlen) |
2180 			    vtag));
2181 			desc->flags = htole32(cflags);
2182 			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
2183 			sc->alc_cdata.alc_tx_cnt++;
2184 			ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2185 		}
2186 		/* Handle remaining fragments. */
2187 		idx = 1;
2188 	} else if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
2189 		/* Configure Tx checksum offload. */
2190 #ifdef ALC_USE_CUSTOM_CSUM
2191 		cflags |= TD_CUSTOM_CSUM;
2192 		/* Set checksum start offset. */
2193 		cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
2194 		    TD_PLOAD_OFFSET_MASK;
2195 		/* Set checksum insertion position of TCP/UDP. */
2196 		cflags |= (((poff + m->m_pkthdr.csum_data) >> 1) <<
2197 		    TD_CUSTOM_CSUM_OFFSET_SHIFT) & TD_CUSTOM_CSUM_OFFSET_MASK;
2198 #else
2199 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
2200 			cflags |= TD_IPCSUM;
2201 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2202 			cflags |= TD_TCPCSUM;
2203 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2204 			cflags |= TD_UDPCSUM;
2205 		/* Set TCP/UDP header offset. */
2206 		cflags |= (poff << TD_L4HDR_OFFSET_SHIFT) &
2207 		    TD_L4HDR_OFFSET_MASK;
2208 #endif
2209 	}
2210 	for (; idx < nsegs; idx++) {
2211 		desc = &sc->alc_rdata.alc_tx_ring[prod];
2212 		desc->len = htole32(TX_BYTES(txsegs[idx].ds_len) | vtag);
2213 		desc->flags = htole32(cflags);
2214 		desc->addr = htole64(txsegs[idx].ds_addr);
2215 		sc->alc_cdata.alc_tx_cnt++;
2216 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2217 	}
2218 	/* Update producer index. */
2219 	sc->alc_cdata.alc_tx_prod = prod;
2220 
2221 	/* Finally set EOP on the last descriptor. */
2222 	prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
2223 	desc = &sc->alc_rdata.alc_tx_ring[prod];
2224 	desc->flags |= htole32(TD_EOP);
2225 
2226 	/* Swap dmamap of the first and the last. */
2227 	txd = &sc->alc_cdata.alc_txdesc[prod];
2228 	map = txd_last->tx_dmamap;
2229 	txd_last->tx_dmamap = txd->tx_dmamap;
2230 	txd->tx_dmamap = map;
2231 	txd->tx_m = m;
2232 
2233 	return (0);
2234 }
2235 
2236 static void
2237 alc_start(struct ifnet *ifp)
2238 {
2239 	struct alc_softc *sc;
2240 
2241 	sc = ifp->if_softc;
2242 	ALC_LOCK(sc);
2243 	alc_start_locked(ifp);
2244 	ALC_UNLOCK(sc);
2245 }
2246 
2247 static void
2248 alc_start_locked(struct ifnet *ifp)
2249 {
2250 	struct alc_softc *sc;
2251 	struct mbuf *m_head;
2252 	int enq;
2253 
2254 	sc = ifp->if_softc;
2255 
2256 	ALC_LOCK_ASSERT(sc);
2257 
2258 	/* Reclaim transmitted frames. */
2259 	if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
2260 		alc_txeof(sc);
2261 
2262 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2263 	    IFF_DRV_RUNNING || (sc->alc_flags & ALC_FLAG_LINK) == 0)
2264 		return;
2265 
2266 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
2267 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2268 		if (m_head == NULL)
2269 			break;
2270 		/*
2271 		 * Pack the data into the transmit ring. If we
2272 		 * don't have room, set the OACTIVE flag and wait
2273 		 * for the NIC to drain the ring.
2274 		 */
2275 		if (alc_encap(sc, &m_head)) {
2276 			if (m_head == NULL)
2277 				break;
2278 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2279 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2280 			break;
2281 		}
2282 
2283 		enq++;
2284 		/*
2285 		 * If there's a BPF listener, bounce a copy of this frame
2286 		 * to him.
2287 		 */
2288 		ETHER_BPF_MTAP(ifp, m_head);
2289 	}
2290 
2291 	if (enq > 0) {
2292 		/* Sync descriptors. */
2293 		bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
2294 		    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
2295 		/* Kick. Assume we're using normal Tx priority queue. */
2296 		CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
2297 		    (sc->alc_cdata.alc_tx_prod <<
2298 		    MBOX_TD_PROD_LO_IDX_SHIFT) &
2299 		    MBOX_TD_PROD_LO_IDX_MASK);
2300 		/* Set a timeout in case the chip goes out to lunch. */
2301 		sc->alc_watchdog_timer = ALC_TX_TIMEOUT;
2302 	}
2303 }
2304 
2305 static void
2306 alc_watchdog(struct alc_softc *sc)
2307 {
2308 	struct ifnet *ifp;
2309 
2310 	ALC_LOCK_ASSERT(sc);
2311 
2312 	if (sc->alc_watchdog_timer == 0 || --sc->alc_watchdog_timer)
2313 		return;
2314 
2315 	ifp = sc->alc_ifp;
2316 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2317 		if_printf(sc->alc_ifp, "watchdog timeout (lost link)\n");
2318 		ifp->if_oerrors++;
2319 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2320 		alc_init_locked(sc);
2321 		return;
2322 	}
2323 	if_printf(sc->alc_ifp, "watchdog timeout -- resetting\n");
2324 	ifp->if_oerrors++;
2325 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2326 	alc_init_locked(sc);
2327 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2328 		alc_start_locked(ifp);
2329 }
2330 
2331 static int
2332 alc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2333 {
2334 	struct alc_softc *sc;
2335 	struct ifreq *ifr;
2336 	struct mii_data *mii;
2337 	int error, mask;
2338 
2339 	sc = ifp->if_softc;
2340 	ifr = (struct ifreq *)data;
2341 	error = 0;
2342 	switch (cmd) {
2343 	case SIOCSIFMTU:
2344 		if (ifr->ifr_mtu < ETHERMIN ||
2345 		    ifr->ifr_mtu > (sc->alc_ident->max_framelen -
2346 		    sizeof(struct ether_vlan_header) - ETHER_CRC_LEN) ||
2347 		    ((sc->alc_flags & ALC_FLAG_JUMBO) == 0 &&
2348 		    ifr->ifr_mtu > ETHERMTU))
2349 			error = EINVAL;
2350 		else if (ifp->if_mtu != ifr->ifr_mtu) {
2351 			ALC_LOCK(sc);
2352 			ifp->if_mtu = ifr->ifr_mtu;
2353 			/* AR813x/AR815x has 13 bits MSS field. */
2354 			if (ifp->if_mtu > ALC_TSO_MTU &&
2355 			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2356 				ifp->if_capenable &= ~IFCAP_TSO4;
2357 				ifp->if_hwassist &= ~CSUM_TSO;
2358 				VLAN_CAPABILITIES(ifp);
2359 			}
2360 			ALC_UNLOCK(sc);
2361 		}
2362 		break;
2363 	case SIOCSIFFLAGS:
2364 		ALC_LOCK(sc);
2365 		if ((ifp->if_flags & IFF_UP) != 0) {
2366 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2367 			    ((ifp->if_flags ^ sc->alc_if_flags) &
2368 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2369 				alc_rxfilter(sc);
2370 			else
2371 				alc_init_locked(sc);
2372 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2373 			alc_stop(sc);
2374 		sc->alc_if_flags = ifp->if_flags;
2375 		ALC_UNLOCK(sc);
2376 		break;
2377 	case SIOCADDMULTI:
2378 	case SIOCDELMULTI:
2379 		ALC_LOCK(sc);
2380 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2381 			alc_rxfilter(sc);
2382 		ALC_UNLOCK(sc);
2383 		break;
2384 	case SIOCSIFMEDIA:
2385 	case SIOCGIFMEDIA:
2386 		mii = device_get_softc(sc->alc_miibus);
2387 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2388 		break;
2389 	case SIOCSIFCAP:
2390 		ALC_LOCK(sc);
2391 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2392 		if ((mask & IFCAP_TXCSUM) != 0 &&
2393 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2394 			ifp->if_capenable ^= IFCAP_TXCSUM;
2395 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2396 				ifp->if_hwassist |= ALC_CSUM_FEATURES;
2397 			else
2398 				ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
2399 		}
2400 		if ((mask & IFCAP_TSO4) != 0 &&
2401 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2402 			ifp->if_capenable ^= IFCAP_TSO4;
2403 			if ((ifp->if_capenable & IFCAP_TSO4) != 0) {
2404 				/* AR813x/AR815x has 13 bits MSS field. */
2405 				if (ifp->if_mtu > ALC_TSO_MTU) {
2406 					ifp->if_capenable &= ~IFCAP_TSO4;
2407 					ifp->if_hwassist &= ~CSUM_TSO;
2408 				} else
2409 					ifp->if_hwassist |= CSUM_TSO;
2410 			} else
2411 				ifp->if_hwassist &= ~CSUM_TSO;
2412 		}
2413 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2414 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2415 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2416 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2417 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2418 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2419 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2420 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2421 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2422 			alc_rxvlan(sc);
2423 		}
2424 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2425 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2426 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2427 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2428 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2429 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2430 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2431 			ifp->if_capenable &=
2432 			    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
2433 		ALC_UNLOCK(sc);
2434 		VLAN_CAPABILITIES(ifp);
2435 		break;
2436 	default:
2437 		error = ether_ioctl(ifp, cmd, data);
2438 		break;
2439 	}
2440 
2441 	return (error);
2442 }
2443 
2444 static void
2445 alc_mac_config(struct alc_softc *sc)
2446 {
2447 	struct mii_data *mii;
2448 	uint32_t reg;
2449 
2450 	ALC_LOCK_ASSERT(sc);
2451 
2452 	mii = device_get_softc(sc->alc_miibus);
2453 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
2454 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2455 	    MAC_CFG_SPEED_MASK);
2456 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
2457 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
2458 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2)
2459 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
2460 	/* Reprogram MAC with resolved speed/duplex. */
2461 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2462 	case IFM_10_T:
2463 	case IFM_100_TX:
2464 		reg |= MAC_CFG_SPEED_10_100;
2465 		break;
2466 	case IFM_1000_T:
2467 		reg |= MAC_CFG_SPEED_1000;
2468 		break;
2469 	}
2470 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2471 		reg |= MAC_CFG_FULL_DUPLEX;
2472 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2473 			reg |= MAC_CFG_TX_FC;
2474 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2475 			reg |= MAC_CFG_RX_FC;
2476 	}
2477 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2478 }
2479 
2480 static void
2481 alc_stats_clear(struct alc_softc *sc)
2482 {
2483 	struct smb sb, *smb;
2484 	uint32_t *reg;
2485 	int i;
2486 
2487 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2488 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2489 		    sc->alc_cdata.alc_smb_map,
2490 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2491 		smb = sc->alc_rdata.alc_smb;
2492 		/* Update done, clear. */
2493 		smb->updated = 0;
2494 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2495 		    sc->alc_cdata.alc_smb_map,
2496 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2497 	} else {
2498 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2499 		    reg++) {
2500 			CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2501 			i += sizeof(uint32_t);
2502 		}
2503 		/* Read Tx statistics. */
2504 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2505 		    reg++) {
2506 			CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2507 			i += sizeof(uint32_t);
2508 		}
2509 	}
2510 }
2511 
2512 static void
2513 alc_stats_update(struct alc_softc *sc)
2514 {
2515 	struct alc_hw_stats *stat;
2516 	struct smb sb, *smb;
2517 	struct ifnet *ifp;
2518 	uint32_t *reg;
2519 	int i;
2520 
2521 	ALC_LOCK_ASSERT(sc);
2522 
2523 	ifp = sc->alc_ifp;
2524 	stat = &sc->alc_stats;
2525 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2526 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2527 		    sc->alc_cdata.alc_smb_map,
2528 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2529 		smb = sc->alc_rdata.alc_smb;
2530 		if (smb->updated == 0)
2531 			return;
2532 	} else {
2533 		smb = &sb;
2534 		/* Read Rx statistics. */
2535 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2536 		    reg++) {
2537 			*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2538 			i += sizeof(uint32_t);
2539 		}
2540 		/* Read Tx statistics. */
2541 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2542 		    reg++) {
2543 			*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2544 			i += sizeof(uint32_t);
2545 		}
2546 	}
2547 
2548 	/* Rx stats. */
2549 	stat->rx_frames += smb->rx_frames;
2550 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2551 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2552 	stat->rx_pause_frames += smb->rx_pause_frames;
2553 	stat->rx_control_frames += smb->rx_control_frames;
2554 	stat->rx_crcerrs += smb->rx_crcerrs;
2555 	stat->rx_lenerrs += smb->rx_lenerrs;
2556 	stat->rx_bytes += smb->rx_bytes;
2557 	stat->rx_runts += smb->rx_runts;
2558 	stat->rx_fragments += smb->rx_fragments;
2559 	stat->rx_pkts_64 += smb->rx_pkts_64;
2560 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2561 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2562 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2563 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2564 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2565 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2566 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2567 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2568 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2569 	stat->rx_alignerrs += smb->rx_alignerrs;
2570 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2571 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2572 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2573 
2574 	/* Tx stats. */
2575 	stat->tx_frames += smb->tx_frames;
2576 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2577 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2578 	stat->tx_pause_frames += smb->tx_pause_frames;
2579 	stat->tx_excess_defer += smb->tx_excess_defer;
2580 	stat->tx_control_frames += smb->tx_control_frames;
2581 	stat->tx_deferred += smb->tx_deferred;
2582 	stat->tx_bytes += smb->tx_bytes;
2583 	stat->tx_pkts_64 += smb->tx_pkts_64;
2584 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2585 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2586 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2587 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2588 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2589 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2590 	stat->tx_single_colls += smb->tx_single_colls;
2591 	stat->tx_multi_colls += smb->tx_multi_colls;
2592 	stat->tx_late_colls += smb->tx_late_colls;
2593 	stat->tx_excess_colls += smb->tx_excess_colls;
2594 	stat->tx_abort += smb->tx_abort;
2595 	stat->tx_underrun += smb->tx_underrun;
2596 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2597 	stat->tx_lenerrs += smb->tx_lenerrs;
2598 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2599 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2600 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2601 
2602 	/* Update counters in ifnet. */
2603 	ifp->if_opackets += smb->tx_frames;
2604 
2605 	ifp->if_collisions += smb->tx_single_colls +
2606 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2607 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
2608 
2609 	/*
2610 	 * XXX
2611 	 * tx_pkts_truncated counter looks suspicious. It constantly
2612 	 * increments with no sign of Tx errors. This may indicate
2613 	 * the counter name is not correct one so I've removed the
2614 	 * counter in output errors.
2615 	 */
2616 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
2617 	    smb->tx_underrun;
2618 
2619 	ifp->if_ipackets += smb->rx_frames;
2620 
2621 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2622 	    smb->rx_runts + smb->rx_pkts_truncated +
2623 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2624 	    smb->rx_alignerrs;
2625 
2626 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2627 		/* Update done, clear. */
2628 		smb->updated = 0;
2629 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2630 		    sc->alc_cdata.alc_smb_map,
2631 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2632 	}
2633 }
2634 
2635 static int
2636 alc_intr(void *arg)
2637 {
2638 	struct alc_softc *sc;
2639 	uint32_t status;
2640 
2641 	sc = (struct alc_softc *)arg;
2642 
2643 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
2644 	if ((status & ALC_INTRS) == 0)
2645 		return (FILTER_STRAY);
2646 	/* Disable interrupts. */
2647 	CSR_WRITE_4(sc, ALC_INTR_STATUS, INTR_DIS_INT);
2648 	taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task);
2649 
2650 	return (FILTER_HANDLED);
2651 }
2652 
2653 static void
2654 alc_int_task(void *arg, int pending)
2655 {
2656 	struct alc_softc *sc;
2657 	struct ifnet *ifp;
2658 	uint32_t status;
2659 	int more;
2660 
2661 	sc = (struct alc_softc *)arg;
2662 	ifp = sc->alc_ifp;
2663 
2664 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
2665 	ALC_LOCK(sc);
2666 	if (sc->alc_morework != 0) {
2667 		sc->alc_morework = 0;
2668 		status |= INTR_RX_PKT;
2669 	}
2670 	if ((status & ALC_INTRS) == 0)
2671 		goto done;
2672 
2673 	/* Acknowledge interrupts but still disable interrupts. */
2674 	CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
2675 
2676 	more = 0;
2677 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2678 		if ((status & INTR_RX_PKT) != 0) {
2679 			more = alc_rxintr(sc, sc->alc_process_limit);
2680 			if (more == EAGAIN)
2681 				sc->alc_morework = 1;
2682 			else if (more == EIO) {
2683 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2684 				alc_init_locked(sc);
2685 				ALC_UNLOCK(sc);
2686 				return;
2687 			}
2688 		}
2689 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
2690 		    INTR_TXQ_TO_RST)) != 0) {
2691 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2692 				device_printf(sc->alc_dev,
2693 				    "DMA read error! -- resetting\n");
2694 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2695 				device_printf(sc->alc_dev,
2696 				    "DMA write error! -- resetting\n");
2697 			if ((status & INTR_TXQ_TO_RST) != 0)
2698 				device_printf(sc->alc_dev,
2699 				    "TxQ reset! -- resetting\n");
2700 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2701 			alc_init_locked(sc);
2702 			ALC_UNLOCK(sc);
2703 			return;
2704 		}
2705 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2706 		    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2707 			alc_start_locked(ifp);
2708 	}
2709 
2710 	if (more == EAGAIN ||
2711 	    (CSR_READ_4(sc, ALC_INTR_STATUS) & ALC_INTRS) != 0) {
2712 		ALC_UNLOCK(sc);
2713 		taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task);
2714 		return;
2715 	}
2716 
2717 done:
2718 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2719 		/* Re-enable interrupts if we're running. */
2720 		CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
2721 	}
2722 	ALC_UNLOCK(sc);
2723 }
2724 
2725 static void
2726 alc_txeof(struct alc_softc *sc)
2727 {
2728 	struct ifnet *ifp;
2729 	struct alc_txdesc *txd;
2730 	uint32_t cons, prod;
2731 	int prog;
2732 
2733 	ALC_LOCK_ASSERT(sc);
2734 
2735 	ifp = sc->alc_ifp;
2736 
2737 	if (sc->alc_cdata.alc_tx_cnt == 0)
2738 		return;
2739 	bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
2740 	    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_POSTWRITE);
2741 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2742 		bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
2743 		    sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_POSTREAD);
2744 		prod = sc->alc_rdata.alc_cmb->cons;
2745 	} else
2746 		prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
2747 	/* Assume we're using normal Tx priority queue. */
2748 	prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
2749 	    MBOX_TD_CONS_LO_IDX_SHIFT;
2750 	cons = sc->alc_cdata.alc_tx_cons;
2751 	/*
2752 	 * Go through our Tx list and free mbufs for those
2753 	 * frames which have been transmitted.
2754 	 */
2755 	for (prog = 0; cons != prod; prog++,
2756 	    ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
2757 		if (sc->alc_cdata.alc_tx_cnt <= 0)
2758 			break;
2759 		prog++;
2760 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2761 		sc->alc_cdata.alc_tx_cnt--;
2762 		txd = &sc->alc_cdata.alc_txdesc[cons];
2763 		if (txd->tx_m != NULL) {
2764 			/* Reclaim transmitted mbufs. */
2765 			bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
2766 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2767 			bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
2768 			    txd->tx_dmamap);
2769 			m_freem(txd->tx_m);
2770 			txd->tx_m = NULL;
2771 		}
2772 	}
2773 
2774 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2775 		bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
2776 		    sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_PREREAD);
2777 	sc->alc_cdata.alc_tx_cons = cons;
2778 	/*
2779 	 * Unarm watchdog timer only when there is no pending
2780 	 * frames in Tx queue.
2781 	 */
2782 	if (sc->alc_cdata.alc_tx_cnt == 0)
2783 		sc->alc_watchdog_timer = 0;
2784 }
2785 
2786 static int
2787 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd)
2788 {
2789 	struct mbuf *m;
2790 	bus_dma_segment_t segs[1];
2791 	bus_dmamap_t map;
2792 	int nsegs;
2793 
2794 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2795 	if (m == NULL)
2796 		return (ENOBUFS);
2797 	m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
2798 #ifndef __NO_STRICT_ALIGNMENT
2799 	m_adj(m, sizeof(uint64_t));
2800 #endif
2801 
2802 	if (bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_rx_tag,
2803 	    sc->alc_cdata.alc_rx_sparemap, m, segs, &nsegs, 0) != 0) {
2804 		m_freem(m);
2805 		return (ENOBUFS);
2806 	}
2807 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2808 
2809 	if (rxd->rx_m != NULL) {
2810 		bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
2811 		    BUS_DMASYNC_POSTREAD);
2812 		bus_dmamap_unload(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap);
2813 	}
2814 	map = rxd->rx_dmamap;
2815 	rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
2816 	sc->alc_cdata.alc_rx_sparemap = map;
2817 	bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
2818 	    BUS_DMASYNC_PREREAD);
2819 	rxd->rx_m = m;
2820 	rxd->rx_desc->addr = htole64(segs[0].ds_addr);
2821 	return (0);
2822 }
2823 
2824 static int
2825 alc_rxintr(struct alc_softc *sc, int count)
2826 {
2827 	struct ifnet *ifp;
2828 	struct rx_rdesc *rrd;
2829 	uint32_t nsegs, status;
2830 	int rr_cons, prog;
2831 
2832 	bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
2833 	    sc->alc_cdata.alc_rr_ring_map,
2834 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2835 	bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
2836 	    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2837 	rr_cons = sc->alc_cdata.alc_rr_cons;
2838 	ifp = sc->alc_ifp;
2839 	for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;) {
2840 		if (count-- <= 0)
2841 			break;
2842 		rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
2843 		status = le32toh(rrd->status);
2844 		if ((status & RRD_VALID) == 0)
2845 			break;
2846 		nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
2847 		if (nsegs == 0) {
2848 			/* This should not happen! */
2849 			device_printf(sc->alc_dev,
2850 			    "unexpected segment count -- resetting\n");
2851 			return (EIO);
2852 		}
2853 		alc_rxeof(sc, rrd);
2854 		/* Clear Rx return status. */
2855 		rrd->status = 0;
2856 		ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
2857 		sc->alc_cdata.alc_rx_cons += nsegs;
2858 		sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
2859 		prog += nsegs;
2860 	}
2861 
2862 	if (prog > 0) {
2863 		/* Update the consumer index. */
2864 		sc->alc_cdata.alc_rr_cons = rr_cons;
2865 		/* Sync Rx return descriptors. */
2866 		bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
2867 		    sc->alc_cdata.alc_rr_ring_map,
2868 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2869 		/*
2870 		 * Sync updated Rx descriptors such that controller see
2871 		 * modified buffer addresses.
2872 		 */
2873 		bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
2874 		    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
2875 		/*
2876 		 * Let controller know availability of new Rx buffers.
2877 		 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
2878 		 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
2879 		 * only when Rx buffer pre-fetching is required. In
2880 		 * addition we already set ALC_RX_RD_FREE_THRESH to
2881 		 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
2882 		 * it still seems that pre-fetching needs more
2883 		 * experimentation.
2884 		 */
2885 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
2886 		    sc->alc_cdata.alc_rx_cons);
2887 	}
2888 
2889 	return (count > 0 ? 0 : EAGAIN);
2890 }
2891 
2892 #ifndef __NO_STRICT_ALIGNMENT
2893 static struct mbuf *
2894 alc_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2895 {
2896 	struct mbuf *n;
2897         int i;
2898         uint16_t *src, *dst;
2899 
2900 	src = mtod(m, uint16_t *);
2901 	dst = src - 3;
2902 
2903 	if (m->m_next == NULL) {
2904 		for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2905 			*dst++ = *src++;
2906 		m->m_data -= 6;
2907 		return (m);
2908 	}
2909 	/*
2910 	 * Append a new mbuf to received mbuf chain and copy ethernet
2911 	 * header from the mbuf chain. This can save lots of CPU
2912 	 * cycles for jumbo frame.
2913 	 */
2914 	MGETHDR(n, M_DONTWAIT, MT_DATA);
2915 	if (n == NULL) {
2916 		ifp->if_iqdrops++;
2917 		m_freem(m);
2918 		return (NULL);
2919 	}
2920 	bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2921 	m->m_data += ETHER_HDR_LEN;
2922 	m->m_len -= ETHER_HDR_LEN;
2923 	n->m_len = ETHER_HDR_LEN;
2924 	M_MOVE_PKTHDR(n, m);
2925 	n->m_next = m;
2926 	return (n);
2927 }
2928 #endif
2929 
2930 /* Receive a frame. */
2931 static void
2932 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
2933 {
2934 	struct alc_rxdesc *rxd;
2935 	struct ifnet *ifp;
2936 	struct mbuf *mp, *m;
2937 	uint32_t rdinfo, status, vtag;
2938 	int count, nsegs, rx_cons;
2939 
2940 	ifp = sc->alc_ifp;
2941 	status = le32toh(rrd->status);
2942 	rdinfo = le32toh(rrd->rdinfo);
2943 	rx_cons = RRD_RD_IDX(rdinfo);
2944 	nsegs = RRD_RD_CNT(rdinfo);
2945 
2946 	sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
2947 	if ((status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) != 0) {
2948 		/*
2949 		 * We want to pass the following frames to upper
2950 		 * layer regardless of error status of Rx return
2951 		 * ring.
2952 		 *
2953 		 *  o IP/TCP/UDP checksum is bad.
2954 		 *  o frame length and protocol specific length
2955 		 *     does not match.
2956 		 *
2957 		 *  Force network stack compute checksum for
2958 		 *  errored frames.
2959 		 */
2960 		status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
2961 		if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN |
2962 		    RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0)
2963 			return;
2964 	}
2965 
2966 	for (count = 0; count < nsegs; count++,
2967 	    ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
2968 		rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
2969 		mp = rxd->rx_m;
2970 		/* Add a new receive buffer to the ring. */
2971 		if (alc_newbuf(sc, rxd) != 0) {
2972 			ifp->if_iqdrops++;
2973 			/* Reuse Rx buffers. */
2974 			if (sc->alc_cdata.alc_rxhead != NULL)
2975 				m_freem(sc->alc_cdata.alc_rxhead);
2976 			break;
2977 		}
2978 
2979 		/*
2980 		 * Assume we've received a full sized frame.
2981 		 * Actual size is fixed when we encounter the end of
2982 		 * multi-segmented frame.
2983 		 */
2984 		mp->m_len = sc->alc_buf_size;
2985 
2986 		/* Chain received mbufs. */
2987 		if (sc->alc_cdata.alc_rxhead == NULL) {
2988 			sc->alc_cdata.alc_rxhead = mp;
2989 			sc->alc_cdata.alc_rxtail = mp;
2990 		} else {
2991 			mp->m_flags &= ~M_PKTHDR;
2992 			sc->alc_cdata.alc_rxprev_tail =
2993 			    sc->alc_cdata.alc_rxtail;
2994 			sc->alc_cdata.alc_rxtail->m_next = mp;
2995 			sc->alc_cdata.alc_rxtail = mp;
2996 		}
2997 
2998 		if (count == nsegs - 1) {
2999 			/* Last desc. for this frame. */
3000 			m = sc->alc_cdata.alc_rxhead;
3001 			m->m_flags |= M_PKTHDR;
3002 			/*
3003 			 * It seems that L1C/L2C controller has no way
3004 			 * to tell hardware to strip CRC bytes.
3005 			 */
3006 			m->m_pkthdr.len =
3007 			    sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
3008 			if (nsegs > 1) {
3009 				/* Set last mbuf size. */
3010 				mp->m_len = sc->alc_cdata.alc_rxlen -
3011 				    (nsegs - 1) * sc->alc_buf_size;
3012 				/* Remove the CRC bytes in chained mbufs. */
3013 				if (mp->m_len <= ETHER_CRC_LEN) {
3014 					sc->alc_cdata.alc_rxtail =
3015 					    sc->alc_cdata.alc_rxprev_tail;
3016 					sc->alc_cdata.alc_rxtail->m_len -=
3017 					    (ETHER_CRC_LEN - mp->m_len);
3018 					sc->alc_cdata.alc_rxtail->m_next = NULL;
3019 					m_freem(mp);
3020 				} else {
3021 					mp->m_len -= ETHER_CRC_LEN;
3022 				}
3023 			} else
3024 				m->m_len = m->m_pkthdr.len;
3025 			m->m_pkthdr.rcvif = ifp;
3026 			/*
3027 			 * Due to hardware bugs, Rx checksum offloading
3028 			 * was intentionally disabled.
3029 			 */
3030 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
3031 			    (status & RRD_VLAN_TAG) != 0) {
3032 				vtag = RRD_VLAN(le32toh(rrd->vtag));
3033 				m->m_pkthdr.ether_vtag = ntohs(vtag);
3034 				m->m_flags |= M_VLANTAG;
3035 			}
3036 #ifndef __NO_STRICT_ALIGNMENT
3037 			m = alc_fixup_rx(ifp, m);
3038 			if (m != NULL)
3039 #endif
3040 			{
3041 			/* Pass it on. */
3042 			ALC_UNLOCK(sc);
3043 			(*ifp->if_input)(ifp, m);
3044 			ALC_LOCK(sc);
3045 			}
3046 		}
3047 	}
3048 	/* Reset mbuf chains. */
3049 	ALC_RXCHAIN_RESET(sc);
3050 }
3051 
3052 static void
3053 alc_tick(void *arg)
3054 {
3055 	struct alc_softc *sc;
3056 	struct mii_data *mii;
3057 
3058 	sc = (struct alc_softc *)arg;
3059 
3060 	ALC_LOCK_ASSERT(sc);
3061 
3062 	mii = device_get_softc(sc->alc_miibus);
3063 	mii_tick(mii);
3064 	alc_stats_update(sc);
3065 	/*
3066 	 * alc(4) does not rely on Tx completion interrupts to reclaim
3067 	 * transferred buffers. Instead Tx completion interrupts are
3068 	 * used to hint for scheduling Tx task. So it's necessary to
3069 	 * release transmitted buffers by kicking Tx completion
3070 	 * handler. This limits the maximum reclamation delay to a hz.
3071 	 */
3072 	alc_txeof(sc);
3073 	alc_watchdog(sc);
3074 	callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
3075 }
3076 
3077 static void
3078 alc_reset(struct alc_softc *sc)
3079 {
3080 	uint32_t reg;
3081 	int i;
3082 
3083 	reg = CSR_READ_4(sc, ALC_MASTER_CFG) & 0xFFFF;
3084 	reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
3085 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
3086 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
3087 		DELAY(10);
3088 		if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
3089 			break;
3090 	}
3091 	if (i == 0)
3092 		device_printf(sc->alc_dev, "master reset timeout!\n");
3093 
3094 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
3095 		if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0)
3096 			break;
3097 		DELAY(10);
3098 	}
3099 
3100 	if (i == 0)
3101 		device_printf(sc->alc_dev, "reset timeout(0x%08x)!\n", reg);
3102 }
3103 
3104 static void
3105 alc_init(void *xsc)
3106 {
3107 	struct alc_softc *sc;
3108 
3109 	sc = (struct alc_softc *)xsc;
3110 	ALC_LOCK(sc);
3111 	alc_init_locked(sc);
3112 	ALC_UNLOCK(sc);
3113 }
3114 
3115 static void
3116 alc_init_locked(struct alc_softc *sc)
3117 {
3118 	struct ifnet *ifp;
3119 	struct mii_data *mii;
3120 	uint8_t eaddr[ETHER_ADDR_LEN];
3121 	bus_addr_t paddr;
3122 	uint32_t reg, rxf_hi, rxf_lo;
3123 
3124 	ALC_LOCK_ASSERT(sc);
3125 
3126 	ifp = sc->alc_ifp;
3127 	mii = device_get_softc(sc->alc_miibus);
3128 
3129 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3130 		return;
3131 	/*
3132 	 * Cancel any pending I/O.
3133 	 */
3134 	alc_stop(sc);
3135 	/*
3136 	 * Reset the chip to a known state.
3137 	 */
3138 	alc_reset(sc);
3139 
3140 	/* Initialize Rx descriptors. */
3141 	if (alc_init_rx_ring(sc) != 0) {
3142 		device_printf(sc->alc_dev, "no memory for Rx buffers.\n");
3143 		alc_stop(sc);
3144 		return;
3145 	}
3146 	alc_init_rr_ring(sc);
3147 	alc_init_tx_ring(sc);
3148 	alc_init_cmb(sc);
3149 	alc_init_smb(sc);
3150 
3151 	/* Enable all clocks. */
3152 	CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0);
3153 
3154 	/* Reprogram the station address. */
3155 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3156 	CSR_WRITE_4(sc, ALC_PAR0,
3157 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
3158 	CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
3159 	/*
3160 	 * Clear WOL status and disable all WOL feature as WOL
3161 	 * would interfere Rx operation under normal environments.
3162 	 */
3163 	CSR_READ_4(sc, ALC_WOL_CFG);
3164 	CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
3165 	/* Set Tx descriptor base addresses. */
3166 	paddr = sc->alc_rdata.alc_tx_ring_paddr;
3167 	CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
3168 	CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
3169 	/* We don't use high priority ring. */
3170 	CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
3171 	/* Set Tx descriptor counter. */
3172 	CSR_WRITE_4(sc, ALC_TD_RING_CNT,
3173 	    (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
3174 	/* Set Rx descriptor base addresses. */
3175 	paddr = sc->alc_rdata.alc_rx_ring_paddr;
3176 	CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
3177 	CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
3178 	/* We use one Rx ring. */
3179 	CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
3180 	CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
3181 	CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
3182 	/* Set Rx descriptor counter. */
3183 	CSR_WRITE_4(sc, ALC_RD_RING_CNT,
3184 	    (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
3185 
3186 	/*
3187 	 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
3188 	 * if it do not fit the buffer size. Rx return descriptor holds
3189 	 * a counter that indicates how many fragments were made by the
3190 	 * hardware. The buffer size should be multiple of 8 bytes.
3191 	 * Since hardware has limit on the size of buffer size, always
3192 	 * use the maximum value.
3193 	 * For strict-alignment architectures make sure to reduce buffer
3194 	 * size by 8 bytes to make room for alignment fixup.
3195 	 */
3196 #ifndef __NO_STRICT_ALIGNMENT
3197 	sc->alc_buf_size = RX_BUF_SIZE_MAX - sizeof(uint64_t);
3198 #else
3199 	sc->alc_buf_size = RX_BUF_SIZE_MAX;
3200 #endif
3201 	CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
3202 
3203 	paddr = sc->alc_rdata.alc_rr_ring_paddr;
3204 	/* Set Rx return descriptor base addresses. */
3205 	CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
3206 	/* We use one Rx return ring. */
3207 	CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
3208 	CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
3209 	CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
3210 	/* Set Rx return descriptor counter. */
3211 	CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
3212 	    (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
3213 	paddr = sc->alc_rdata.alc_cmb_paddr;
3214 	CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
3215 	paddr = sc->alc_rdata.alc_smb_paddr;
3216 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
3217 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
3218 
3219 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) {
3220 		/* Reconfigure SRAM - Vendor magic. */
3221 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
3222 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
3223 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
3224 		CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
3225 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
3226 		CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
3227 		CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
3228 		CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
3229 	}
3230 
3231 	/* Tell hardware that we're ready to load DMA blocks. */
3232 	CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
3233 
3234 	/* Configure interrupt moderation timer. */
3235 	reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
3236 	reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
3237 	CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
3238 	/*
3239 	 * We don't want to automatic interrupt clear as task queue
3240 	 * for the interrupt should know interrupt status.
3241 	 */
3242 	reg = MASTER_SA_TIMER_ENB;
3243 	if (ALC_USECS(sc->alc_int_rx_mod) != 0)
3244 		reg |= MASTER_IM_RX_TIMER_ENB;
3245 	if (ALC_USECS(sc->alc_int_tx_mod) != 0)
3246 		reg |= MASTER_IM_TX_TIMER_ENB;
3247 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
3248 	/*
3249 	 * Disable interrupt re-trigger timer. We don't want automatic
3250 	 * re-triggering of un-ACKed interrupts.
3251 	 */
3252 	CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
3253 	/* Configure CMB. */
3254 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
3255 		CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
3256 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
3257 	} else
3258 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
3259 	/*
3260 	 * Hardware can be configured to issue SMB interrupt based
3261 	 * on programmed interval. Since there is a callout that is
3262 	 * invoked for every hz in driver we use that instead of
3263 	 * relying on periodic SMB interrupt.
3264 	 */
3265 	CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
3266 	/* Clear MAC statistics. */
3267 	alc_stats_clear(sc);
3268 
3269 	/*
3270 	 * Always use maximum frame size that controller can support.
3271 	 * Otherwise received frames that has larger frame length
3272 	 * than alc(4) MTU would be silently dropped in hardware. This
3273 	 * would make path-MTU discovery hard as sender wouldn't get
3274 	 * any responses from receiver. alc(4) supports
3275 	 * multi-fragmented frames on Rx path so it has no issue on
3276 	 * assembling fragmented frames. Using maximum frame size also
3277 	 * removes the need to reinitialize hardware when interface
3278 	 * MTU configuration was changed.
3279 	 *
3280 	 * Be conservative in what you do, be liberal in what you
3281 	 * accept from others - RFC 793.
3282 	 */
3283 	CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
3284 
3285 	/* Disable header split(?) */
3286 	CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
3287 
3288 	/* Configure IPG/IFG parameters. */
3289 	CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
3290 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
3291 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
3292 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
3293 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
3294 	/* Set parameters for half-duplex media. */
3295 	CSR_WRITE_4(sc, ALC_HDPX_CFG,
3296 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
3297 	    HDPX_CFG_LCOL_MASK) |
3298 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
3299 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
3300 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
3301 	    HDPX_CFG_ABEBT_MASK) |
3302 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
3303 	    HDPX_CFG_JAMIPG_MASK));
3304 	/*
3305 	 * Set TSO/checksum offload threshold. For frames that is
3306 	 * larger than this threshold, hardware wouldn't do
3307 	 * TSO/checksum offloading.
3308 	 */
3309 	CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH,
3310 	    (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
3311 	    TSO_OFFLOAD_THRESH_MASK);
3312 	/* Configure TxQ. */
3313 	reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
3314 	    TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
3315 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
3316 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2)
3317 		reg >>= 1;
3318 	reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
3319 	    TXQ_CFG_TD_BURST_MASK;
3320 	CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
3321 
3322 	/* Configure Rx free descriptor pre-fetching. */
3323 	CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
3324 	    ((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) &
3325 	    RX_RD_FREE_THRESH_HI_MASK) |
3326 	    ((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) &
3327 	    RX_RD_FREE_THRESH_LO_MASK));
3328 
3329 	/*
3330 	 * Configure flow control parameters.
3331 	 * XON  : 80% of Rx FIFO
3332 	 * XOFF : 30% of Rx FIFO
3333 	 */
3334 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 ||
3335 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132) {
3336 		reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
3337 		rxf_hi = (reg * 8) / 10;
3338 		rxf_lo = (reg * 3) / 10;
3339 		CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3340 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3341 		     RX_FIFO_PAUSE_THRESH_LO_MASK) |
3342 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3343 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
3344 	}
3345 
3346 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
3347 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2)
3348 		CSR_WRITE_4(sc, ALC_SERDES_LOCK,
3349 		    CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
3350 		    SERDES_PHY_CLK_SLOWDOWN);
3351 
3352 	/* Disable RSS until I understand L1C/L2C's RSS logic. */
3353 	CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
3354 	CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
3355 
3356 	/* Configure RxQ. */
3357 	reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
3358 	    RXQ_CFG_RD_BURST_MASK;
3359 	reg |= RXQ_CFG_RSS_MODE_DIS;
3360 	if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0)
3361 		reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
3362 	CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3363 
3364 	/* Configure DMA parameters. */
3365 	reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
3366 	reg |= sc->alc_rcb;
3367 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
3368 		reg |= DMA_CFG_CMB_ENB;
3369 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
3370 		reg |= DMA_CFG_SMB_ENB;
3371 	else
3372 		reg |= DMA_CFG_SMB_DIS;
3373 	reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
3374 	    DMA_CFG_RD_BURST_SHIFT;
3375 	reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
3376 	    DMA_CFG_WR_BURST_SHIFT;
3377 	reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
3378 	    DMA_CFG_RD_DELAY_CNT_MASK;
3379 	reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
3380 	    DMA_CFG_WR_DELAY_CNT_MASK;
3381 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3382 
3383 	/*
3384 	 * Configure Tx/Rx MACs.
3385 	 *  - Auto-padding for short frames.
3386 	 *  - Enable CRC generation.
3387 	 *  Actual reconfiguration of MAC for resolved speed/duplex
3388 	 *  is followed after detection of link establishment.
3389 	 *  AR813x/AR815x always does checksum computation regardless
3390 	 *  of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
3391 	 *  have bug in protocol field in Rx return structure so
3392 	 *  these controllers can't handle fragmented frames. Disable
3393 	 *  Rx checksum offloading until there is a newer controller
3394 	 *  that has sane implementation.
3395 	 */
3396 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
3397 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
3398 	    MAC_CFG_PREAMBLE_MASK);
3399 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
3400 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
3401 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2)
3402 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
3403 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
3404 		reg |= MAC_CFG_SPEED_10_100;
3405 	else
3406 		reg |= MAC_CFG_SPEED_1000;
3407 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3408 
3409 	/* Set up the receive filter. */
3410 	alc_rxfilter(sc);
3411 	alc_rxvlan(sc);
3412 
3413 	/* Acknowledge all pending interrupts and clear it. */
3414 	CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
3415 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3416 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
3417 
3418 	sc->alc_flags &= ~ALC_FLAG_LINK;
3419 	/* Switch to the current media. */
3420 	mii_mediachg(mii);
3421 
3422 	callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
3423 
3424 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3425 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3426 }
3427 
3428 static void
3429 alc_stop(struct alc_softc *sc)
3430 {
3431 	struct ifnet *ifp;
3432 	struct alc_txdesc *txd;
3433 	struct alc_rxdesc *rxd;
3434 	uint32_t reg;
3435 	int i;
3436 
3437 	ALC_LOCK_ASSERT(sc);
3438 	/*
3439 	 * Mark the interface down and cancel the watchdog timer.
3440 	 */
3441 	ifp = sc->alc_ifp;
3442 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3443 	sc->alc_flags &= ~ALC_FLAG_LINK;
3444 	callout_stop(&sc->alc_tick_ch);
3445 	sc->alc_watchdog_timer = 0;
3446 	alc_stats_update(sc);
3447 	/* Disable interrupts. */
3448 	CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
3449 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3450 	alc_stop_queue(sc);
3451 	/* Disable DMA. */
3452 	reg = CSR_READ_4(sc, ALC_DMA_CFG);
3453 	reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
3454 	reg |= DMA_CFG_SMB_DIS;
3455 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3456 	DELAY(1000);
3457 	/* Stop Rx/Tx MACs. */
3458 	alc_stop_mac(sc);
3459 	/* Disable interrupts which might be touched in taskq handler. */
3460 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3461 
3462 	/* Reclaim Rx buffers that have been processed. */
3463 	if (sc->alc_cdata.alc_rxhead != NULL)
3464 		m_freem(sc->alc_cdata.alc_rxhead);
3465 	ALC_RXCHAIN_RESET(sc);
3466 	/*
3467 	 * Free Tx/Rx mbufs still in the queues.
3468 	 */
3469 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3470 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3471 		if (rxd->rx_m != NULL) {
3472 			bus_dmamap_sync(sc->alc_cdata.alc_rx_tag,
3473 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3474 			bus_dmamap_unload(sc->alc_cdata.alc_rx_tag,
3475 			    rxd->rx_dmamap);
3476 			m_freem(rxd->rx_m);
3477 			rxd->rx_m = NULL;
3478 		}
3479 	}
3480 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3481 		txd = &sc->alc_cdata.alc_txdesc[i];
3482 		if (txd->tx_m != NULL) {
3483 			bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
3484 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3485 			bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
3486 			    txd->tx_dmamap);
3487 			m_freem(txd->tx_m);
3488 			txd->tx_m = NULL;
3489 		}
3490 	}
3491 }
3492 
3493 static void
3494 alc_stop_mac(struct alc_softc *sc)
3495 {
3496 	uint32_t reg;
3497 	int i;
3498 
3499 	ALC_LOCK_ASSERT(sc);
3500 
3501 	/* Disable Rx/Tx MAC. */
3502 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3503 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
3504 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
3505 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3506 	}
3507 	for (i = ALC_TIMEOUT; i > 0; i--) {
3508 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3509 		if (reg == 0)
3510 			break;
3511 		DELAY(10);
3512 	}
3513 	if (i == 0)
3514 		device_printf(sc->alc_dev,
3515 		    "could not disable Rx/Tx MAC(0x%08x)!\n", reg);
3516 }
3517 
3518 static void
3519 alc_start_queue(struct alc_softc *sc)
3520 {
3521 	uint32_t qcfg[] = {
3522 		0,
3523 		RXQ_CFG_QUEUE0_ENB,
3524 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
3525 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
3526 		RXQ_CFG_ENB
3527 	};
3528 	uint32_t cfg;
3529 
3530 	ALC_LOCK_ASSERT(sc);
3531 
3532 	/* Enable RxQ. */
3533 	cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
3534 	cfg &= ~RXQ_CFG_ENB;
3535 	cfg |= qcfg[1];
3536 	CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
3537 	/* Enable TxQ. */
3538 	cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
3539 	cfg |= TXQ_CFG_ENB;
3540 	CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
3541 }
3542 
3543 static void
3544 alc_stop_queue(struct alc_softc *sc)
3545 {
3546 	uint32_t reg;
3547 	int i;
3548 
3549 	ALC_LOCK_ASSERT(sc);
3550 
3551 	/* Disable RxQ. */
3552 	reg = CSR_READ_4(sc, ALC_RXQ_CFG);
3553 	if ((reg & RXQ_CFG_ENB) != 0) {
3554 		reg &= ~RXQ_CFG_ENB;
3555 		CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3556 	}
3557 	/* Disable TxQ. */
3558 	reg = CSR_READ_4(sc, ALC_TXQ_CFG);
3559 	if ((reg & TXQ_CFG_ENB) != 0) {
3560 		reg &= ~TXQ_CFG_ENB;
3561 		CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
3562 	}
3563 	for (i = ALC_TIMEOUT; i > 0; i--) {
3564 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3565 		if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
3566 			break;
3567 		DELAY(10);
3568 	}
3569 	if (i == 0)
3570 		device_printf(sc->alc_dev,
3571 		    "could not disable RxQ/TxQ (0x%08x)!\n", reg);
3572 }
3573 
3574 static void
3575 alc_init_tx_ring(struct alc_softc *sc)
3576 {
3577 	struct alc_ring_data *rd;
3578 	struct alc_txdesc *txd;
3579 	int i;
3580 
3581 	ALC_LOCK_ASSERT(sc);
3582 
3583 	sc->alc_cdata.alc_tx_prod = 0;
3584 	sc->alc_cdata.alc_tx_cons = 0;
3585 	sc->alc_cdata.alc_tx_cnt = 0;
3586 
3587 	rd = &sc->alc_rdata;
3588 	bzero(rd->alc_tx_ring, ALC_TX_RING_SZ);
3589 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3590 		txd = &sc->alc_cdata.alc_txdesc[i];
3591 		txd->tx_m = NULL;
3592 	}
3593 
3594 	bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
3595 	    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
3596 }
3597 
3598 static int
3599 alc_init_rx_ring(struct alc_softc *sc)
3600 {
3601 	struct alc_ring_data *rd;
3602 	struct alc_rxdesc *rxd;
3603 	int i;
3604 
3605 	ALC_LOCK_ASSERT(sc);
3606 
3607 	sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
3608 	sc->alc_morework = 0;
3609 	rd = &sc->alc_rdata;
3610 	bzero(rd->alc_rx_ring, ALC_RX_RING_SZ);
3611 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3612 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3613 		rxd->rx_m = NULL;
3614 		rxd->rx_desc = &rd->alc_rx_ring[i];
3615 		if (alc_newbuf(sc, rxd) != 0)
3616 			return (ENOBUFS);
3617 	}
3618 
3619 	/*
3620 	 * Since controller does not update Rx descriptors, driver
3621 	 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
3622 	 * is enough to ensure coherence.
3623 	 */
3624 	bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
3625 	    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
3626 	/* Let controller know availability of new Rx buffers. */
3627 	CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
3628 
3629 	return (0);
3630 }
3631 
3632 static void
3633 alc_init_rr_ring(struct alc_softc *sc)
3634 {
3635 	struct alc_ring_data *rd;
3636 
3637 	ALC_LOCK_ASSERT(sc);
3638 
3639 	sc->alc_cdata.alc_rr_cons = 0;
3640 	ALC_RXCHAIN_RESET(sc);
3641 
3642 	rd = &sc->alc_rdata;
3643 	bzero(rd->alc_rr_ring, ALC_RR_RING_SZ);
3644 	bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
3645 	    sc->alc_cdata.alc_rr_ring_map,
3646 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3647 }
3648 
3649 static void
3650 alc_init_cmb(struct alc_softc *sc)
3651 {
3652 	struct alc_ring_data *rd;
3653 
3654 	ALC_LOCK_ASSERT(sc);
3655 
3656 	rd = &sc->alc_rdata;
3657 	bzero(rd->alc_cmb, ALC_CMB_SZ);
3658 	bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag, sc->alc_cdata.alc_cmb_map,
3659 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3660 }
3661 
3662 static void
3663 alc_init_smb(struct alc_softc *sc)
3664 {
3665 	struct alc_ring_data *rd;
3666 
3667 	ALC_LOCK_ASSERT(sc);
3668 
3669 	rd = &sc->alc_rdata;
3670 	bzero(rd->alc_smb, ALC_SMB_SZ);
3671 	bus_dmamap_sync(sc->alc_cdata.alc_smb_tag, sc->alc_cdata.alc_smb_map,
3672 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3673 }
3674 
3675 static void
3676 alc_rxvlan(struct alc_softc *sc)
3677 {
3678 	struct ifnet *ifp;
3679 	uint32_t reg;
3680 
3681 	ALC_LOCK_ASSERT(sc);
3682 
3683 	ifp = sc->alc_ifp;
3684 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3685 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3686 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3687 	else
3688 		reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3689 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3690 }
3691 
3692 static void
3693 alc_rxfilter(struct alc_softc *sc)
3694 {
3695 	struct ifnet *ifp;
3696 	struct ifmultiaddr *ifma;
3697 	uint32_t crc;
3698 	uint32_t mchash[2];
3699 	uint32_t rxcfg;
3700 
3701 	ALC_LOCK_ASSERT(sc);
3702 
3703 	ifp = sc->alc_ifp;
3704 
3705 	bzero(mchash, sizeof(mchash));
3706 	rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
3707 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3708 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3709 		rxcfg |= MAC_CFG_BCAST;
3710 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3711 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3712 			rxcfg |= MAC_CFG_PROMISC;
3713 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3714 			rxcfg |= MAC_CFG_ALLMULTI;
3715 		mchash[0] = 0xFFFFFFFF;
3716 		mchash[1] = 0xFFFFFFFF;
3717 		goto chipit;
3718 	}
3719 
3720 	if_maddr_rlock(ifp);
3721 	TAILQ_FOREACH(ifma, &sc->alc_ifp->if_multiaddrs, ifma_link) {
3722 		if (ifma->ifma_addr->sa_family != AF_LINK)
3723 			continue;
3724 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3725 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3726 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3727 	}
3728 	if_maddr_runlock(ifp);
3729 
3730 chipit:
3731 	CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
3732 	CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
3733 	CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
3734 }
3735 
3736 static int
3737 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3738 {
3739 	int error, value;
3740 
3741 	if (arg1 == NULL)
3742 		return (EINVAL);
3743 	value = *(int *)arg1;
3744 	error = sysctl_handle_int(oidp, &value, 0, req);
3745 	if (error || req->newptr == NULL)
3746 		return (error);
3747 	if (value < low || value > high)
3748 		return (EINVAL);
3749 	*(int *)arg1 = value;
3750 
3751 	return (0);
3752 }
3753 
3754 static int
3755 sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS)
3756 {
3757 	return (sysctl_int_range(oidp, arg1, arg2, req,
3758 	    ALC_PROC_MIN, ALC_PROC_MAX));
3759 }
3760 
3761 static int
3762 sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS)
3763 {
3764 
3765 	return (sysctl_int_range(oidp, arg1, arg2, req,
3766 	    ALC_IM_TIMER_MIN, ALC_IM_TIMER_MAX));
3767 }
3768